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Abstract. We review properties of Calabi-Yau compactifications of string
theory, M-theory and F-theory.

1. Introduction

Calabi-Yau compactifications have played an important role in studying su-
persymmetric vacua of string theory. More recently they have also featured
in compactifications of M-theory and F-theory. The moduli of the Calabi-
Yau metric appear in the four-dimensional effective Lagrangian as scalar
fields which are flat directions of the effective potential. In these lectures we
focus on their moduli spaces and the corresponding couplings in in the low
energy effective action and neglect other parts of the massless spectrum in
our considerations.

2. A short story about string theory, F-theory and M-theory
2.1. STRING THEORY

In string theory the fundamental objects are one-dimensional strings which,
as they move in time, sweep out a 2-dimensional worldsheet ¥ [1]. Strings
can be open or closed and their worldsheet is embedded in a D-dimensional
target space of Minkowskian signature which is identified with spacetime.
States in the target space appear as eigenmodes of the string and their
scattering amplitudes are described by appropriate scattering amplitudes
of strings. These scattering amplitudes are built from a fundamental vertex,
which for closed strings is depicted in Fig. 1. It represents the splitting of
a string or the joining of two strings and the strength of this interaction is
governed by a dimensionless string coupling constant gs. Out of the funda-



2 JAN LOUIS

Ngs

Figure 1. The fundamental closed string vertex.

mental vertex one composes all possible closed string scattering amplitudes
A, for example the four-point amplitude shown in Fig. 2. The expansion

Figure 2. The perturbative expansion of string scattering amplitudes. The order of g
is governed by the number of holes in the world sheet.

in the topology of the Riemann surface (i.e. the number of holes in the sur-
face) coincides with a power series expansion in the string coupling constant
formally written as

n=0

where A(™ is the scattering amplitude on a Riemann surface 3 of genus n
and x(X) is the Euler characteristic of the Riemann surface

1
X(E):E/ER(Q):2—2n—b. 2)

R® is the curvature on ¥ and b the number of boundaries of the Riemann
surface (for the four-point amplitude of Fig. 2 one has b = 4).!

In all string theories there is a massless scalar field ¢ called the dilaton
which couples to R® and therefore its vacuum-expectation value deter-
mines the size of the string coupling; one finds [2, 1]

gs = el?) (3)

'For open strings different diagrams contribute at the same order of the string loop
expansion. See [1] for further details.
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gs 1s a free parameter since ¢ is a flat direction (a modulus) of the effective
potential. String perturbation theory is defined in that region of the pa-
rameter space (which is also called the moduli space) where gs < 1 and the
tree-level amplitude (genus-0) is the dominant contribution with higher-
loop amplitudes suppressed by higher powers of gs. Until 1995 this was the
only regime accessible in string theory.

Unitarity of the amplitudes imposes a restriction on the maximal num-
ber of spacetime dimensions and the spacetime spectrum. In these lectures
we exclusively focus on string theories defined in spacetime supersymmet-
ric backgrounds and all such string theories necessarily have D < 10. They
are particularly simple in their maximal possible dimension D = 10 where
one has only five consistent string theories: type-ITA, type-IIB, heterotic
Eg x Eg (HES), heterotic SO(32) (HSO) and the type-I SO(32) string.? The
first two have 32 supercharges (¢ = 32) while the other three string theories
all have 16 supercharges (¢ = 16). The massless spectrum of all 5 theories
is summarized as follows:

type ¢ bosonic spectrum
A 32 NS-NS Guvs Buv, ¢
R-R Vi, Cuvp
1B 32 NS-NS Guvs Buv, ¢
R-R Cupos By ¢
HES 16 Gy Buv, ¢
A, in adjoint of Eg x Eg
HSO 16 Gy Buv, ¢
A, in adjoint of SO(32)
I ].6 NS'NS Glu/, ¢
R-R B;w

open string A, in adjoint of SO(32)

2For closed strings an additional constraint arises from the requirement of modular
invariance of one-loop amplitudes which results in an anomaly-free spectrum of the cor-
responding low-energy effective theory [3]. For open strings anomaly cancellation is a
consequence of the absence of tadpole diagrams [1].
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2.2. CALABI-YAU COMPACTIFICATIONS

String theories in backgrounds with D < 10 can be constructed either as ge-
ometrical compactifications or by specifying an appropriate conformal field
theory on the string worldsheet. In these lectures we only discuss the geo-
metrical constructions, that is we choose to compactify the 10-dimensional
Minkowski space M19) on a compact manifold K

MU0 = p(P) 5 g(10-D) (4)

Consistency requires K to be Ricci-flat while preserving some supercharges
implies a constraint on the holonomy group of K. One finds that part of
the supersymmetry is preserved if one compactifies on Calabi-Yau manifolds
Y, . These are complex n-dimensional Ricci-flat compact Kahler manifolds
with holonomy group SU(n). One has

n manifold X SUSY preserved
1 Torus T2 0 all
2 K3-surface 24 q/2
3 Calabi-Yau threefold Y3 not fixed q/4
4  Calabi-Yau fourfold Y4 not fixed q/8

x is the Euler number of the Calabi-Yau manifold and we see that for n =
1, 2 they are topologically unique. More properties of Calabi—Yau manifolds
are assembled in the Appendix.

2.3. STRING DUALITIES

The past few years have shown [4] that various string theories are interre-
lated by a complicated ‘web’ of duality relations . One distinguishes pertur-
bative and non-perturbative dualities. Perturbative dualities already hold
at weak string coupling and the map which identifies the perturbative theo-
ries does not involve the dilaton. An example is T-duality [5] which identifies
different (perturbative) regions of toroidal compactifications. On the other
hand non-perturbative dualities identify regions of the parameter space
which are not simultaneously at weak coupling and the duality map in-
volves the dilaton in a nontrivial way. Such non-perturbative dualities are
of utmost importance since they map the strong-coupling region of a given
(string) theory to the weak-coupling region of a dual theory where pertur-
bative methods are applicable and hence the strong-coupling limit gets (at
least partially) under quantitative control. The non-perturbative dualities
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cannot be proven at present. Rather their validity has only been checked
for quantities or couplings which do not receive quantum corrections. Such
couplings do exist in supersymmetric (string) theories and it is precisely for
this reason that supersymmetry has played such an important (technical)
role in establishing non-perturbative dualities.

Let A and B be two perturbatively distinct string theories each with
its own string coupling g4 and gpg, respectively. However, it is possible that
once all quantum corrections (including the non-perturbative corrections)
are taken into account A and B are equivalent as quantum theories and
one has A = B. This situation can occur in two different ways: The strong-
coupling limit of A is mapped to the weak coupling limit of B or in other
words g4 ~ ggl. Along with this strong-weak coupling relation goes a
map of the elementary excitations of theory A to the non-perturbative,
solitonic excitations of theory B and vice versa. Some of these solitonic
excitations have a description in string theory as open strings with Dirichlet
boundary conditions ending on a fixed spatial p-dimensional hyper-plane
— a Dp-brane [6]. Such Dp-branes must be regarded as dynamical objects
with degrees of freedom induced by the attached open strings. A careful
analysis shows that the corresponding states in spacetime are not part
of the perturbative spectrum but rather correspond to non-perturbative
solitonic type excitations?. It is precisely these states which dramatically
affect the properties of string theory in its non-perturbative regime. The
theories A and B are called S—dual and one also refers to this situation as
a ‘string—string duality’.

There is a variant of the above situation where the dilaton of theory A
is not mapped to the dilaton of theory B but rather to any of the other
perturbative moduli Rp of theory B. In this case one has the identifications
¢ ~ Rp, ¢p ~ Ry, or in other words the strong-coupling limit of A is
independent of gg. Thus the strong-coupling limit of A is again controlled
by the perturbative regime of theory B and hence accessible in perturbation
theory (at least in principle). The known S—dualities are summarized in the
following table

D | ¢ | duality

10 [ 16 | HSO ~ 1

6 |16 | [TIA/K3 ~H/T*

4 |8 |IIA/Y; ~H/K3 x T?
2 |4 |IIA)Y; ~H/Y3 x T?

Another situation is encountered when the strong-coupling limit of a
theory A is controlled not by a distinct theory B, but rather by a different

3They are non-perturbative in that their mass (or rather their tension for higher-
dimensional D-branes) goes to infinity in the weak coupling limit gs — 0.
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perturbative region of the same theory A. That is, the strong-coupling
regime of A has an alternative weakly-coupled description within the same
theory A but in terms of a different set of elementary degrees of freedom. For
such a self-duality to hold the theory A has to have a nontrivial (discrete)
symmetry I's which maps the strong-coupling region to a region of weak
coupling and simultaneously the different elementary excitations onto each
other. An example of this situation is believed to be the type-IIB string
in D = 10 which is conjectured to have I's = SL(2,Z) [7, 8]. This exact
symmetry predicts an infinite number of equivalent weakly coupled type-
IIB strings which carry R-R charge; such strings have indeed been identified
as appropriate D-strings [9, 10]. For later reference we need to record that
the SL(2,Z) acts on the complex scalar

T=¢ +ie”? (5)

which is composed out of the two scalars ¢, ¢’ of IIB. The transformation
is

THT = ——— (6)

where ad — bc =1, a,b,c,d € Z.

2.4. F-THEORY

The exact SL(2, Z) symmetry of IIB string theory inspired Vafa to construct
non-perturbative string backgrounds where the dilaton is not constant [11].
More precisely he proposed to compactify IIB on the base B, of an el-
liptically fibred Calabi-Yau manifold Y,,;. Elliptically fibred Calabi-Yau
manifolds are locally a fibre bundle with a two-torus 72 fibred over the
base By but on over codimension one loci the torus can degenerate. As a
consequence nontrivial closed loops on By, can induce a SL(2,Z) transfor-
mation of the complex structure of the fibre. The complex dilaton 7775 of
IIB is identified with the complex structure modulus of the torus

TIIB = T2 (7)

and thus is not constant over the compactification manifold B,, but can have
SL(2, Z) monodromy [12]. Tt is precisely this fact which results in nontrivial
(non-perturbative) string vacua inaccessible in string perturbation theory.
Such vacua are termed F-theory compactifications on elliptic Calabi—Yau
manifolds and each such compactification is conjectured to capture part of
the non-perturbative physics of an appropriate string vacuum.* One finds

*One can alternatively define F-theory as a type IIB in a background of D7-branes or
as a particular decompactification limit of type IIA [13].
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[11, 14]
D | q | duality
8 |16 |F/K3 ~H/T?
6 |8 |F/Ys ~H/K3
4 |4 |F/Y,~H/Y3

2.5. M-THEORY

The various dualities discussed so far relate different perturbative string
theories. In these cases the strong-coupling limit of a given string theory is
controlled by another (or the same) perturbative string theory. However,
not all strong-coupling limits are of this type. Instead it is possible that the
strong-coupling limit of a given theory is something entirely new, not any of
the other string theories [8]. This was first proposed for the strong-coupling
limit of the type-IIA theory in D = 10. The Kaluza-Klein BPS-spectrum
of this theory obeys (in the string frame)
MEK ~ M
Js
where n is an arbitrary integer. These KK-states are not part of the per-
turbative type-ITA spectrum since they become heavy in the weak-coupling
limit g — 0. However, in the strong-coupling limit g — co they become
light and can no longer be neglected in the effective theory. This infinite
number of light states (which can be identified with D-particles of type-ITA
string theory, or extremal black holes of ITA supergravity) signals that the
theory effectively decompactifies with the radius R;; of the extra dimension
being the string coupling constant

; (8)

2

R11 ~ gsg . (9)

Supersymmetry is unbroken in this limit and hence the KK-states assem-
ble in supermultiplets of the 11-dimensional supergravity. In particular the
massless multiplet contains as bosonic components the 11-dimensional met-
ric Gy and a 3-form Ajrnp. Since there is no string theory which has
11-dimensional supergravity as the low-energy limit, the strong-coupling
limit of type-ITA string theory has to be a new theory, called M-theory,
which cannot be a theory of (only) strings. Only limited amount of infor-
mation is so far known about M-theory but it is supposed to capture all
degrees of freedom of all known string theories, both at the perturbative
and the non-perturbative level [15, 8, 16].%

SThere exists a conjecture according to which the degrees of freedom of M-theory
are captured in U(NN) supersymmetric matrix models in the N — oo limit [17]. These
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Calabi-Yau compactifications of M-theory also correspond to particular
non-perturbative limits of string theories. One has

D | q | duality

10 | 32 | M/ST ~ TTA

7 |16 | M/K3 ~H/T?

5 |8 | M/Yz~H/K3xS!
3 14 |M/Y;~H/Y3xS!

2.6. THREE TRIPLETS OF DUALITIES

In the next section we will discuss some of these dualities in more detail
and with particular emphasis on the map between the moduli spaces. We
will organize our discussion by the number of supercharges and discuss the
first two of the following three triplets of dualities:5

D | g | duality

8 |16 | F/K3 ~H/T?

7 116 | M/K3 ~H/T?

6 |16 | ITA/K3 ~ H/T*

6 |8 |F/Ys~H/K3

518 |M/Y; ~H/K3 x S*
4 |8 |TTA/Y3 ~H/K3 x T?
4 14 |F/Y,~H/Y3

314 |M/Y;~H/Y3xS!

2 |4 |IIA/Y; ~H/Y3 x T?

3. The ¢ = 16 triplet

Let us first discuss toroidal compactifications of the heterotic string H/T™
where n = 10 — D. The massless multiplets are the gravitational multiplet
GR containing the spacetime metric GG, an antisymmetric tensor B, n
Abelian graviphotons vy, and a real scalar ¢. The second massless multiplet
is the vector multiplet V' which contains a (non-Abelian) vector A, and n

matrix models have been known for some time [18] and were also known to describe
supermembranes [19] in the light-cone gauge [20]. The same quantum-mechanical models
describe the short-distance dynamics of N D-particles, caused by the exchange of open
strings [10]. For a review see, for example, [21].

5The case ¢ = 4 is still under active investigation and therefore its discussion is
postponed to some later occasion.
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real scalars Z in the adjoint representation of the gauge group G

GR: (Gw/aBullan X7u7¢) )
V. (Ay,nx7Z), w=0,....,D—1.
The scalars in the Cartan-subalgebra of G are flat directions of the effective
potential and parameterize the Coulomb-branch of the theory where G is

broken to its maximal Abelian subgroup G — U (1)" (r = rank(G)). In the
heterotic string one has » = 16 and therefore a massless spectrum of

1GR + (16+n)V . (10)

The moduli space spanned by the scalars in the Cartan-subalgebra is
given by [22]

SO (16 + n,n)
_ p+ )
M = B X o506+ 0) x 80 (n)/FT ! (11)

where I'r is the T-duality group
Iy =S0O(16 +n,n,Z) . (12)

The factor R™ is spanned by the dilaton ¢ (the scalar in the gravitational
multiplet) and supersymmetry does not allow any mixing with the other
moduli. At special points in this moduli space the gauge group is enhanced
to non-Abelian subgroups of Eg x Eg or SO (32).

Let us now turn to type ITA compactified on K3 or ITA/K3 for short.
These theories live in D = 6 and the massless spectrum is determined by
the zero modes of the Laplacian on K3. Some details are collected in the
Appendix or better in ref. [23]. One finds in the NS-NS sector the graviton
G, the antisymmetric tensor By, 20 scalars from the (1, 1)-deformations
of the Calabi-Yau metric 6G;;, 38 scalars from the deformations of the
complex structure §Gj;, 20 scalars from the (1, 1)-forms B;;, 2 scalars from
the (2,0) and (0,2)-forms B;; and the dilaton ¢. These are altogether 81
scalars in the NS-NS sector. In the R-R sector one has a vector A, a three-
form Ay, 20 vectors A7, and 2 vectors Ay;;. In D = 6 a three-form is
Poincare dual to a vector

eulmﬂﬁalllAlQM?:l“l ~ OM5 AMS or dAs ~ xdAq , (13)

so that there are altogether 24 gauge fields in the R-R sector. These fields
nicely assemble into 1 GR + 20V with a moduli space [24, 23]

SO (20, 4)

_ pt
Mia =R X 550507 % S0 @)

/T, (14)
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where

T = SO (20,4,Z) , (15)

and the RT-factor is again spanned by the field in the GR multiplet — the
type ITA dilaton ¢rra.

The string theories ITA/K3 and H/T* are conjectured to be S—dual [25,
7, 8, 26, 27]. Both theories have the same representation of supersymmetry
with exactly the same massless spectrum. Furthermore, from (11), (14) one
learns that also the moduli spaces (including the discrete identifications
['r) of the two string compactifications coincide

MH/T4 = Mijra . (16)

The effective actions of the two perturbative theories agree if one identifies

8]

¢u = —o¢mna ,
Hy = e 2%UA 4 Hypy (17)
(guw)u = e 29" (gu)ma ,

where H is the field strength of the antisymmetric tensor. The first equa-
tion in (17) implies a strong-weak coupling relation while the second is
the equivalent of an electric-magnetic duality. Further evidence for this S-
duality arises from the observation that the zero modes in a solitonic string
background of the type-ITA theory compactified on K3 have the same struc-
ture as the Kaluza-Klein modes of the heterotic string compactified on 7
(26, 27].

The non-Abelian gauge symmetry enhancement is a simple Higgs mech-
anism in the heterotic vacuum. In the type ITA vacuum it is more intriguing
and related to the singularities of the K3. Whenever an effective theory be-
comes singular at special points (or submanifolds) of the moduli space it
signals the breakdown of the effective description. Heavy modes can be-
come light and should no longer be excluded from the low energy effective
theory. This is precisely what happens at the orbifold singularities of K3
where 2-cycles collapse. A D2-brane can wrap around such a 2-cycle gen-
erating a non-Abelian gauge boson. These singularities follow an A-D-E
classification and thus the corresponding gauge bosons can be mapped to
the gauge bosons of the heterotic string.

Let us now turn to the next duality in one dimension higher D = 7. On
the heterotic side of the previous duality it is simple to decompactify one
dimension. On the type ITA side this is impossible for K3 but recall that
the strong coupling limit of the ten-dimensional type ITA string is governed
by a theory in one dimension higher, M-theory. Thus one is led to consider
M/K3 as the possible dual of H/T?3.
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The massless spectrum of M /K3 contains the 7-dimensional spacetime
metric G, 58 deformations of the Calabi-Yau metric 6G 3, 6Gij, a 3-form
Auvp and 22 vectors Az, Ayij. Note that there is no dilaton and no anti-
symmetric tensor B, in this compactification. However, in D = 7 a 3-form

is dual to an antisymmetric tensor
dAs = *dB> . (18)

The massless fields of M/K3 assemble into 1 GR including (G ., By, 3A,, ¢)
and 19V including (A4,,37). The moduli space is determined by the moduli
space of K3-surfaces [23]

S0 (19,3)
_ pt )
Mg = R % 500 (3)/50(19,3,Z) , (19)

where the RT-factor is spanned by the ¢ in the gravitational multiplet
which is related to the volume of K3. From egs. (11), (19) we see

Marrsz = Mmrs (20)

including the discrete identifications. A more detailed comparison of the re-
spective effective actions [8] reveals that the 7-dimensional heterotic string
coupling g}{ is related to the volume of K3 measured in the 11-dimensional
M-theory metric by

(g}{)M Y~ Vol (K3) . (21)

gfq in turn can be related to the heterotic string couplings in D = 6,10 via

1 R Vol (T

0%)?  6h)° (@)’

where R is the radius of 7th dimension measured in the 7-dimensional string
metric. The low energy description of M-theory in terms of 11-dimensional
supergravity is valid for large Vol (K3). From eq. (21) one infers that in
this limit the heterotic string becomes strongly coupled.

The non-Abelian gauge symmetry enhancement in M /K3 has the same
explanation as before: a shrinking 2-cycle of K3 corresponds to a massless
gauge boson on the heterotic side.

We already discussed F-theory compactifications in section 2.4 where we
defined them IIB compactifications on the base of an elliptic Calabi-Yau
manifold. Let us also relate them to M-theory compactifications. Consider
M/T? which is the strong coupling limit of ITA/S'. The latter theory is

; (22)
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T-dual to ITB/S' with the following relation of parameters (measured in
the M-theory metric)

3/2 Ry 1
=R = Riyjp= ——. 23
gria =Ry’ gne =g 1B = =p (23)
Thus we can view 10-dimensional IIB theory as the following limit
IIB ~ lim M/T?  with grrp fixed . (24)

R10,R11—0

Thus the size of T? shrinks but the complex structure Tr2 = Tr1B 18 kept
finite (c.f. (7)).

With this relation in mind one can employ what is called the adia-
batic argument [28]. Consider the compactification IIB/B,, x S'. By the
previous argument this theory is related to M/B, x T?. For large B, the
manifold B,, x T? is locally the same as an elliptic Calabi-Yau Yn41 and
thus adiabatically one has

F/Yy41:=1IB/B, = lim M/Y, 1 . (25)
T2—0
This can be immediately related to T2-compactifications of the heterotic

string. We already established M /K3 ~ H/T3 with Voly (K3) = (g7,)"/>.
For an elliptic K3 and using the adiabatic argument this implies

Y3 gk 4/3_ 2
(gH) =75 = Vol (B) - Vol(T?) . (26)

Thus a shrinking 72 corresponds to the decompactification Rg — oo and
therefore
F/K3 ~ lim M/K3~ H/T? . (27)
T2—0

Or in words: F-theory compactified on an elliptic K3 yields an 8-dimensional
vacuum with 16 supercharges which is dual to the heterotic string compact-
ified on T2 [11, 29].

The previous ‘back-of-an-envelope’ argument can be made more precise
[11, 30]. The moduli space of elliptic K3’s with a zero size fibre is [30]

SO (18,2)
_ pt :
M = R x g5 5 (2)/50(18,2,Z) o (28)

which coincides with the moduli space of H/T? (c.f. (11)). The R*-factor
is spanned by the volume of the base B which for elliptic K3 necessarily is
a Pl
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4. The q = 8 triplets

The important new feature for string vacua with ¢ = 8 is the fact that the
massless spectrum and the gauge group is no longer uniquely fixed. Let us
again first discuss the three heterotic theories H/K3 x T%%? and then the
corresponding dualities.

The massless multiplets in D = 6,q = 8 are the gravitational multiplet
which contains the metric and a selfdual antisymmetric tensor B, the
vector multiplet V' which only contains a vector and no scalars,’ the tensor
multiplet 7" containing an anti-selfdual antisymmetric tensor B, and a real

scalar ¢ and the hypermultiplets H featuring 4 real scalars ¢

GR: (Guv, B )
V. (A)

T: ( W,qﬁ)
H: (i) .

In order to preserve 8 supercharges the compactification manifold must
be a K3 but in addition the vector bundle on K3 has to be holomorphic
and stable, i.e. [1]

Fyj=Fy=0=g;F7 . (29)

On K3 these conditions coincide with the instanton condition F = F.

In addition the chiral fermions in D = 6 lead to gauge and gravitational
anomalies. The anomalies cancel if the following conditions are satisfied
(31, 32]

— the number of hypermultiplets ng, vector multiplets ny and tensor
multiplets np satisfy

ng —ny +29n7 —273 =0 . (30)

— A Green-Schwarz anomaly cancellation mechanism can be employed
with a modified 2-form field strength

H:dB+wL—Zvaw§‘/M, (31)
a
where wr,(w§-,,) are gravitational (Yang-Mills) Chern-Simons terms

and v, some numerical coefficients. The modified definition of H im-
plies the consistency condition

0=/ dH=| #RAR~- /trF/\F =24 n,, (32
K3 K3 Z K Z ¢ )

"Thus there is no Coulomb branch in D = 6.
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where n, is the instanton number. Thus there necessarily has to be a
a non-trivial instanton background on K3.

In perturbative heterotic vacua there is only one dilaton and one antisym-
metric tensor and thus one always has np = 1. The moduli space for this
class of vacua reads

M=R"x My, (33)

where R™ is the factor spanned by the scalar in the tensor multiplet (the
heterotic dilaton) while My is the moduli space spanned by the scalars
in the hypermultiplets. It includes the 80 moduli of K3 and the moduli
of Yang-Mills instantons on K3 (which are parameterized by their size,
position on K3 and orientation in the gauge group G). Supersymmetry
requires My to be a quaternionic manifold. For ny # 1 (which can occur
in non-perturbative vacua of the heterotic string) one finds [33]

O (1,n7)

M= 0 (nr)

X Mg . (34)

M has singularities when the size p of an instanton shrinks p —
0 [34]. For the SO(32) heterotic string these singularities are caused by
non-perturbative gauge bosons becoming massless [35]. For k instantons
shrinking at the same point on K3 the perturbative gauge group SO(32) is
enhanced beyond the perturbatively allowed rank to

Gnyp = SO (32) x Sp (k) (35)

with an additional hypermultiplet in the (32, 2k) representation of Gyp.

For the Fg x Eg heterotic string a different explanation is employed. A
small instanton is associated with a five-brane of M-theory (more precisely
of M/K3x S'/Z5) with additional tensor multiplets living on the worldvol-
ume of the five-brane. In this case one has ny > 1 and a non-perturbatively
different situation compared to the heterotic SO(32) case [36, 14, 32, 30].

Next we turn to H/K3 x S! in D = 5. The massless multiplets in this
case are:

GR: (Gu,A.)
V. (Au, Z)
T:  (Bu:9)
H: (4q) .

In D = 5 an antisymmetric tensor is dual to a vector dBy ~ *dA; and
thus the tensor multiplet is dual to a vector multiplet 7' ~ V. Furthermore,
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due to the presence of the scalar in the vector multiplet a Coulomb branch
exists and the moduli space has the form

M= My x My . (36)

Supersymmetry dictates that locally the moduli space is a direct product.
Since the hypermultiplets are the same as in D = 6 also Mg is unchanged.
My is known at the tree level and one has [37]

SO (1,r +1)

0) _ p+
My =R X o D)

(37)
where r = rank(G) and the extra vector multiplet corresponds to the radius
of S'. At the quantum level only My  is corrected in string theory since
the dilaton is part of a tensor multiplet (or the dual vector multiplet).
The corrections are such that there is only a perturbative correction at
1-loop and non-perturbative corrections [38, 37]. This non-renormalization
theorem is dictated by supersymmetry.

Finally, we consider H/K3 x T? which has D = 4,q = 8 (N = 2). The
massless multiplets in this case are

GR: (G, Ay)
V. (Au, Z)
H: (4q)

VT (B#V,Aﬂ,gzﬁ) .

where Z now is a complex scalar in the adjoint representation of G. VT is
the vector-tensor multiplet which contains the heterotic dilaton ¢ [39]. In
D = 4 the duality relates dBy = *day and thus the vector-tensor multiplet
is dual to an (Abelian) vector multiplet VT' ~ V. The moduli space reads

M:MHXMv, (38)

where My is the same (quaternionic) space as in D = 6,5 while My is a
special Kahler manifold [40]. Special Kahler manifolds have a Kéhler metric

0 0 = .
Zj:aZZﬁK(Z’Z)’ ihj=1,....nv, (39)
with a Kahler potential K determined by a holomorphic prepotential F’
K=-n[X'"F(X)+ X' F(x)], I=01,...,nv, (40)
where )
F . Xt
Fr= or Zt= — F(AX) = )MF(X) . (41)

oxI’ X0
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The gauge kinetic terms have the following structure

1 01y
L=- 4QI}FJVF;V Fl{I/FMJu (42)
where
977 ~ Nij—Nris, Ory ~Nis+Nis,
1 NixZ5N;Z" 1 _
= —-Fr5— Ni; = —(F F . (43
Nis TR ZKNigZE 1J 4( 1+ Fry) . (43)

The gauge group in H/K3 x T? string vacua contains three U(1) vector
multiplets, two from 7' (denoted by T',U) and the dual of the vector-tensor
multiplet denoted by S. At the tree level the holomorphic prepotential is
uniquely determined by [41, 39]

FO = (X%2.8(TU — °9°) , (44)

where & are the U(1) multiplets which span the Cartan subalgebra of the
heterotic gauge group. This prepotential corresponds to the moduli space
SU (1,1) " SO (2,r+2)

U (1) SO (r+2)x8S0(2)’

M = (45)

where the first factor is spanned by the dilaton multiplet. Quantum correc-
tions induce only one-loop and non-perturbative corrections to F' [39]

F=F0 4 M) pINP) (46)

The quaternionic moduli space of the hypermultiplets is the same as in
D=6,5 and receives no quantum corrections since the dilaton cannot couple
to My.

Let is summarize the moduli spaces which appear in K3 compactifica-
tions of the heterotic string

D=6: M=MpgxR"
D=5: M=Mpgx(R" x M—I—q.c.)

SO(r+1)
. _ SU1,1 SO(2,r+2
D=4: M=Mpx (G5 x 508520 +qc)

where ¢.c indicates that there are quantum corrections.®

Let us now turn to the discussion of the dual vacua. In D = 4 the dual of
the heterotic vacua are vacua constructed as 11 A string theory compactified

8These quantum corrections are not additive; rather they generically destroy the tree
level factorization.
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on Calabi-Yau threefolds Y3, ITA/Ys for short [42]. In the NS-NS sector
the massless spectrum contains G, B, ¢, the deformations of the Calabi-
Yau metric and the antisymmetric tensor on the Calabi-Yau manifold. The
deformations of the metric are given by the deformations of the Kahler
form and the deformations of the complex structure The former can be
expanded in terms of harmonic (1, 1)-forms e - on Y3 [43]

hi,1
0G;; = Z MA (z) eiAj . (47)
A=1

The deformations of complex structure are expanded as

hi,2
0Gij = Z q*(z)b; (48)

where bf; = Q?Xijl'c and x,5; are the (1,2)-forms, Q) is the (3,0)-form.
For the antisymmetric tensor one has

h1,1
B;=73 B'(z)e] . (49)
A=1
In the R-R sector one finds
hi,2 hi,1
Aijk = Co(x)Qt]k ) z]k - Z Ca Xz]k ’ l“] Z AA 50)

where C°, C® are complex.
The massless fields assemble in the following N = 2 supermultiplets

GR: (Gu,A,)
T: (B, ¢, C
1% (A, Z%)
H: (¢*,C%

where Z4 = M4 + iBA. Thus altogether one has a spectrum of
IGR+ 1T + h11V + hi12H . (51)
Using the (Poincare) duality 7' ~ H one can express the moduli space as

M= My x My . (52)
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My, is not quantum corrected since the dilaton ¢ sits in T or H, respec-
tively. This component of the moduli space is “known” in the sense that
the prepotential obeys the following general structure [44, 45]

F = (X*2[dapcZ* 252 + x((3) + Y na, Lis(e 270, (53)
da
where .
A B A C - o 2
dABC:/ e" Ne” Ne™ L23(x)zz,—3 . (54)
Y3 j:l .7

The d 4pc are the Calabi-Yau intersection numbers and the ng4, are integers
which count the number of rational curves on Y3.

On the hypermultiplet side only Mg) is known. One has [46]

_ 1 5 1
L = 20 (_5 R+2(3¢) — Gopdq®d7’ — 6HZ,,,,) (55)

+ €7P"H,,, (CRlagC — %C’R’IG(,NR’I (C+C)-C+ C)
1 1 S - L 1 N mla o
-5 (aﬂc— S(C+O)R 1aﬂ/\f) R (a#C— 5(C+C)R laﬂ/\/> :

Gqp is a special Kahler metric and R = ReMN so that both are determined
by a holomorphic prepotential. The reason for this special feature is that
in IIB compactifications one finds a massless spectrum

G+T+h172 V-l-hl,l H . (56)

The role of hi; and h is exactly reversed compared to the ITA case. It

is believed that for any given Y3 there exists a mirror partner Y; with the
property [47, 48]

hi,1(Y3) = hia(Y3) h12(Y3) = h11(Y3) (57)

such that the Euler number is reversed x(Y3) = —x(Y3). Thus, in string
theory this mirror symmetry leads to a perturbative duality

IIB/Y; = ITA]Y; . (58)

In TIB compactifications the ¢® reside in vector multiplets and thus one
infers that they have to be coordinates on a special Kahler manifold. More
generally, the duality implies a map (the c-map) between the moduli spaces
which acts as [49]

c: My = MW (59)
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The quantum corrections to the hypermultiplet geometry are not fully
known yet. Let us start our discussion with the case hi> = 0 so that only
the (universal) tensor multiplet is present. A string 1-loop computation has
been performed which determined the correction to the Einstein term [50]

1
£:—§(6_2¢+x)R+... : (60)

Then supersymmetry uniquely determines the corrections [51]

1, 1 ~ _9d\—
L = —le 2+ x)(R - EHZW,) +2e ¥ (x +e ) (09)°
-8,00,C + """ H,,, (C9,C — C9,C) . (61)

This Lagrangian has a perturbative Peccei-Quinn symmetry which origi-
nates from the fact that C' appears in the R-R sector

C — C + const. . (62)

This symmetry is exact in string perturbation theory and forbids any higher
loop correction. Thus the 1-loop Lagrangian is perturbatively exact and we
have a “new” non-renormalization theorem. (Non-perturbative corrections
do exist [52].)

The antisymmetric tensor in the Lagrangian (61) can be dualized to a
scalar ¢ and in this dual basis the 1-loop corrected metric is found to be
Kahler with a Kahler potential

K=-In(S+S5+2¢x-CC), S=e2+ip+CC. (63)

In this dual basis the metric appears to be corrected at all loops and does
agree with the metric conjectured by Strominger [50].

For hio # 0 the quantum corrections are not fully known. One does
know [50, 51]

L = —%(6*% +x)R ~ % (7% = x) Gapdg” 07’
X T H Vi (64)
where oK oK _
Vo = a—qaaf’qa - a—qaaf’qa . (65)

However, the N = 2 supersymmetric (i.e. quaternionic) completion of £
is not completely known yet [53]. Nevertheless, the presence of 2(h; 2 + 1)
continuous PQ-symmetries suggests that also for the case hy o # 0 the 1-
loop correction is exact in perturbation theory and there is a perturbative
non-renormalization theorem.
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It is conjectured that ITA/Y3 is dual to H/K3 x T? [42]. In particular
this implies that spectrum and the respective moduli spaces have to agree

Mt = MG, M = MY (66)

There have been very little checks on Mg so far. The validity of this duality
has been only been checked for My, but for quite a number of dual string
vacua [42, 54, 55]. One has to find

FIIA:Fhet , (67)
which implies

dapcZZPZ°+x¢ (3)+Y na, Liz=S (TU — 3°¢*)+FV + FINP) - (68)
da

This is a condition on the intersection numbers d4pc. They have to obey
dsss = dssA =0, Slgn(dsjé) = (=) s (69)

where A denotes all moduli except the dual of the heterotic dilaton. These
conditions are the statement that the Calabi—Yau manifold has to be a
K 3-fibration [54, 28, 56]. That is, the Y3 manifold is fibred over a P! base
with fibres that are K3 manifolds. The size of the P! is parameterized by
the modulus which is the type II dual of the heterotic dilaton. Over a finite
number of points on the base, the fibre can degenerate to something other
than K3 and such fibres are called singular. The other Kahler moduli are
either moduli of the K3 fibre or of the singular fibres. In general one finds

sign(dg ;5) = (+,—...,—0,...,0) , (70)

where the non-vanishing entries correspond to moduli from generic K3
fibres while the zeros arise from singular fibres. Since a K3 has at most
20 Kahler moduli the non-vanishing entries have to be less than 20. From
eq. (68) one concludes that type II Calabi-Yau compactifications in the large
radius limit can be the dual of perturbative heterotic vacua if they are K 3-
fibrations with all moduli corresponding to generic fibres. This class of type
II vacua is automatically consistent with the heterotic bound on the rank
of the gauge group. The (1, 1) moduli of singular fibres have no counterpart
in perturbative heterotic vacua. If there were heterotic moduli with such
couplings they would not couple properly to the (heterotic) dilaton and
furthermore violate the bound on the rank of the gauge group. However,
we already discussed the possibility that in D = 6 the gauge group can be
non-perturbatively enhanced at singular points in the moduli space [35]. It
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was further shown that these non-perturbative gauge fields do not share
the canonical coupling to the dilaton. Upon compactification to D = 4
the scalars of these non-perturbative vector multiplets couple precisely like
type II moduli corresponding to singular fibres [57, 58].

Let us now turn to vacua of M /Y3 (which have D = 5, ¢ = 8). We expect
this theory to be dual to H/K3 x S! by the following chain of arguments.
M/S! is the dual of ITA in D = 10. Thus compactifying both theories on
Y3 one expects the dual pair M/Y3 x S ~ ITA/Y3. However, the previous
discussion also suggests ITA/Y3 ~ H/K3 x T? and thus one is lead to
conjecture M /Y3 ~ H/K3 x S' [38, 37].°

The massless spectrum of M /Y3 contains the metric G, h1,1 deforma-
tions of the Kahler form dG;;, h12 (complex) deformations of the complex
structure 6Gjj, a three-form A,,, hi11 vectors A5, one complex scalar
Aijk and hy 2 complex scalars A, ;. The duality in D = 5 relates the 3-form
to a scalar

dAs = xd¢ | (71)

and so altogether one has the spectrum

1GR + (h171 — 1) V + (hl,g + 1) H , (72)
where
GR: (Gu,Au)
vV (Alu Z)
H: (4q)

Z is real and the volume of Y3 resides not in a vector multiplet but rather in
a hypermultiplet. (This accounts for the +1 in the counting.) The moduli
space is again

M= My x My . (73)

A more detailed comparison of the effective actions of M/Y3 and H/K3x S*
reveals
3
1 _ [VOlM(Pl)]§ _ VOZM(Pl) (74)
2 = ’
(92)"  Volm(Ya)]>  [Volu(K3)]'

[SIE

where P; is again the base of the K3-fibrations and the second equation
used the adiabatic argument. From (74) we immediately infer that large
P corresponds to weak heterotic coupling while a large K3 corresponds to
strong heterotic coupling. Eq. (74) can also be ‘derived’ by ‘fibering’ the
duality M/K3 ~ H/T? over Py. This implies M/K3 x Py ~ H/T? x Py

9For perturbative heterotic vacua one expects again that Y3 is K3-fibred.
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and using the adiabatic argument also M/Y3 = H/K3 x S'. In terms of
the couplings one has

1 _ VOlH (Pl) . VOlM (Pl)

, 75
(97)° (97)° [Voln (K3)] 7

M

where we used (95)2 = [Voly (K3)]%

Finally we turn to F-theory compactified on an elliptic Calabi-Yau
threefold F/Y3. Such vacua have D = 6, = 8 and are conjectured to
be dual to the heterotic string compactified on K3 [14]. Recall that via the
adiabatic argument one has for any elliptic Calabi-Yau manifold

F/Y, = lim M/Y, . (76)

For threefolds Y3 one also has the duality M/Y3 = H/K3 x S* and thus
from (74)

_ Ry _ [Volu (P)]® _ [Volar (P1)]? -
(99)° (90" [Volar (Y32 [Volus (B2)]? [Voly (T?)2
Thus the limit 72 — 0 sends Rg — oo with
1 _ Vol (P1)]3/2 ‘ (78)

(98)*  [Volar (B))?

As before there is an alternative ‘derivation’ by fibering the D = 8
duality F/K3 ~ H/T? over Py. This gives F/K3 x Py ~ H/T? x P and
via the adiabatic argument F/Ys ~ H/K3.

The spectrum of F/Y3 features

IGR+ (h12(Y3) + 1) H + (h11(B2) = 1) T +nyV (79)

with By being the base of the elliptic fibration. Since the gauge group G
can be non-Abelian ny is generically not determined. However, for the rank
of G one has [14]'°

I‘(G) = hl,l (Yg) — h171 (BQ) — 1. (80)

The F-theory duals of the perturbative heterotic string are constructed
from threefolds Y3 which are elliptically and K3-fibred at the same time

0This can be derived from compactification to D = 5 where one has a Coulomb branch
and n} =1r(G) +nr + 1 = h1,1 (Y3) — 1 vector multiplets.
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[14]. This determines the base By to be the Hirzebruch surface IFj. Such
manifolds have hy 1 (IF}) = 2 and thus np = 1 as required for the perturba-
tive heterotic string. In fact there is a beautiful correspondence between the
heterotic vacua labelled by the instanton numbers (n1,n2) and elliptically
fibred Calabi-Yau manifolds with the base being the Hirzebruch surfaces
F,,_12 [14].

Blown up IF}, have hy ; (FF}) > 2 and thus np > 1. These F-theory vacua
thus capture non-perturbative physics of the heterotic vacua including the
possibility of additional tensor multiplets, the transitions between the var-
ious branches of moduli space and subspaces of symmetry enhancement
[14, 57, 59].

A. Calabi-Yau manifolds

In this appendix we briefly recall a few facts about Calabi—Yau manifolds
which we frequently use in the main text. (For a more extensive review see
for example [1, 23, 48].)

A Calabi-Yau manifold Y,, is a Ricci-flat Kahler manifold of vanish-
ing first Chern-class. Its holonomy group is SU(n) where n is the complex
dimension of Y,,. The simplest Calabi—Yau manifolds are tori of complex
dimension 1. For n = 2 all Calabi—Yau manifolds are topologically equiv-
alent to the K3 surface, while for n = 3,4 one finds many topologically
distinct Calabi-Yau manifolds. Such manifolds are of interest in string the-
ory since they break some of the supersymmetries when a ten-dimensional
string theory is compactified on Y,.

The massless modes of a string vacuum are directly related to the zero
modes of the Laplace operator on Y;,. These zero modes are the non-trivial
differential k-forms on Y;, and they are elements of the cohomology groups
H*(Y). On a compact Kihler manifold one can decompose any k-form
into (p, g)-forms with p holomorphic and ¢ antiholomorphic differentials
(p + ¢ = k). Analogously, the associated cohomology groups decompose
according to

H*(Y) = @pyger HP(Y). (81)

The dimension of H?(Y) is called the Hodge number h, 4 (hy, = dim HP?);
it is symmetric under the exchange of p and ¢, i.e. hy 4 = hyp, and Poincaré
duality identifies hy, ; = hy,—p n—q. Finally, the Euler number is given by

X=2_ (=1 hp . (82)
pyq

For K3 the Hodge numbers are
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h0 1
hl,[] h[],l 0 0
h20 pbt K2 = 1 20 1
h2,1 h1,2 0 0
h22 1

The Euler number is y = 24.

The moduli space of non-trivial metric deformations which preserve the
Calabi-Yau condition is parameterized by 20 deformations of Kéahler form
0G5 and 19 + 19 deformations of complex structure 6G;;. They are the
coordinates of the homogeneous space

SO (3,19)

_ pt+
M= 17X 553 % 80 (19)

/SO (3,19,Z) | (83)

where R is spanned by the volume of K3.
For a Calabi-Yau threefold Y3 one has the Hodge diamond

OO 1
hl,O hO,l 0 0
h2,0 hl,l h0,2 0 hl,l 0
h3,0 h2,1 h1,2 h0,3 =1 h1,2 h1,2 1
h3,1 h2,2 h1,3 0 hl,l 0
h3,2 h2,3 0 0
h33 1

where hq; and hj o are arbitrary and the Euler number is x(Y3) = 2(h1,1 —
h12). hi,1 counts the number of Kahler deformations of the metric while Ay 2
counts the number of deformations of the complex structure. The moduli
space is locally a direct product of the Kihler moduli space and the complex
structure moduli space

M = Mhl,l x Mh1,2 : (84)

Each factor is a special Kahler manifold and the corresponding K obeys
eq. (40). For My, , one finds

Kio=-In[ QAQ (85)
Y3

where Q(Q) is the unique (3, 0)-form ((0, 3)-form) on Y3. In the large volume
limit one has for M, ,

Kii=—InVol(Y3) = — Indapc MAMEMC . (86)
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It is believed that most Calabi—Yau threefolds (if not all) have a mirror
partner [47, 48]. That is, for a given Calabi-Yau threefold Y3 with given
h1,1(Y3) and hi(Y3) there exists a mirror manifold Y3 with hy;(Y3) =
h1,2(Y3) and hy2(Y3) = h1,1(Y3) which implies x(Y3) = —x(Y3).
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