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In these lectures we review the properties of holomorphic couplings in the e�ective action of four�dimensional
N � � and N � � closed string vacua� We brie�y outline their role in establishing a duality among 	classes of

di�erent string vacua�

�� Introduction

Holomorphic couplings of the four�dimensio�
nal� low energy e�ective action play an important
role in string theory	 This is largely due to the
fact that supersymmetry protects them against
quantum corrections	 In other words� they obey
a non�renormalization theorem and this prop�
erty considerably simpli�es their computation in
string theory	 Furthermore� a certain subset of
the holomorphic couplings can be calculated ex�
actly and not only in a weak coupling perturba�
tive� expansion	 As a consequence such couplings
have been used to support some of the conjec�
tured dualities between seemingly di�erent four�
dimensional string vacua	

In these lectures we review some of the older�
perturbative computations and outline their rel�
evance for string duality	 In particular� lecture �
recalls some basic facts about perturbative string
theories	 Lecture � is devoted to N � � vacua
of the heterotic string while lecture 
 focusses
on N � � vacua of both the heterotic and type
II string	 Finally� in lecture � we discuss the
heterotic�type II duality	 At various points we
make contact with other lectures presented at this
school by K	 Intriligator� S	 Kachru� W	 Lerche�
K	S	 Narain� R	 Plesser and J	 Schwarz	

�Lectures presented by J� Louis

�� Perturbative String Theory

���� String Loop Expansion

In string theory the fundamental objects are
one�dimensional strings which� as they move in
time� sweep out a two�dimensional worldsheet �	
This worldsheet is embedded in some higher di�
mensional target space which is identi�ed with
a Minkowskian space�time	 Particles in this tar�
get space appear as massless� eigenmodes of the
string and their scattering amplitudes are gen�
eralized by appropriate scattering amplitudes of
strings	 Strings can be open or closed� oriented
or unoriented but in these lectures we solely focus
on closed oriented strings	 For an introduction
to string theory see for example �����	�

String scattering amplitudes are built from the
fundamental vertex depicted in �gure � which
represents the splitting of a string or the joining
of two strings	 Time is running horizontally	�

� gs

Figure �	 Fundamental string interaction
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The strength of this interaction is governed by
a dimensionless string coupling constant gs	 Out
of the fundamental vertex one composes all other
possible string scattering amplitudes� for example
the four�point amplitude shown in �gure �	

V�

V�V�

V�

A��� � � g�s

Figure �	 Four�point amplitude

The external �tubes� should be thought of as
extending into the far past and far future where
the appropriate eigenstates of the string are pre�
pared	 Technically this is achieved by the string
vertex operators Vi	

Obviously more complicated scattering pro�
cesses � or equivalently more complicated world�
sheets � involving a non�trivial topology can be
built from the fundamental vertex	 The Eu�
clideanized version of any such worldsheet is a
two�dimensional Riemann surface of a given genus
n where n counts the number of holes in the
worldsheet	 The total N �point string scattering
amplitudeA is obtained by summing over all pos�
sible Riemann surfaces

AV�� � � � � VN � gs� �
�X
n	�

A�n�V�� � � � � VN � gs�� ��

where A�n� denotes the string scattering ampli�
tude corresponding to a worldsheet of genus n	
For example� a four�point amplitude of genus n
together with its gs dependence is displayed in
�gure 
	

For an arbitrary N �point amplitude the gs de�
pendence of A�n�V�� � � � � VN � gs� is easily found
to be proportional to g�n
N��s but one commonly
absorbs one power of gs into each vertex operator
and de�nes V �

i � gsVi	 Using the rescaled vertex

V�

V�

� � � � � �A�n� �

V�

V�

� g�n
�s

n�holes

Figure 
	 Riemann surfaces of genus n

operators V �
i one can eliminate the N dependence

and de�ne

A�n�V �
� � � � � � V

�
N � gs��g�n��s A��n�V �

� � � � � � V
�
N � ��

where A��n�V �
� � � � � � V

�
N � no longer depends on gs	

As a consequence eq	 �� turns into

AV�� � � � � VN � gs� �
�X
n	�

g�n��s A��n�V �
� � � � � � V

�
N � � 
�

In this formula gs appears with a power that co�
incides with the negative of the� Euler number
� of the Riemann surface

� �
�

��

Z
�

p
hR��� � �� �n � ��

where h is the world�sheet metric and R��� the
two�dimensional curvature scalar	

From eq	 
� we learn that expanding A in pow�
ers of the string coupling gs is equivalent to an
expansion in worldsheet topologies	 This expan�
sion can also be interpreted as an expansion in
the number of string loops and hence eq	 
� is
also known as the string loop expansion	 For
gs � � the scattering amplitude A��� which cor�
responds to a worldsheet of genus � or equiv�
alently a sphere� is the dominant contribution
while higher genus amplitudes are suppressed by
higher powers of gs	 Our current understanding
of string theory does not �x the strength of the
string coupling and leaves gs as a free parameter	
The regime gs � � then de�nes what is referred
to as �perturbative string theory�	

On the other hand� the strong coupling regime
gs � � was until recently inaccessible in that






there were no non�perturbative methods available
for evaluating A	 However� during the past two
years it was realized that the strong coupling re�
gion of a given string theory often can be mapped
to another weakly coupled� �dual� string theory
and that most likely a non�perturbative formu�
lation of string theory not only contains strings
but also other extended objects of higher dimen�
sion	 We brie�y return to string dualities in lec�
ture � but the recent developments have been
nicely reviewed in the lectures by J	 Schwarz and
S	 Kachru	

Despite the recent advances perturbative string
theory has not gone out of fashion yet	 As we
will see in the course of these lectures the per�
turbative properties of the low energy e�ective
actions and in particular their holomorphic cou�
plings have played a vital part in supporting the
validity of some of the conjectured dualities	 Fur�
thermore� the ultimate goal to connect string the�
ory to physical phenomena at the weak scale re�
quires a much more detailed knowledge about
the perturbative sector as is currently available	
Therefore� in this �rst lecture we brie�y summa�
rize some basic facts of string perturbation the�
ory	

���� Conformal Field Theory

So far we merely isolated the gs dependence of
a string scattering amplitude but did not com�
pute the heart of the matter A��n�V �

� � � � � � V
�
N �

in eq	 
�	 A detailed review of the rules and
techniques for computingA��n�V �

� � � � � � V
�
N � is be�

yond the scope of these lectures and we refer the
reader to the literature for more details �����	
For our purpose we recall that the interactions
of the string are governed by a two�dimensional
�eld theory on the world�sheet �	 A can be in�
terpreted as an unitary scattering amplitude in
the target space whenever the two�dimensional
�eld theory is conformally invariant	 The con�
formal group in two dimensions is generated by
the in�nite dimensional Virasoro algebra whose
generators Lk obey

�Lk� Lj� � k � j�Lk
j �
c

��
k� � k� �k
j�� � ��

The constant c is the central charge of the algebra
which is constrained to vanish� i	e	 c � �	 Since

string theories supersymmetry �cm� cm�
bosonic string �� �� ��� ���
superstring �� �� ��� ���
heterotic string �� �� ��� ���

Table �
Worldsheet supersymmetry and central charges	

we are discussing oriented closed string theories
the conformal �eld theory CFT� is invariant un�
der two separate conformal groups acting on the
two light cone coordinates � � 	 	 	 is the two�
dimensional time and � the space coordinate	� In
fact the entire partition function splits into two
sectors each of which carries a representation of
the Virasoro algebra	 These two sectors are com�
monly referred to as the left and right moving
sector	

The di�erent closed string theories are de�ned
by the amount of local worldsheet supersymme�
try	 The bosonic string has no worldsheet super�
symmetry� while the superstring has one super�
symmetry in each the left and right moving sec�
tor� this is called �� �� supersymmetry	 The het�
erotic string is a hybrid of the bosonic string and
the superstring in that it has one supersymmetry
only in the right moving sector or equivalently
�� �� supersymmetry	

The central charge in eq	 �� has been nor�
malized such that a free two�dimensional� bo�
son contributes c � �c � � and a right moving�
Majorana fermion has c � �

� c �c� denotes the
central charges of the right left� moving sector�	
In addition to these �matter �elds� of the CFT
also the reparametrization ghosts of the world�
sheet contribute central charges cg� �cg	 If there
is no supersymmetry on the worldsheet one �nds
cg � �cg � ��� while a locally supersymmetric
worldsheet has cg � ���	 For the total central
charge to vanish these ghost contributions have
to be balanced by the central charge of the mat�
ter �elds cm� �cm	 For the closed string theories
this situation is summarized in table �	

The conformal symmetry ensures the consis�
tency of the tree level scattering amplitude A���



�

but at higher loops an additional requirement
has to be ful�lled	 The two�dimensional �eld
theory also has to be invariant under global
reparametrizations of the higher genus Riemann
surfaces	 At genus � torus� the group of global
reparametrizations is the modular group SL��Z�
some of its basic features are summarized in
ref	 ��� and appendix A�	 SL��Z� invariance
severely constrains the partition function of a
CFT and thus the spectrum of physical states in
the target space	 In particular it automatically
ensures an anomaly free e�ective �eld theory in
the target space ���	

The bosonic string is a�icted with the prob�
lem of containing a tachyonic� state with neg�
ative mass in its spectrum and the di�culty
of constructing fermions in space�time	 There�
fore� we omit the bosonic string from our subse�
quent discussions and only focus on the super�
string and the heterotic string	 In both cases
worldsheet supersymmetry requires the presence
of two�dimensional fermions in the CFT	 Such
fermions can have di�erent types of boundary
conditions on the worldsheet periodic Ramond�
or anti�periodic Neveu�Schwarz�	 Modular in�
variance requires to sum over all possible bound�
ary conditions of the worldsheet fermions and the
states in the target space therefore arise in sectors
with di�erent fermion boundary conditions	 For
example� in the heterotic string the NS sector
gives rise to space�time bosons while space�time
fermions originate from the R sector	 For the su�
perstring there are worldsheet fermions in both
the left and right moving sector so that there are
altogether four distinct sectors NS�NS� NS�R�
R�NS� R�R	 Space�time bosons now arise from
the NS � NS or R � R sector while space�time
fermions appear in the NS�R and R�NS sector	

In order for a string to propagate in a d�
dimensional target space which should be iden�
ti�ed with a Minkowskian space�time� a subset of
the matter �elds of the CFT have to be d free two�
dimensional bosons together with the appropriate
superpartners	 These free �elds build up what is
called the �space�time� or universal� sector while
the �left over� �elds can be an arbitrary but mod�
ular invariant� interacting CFT called the �inter�
nal� sector	 The central charges of the two sec�

�cst� cst� �cint� cint�

superstring �� d�
�
� d� ��� �

� d� ��� �
� d�

heterotic d� �� d� ��� d� ��� �
� d�

Table �
Balance of central charges in d space�time dimen�
sions	

NS �NS R�R

IIA gMN � bMN � D VM � VMNP

IIB gMN � bMN � D V �
MNPQ� b

�
MN � D

�

Het gMN � bMN � D� V
�a�
M !

Table 

Massless bosonic spectrum in d � ��	

tors are additive cm � cst � cint� where cstcint�
is the central charge of the space�time internal�
sector	 The balance of the central charges for a
string propagating in a d�dimensional space�time
is summarized in table �	

The space�time sector containing free two�
dimensional �elds is more or less unique	 How�
ever� the interacting internal CFT is only con�
strained by modular invariance and as we will
see later also by the amount of space�time su�
persymmetry	 However� in most cases one �nds
a whole plethora of CFT which satisfy all con�
strains	 Each of these CFT together with their
space�time sector is often referred to as a string
vacuum	

The dimension d of space�time is completely
arbitrary at this point	 The simplest case is to
choose as many free �elds as possible which cor�
responds to d � �� for both string theories	 In
this case the constraint from modular invariance
is particularly strong and only leaves four con�
sistent closed string theories the non�chiral type
IIA� the chiral type IIB and the heterotic string
with a gauge group E� � E� or SO
��	 Their
massless bosonic spectrum is summarized in ta�
ble 
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In all four cases the NS � NS sector contains
the graviton gMN � an antisymmetric tensor bMN

and a scalar D called the dilaton	 The heterotic
string also has gauge bosons V

�a�
M in the adjoint

representation of either E��E� or SO
��	 These
are the two anomaly free gauge groups in ten di�
mensions and this choice is also dictated by mod�
ular invariance	 The R�R sector of the type IIA
string features an Abelian vector VM and an anti�
symmetric 
�form VMNP 	 For type IIB one �nds
an additional scalar D�� a second antisymmetric
tensor b�MN and a self�dual antisymmetric ��form
V �
MNPQ	 The fermionic degrees of freedom are

such that they complete the ten�dimensional su�
permultiplets	 In type IIA one �nds two spin���
gravitini of opposite chirality non�chiral N � ���
in type IIB there are two gravitini of the same
chirality chiral N � ��� and the heterotic string
has one gravitino N � �� and one spin��� gaug�
ino also in the adjoint representation of E� � E�

or SO
��	
The dilaton D plays a special role in string the�

ory	 Together with the antisymmetric tensor and
the graviton it necessarily appears in all pertur�
bative� string theories	 It is a �at direction of the
e�ective potential so that its vacuum expectation
value VEV� hDi is a free parameter	 More specif�
ically� this VEV is directly related to the string
coupling gs via

hDi � lngs � ��

This can be seen on the one hand from the two�
dimensional ��model approach with an action ���
������ 

S � S�g� b� �
�

��

Z
�

p
hR���Dx� � ��

If one expands the dilaton around its VEV D �
hDi � �D and uses eq	 �� the action S shifts by
the constant term �S � ���n�hDi	 This in turn
generates a factor of e��n���hDi in the path inte�
gral or equivalently in all scattering amplitudes	
Comparison with eq	 
� then leads to the identi�
�cation ��	 Alternatively one can derive �� by
explicitly calculating appropriate string scatter�
ing amplitudes ���	

���� Low Energy E�ective Action

The space�time spectrum of a string theory
contains a �nite number of massless modes� which
we denote as L� and an in�nite number of mas�
sive modes H	 Their mass is an integer� multi�
ple of the characteristic mass scale of string the�
ory Mstr	 Among the massless modes one always
�nds a spin�� object which is identi�ed with Ein�
stein�s graviton	 This identi�cation relates Mstr

to the characteristic scale of gravity MPl	 More
speci�cally one �nds �����
�

Mstr � g��d��s MPl ��

up to a numerical constant which depends on the
precise conventions chosen	

One is particularly interested in scattering pro�
cesses of massless modes with external momen�
tum p which is much smaller than Mstr� i	e	 one
wants to consider the limit p�
M�

str � �	 The aim
is to derive a low energy e�ective action LeL�
that only depends on the light modes L and where
all heavy excitations H have been integrated out	
This e�ective action can be reliably computed at
energy scales far below Mstr	 A systematic pro�
cedure for computing LeL� has been developed
����������� and is often referred to as the S�matrix
approach	 One computes the S�matrix elements
for a given string vacuum as a perturbative power
series in gs	 At the lowest order tree level� an S�
matrix element typically has a pole in the external
momentum which corresponds to the exchange of
a massless mode L	 The �nite part is a power se�
ries in p�
M�

str and corresponds to the exchange of
the whole tower of massive H�modes	 Le is then
constructed to reproduce the string S�matrix el�
ements in the limit p�
M�

str � � with S�matrix
elements constructed entirely from the e�ective
�eld theory of the L�modes	 In this low energy
e�ective theory the exchange of the H�modes in
the string scattering is replaced by an e�ective in�
teraction of the L�modes	 For a four�point ampli�
tude this procedure is schematically sketched in
�gure �	 The �rst row denotes the string scatter�
ing amplitude and its separation in a �pole piece�
exchange of a massless mode� and the �nite piece
exchange of the heavy modes�	 The second row
indicates ordinary �eld�theoretical Feynman dia�
grams computed from the e�ective Lagrangian	
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Figure �	 The S�matrix approach	

The pole piece is reproduced by the same ex�
change of the massless modes while the �nite part
is identi�ed with an e�ective interaction	 Us�
ing this procedure Le can be systematically con�
structed as a power series in both p�
M�

str and gs	
The power of p� counts the number of space�time
derivatives in Le� at order p�
M�

str�
� one �nds

the e�ective potential while the order p�
M�
str�

�

corresponds to the two�derivative kinetic terms	�

���� String Vacua in d � �
For the rest of these lectures we concentrate

on string vacua with four space�time dimensions	
In this case the necessary central charges can be
red o� from table �	 For the superstring we
have �cst� cst� � �� �� and �cint� cint� � �� ��
while for the heterotic string �cst� cst� � �� �� and
�cint� cint� � ��� �� holds	 The massless spectrum
in the space�time or universal sector can be ob�
tained by naive dimensional reduction from the
d � �� massless �elds	 Thus there always are a
graviton gmn�m� n � �� � � � � 
� an antisymmetric
tensor bmn and the dilaton D	 In d � � the an�

�Instead of using the S�matrix approach one can alterna�
tively construct the e�ective action by computing the ��
functions of the two�dimensional��model and interpreting
them as the equations of motion of string theory� The ef�
fective action is then constructed to reproduce these equa�
tions of motion �for a review see for example �	
�		�	��

tisymmetric tensor bmn has one physical degree
of freedom and is �dual� to a Lorentz scalar a	�

This duality can be made explicit through the
�eld strength Hnpq of the antisymmetric tensor

Hm  �
�



�mnpqHnpq � �mnpq�nbpq � �max�� ��

Hm is invariant under the local gauge transforma�
tion �bmn � �mnx� � �nmx� which transmo�
gri�es into a continuous Peccei�Quinn PQ� shift
symmetry for the scalar ax�

ax� � ax�� �

��
� ���

� is an arbitrary real constant and the factor ��
has been introduced for later convenience	 This
PQ�symmetry holds to all orders in string per�
turbation theory but as we will see is generically
broken by non�perturbative e�ects	

The internal sector of the heterotic string has
central charges �cint� cint� � ��� ��	 The left mov�
ing internal �cint � �� CFT together with the right
moving �cst � � CFT gives rise to non�Abelian�
gauge bosons of a gauge group G	 In d � � or
equivalently for a �cint � �� CFT the constraint
from modular invariance is much less stringent as
for d � �� �cint � ��� and many gauge groups
other than E��E� or SO
�� are allowed	 How�
ever� the size of G is not arbitrary but bounded
by the central charge �cint�

rankG� 	 �� � ���

The right moving cint � � CFT can support
space�time supercharges if it is invariant under
additional global� worldsheet supersymmetries	�

�This duality interchanges the Bianchi identity with the
�eld equation of di�erent tensors of the Lorentz group and
has no relation with the string duality discussed earlier�
�The precise bound also depends on the number of space�
time supersymmetries� For N � � one �nds �		 while for
N � � �N � 	 one has rank�G � �� �rank�G � ���
Furthermore� all of these bounds only exists in perturba�
tion theory� Non�perturbatively the gauge group can be
enhanced beyond the bound imposed by the central charge
�	��� We brie�y return to this point in lecture ��
�Strictly speaking there also is a condition on the �world�
sheet U�	 charge of the primary states �	��	��� Alterna�
tively� the conditions for space�time supersymmetry can
be stated in terms of generalized Riemann identities of
the partition function �	���
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Heterotic String

space�time world�sheet compact
SUSY SUSY manifold
N � � �� �� CY�
N � � �� ��
 �� �� K
 � T �

N � � �� ��
 �� ��
 �� �� T �

Table �
Worldsheet and space�time supersymmetry of the
heterotic string	

For example� N � � space�time supersymmetry
requires a global� �� �� supersymmetry of the
cint � � CFT ����	 In order to obtain N � �
space�time supersymmetry one has to split the
cint � � CFT into a free cint � 
 CFT with
�� �� worldsheet supersymmetry and a cint � �
CFT with �� �� supersymmetry ����	 Finally� a
heterotic vacuum with N � � space�time super�
symmetry is constructed by splitting the cint � �
CFT into three cint � 
 CFT each with �� ��
world�sheet supersymmetry	

The previous discussion related the amount of
space�time supersymmetry to properties of the in�
ternal CFT in particular to the amount of world�
sheet supersymmetry	 A subset of these CFT can
be associated with a compact manifold on which
the ten�dimensional heterotic string is compact�
i�ed	 Such compact manifolds have to be six�
dimensional Ricci��at K�ahler manifolds with a
holonomy group contained in SU 
�� such man�
ifolds are termed Calabi�Yau manifolds and we
summarize some of their properties in appendix
B	 N � � is obtained when the holonomy group is
exactly SU 
� which corresponds to a Calabi�Yau
threefolds CY�	 N � � requires a holonomy group
SU �� corresponding to the two�dimensional K

surface times a two�torus T �	 Finally a toroidal
compacti�cation of the heterotic string leaves all
supercharges intact and thus has N � � su�
persymmetry	 We summarize the conditions for
space�time supersymmetry in table �	

A similar discussion for the superstring de�
pends on the symmetry between left and right
moving sectors	 In these lectures we only consider

Superstring left�right symmetric�
space�time world�sheet compact

SUSY SUSY manifold
N � � !� !�
N � � �� �� CY�
N � � �� ��
 �� �� K� � T �

Table �
Worldsheet and space�time supersymmetry of the
superstring	

left�right symmetric type II vacua and without
further discussion we summarize the relations be�
tween space�time supersymmetry� worldsheet su�
persymmetry and the compacti�cation manifolds
in table �	

�� N � � Heterotic Vacua in d � �

We start our discussion of the low energy ef�
fective action with the class of four�dimensional
heterotic string vacua whose spectrum and inter�
actions are N � � supersymmetric	 These are
also the string vacua which have mostly been
studied so far because of their phenomenological
prospects	 Let us recall some basic facts of su�
persymmetry and supergravity following the no�
tation and conventions of ����	

���� N � � Supergravity

N � � supersymmetry is generated by four
fermionic charges Q� and Q ��� which transform
as Weyl spinors of opposite chirality under the
Lorentz group	 They obey the supersymmetry
algebra

fQ�� �Q ��g � ��m� ��pm � ���

where pm is the four�momentum and �m are the
Pauli matrices	

There are four distinct N � � supersymmet�
ric multiplets in d � �� the gravitational multi�
plet E� the vector multiplet V � the chiral multi�
plet " and �nally the linear multiplet L	 The
gravitational multiplet consists of the graviton
gmn and gravitino �m�� the vector multiplet fea�
tures a gauge boson vm and a spin��� gaugino
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N � � multiplets spin
gravity E � gmn� �m�� �� �

� �
vector V � vm� ��� �� �

� �
chiral " � ��� �� �

� � ��
linear L � ���Hm� l� �

� � ��

Table �
N � � multiplets	

�� while the chiral multiplet contains a complex
scalar � and a chiral Weyl spinor ��	 The lin�
ear multiplet contains a real scalar l� a Weyl
fermion �� and a conserved vector Hm� which
is the �eld strength of an antisymmetric tensor
Hm � �

��
mnpqHnpq � �mnpq�nbpq	 All four mul�

tiplets have two bosonic and two fermionic phys�
ical degrees of freedom and they are summarized
in table �	

As we already discussed in the last lecture an
antisymmetric tensor in d � � is dual to a real
scalar ax� c	f	 eq	 ���	 In N � � this duality
generalizes to a duality between an entire linear
and a chiral multiplet �����
�	 In particular the
complex scalar S of the dual chiral multiplet is
given by S � l � ia so that the continuous PQ�
symmetry ��� acts on S according to

S � S � i�

��
� �
�

This symmetry holds to all orders in perturbation
theory and strongly constrains the possible inter�
actions of the dual chiral multiplet	 We choose
to eliminate the linear multiplet from our sub�
sequent discussions and express all couplings in
terms of the dual chiral multiplet	 This simpli�es
some of the formulas below but more importantly
at the non�perturbative level the physics is more
easily captured in the chiral formulation	� How�
ever� we should stress that some of the pertur�
bative properties that we will encounter can be

�The recent progress about non�perturbative properties of
string vacua indicate that the appearance of an antisym�
metric tensor is an artifact of string perturbation theory
and that in a non�perturbative formulation the dilaton sits
in a chiral multiplet �������� We return to this aspect in
lecture ��

understood on a more conceptual level by using
the linear formulation ����
��	�

With this in mind let us recall the bosonic
terms of the most general gauge invariant su�
pergravity Lagrangian with only chiral and vec�
tor multiplets and no more than two derivatives
�
�����

L � � 


��

Z
d��d���E e�

�
��

�K������V �

�
�

�

Z
d��E

X
a

fa"�W�W��a � h�c�

�

Z
d��E W "� � h�c�

� �pg
� �

���
R�GI �J Dm ��

�JDm�I � V �� ���

�
X
a

�

�g�a
FmnF

mn�a �
�a


���
F #F �a

� fermionic terms
�

���

where �� � ��
M�

Pl

� E is the superdeterminant and

E the chiral density for a precise de�nition of the
super�eld action� see �����	

Supersymmetry imposes constraints on the
couplings of L in eq	 ���	 The metric GI �J of
the manifold spanned by the complex scalars �I

is necessarily a K�ahler metric and therefore obeys

GI �J �
�

��I
�

� �� �J
K�� ��� � ���

where K�� ��� is the K�ahler potential	 It is an
arbitrary real and gauge invariant function of �
and ��	

The gauge group G is in general a product of
simple group factors Ga labelled by an index a�
i	e	

G � �aGa � ���

With each factor Ga there is an associated gauge
coupling ga which can depend on the �I 	 How�
ever� supersymmetry constrains the possible func�
tional dependence and demands that the inverse�

�For a discussion of �eld�theoretical non�perturbative ef�
fects �gaugino condensation in the linear multiplet for�
malism see refs� ��������



�

gauge couplings g��a are the real part of a holo�
morphic function fa�� called the gauge kinetic
functions	 The imaginary part of the fa�� are
�eld�dependent� ��angles	 One �nds

g��a � Refa�� �

�a � ���� Imfa�� � ���

The scalar potential V �� ��� is also determined
by a holomorphic function� the superpotential
W ��

V �� ��� � e�
�K
�
DIWGI �J �D �J

�W � 
��jW j�
�
����

where DIW  � �W
��I

� �� �K
��I

W 	
To summarize� L is completely determined by

three functions of the chiral multiplets� the real
K�ahler potential K�� ���� the holomorphic super�
potential W �� and the holomorphic gauge ki�
netic functions fa��	

However� there is a certain redundancy in this
description	 From eq	 ��� we learn that the
K�ahler metric GI �J is invariant under a harmonic
shift of the K�ahler potential K�� ��� � K�� ����
F �� � �F ���	 The entire Lagrangian ��� shares
this invariance if the superpotential is simultane�
ously rescaled while the gauge kinetic function is
kept invariant	 Altogether L is invariant under
the replacements �

K�� ��� � K�� ��� � F �� � �F ���

W �� � W �� e�F ��� ���

fa�� � fa�� �

���� N � � Heterotic String

Let us now turn to the heterotic string and de�
termine some of the generic properties of K�W
and fa	 In section �	�	 we brie�y described a
systematic procedure the S�matrix approach� of
how to compute the e�ective Lagrangian	 Su�
persymmetry simpli�es this project considerably
since it reduced the arbitrary and hence unknown
couplings to just K�W and fa	 In section �	
	 we
already discussed the special role played by the

�A nowhere vanishing W can be completely absorbed by
a K�ahler transformation and one de�nesG �� K�ln jW j�

����� However� W usually does have zeros and it is neces�
sary to keep a separate K and W �

dilaton and its relation to the string coupling	
From eqs	 
���� one also infers that there exists
a particular coordinate frame � called the string
frame � where the dilaton multiplies the entire
tree level Lagrangian	 In this frame the bosonic
part of the e�ective action is given by

L��� �
p

$ge��D
n
� �

���
$R� �

�

X
a

kaFmnF
mn�a

� �

��
�mD�

mD �
�

����
HmH

m ���

� #GI �JDm�IDm ��
�J � V �� ���

o
�

where the �I now denote all massless scalar �elds
in the string spectrum except the dilaton D and
axion a	 The constant ka is a positive integer
for non�Abelian gauge groups� and is the level of
the left moving �c � �� Ka%c�Moody algebra whose
zero modes generate the space�time gauge bosons	
Hm is a modi�ed �eld strength which also con�
tains Chern�Simons couplings of the antisymmet�
ric tensor bmn with the gauge �elds and gravitons	
From amplitudes like hbmnvpvqi or hbmngprgqsi
one obtains �����
���
�
��

Hm � �mnpq�nbpq � ���mL �
X
a

ka �
m
a � � ���

where �ma is the Yang�Mills Chern�Simons term
de�ned as �ma � �mnpqvnFpq � �i

� vnvpvq�a and
�mL is the appropriate Lorentz Chern�Simons
term	

In the string frame ��� the Einstein term is
not canonically normalized and therefore the ef�
fective string Lagrangian cannot yet be compared
with the supergravity Lagrangian ���	 However�
a Weyl rescaling of the space time metric

$gmn � e�Dgmn ���

in eq	 ��� results in a canonical Einstein term	
In addition� one has to perform the duality trans�
formation of the antisymmetric tensor� and then
combine the dilaton D and the axion a into a
complex scalar �eld

S � e��D � ia � �
�

�One �rst treats Hm as an unconstrained vector and im�
poses the constraint �mHm � ���R �R �

P
a
ka�F �F a

with a Lagrange multiplier a�x� Then the variation with
respect to Hm implies Hm � e�D�ma�x� �For more de�
tails see for example refs� ��������



��

After these manipulations one arrives at

L��� � �pg
n �

���
R � #GI �J Dm�IDm ��

�J

� GS �S �mS �
m �S �

�

ReS
V �� ��� ���

�
X
a

ka
�

�
ReS FmnF

mn�a � ImS F #F �a
�o

�

where GS �S � �
���S
�S��

� �S��SK	 Now one can

easily do the comparison with the supergravity
Lagrangian ��� and determine

K��� � ���� lnS � �S� � #K����� ���

W ��� � W �� i�e� �SW
��� � � ���

f ���a � ka S �

where #GI �J � �I� �J
#K 	 Note that the PQ�

symmetry �
� shifts the Lagrangian ��� by a
total divergence and thus the perturbative action
is indeed invariant	��

������ Perturbative Corrections

So far the analysis was con�ned to the string
tree level	 The next step is to include string loop
corrections into the e�ective Lagrangian	 In sec�
tion �	�	 we already determined the relation be�
tween the dilaton and the string coupling con�
stant which organizes the string loop expansion	
In fact� eqs	 
���� show that the dilaton depen�
dence of a given coupling on a genus n Riemann
surface is �xed	 Therefore all higher loop correc�
tions of the functions K� f and W are constrained
by the following two properties 

� e�D � �
S
�S

organizes the string perturba�
tion theory with large S corresponding to
weak coupling�

� the PQ�symmetry �
� is unbroken in per�
turbation theory	

Using these constraints one expands K� fa and
W in powers of the dilaton in accord with the
string loop expansion	 For the K�ahler potential
one �nds

K � K��� �
�X
n	�

#K�n��� ���

S � �S�n
� ���

	
Here we only considered the bosonic part of the La�
grangian but the analysis can be extended to the entire
Lagrangian�

where the #K�n� are arbitrary functions of the
scalar �elds �I but do not depend on the dila�
ton	 The superpotential W and the gauge kinetic
function fa are additionally constrained by their
holomorphy	 Since W ��� does not depend on the
dilaton� the only possible loop corrections which
are also invariant under the PQ�symmetry� could

look like W �n�S� �� � W �n� ���
�S
�S�n

for n � �� but any

such term is incompatible with the holomorphy
of W 	 Therefore W cannot receive corrections
in string perturbation theory	 This is a special
case of the non�renormalization theorem of the
superpotential which holds in any N � � super�
symmetric �eld theory ����	 The �stringy� proof
of this theorem which we recalled above was �rst
presented in ref	 ����	

The exact same considerations also imply a
non�renormalization theorem for the gauge ki�
netic functions fa �����
�	 One �nds that only a

dilaton independent one�loop correction f
���
a ��

can arise in perturbation theory and hence

fa � ka S � f ���a �� � ���

������ Non�Perturbative Corrections

Non�perturbative corrections to the couplings
of the e�ective Lagrangian generically break the
continuous PQ�symmetry to its anomaly free dis�
crete subgroup	 Space�time instantons generate
a non�trivial topological density �

����

R
F #F and

therefore break the PQ�symmetry to

S � S � in

��
� ���

where n is an integer and no longer a continuous
parameter	 The holomorphic invariants of ���

include the exponential e���
�S and thus beyond

perturbation theory one expects non�perturbative
corrections of W and f to have the form 

W � W ����� � W �NP �e���
�S � �� �

fa � kaS � f ���a �� � f �NP �a e���
�S � �� � ���

To summarize� we learned in this section that
the dilaton dependence of the couplings K� W
and fa is �xed	 The dependence on all other
scalar �elds �I cannot be determined in general�
it depends on the particular string vacuum un�
der consideration or in other words the details



��

of the internal CFT	 Furthermore� the quantum
corrections of the holomorphic W and fa are
strongly constrained by non�renormalization the�
orems	 The non�renormalization theorems are
also discussed from a slightly di�erent point of
view in lectures by K	 Intriligator	�

���� Supersymmetric Gauge Couplings

������ Preliminaries

Up to now we denoted all scalars except the
dilaton by �I 	 Let us introduce a further distinc�
tion and separate the scalars into matter �elds
QI that are charged under the gauge group and
gauge neutral scalar �elds M i� called moduli	 The
moduli are �at directions of the e�ective potential
in that they satisfy �V

�Mi � � for arbitrary hM ii	
Hence� the VEVs hM ii are free parameters of the
string vacuum and they can be viewed as the
coordinates of a multi�dimensional� parameter
space called the moduli space	 On the other hand
the vacuum expectation values of the QI are �xed
by the potential	�� One conveniently chooses
hQIi � � and expands all couplings around this
expectation value	 In particular we need

#K�� ��� � ��� $KM� �M �

� Z�IJ M� �M � �Q
�Ie�VQJ � � � �

f ����� � faM � � � � � � 
��

where the ellipsis stand for higher order terms
that are irrelevant for our purpose	 The couplings
$KM� �M �� Z�IJ M� �M � and faM � do not depend

		There also can be gauge neutral singlets which are not
moduli in that there VEV is �xed by the potential� Such
�elds are included among the QI � Furthermore� there of�
ten are also charged states which are �at directions of V �
Their VEVs break the gauge group and give the associated
gauge bosons a mass� In the e�ective �eld theory descrip�
tion one has a choice to either integrate out these massive
states along with the whole tower of heavy stringmodes or
leave them in the low energy e�ective action� The latter
choice is appropriate when the masses are small and well
below the cuto� of the e�ective theory� In this case we in�
clude these �at directions among the QI � The �rst choice
is sensible whenever the masses are close to the string scale
Mstr� Once they are integrated out the gauge group is re�
duced and only gauge neutral states are left over� The
important point is that �at directions that are charged
change the low energy spectrum while gauge neutral �at
directions are spectrum preserving� For a more detailed
discussion of this distinction see for example �����

on the dilaton but only on the moduli� in gen�
eral this functional dependence cannot be further
speci�ed	

������ Field Theory Considerations

Any e�ective �eld theory has two distinct
kinds of gauge couplings� a momentum depen�
dent running� e�ective gauge coupling gap���
and a Wilsonian gauge coupling	 Shifman and
Vainshtein ���� stressed the importance of this
distinction for supersymmetric �eld theories	 It
arises from the fact that the Wilsonian gauge cou�
pling is the real part of a holomorphic function
Refa which is not renormalized beyond one�loop	
This Wilsonian coupling is the gauge coupling
of a Wilsonian e�ective action which is de�ned
by only integrating out the heavy and high fre�
quency modes with momenta above a given cut�
o� scale	 By construction such a Wilsonian La�
grangian is local and its couplings obey the ana�
lytic and renormalization properties discussed in
the previous section	�� On the other hand gap��
are the couplings in the one�particle irreducible
generating functional which includes momenta at
all scales� it is related to physical quantities such
as scattering amplitudes	 At the tree level the two

couplings coincide and we have g���a ��� � Ref ���a 	
However� at the one�loop level they start to dis�
agree and for any locally supersymmetric �eld
theory one �nds instead ����������
��������

g��a p�� � Refa �
ba

����
ln

&�

p�
�

ca
����

$K��� 
��

�
T Ga�

���
lng�����a �

X
r

Tar�

���
lndetZ���

r �

where r runs over the representation of the gauge
group and & is a moduli independent� UV cuto�
of the regularized supersymmetric quantum �eld
theory which is naturally chosen as the Planck

mass & � MPl	
�� $K��� and Z

���
r are the tree level

couplings of the light or massless� modes and ba
is the one�loop coe�cient of their ��function	��

	�For further discussion about the Wilsonian Lagrangian
see for example refs� ��������
	�The important point here is that MPl is the �eld inde�
pendent mass scale of the supergravity Lagrangian �	��
	�More precisely� Zr is the block of Z�IJ corresponding to
the matter multiplets in representation r�



��

We also abbreviated

Tar� ��a��b� � TraT
�a�T �b�

T Ga� � Taadj� of Ga�

ba �
X
r

nrTar�� 
T Ga� 
��

ca �
X
r

nrTar�� T Ga� �

where T �a� are the generators of the gauge group
and nr denotes the number of matter multiplets
in representation r	

There are several points about eqs	 
�� which
need to be stressed 

� The e�ective gauge couplings are not har�
monic functions of the moduli� that is
�i��jg

��
a � �	 This failure of harmonic�

ity is known as the holomorphic or K�ahler
anomaly	 It implies that g��a is not the real
part of a holomorphic function� g��a � Refa
only holds at the tree level but not when
higher loop corrections are included	��

� The non�harmonic di�erences g��a � Refa
only depend on the massless modes and
their couplings	 Therefore they can be com�
puted entirely in the low energy e�ective
�eld theory without any additional knowl�
edge about the underlying fundamental the�
ory	

� The Wilsonian couplings fa are always holo�
morphic and only corrected at the one�loop
level and non�perturbatively	 These quan�
tum corrections are induced by the heavy
modes of the underlying fundamental the�
ory	

� The axionic couplings still obey �Mj�a �
�i���Mjg��a but �Mj �a is no longer in�
tegrable whenever g��a is non�holomorphic

	�A similar situation has been found for the superpoten�
tial �����
�����	����� Beyond the tree level it is necessary
to make a distinction between the e�ective Yukawa cou�
plings and the holomorphic Wilsonian parameters of the
superpotential� They coincide at the tree level but not be�
yond when massless modes are in the spectrum� The holo�
morphic superpotentialW is by construction a Wilsonian
quantity and obeys all the non�renormalization theorems
of the previous section�

��
�	 The ��angles are not well de�ned when
massless modes are present	

The e�ective gauge couplings gap�� are phys�
ical quantities and hence must be invariant un�
der all exact symmetries of the theory	 This is
certainly assured at the classical level but from
eqs	 
�� we learn that such an invariance is po�
tentially spoiled at the quantum level	 For exam�
ple a holomorphic coordinate transformation

QI � �I
J M �QJ 

�

Z �JI � ����
�J

�K Z �KL���
I

L

or a K�ahler transformation

$K � $K � F M � � �F  �M �

W � We�F �M� 
��

do not leave gap
�� of eqs	 
�� invariant	 This is a

one�loop violation of two classical invariances and
therefore they are often referred to as the ��model
and K�ahler anomaly	 However� these anomalies
are harmonic functions of the moduli and there�
fore can be cancelled by assigning a new one�loop
transformation law to the gauge kinetic functions
fa	 Cancellation of the combined anomalies re�
quires the Wilsonian couplings to transform as 

fa � fa � ca
���

F �
X
r

Tar�

���
ln det ��r�� 
��

In that sense faM � can be viewed as local coun�
terterms cancelling potential ��model and K�ahler
anomalies �������
��������	

Finally� based on ref	 ���� one can write down
an all�loop generalization of eqs	 
�� �
�����

g��a p�� � Refa �
ba

����
ln
M�

Pl

p�
�

ca
����

$K 
��

�
T Ga�

���
ln g��a p��

X
r

Tar�

���
lndetZrp� �

where now $K�Zrp� are the full loop�corrected
couplings	 Eqs	 
�� are the solutions of the all�
loop ��functions proposed in ����

�aga� � p
dga
dp

�
g�a

����
ba �

P
r Tar� �r

�� T �Ga�
��� g�

� 
��

where �r  � p d
dp ln detZrp�	



�


������ Gauge Couplings in String Theory

The next step is to apply the �lessons� of the
previous section to string theory and explicitly
compute the low energy gauge couplings	 First
of all� the dilaton dependence of ga can be de�
termined by inserting eqs	 ���������� into 
��
which results in

g��a � kaReS �
ba

����
ln
M�

str

p�
� 'aM� �M � 
��

where

'aM� �M � � Ref ���a M � �
ca

����
$K���M� �M �

�
X
r

Tar�

���
ln detZ���

r M� �M � � 
��

and

M�
str �

M�
Pl

S � �S
� ���

The precise numerical coe�cient which relates
the scales Mstr and MPl is a matter of conven�
tion see for example ����� and the discussion here
neglects all �eld independent corrections of ga	
From eqs	 
������ we learn that the entire one�
loop dilaton dependence of eq	 
�� conspires into
a lnS � �S� term with the one�loop beta function
as a coe�cient	 This amounts to nothing but
a universal change of the coupling�s uni�cation
scale	 In string theory the natural starting point
for the renormalization of the e�ective gauge cou�
plings is not MPl but rather the string scale Mstr	
That is� string theory and �eld theory naturally
choose di�erent cuto�s	 Furthermore� the thresh�
old corrections 'a are entirely independent of the
dilaton �S'a � �� this fact can also be derived
directly from Le in the string frame eq	 ���
�����	

The moduli dependence of 'a can be computed
in two di�erent ways	 First of all one can explic�
itly evaluate the one�loop string diagram �g	 ��
with two gauge boson vertex operators Vvm as the
external legs �����
�������	 In order to do this
computation one needs to know the exact mas�
sive spectrum which runs in the loop or in other
words the CFT correlation functions have to be
known	

VvmVvn

Figure �	 Two�point genus one string amplitude
with two gauge bosons	

A second possibility to determine 'a makes
use of the constraints implied by the holomor�
phy of fa� its quantum symmetries and singular�
ity structure	 This second method will be dis�
cussed in some detail in the next section	 It has
the advantage that it can be used even if the CFT
correlation functions are unknown	 However� in
some case the constraints on fa are not strong
enough to determine it uniquely but only up to
a small number of undetermined numerical coef�
�cients ����	

������ Orbifold compacti	cations

As an example we consider a speci�c class of
orbifold compacti�cation of the ten�dimensional
heterotic string �����
�	 An orbifold is con�
structed from a smooth toroidal compacti�cation
by dividing the six�torus T � by a non�freely act�
ing discrete group	 In order to preserve N � �
supersymmetry this discrete group should be a
subgroup of SU 
� and an isometry of T �	

Here we focus on a particular subclass of such
orbifold compacti�cations factorizable orbifolds�
where the geometrical moduli of at least� one
two�torus T � of T � are left unconstrained in the
spectrum	 An example of a factorizable orbifold
is the Z� orbifold with the generator � � i� i����
acting on the three complex coordinates of T � �
T � � T � � T �	 The moduli of the third T � are

T � �
p
g � ib� �

U �
�

g��

p
g � ig��� � ���

where gij is the background metric on T �� g �
detgij� and bij � b�ij is the antisymmetric
tensor	��

	�For a precise de�nition of factorizable orbifolds see
ref� �����
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The tree level couplings of these toroidal mod�
uli are given by ����������������

$K��� � � lnT � �T �� lnU � �U � �

Z
���

I �J
� �I �J T � �T ��qI U � �U��qI � ���

where the qI are rational numbers depending on
the twist sector of the orbifold� they can be found
for example in ref	 ����	

Factorizable orbifold compacti�cations always
have an SL��Z�T �SL��Z�U quantum symme�
try ������	 That is� the partition function as well
as all correlation functions respect this symmetry
to all orders in string perturbation theory	 Such
quantum symmetries commonly arise in string
vacua and they are termed T �dualities	 For the
particular case at hand the SL��Z�T acts on the
toroidal moduli according to 

T � aT � ib

icT � d
� U � U � �
�

where a� b� c� d � Z and ad � bc � �	 The
SL��Z�U has a similar action with T and U
interchanged	 Further details of the modular
group SL��Z� are collected in appendix A	� Un�
der the transformation �
� the K�ahler potential
of eq	 ��� undergoes a K�ahler shift of the form

�� with

F T � � lnicT � d� � ���

The same shift is found for SL��Z�U but with
T replaced by U 	��� From eq	 ��� one also infers

that Z
���

I �J
transforms according to eq	 

� with

�I
J � �IJ icT � d��qI � ���

Inserting ��� and ��� into 
�� and using the
fact that the dilaton S can be chosen modular
invariant one �nds that the one�loop corrections

f
���
a T� U � have to transform like

f ���a T� U � � f ���a T� U �� �a
���

lnicT � d� ���

where

�a �
X
I

TaQ
I�� � �qI�� TaG� � ���

	�Note that although the tree level K�ahler potential is
corrected in string perturbation theory the holomorphic
function F �T  has to be exact to all orders of perturbation
theory� This follows from the fact that the superpotential
W is protected from any perturbative renormalization�

The logarithm of the Dedekind ��function de�
�ned in appendix A� has precisely the transfor�
mation properties needed to satisfy ���	 More
speci�cally one has

�� � ���icT � d� � ���

where ��� � �	 Hence one infers

f ���a � � �a
���

ln���iT ���iU ��

� Pa�jiT �� jiU �� � ���

where Pa are modular invariant holomorphic
functions of the moduli and thus can only de�
pend on T and U through the modular invariant
holomorphic j�function de�ned in appendix A	

In order to determine Pa we also need to know
the singularities of fa	 Such singularities appear
at points in the moduli space where some other�
wise heavy states become massless	 For factoriz�
able orbifolds there are indeed additional mass�
less states at T � U mod SL��Z�� but they
are always neutral with respect to the low energy
gauge group	 Thus the gauge couplings do not
develop a singularity at T � U and consequently
the fa cannot have any singularities at �nite T
or U in the moduli space	 On the other hand� in
the limit ReT�ReU �� the theory decompact�
i�es and a whole tower of Kaluza�Klein states
turns massless	 However� the corresponding sin�
gularity in the gauge couplings is constrained by
the fact that there has to exist a region in the
moduli space where the theory stays perturba�
tive in the decompacti�cation limit	 This region
is characterized by the requirement that both the
four�dimensional gauge coupling g� and the six�
dimensional gauge coupling g� are small	 In the
large radius limit the two coupling are related by

g��� � r�g��� � ���

where r �
p

ReT c�f� ���� is the radius of the
torus	 Therefore� g� stays small for g�� � ReT
�xed and small	 g� stays small for ReS large
and ReS � ' where this last condition merely
states that the one�loop correction is small com�
pared to the tree level value	 This constrains '
or equivalently faT� U � to grow at most linearly
in T or

lim
ReT��

fa � T � ���



��

The same argument also holds for U since the
large U limit is SL��Z� equivalent to the de�
compacti�cation limit	� From its de�nitions in
appendix A we learn that j and � are non�singular
inside the fundamental domain and in the limit
T �� their asymptotic behaviour is

ln��� �� �

��
T � j � e��T � ���

We see that the �rst term in eq	 ��� does satisfy
���	 The modular invariant Pa�jiT �� jiU �� also
have to satisfy ��� but as we argued earlier they
also have to be �nite inside the modular domain	
The unique solution to these three constraints is
Pa � const� ����	

To summarize� from the knowledge of the tree
level couplings $K��� and Z��� and the fact that the
modular symmetries SL��Z�T �SL��Z�U hold
at any order in perturbation theory one uniquely
determines

faS� T� U � � kaS � �a
���

ln���iT ���iU �� �
�

up to gauge group dependent� constants	 In�
serted into eq	 
�� one �nds

'a � � �a
����

ln
h
j�iT �j�ReT j�iU �j�ReU

i
� ���

The exact same method presented here can also
be applied to Calabi�Yau vacua with a low num�
ber of moduli and in many cases one is able to
determine fa up to a universal gauge group in�
dependent factor� ����������	 However� in some
cases for example for non�factorizable orbifolds�
the constraints on fa are not strong enough to de�
termine it uniquely ����	 Instead one is left with
a �nite number of undetermined coe�cients	

�� N � � String Vacua

In this section we study the holomorphic cou�
plings for heterotic and type II string vacua which
have an extended N � � space�time supersym�
metry	 In part this is motivated by the work
of Seiberg and Witten who determined the ex�
act non�perturbative low energy e�ective theory
of an N � � supersymmetric Yang�Mills theory
����	 In this case the entire low energy e�ective
action is encoded in terms of a holomorphic pre�
potential F 	 The analysis of Seiberg and Witten

and its generalizations is nicely reviewed in the
lectures of W	 Lerche	� It was of immediate in�
terest to also discover the Seiberg�Witten theory
as the low energy limit of an appropriate string
vacuum	 This aspect is reviewed in the lectures
of S	 Kachru	�

In this lecture we recall the structure of N � �
supergravity with special emphasis on the holo�
morphic prepotential and focus on perturbative
properties of heterotic as well as type II N � �
string vacua	

���� N � � Supergravity

N � � extended space�time supersymmetry is
generated by two Weyl�� supercharges QA

� A �
�� �� which obey

fQA
� �

�QB
�	
g � ��AB�m

� �	
pm

fQA
� � Q

B
	 g � ��	�

ABZ � ���

where Z is the central charge of the algebra	
The N � � gravitational multiplet E con�

tains the graviton� two gravitini �Am� and an
Abelian vector boson �m called the graviphoton	
In terms of N � � multiplets it is the sum of
the N � � gravitational multiplet and a grav�
itino multiplet ( which contains a gravitino and
an Abelian vector	�� An N � � vector mul�
tiplet contains a vector� two gaugini �A� and a
complex scalar �� it consists of an N � � vec�
tor multiplet V and a chiral multiplet "	 Mat�
ter �elds arise from N � � hypermultiplets H
which contain two Weyl fermions �A� and four real
scalars qAB� they are the sum of two N � � chi�
ral multiplets	 There are three further multiplets
which all contain an antisymmetric tensor �eld
and therefore also will accommodate the dilaton
of string theory	 First there is a vector�tensor
multiplet V T which contains an Abelian vector�
two Weyl fermions� the �eld strength of an anti�
symmetric tensor and a real scalar� it consists of
an N � � vector multiplet and a linear multiplet
L �������	 The tensor multiplet T contains two
Weyl fermions� the �eld strength of an antisym�
metric tensor and three real scalars� it consists
of an N � � chiral multiplet and a linear multi�
plet ����	 Finally� the double tensor multiplet )

	�This multiplet was constructed in ref� ����� it cannot be
consistently coupled in N � 	 supersymmetry�



��

N � � multiplets N � � spin
E � gmn� �Am�� �m� E 
( �� �

� � ��
V � vm� �A� � �� V 
 " �� �

� � ��
H � �A� � q

AB� " 
" �
� � ��

V T � vm�Hm� �
A
� � l� V 
 L �� �

� � ��
T � Hm� �

A
� � �� l� " 
 L �

� � ��
) � Hm�H

�
m� �

A
� � l� l

�� L 
 L �
� � ��

Table �
Multiplets of N � � supergravity in d � �	

contains two Weyl fermions� two �eld strengths
of antisymmetric tensors and two real scalars� it
consists of two linear multiplets	�� All multiplets
have four on�shell bosonic and fermionic degrees
of freedom and we summarize their �eld content
and spins in table �	

As we discussed in the previous lectures an an�
tisymmetric tensor is dual to a pseudoscalar in
d � � and this translates into the following dual�
ities among N � � multiplets

V T � V� T � H� ) � H � ���

The dilaton which arises from the universal sector
of the CFT is always accompanied by an antisym�
metric tensor	 More speci�cally� for any heterotic
vacuum the dilaton is a member of a vector�tensor
multiplet while the dilaton in type IIA type IIB�
vacua resides in a tensor double�tensor� multi�
plet table ��	 This can be derived by dimension�
ally reducing the ten�dimensional string theories
summarized in table 
	

As in lecture � we always choose to discuss the
low energy e�ective theory in terms of the dual
multiplets� that is we express the action solely in
terms of the gravitational multiplet� the vector
and hypermultiplets	
N � � supergravity severely constrains the in�

teractions among these multiplets �������	 In par�
ticular� the complex scalars � of the vector multi�
plets are coordinates on a special K�ahler manifold
MV while the real scalars qAB of the hypermulti�

	�Dimensional reduction of type IIB string theory implies
the existence of this multiplet �c�f� table � but as far as we
know it has not been explicitly constructedyet� Therefore�
we leave it as an exercise for the reader�

string theory dilaton multiplet
heterotic V T � V
type IIA T � H
type IIB ) � H

Table �
Dilaton multiplet	

plets are coordinates on a quaternionic manifold
MH 	 Locally the two spaces form a direct prod�
uct ����� i	e	

M � MV �MH � ���

For their respective dimensions we abbreviate
dimMV � � nV and dimMH � � nH 	

������ Special K
ahler manifolds

A special K�ahler manifold is a K�ahler manifold
whose geometry obeys an additional constraint
����	�� One way to express this constraint is the
statement that the K�ahler potential K is not an
arbitrary real function as it was in N � � super�
gravity� but determined in terms of a holomor�
phic prepotential F according to��

K � � ln
�
i �Z����F�Z� � iZ��� �F� �Z�

�
� ���

The Z��� � �� � � � � nV are nV � �� holomorphic
functions of the nV complex scalar �elds �I � I �
�� � � � � nV which reside in the vector multiplets	

F� abbreviates the derivative� i	e	 F� � �F �Z�
�Z�

and F Z� is a homogeneous function of Z� of
degree � 

Z�F� � �F � ���

The K�ahler metric GIJ is obtained from eq	 ���
with the K�ahler potential ��� inserted	

The above description is again somewhat re�
dundant	 The holomorphic Z� can be eliminated
by an appropriate choice of coordinates and a
choice of the K�ahler gauge	 The corresponding

�
For a review of special geometry� see for example
ref� �����
�	Alternative de�nitions can be found in refs� ����������
and their equivalence is discussed in ref� �����
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coordinates are called special coordinates and are
de�ned by 

�I �
ZI

Z�
� ���

In these special coordinates the K�ahler potential
��� reads

K � � ln
�

�F � �F� � �I � ��I�FI � �FI�
�
����

where F�� is an arbitrary holomorphic function
of �I related to F Z� via F Z� � �iZ���F��	

A lengthy but straightforward computation
shows that using ��� the Riemann curvature ten�
sor of special K�ahler manifolds satis�es ����

RI �JK �L � GI �JGK �L �GI �LGK �J

�e�KWIKMGM �M �W �M �J �L � ���

where WIKM � �I�K�MF 	��

N � � supergravity not only constrains the
K�ahler manifold of the vector multiplets but also
relates the gauge couplings to the holomorphic
prepotential	 More speci�cally� the gauge kinetic
terms are

L � ��

�
g����F

�
mnF

mn� � ���

���

F� #F� � � � � � �
�

where F �
mn is the �eld strength of the graviphoton

and

g���� �
i

�
N�� � �N��� �

��� � ���N�� � �N��� � ���

N�� is de�ned by 

N�� � �F�� � �i
ImF�� ImF�� Z

�Z�

ImF�� Z�Z�
� ���

Due to the second term of N�� the gauge cou�
plings are generically non�harmonic functions of
the moduli	 This is di�erent from the situa�
tion in N � � since any Abelian factor in the
gauge group can have a non�trivial mixing with

��The WIKM are sometimes referred to as the Yukawa
couplings since for a particular class of heterotic N � 	
vacua �vacua which have a global ���� worldsheet super�
symmetry they correspond to space�time Yukawa cou�
plings �	���

the graviphoton and this is origin of the non�
harmonicity of the Wilsonian� gauge couplings
in N � � supergravity	

To summarize� both the K�ahler potential and
the Wilsonian gauge couplings of the vector mul�
tiplets in an N � � e�ective Lagrangian are
determined by a single holomorphic function of
the scalar �elds � � the prepotential F��	 The
Wilsonian gauge couplings are non�harmonic al�
ready at the tree level	

It is again convenient to make a distinction
between gauge neutral moduli scalars M i which
are members of Abelian vector multiplets and
charged scalars QI which arise from non�Abelian
vector multiplets	�� That is� we split the scalars
�I according to �I � M i� QI��� and expand
F and K as a truncated power series around
hQIi � � exactly as in N � �

F � hM � � fIJ M �QIQJ � � � � � ���

Inserted into ��� one �nds ����

K � $KM� �M � � ZIJ M� �M �QI �QJ � � � � ���

where

$K � � ln
�

�h� �h� � M i � �M i�hi � �hi�
�

ZIJ � � e
�KRefIJ M � � ���

The gauge couplings of any non�Abelian factor
Ga also simplify since gauge invariance of eq	 �
�
requires fIJ � �IJ fa where here I and J label the
vector multiplets of the factor Ga	 Inserted into
eqs	 ������� reveals that the Wilsonian� gauge
coupling of a non�Abelian factor is a harmonic
function of the moduli

g��a � RefaM � � ���

As for N � � this only holds at the tree level	 At
the loop level the e�ective non�Abelian� gauge

��As we discussed in the previous section this distinction
is somewhat ambiguous and involves a choice of the low
energy degrees of freedom� In N � � the scalars in the
Cartan subalgebra of a non�Abelian gauge factor Ga al�
ways are �at directions of the e�ective potential� Thus at
a generic point in their moduli space Ga is broken to its
maximal Abelian subgroup�
��As before we use the index I in two di�erent ways and
hope the reader will not be confused by this notation�
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couplings again cease to be harmonic and instead
obey the N � � analog of eq	 
�� which is found
to be ����

g��a � Refa �
ba

����

�
ln
M�
Pl

p�
� $KM� $M�

�
� ���

One way to derive this relation is to simply insert
eqs	 ���� ��� into eq	 
��	��

The moduli of N � � supergravity can be
scalars in either vector or hypermultiplets and the
total moduli space is a locally a direct product as
in eq	 ���	 However� from eq	 ��� we learn that
the e�ective gauge couplings only depend on the
moduli M i in vector multiplets but not on the
moduli in hypermultiplets	 This is a consequence
of the fact that the N � � gauge �elds couple to
charged hypermultiplets in a minimal gauge co�
variant way but they do not have two derivative
couplings with any of the neutral hypermultiplets
���� and hence the gauge couplings also cannot
depend on the latter	 However� the spectrum of
charged hypermultiplets does enter into eqs	 ���
in that they a�ect the ��function coe�cients ba	

���� N � � Heterotic Vacua
So far we reviewed the e�ective N � � su�

pergravity without any reference to a particular
string theory	 The aim of this section is to de�
termine the prepotential F for N � � heterotic
vacua	��

������ N � � Non�Renormalization Theo�

rems

As we already discussed� for heterotic vacua the
dilaton is part of a vector�tensor multiplet but
we choose to discuss it in terms of its dual vec�
tor multiplet	 More precisely� the dilaton is the
real part of the scalar component in the dual vec�
tor multiplet with the axion being the imaginary
part	 From the fact that the dilaton organizes the
string perturbation theory together with product
structure of the moduli space ��� one derives the
following non�renormalization theorem ������� 

��As for N � 	 vacua this formula can also be viewed
as an all�loop expression� In N � � the ��function is
only corrected at one�loop in perturbation theory but not
beyond�
��The presentation of this section closely follows ref� �����
similar results were obtained in ref� ��	�� �See also refs� ����
����

i� The moduli space of the hypermultiplets
is determined at the string tree level and
receives no further perturbative or non�
perturbative corrections� i	e	

MH � M���
H � ���

A	 Strominger ���� stressed the validity of this
non�renormalization theorem beyond string per�
turbation theory	 This is a consequence of the
fact that this theorem only depends on unbroken
N � � supersymmetry and the assignment of the
dilaton multiplet	 In particular it does not de�
pend on the continuous PQ�symmetry which in
part was responsible for the non�renormalization
theorem of W and fa in N � � heterotic vacua	
However� it was precisely the breaking of the
PQ�symmetry which allowed for a violation of
the N � � non�renormalization theorem by non�
perturbative e�ects	

On the other hand the PQ�symmetry ��� can
be used to derive a second non�renormalization
theorem in N � �	 The loop corrections of the
prepotential F are organized in an appropriate
power series expansion in the dilaton	 But exactly
as in the N � � case the holomorphy of F and the
PQ�symmetry only allow a very limited number of
terms	 Repeating the analysis of section �	�	 one
�nds 

ii� The prepotential F only receives contribu�
tions at the string tree level F ���� at one�
loop F ��� and non�perturbatively F �NP ��
i	e	

F � F ���S�M � � F ���M �

� F �NP �e���
�S �M � � ���

F ��� is of order S� F ��� is dilaton independent
and F �NP � is only constrained by the discrete
PQ�symmetry ���	 This second theorem is the
�cousin� of the N � � non�renormalization theo�
rem for W and fa but in N � � it is more power�
ful since F determines both the Wilsonian gauge
coupling and the K�ahler potential	

������ String Tree Level

The next step is to determine the tree level pre�
potential F ��� using additional information that
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we have at our disposal	 All perturbative� N � �
heterotic vacua also satisfy

� The tree level gauge coupling of any non�
Abelian factor Ga is the set by the VEV of
the dilaton	�� That is� g�� � ReS or

f ��� � S� �
�

� The dilaton dependence of the tree level
K�ahler potential is constrained by the PQ�
symmetry and the fact that the dilaton
arises in the universal sector	 Therefore it
cannot mix with any other scalar �eld at
the tree level and one necessarily has

K��� � � lnS � �S� � #KM� �M�Q� �Q�� ���

Surprisingly� this separation of the dilaton piece
together with the constraint ��� uniquely �xes
F ��� to be ���� 

F ��� � �S
�
�ijM

iM j � �IJQ
IQJ

�
� ���

where �ij � diag����� � � � ����	 Inserted into
��� the tree level K�ahler potential is found to be

K��� � � lnS � �S� ���

� ln
�
�ijReM iReM j � �IJReQIReQJ

�
�

The metric derived from this K�ahler potential is
the metric of the coset space

M���
V �

SU �� ��

U ��
� SO�� nV � ��

SO�� � SOnV � ��
� ���

where the �rst factor of the moduli space is
spanned by the dilaton and the second factor by
the other vector multiplets	 Let us stress once
more that this results generically holds for per�
turbative heterotic N � � vacua and is a conse�
quence of the constraints implied by supergrav�
ity and the special properties of the dilaton cou�
plings	

��This only holds for the perturbative gauge group� In the
last lecture we will see that non�perturbative e�ects can
enlarge the gauge group but with a di�erent coupling to
the dilaton �	���

������ Perturbative Corrections

The next step is to determine F ���� i	e	 the one�
loop corrections of the prepotential	 Inserting
��� into ��� we see that both h and fIJ have
their own loop expansion

h � h��� � h��� � h�NP � �

fIJ � f
���
IJ � f

���
IJ � f

�NP �
IJ � ���

and thus one has to compute f ��� and h���	 How�
ever� for these two couplings one cannot derive
a result as general as we just did for F ���	 In�
stead we again only consider a particular sub�
class of heterotic N � � vacua and apply the
method developed in the previous section	 In
order to use some of the earlier results we fo�
cus on those vacua which have two moduli T
and U and a perturbative quantum symmetry
SL��Z�T � SL��Z�U acting on T and U as in
eq	 ��
�	 To be slightly more speci�c� let us
consider compacti�cations of the ten�dimensional
heterotic string on K
 � T � where T and U are
the two toroidal moduli of T � and K
 is a four�
dimensional Calabi�Yau manifold	��

T and U are the scalar components of two
Abelian vector multiplets so that for this class
of vacua the gauge group is

G � G� � U ��T � U ��U � U ��S � U ��
 � ���

G� is a gauge factor which we do not further spec�
ify since it depends on the particular vacuum un�
der consideration	�� However� the rank of G is
again bounded by the central charge �cint � ��	
For N � � vacua there are two additional U ��

��There are vacua which have an SL���ZT � SL���ZU
quantum symmetry but which cannot be interpreted as
geometrical compacti�cations� We do not get into these
subtleties here�
��G� also varies over the moduli space� As we already
remarked� in N � � the vector multiplets in the Cartan
subalgebra of G� are �at directions and therefore away
from the origin of moduli spaceG� is generically broken to
some subgroup� For example� compacti�cationonK��T �

in which the spin connection is embedded in the gauge
connection of K� in the standard way� has a gauge group
G � E� � E� � U�	T � U�	U � U�	S � U�	� at the
origin of the vector multiplet moduli space which at a
generic point is broken to G � U�		��U�	T �U�	U �
U�	S �U�	�� For this family of vacua there are also ��
moduli in hypermultiplets�
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gauge bosons in the universal sector correspond�
ing to the graviphoton and the superpartner of
the dilaton	 Thus we have

rankG� 	 �� � � � ���

h���T� U � and f ���T� U � can be determined by
an appropriate string loop computation	 Here
we follow instead the same method developed for
N � � vacua and use the quantum symmetries
and singularity structure to determine h���T� U �
and f ���T� U �	 However� there is slight compli�
cation now since h���T� U � does have singulari�
ties inside the fundamental domain	 As we al�
ready stated earlier there are additional gauge
neutral massless modes on the subspace T � U
and in N � � vacua they belong to Abelian vec�
tor multiplets	 Such states induce a logarithmic
singularity in the U �� gauge couplings and by su�
persymmetry also render the associated ��angles
ambiguous	 From eqs	 �
����� we learn that
h is directly related to the U �� gauge couplings
while fa encodes the gauge couplings of the non�
Abelian factors Ga	 As explained in the previous
section the fa are non�singular inside the funda�
mental domain	

In order to determine the transformation prop�
erties of h���T� U � under the modular group one
can use a general formalism developed in ref	 ����	
Here we just state the result that h��� has to be
a modular form of weight �� if it were nowhere
singular	 In the presence of singularities one has
to allow for integer ambiguities of the ��angles
which results in

h���T� U � � h���T� U � � *T� U �

icT � d��
���

for an SL��Z�T transformation	 For SL��Z�U
T and U are interchanged in eq	 ���	� * is an
arbitrary quadratic polynomial in the variables
�� iT� iU� TU � and parameterizes the most gen�
eral allowed ambiguities in the ��angles� * obeys

��T* � ��U* � � � ���

As we said� for * � � h��� is a modular form
of weight ������ with respect to SL��Z�T �
SL��Z�U but for non�zero * it has no good mod�
ular properties	 However� from eqs	 ���� ���� we

learn that instead ��Th
��� is a single valued mod�

ular form of weight ����� and similarly ��Uh
���

has weight ��� ��	
The singularities in the T� U moduli space arise

along the critical line T � U mod SL��Z��
where two additional massless gauge �elds ap�
pear and the U ��T � U ��U is enhanced to
SU �� � U ��	 Further enhancement appears at
T � U � �� which is the intersection of the two
critical lines T � U and T � �
U 	 In this case
one has � extra gauge bosons and an enhanced
gauge group SU ��� SU ��	 The intersection at
the critical point T � U � � � e��i��� gives rise
to � massless gauge bosons corresponding to the
gauge group SU 
�	 Altogether we have 

T � U  U ��T � U ��U � SU �� � U ��
T � U � � U ��T � U ��U � SU �� � SU ��
T � U � � U ��T � U ��U � SU 
�

The singularity of the prepotential near T � U
can be determined by purely �eld theoretic con�
siderations ����	 For the case at hand one �nds
����������

h���T � U � �
�

����
T � U �� lnT � U ��

� regular terms �
�

where the coe�cient �
���� is set by the SU �� ��

function	 The general derivation of eq	 �
� is
reviewed in detail in the lectures by W	 Lerche�
see also ����	� From eq	 �
� we learn that ��Th

���

and ��Uh
��� have a simple pole at T � U 	

As we already discussed in section �� in the
decompacti�cation limit T� U � �� the gauge
coupling cannot grow faster than a single power
of T or U and the exact same argument also ap�
plies for h���	 Since the moduli dependence of the
gauge coupling is related to the second derivative
of h we learn that �T�Uh���� ��Th

��� and ��Uh
���

cannot grow faster than T or U in the decompact�
i�cation limit	 Hence

��Th
��� � const� � ��Uh

��� � const� ���

for either T � � or U � �	 The properties
of h��� which we have assembled so far can be
combined in the Ansatz

��Th
��� �

X��U �Y�T �

jiT � � jiU �
� ���
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where X��U � and Y�T � are modular forms of
weight ����� and �� ��� respectively	 X��U �
and Y�T � cannot have any pole inside the mod�
ular domain while for large T� U they have to obey

U ��  X
���U�
j�iU� � const� �

T ��  Y��T �
j�iT � � const� � ���

From the theory of modular forms see ap�
pendix A� one infers that these properties
uniquely determine X�� � E�E�
�

�� and Y� �
E�� inserted into ��� yields

��Th
��� �

�

��

E�iT �E�iU �E�iU �

�jiT � � jiU �� ���iU �
� ���

where the coe�cient is determined by eq	 �
� or
rather the SU �� ��function	 The same analysis
repeated for ��Uh

��� reveals

��Uh
��� �

��

��

E�iU �E�iT �E�iT �

�jiT � � jiU �� ���iT �
� ���

The analysis just performed only determines
the third derivatives of h��� because these are
modular forms	 h��� itself has been calculated
in ref	 ���� by explicitly calculating the appro�
priate string loop diagram	�� An intriguing re�
lation with hyperbolic Ka%c�Moody algebras and
Borcherds denominator formula was found	 Un�
fortunately� a review of these exciting develop�
ments is beyond the scope of these lectures	

In addition to the transformation law of h
eq	 ���� the general formalism of ref	 ���� also
reveals that the N � � dilaton is no longer in�
variant at the quantum level	 Instead� under an
SL��Z�T transformation one �nds

S � S �
�

�
�T �U*� ic�U h��� � *�

�icT � d�
� const� ���

This somewhat surprising result can be under�
stood from the fact that in perturbative string
theory the relation between the dilaton and the
vector�tensor multiplet is �xed	 However� the du�
ality relation between the vector�tensor multiplet
and its dual vector multiplet containing S is not
�xed but su�ers from perturbative corrections in

�
See also refs� ����	
���

both �eld theory and string theory	 Nevertheless�
it is possible to de�ne an invariant dilaton by

Sinv � S��

�
�T�Uh

���� �

���
ln�jiT ��jiU �� ����

The last term is added such that Sinv is �nite
so that altogether Sinv is modular invariant and
�nite	 However� Sinv it is no longer an N � �
special coordinate	��

We are now ready to determine the one�loop
correction f ���	 As before we demand that the ef�
fective gauge couplings ��� remain invariant un�
der SL��Z�T � SL��Z�U 	 Using ��������
��
one �nds that this requires the transformation
property

faS� T� U � � faS� T� U �� ba
���

lnicT � d� ����

where fa is the entire function and not only the
one�loop contribution	 Using eqs	 ������� to�
gether with the tree level contribution �
� one
�nds again up to a constant�

faS� T� U � � Sinv � ba
���

ln���iT ���iU �� ���

or equivalently

f ���a �
�ba
���

ln���iT ���iU �� � Sinv � S�� �
�

To summarize� as for the N � � factoriz�
able orbifolds we managed to use the pertur�
bative quantum symmetries and the singularity
structure to determine the one�loop correction of
the gauge couplings	 For the U �� factors we
did not completely determine h��� but only its
third derivatives	 h��� itself can be computed us�
ing the formalism developed in ref	 ����	 Fur�
ther generalization to di�erent classes of N �
� string vacua can be found for example in
refs	 ��������������������������	

Up to now we mostly concentrated on the su�
persymmetric gauge couplings because of their
special analytic properties	 In addition� there is a
class of higher derivative curvature terms whose
couplings gn are also determined by holomorphic

�	In N � 	 it is always possible to keep the dilaton su�
per�eld chiral and modular invariant by an appropriate
holomorphic �eld rede�nition�



��

functions FnS�M i� of the dilaton and the moduli
������������	�� The properties of these couplings
are the subject of the lectures by K	S	 Narain	�
More speci�cally� terms of the type

L � g��n R�G�n�� � � � � � ���

where R is the Riemann tensor and G the �eld
strength of the graviphoton are governed by cou�
plings gn that are almost harmonic

g��n � ReFnS�M i� � An � ���

At the tree level An � � holds and thus g��n is
a harmonic function	 However exactly as for the
gauge coupling the g��n cease to be harmonic as
soon as quantum corrections are included� or in
words a holomorphic anomaly An � � is induced
����	 The particular form of the anomaly is not
of immediate concern here but can be found for
example in refs	 ����������� and K	S	 Narain�s lec�
tures	 The same argument we gave earlier for
fa and the prepotential F implies that also the
couplings FnS�M i� can be expanded in powers
of the dilaton and they have to respect the PQ�
symmetry	 Thus� one has analogously

Fn � F ���
n S�M i� � F ���

n M i�

� F �NP �
n e���

�S �M i� � ���

where F ���
n is the tree level term� F ���

n the one�

loop correction and F �NP �
n the non�perturbative

contributions	 Furthermore� the continuous PQ�
symmetry �
� only allows a dilaton dependence
for n � � and one �nds

F ���
� � ��S� F ���

n�� � const� � ���

where for F ���
� a convenient normalization has

been chosen	 For speci�c string vacua� some
of the Fn have been computed in refs	 ��������
��������	

���� Left�Right Symmetric Type II Vacua

So far we focussed on heterotic N � � vacua
and in particular on the moduli space of their vec�
tor multiplets	 Now we shift our attention to type

��The prepotential F as well as these higher deriva�
tive couplings Fn arise from chiral integrals in N � �
superspace�

II vacua but with the additional input that there
is a symmetry between the left and right moving
CFT� this assumption considerably simpli�es the
analysis	�� In d � � such vacua have a universal
sector with cst � �cst � � that contains the gravi�
tational multiplet and the dilaton multiplet which
we already discussed in section 
	�	 and table �	
The internal sector has cint � �cint � � and if it is
left�right symmetric it also has �� �� global world�
sheet supersymmetry	 This corresponds to a com�
pacti�cation of the ten�dimensional type II string
on a Calabi�Yau threefold	 Calabi�Yau mani�
folds are reviewed in the lectures by R	 Plesser�
see also appendix B and for example refs	 �������	�

The massless spectrum of a type II vacuum
compacti�ed on a Calabi�Yau threefold Y is char�
acterized by the Hodge numbers h��� and h���
appendix B�	 For type IIA one �nds ���������
h��� � h��� complex massless scalar �elds in the
NS � NS sector and h��� Abelian vectors to�
gether with h��� complex scalars in the R�R sec�
tor	 These states together with their fermionic
partners� combine into h��� vector multiplets and
h��� hypermultiplets	 The total number of multi�
plets therefore is nV � h���� nH � h��� � � where
the extra hypermultiplet counts the dilaton mul�
tiplet of the universal sector	 For type IIB vacua
one also has h��� � h��� complex massless scalar
�elds in the NS�NS sector but now h��� Abelian
vectors together with h��� complex scalars in the
R � R sector ���������	 Hence� nV � h��� and
nH � h��� � � holds for the type IIB theory	
The gauge group is always Abelian and given by
h��� � �� U �� factors in type IIA and h��� � ��
U �� factors in type IIB the extra U �� is the
graviphoton in the universal sector�	 We summa�
rize the spectrum of type II vacua in table �	

As we see the role of h��� and h��� is ex�
actly interchanged between type IIA and type
IIB	 Therefore� compacti�cation of type IIA on a
Calabi�Yau threefold Y is equivalent to compact�
i�cation of type IIB on the mirror Calabi�Yau #Y
see appendix B�	 This is an example of a pertur�
bative equivalence of two entire classes of string
vacua	 The recent developments about string du�

��More general type II vacua are discussed for example in
refs� �		��		���



�


IIA IIB
nH h��� � � h��� � �
nV h��� h���
G U ��h���
� U ��h���
�

Table �
Massless spectrum in type II vacua	

alities show that many more of such equivalences
do exist but they often only hold when the non�
perturbative corrections are also taken into ac�
count	 See lectures by S	 Kachru� R	 Plesser and
J	 Schwarz	� We brie�y return to this aspect in
the next lecture	

We already discussed the geometry of the mod�
uli space of N � � supergravity in section 
	�	
For type II vacua there is a special feature at
the string tree level	 The h��� and h��� com�
plex scalars by themselves each form a special
K�ahler manifold	 This is an immediate conse�
quence of table � in that they can both can be
members of vector multiplets and thus their ge�
ometry must be special K�ahler	 However� when
they sit in hypermultiplets they pair up with ad�
ditional scalars from the R�R sector and this ren�
ders the combined geometry quaternionic	 Thus
it cannot be an arbitrary quaternionic geometry
but must originate from a special K�ahler geom�
etry	 This fact has been termed the c�map in
ref	 ����� and it implies that also this �special�
quaternionic geometry is characterized by a holo�
morphic prepotential	��

However� the special quaternionic geometry
only appears at the string tree level	 This is due
to the fact that in type II vacua the dilaton resides
in a hypermultiplet and thus there is an analo�
gous �type II� version of the non�renormalization
theorem i� of section 
	�	�	 It states that the
moduli space of the vector multiplets is exact
and not corrected either perturbatively or non�
perturbatively while MH does receive quantum
corrections	 In other words� for type II vacua one

��The special quaternionic geometry is also called �dual
quaternionic��

has��

MV � M���
V � ���

The quaternionic geometry of both type II and
heterotic vacua has not been studied in much
detail�� and most investigations focussed on the
special K�ahler geometry of the vector multiplets	
For Calabi�Yau threefolds Y the prepotential F
enjoys some additional properties	 Of particu�
lar interest is the expansion around geometrically
large Calabi�Yau manifolds which is also referred
to as the large radius or rather large volume limit	
In this limit the position in MV is given by the
complexi�ed K�ahler form B�iJ which can be de�
composed into a basis e� � H���Y�Z� according
to

B � iJ �

h���X
�	�

B � iJ��e� � t�e� � ���

where B� are the moduli corresponding to the
antisymmetric tensor and J� the moduli which
are associated to the deformation of the met�
ric� t� are the corresponding complex parameters
� � �� � � � � h���� which are also N � � special
coordinates	 In the large radius limit the mod�
uli B� are periodic variables and thus enjoy a
discrete �PQ�like� symmetry	 More precisely� one
�nds that the low energy e�ective theory is in�
variant under B� � B� � � or equivalently

t� � t� � � � ����

In the large volume limit the prepotential obeys

F � � i

�
d�	
 t

�t	t


� worldsheet instantons � ����

where d�	
 are the classical intersection numbers
of the �� �� forms de�ned by

d�	
  �

Z
Y

e� � e	 � e
 � ����

Using mirror symmetry ��������� the entire pre�
potential F can be computed for string vacua

��As in the heterotic case� this non�renormalization theo�
rem also holds non�perturbatively�
��See� however� refs� �		��	�	��������



��

with small number of vector multiplets see for
example ������
���������	 In the limit t� � �
the contributions from worldsheet instantons van�
ish	

The higher derivative couplings Fn which were
de�ned in eqs	 ������� and which similarly only
depend on the vector multiplets� also obey the
type II non�renormalization theorem	 For these
couplings one �nds the additional curiosity that
they are proportional to the genus n topologi�
cal partition functions of a twisted Calabi�Yau
��model ����	 That is� they receive a contribu�
tion only at a �xed string loop order and satisfy
certain recursion relations expressing the holo�
morphic anomaly of a genus n partition func�
tion to the partition function of lower genus ����	
The properties of these couplings both in type II
and the heterotic string are reviewed in detail in
K	S	 Narain�s lectures	 In the large radius limit
they obey

F� � � i

��

X
�

t�
Z
Y

e� � c�Y �

� worldsheet instantons ��
�

Fn�� � const� � worldsheet instantons

where c� is the second Chern class of the Calabi�
Yau manifold	

�� Heterotic�Type II Duality

So far we exclusively focussed on perturbative
properties of string vacua although we noticed a
number of non�renormalization theorems which
also hold non�perturbatively	 During the past two
years it has become clear that there are much
more intricate relations between classes of� dif�
ferent string vacua than had hitherto been imag�
ined	 In particular� it is believed that string vacua
which look rather di�erent in string perturbation
theory can yet be equivalent when all perturba�
tive and non�perturbative� quantum corrections
are taken into account	 By now there is whole
web of relations among perturbatively distinct
string vacua	 These relations strongly depend
on the amount of space�time supersymmetry and
the number of space�time dimensions	 This web
of interrelations has been discussed in detail in
the lectures of J	 Schwarz	 Here we focus on one

particular correspondence namely the heterotic �
type II duality in d � � with N � � supersym�
metry	 This duality is also the subject of the lec�
tures of S	 Kachru and in this closing section we
only brie�y outline how the perturbative proper�
ties found earlier have been used to support the
conjecture of this particular duality	

The conjecture states that N � � heterotic
vacua are quantum equivalent to N � � type IIA
vacua and vice versa �����
��	�� On face value
this conjecture seems unlikely to hold	 First of all�
for heterotic vacua the rank of the gauge group
is bounded by the central charge to be less than
�� eq	 ���� while in type II vacua the rank can
certainly be much larger since both Hodge num�
bers easily exceed �� c�f� table ��	 Furthermore�
we saw that the heterotic vacua have large non�
Abelian gauge groups at special points in their
moduli space while type II A vacua only have an
Abelian gauge group	 However� the analysis of
Seiberg and Witten ���� taught us that asymptot�
ically free non�Abelian gauge groups generically
do not survive non�perturbatively but instead are
broken to their Abelian subgroups	��

It is not completely clear yet that the heterotic�
type II duality holds for the whole space of het�
erotic and type II vacua or only on a well de�ned�
subspace	 So far speci�c examples of string vacua
or classes of string vacua have been proposed to
be non�perturbatively equivalent	 For such vacua
� which are also called a �dual pair� � the low en�
ergy e�ective theories have to be identical when
all quantum corrections are taken into account	
In particular their moduli spaces have to coin�
cide� i	e	

Mhet
V � MIIA

V �

Mhet
H � MIIA

H � ����

Since the prepotential depends on the vector mul�

��Since there is already the perturbative relation that type
IIA vacua compacti�ed on a Calabi�Yau manifold Y are
equivalent to type IIB vacua compacti�ed on the mirror �Y
one really has a triality heterotic � type IIA � type IIB
where the �rst equivalence only holds non�perturbatively
while the second is a perturbative equivalence�
��Conversely one has to show that in a particular limit cor�
responding to the heterotic weak coupling limit a type II
vacuum can have a non�Abelian enhancement of its gauge
group �	���	����



��

tiplets in both theories the equality of the moduli
spaces amounts to the equality of the prepotential

Fhet � FIIA � ����

This should not only be true for the prepotential
but also hold for the higher derivative couplings
Fn	 See K	S	 Narain�s lectures	�

The proof of this conjecture is problematic
since the prepotential on the heterotic side Fhet is
only known perturbatively� that is in a weak cou�
pling expansion	 For a heterotic vacuum weak
coupling corresponds to large S and hence there
has to be a type II modulus in a vector multiplet
which is identi�ed with the heterotic dilaton	 It is
immediately clear that this type II modulus can�
not be the type II dilaton which always comes
in a hypermultiplet	 Instead it has to be one of
the h��� K�ahler deformations of the Calabi�Yau
threefold in the large radius limit	�� Thus one is
interested in identifying this dual type II partner
ts of the heterotic dilaton S	 From the discrete
PQ�symmetries �������� one immediately infers
that the relation must be

ts � ��iS � ����

Once ts has been identi�ed one can expand the
type IIA prepotential FIIA in a ts perturbation
expansion around large ts� i	e	

FII � FIIts� ti� �FIIti� �FIIe���its � ti�����

where we use the notation t� � ts� ti�	 This
expansion can be compared to the perturbative
expansion of the heterotic prepotential	 In par�
ticular one has to �nd

FIIts� ti��FII ti� � F ���
hetS� �

I��F ���
het�

I�����

up to an overall normalization which is conven�
tion and has to be adjusted appropriately�	 Let
us reiterate that the left hand side of this equa�
tion is determined at the tree level whereas the
right hand side sums perturbative contributions
at the tree level and at one�loop	

Eq	 ���� has been veri�ed for number of ex�
plicit string vacua	 Typically� these are vacua

��This immediately tells us that the appearance of the
vector�tensor multiplet must be an artifact of heterotic
perturbation theory� Similarly� the type II tensormultiplet
is an artifact of type II perturbation theory�

with a small number of vector multiplets or low
h��� where the perturbative prepotential is known
on both sides	 These examples can be found
in S	 Kachru�s lectures or in refs	 ��������
��
�
���������	

Eq	 ���� checks the spectrum of the two vacua
and their quantum symmetries	 However� it turns
out that this does not uniquely identify a dual
pair	 Instead� there can be an entire class of
vacua where each member satis�es eq	 ���� but
nevertheless their non�perturbative prepotentials
F �NP � are di�erent ����������
���
��	 For these
cases additional� non�perturbative information is
necessary to uniquely identify a dual pair	 Un�
fortunately we cannot go into any further detail
about such examples	

It has also been shown that on the heterotic
side one discovers the Seiberg�Witten theory
in the �eld theory limit Mstr � � ��������
��������	 This is reviewed in the lectures by
W	 Lerche	� Finally� the matching of the higher
derivative gravitational couplings can be found in
refs	 ������������ and K	S	 Narain�s lectures	

Apart from the speci�c checks we just men�
tioned it is of interest to determine some more
generic properties of the heterotic�type II dual�
ity	 That is� one would like to study in general
the relation between a dual pair or a class of
dual pairs� as well as the space of string vacua for
which this conjectured duality holds	 From all our
previous discussion it is clear that generic prop�
erties should involve the heterotic dilaton since
it couples universally for all heterotic vacua	 In�
deed� from eqs	 ������������� one infers that
the Calabi�Yau intersection numbers of a dual
type IIA vacuum have to obey

dsss � � � dssi � � �i � ����

and

signdsij� � ���� � � � ��� � sign�ij� � ����

In addition� eqs	 ���� ��
� imply
Z
eS � c�Y � � �� � ����

These conditions are not unknown in the math�
ematical literature	 They are the statement that
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the Calabi�Yau manifold has to be a K
��bration
��������	 That is� the Calabi�Yau manifold is ��
bred over a P� base with �bres that are K
 man�
ifolds	 The size of the P� is parameterized by the
modulus ts which is the type II dual of the het�
erotic dilaton	�� Over a �nite number of points
on the base� the �bre can degenerate to something
other than K
 and such �bres are called singular	
The other K�ahler moduli ti are either moduli of
the K
 �bre or of the singular �bres	 In general
one �nds

signdsij� � ���� � � � ��� �� � � � � �� � ����

where the non�vanishing entries correspond to
moduli from generic K
 �bres while the zeros
arise from singular �bres	 Since a K
 has at most
�� moduli the non�vanishing entries have to be
less than ��	�� Comparing eqs	 ���� and ����
one concludes that type II Calabi�Yau compacti�
�cation in the large radius limit can be the dual
of perturbative heterotic vacua if they are K
�
�bration with all moduli corresponding to generic
�bres	 This class of type II vacua is automatically
consistent with the heterotic bound on the rank
of the gauge group ���	

Of course� one immediately asks the question
what can be the role of all the other type II
vacua	 From eqs	 ��� and ���� we learn that the
�� �� moduli of singular �bres have no counter�
part in perturbative heterotic vacua	 If there were
heterotic moduli with such couplings they would
not couple properly to the heterotic� dilaton
and furthermore violate the bound ���	 How�
ever� Witten observed that heterotic string vacua
in six space�time dimensions have singularities
when gauge instantons shrink to zero size ����	
He argued that these singularities are caused
by a non�perturbative enhancement of the gauge
group which opens up at the point of the zero�
size instanton	 He also showed that these non�
perturbative gauge �elds do not share the canon�
ical coupling to the dilaton	 In fact� upon com�
pacti�cation to d � � one can show that the

�
For a more detailed discussion about K���brations see
for example ����		��	���	����
�	There is a possible subtlety here since this counts only
geometrical K� moduli� However� it is conceivable that
quantum e�ects raise this number up to �� �	����

scalars of these non�perturbative vector multi�
plets couple precisely like type II moduli corre�
sponding to singular �bres ������
��	

This leads to the following general picture of
the heterotic�type II duality	 The space of left�

heterotic vacua type IIA

sym�

LR LR

asym�

III

I II

Figure �	 Heterotic � type II duality	

right symmetric vacua can be partioned into three
di�erent regions �g	 ��	

I K
��bration with moduli only from generic
�bres	 All such vacua should be non�
perturbatively equivalent to perturbative
heterotic vacua	

II K
��bration with moduli also from singu�
lar �bres	 For such vacua a dual type II
candidate for the heterotic dilaton does ex�
ist but some of the other moduli do not cou�
ple perturbatively� they have to arise from
vector multiplets which cannot be seen in
heterotic perturbation theory	

III Calabi�Yau manifolds which are not K
�
�bration	 Such vacua have no dual candi�
date for the heterotic dilaton and thus they
cannot be the dual of a weakly coupled het�
erotic vacuum	 However� they could well



��

be the dual of heterotic vacua which have
no weak coupling limit with a dilaton that
is frozen at strong coupling	 In that sense
this might be the most interesting class of
type II vacua	

From refs	 �������� we learned that transi�
tions among string vacua can occur once non�
perturbative states are taken into the e�ective ac�
tion near singularities of the moduli space	 In the
same spirit it is particularly interesting to study
transitions between vacua that cross any of the
boundaries in �g	 �	 Examples of such transitions
have already been observed in refs	 ��������� and
are reviewed in the lectures of R	 Plesser	
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A� The modular group SL��Z�

The modular group SL��Z� ���������
� enters
string theory in various places	 First of all� it is
the group of reparametrizations of a genus one
worldsheet which are not continuously connected
to the identity	 In the de�nition of the physi�
cal one�loop scattering amplitudes this additional
gauge freedom has to be taken care of	 Topolog�
ically a one�loop string amplitude is a torus and
the modular group acts on the complex struc�
ture of this torus	 However� tori in space�time
also enter in string compacti�cations as for ex�
ample in the construction of orbifold vacua	 As a
consequence the modular group also appears as a
quantum� symmetry of speci�c space�time e�ec�
tive theories	

The modular group is de�ned by the following
transformation on the complex modulus T

T � aT � ib

icT � d
� ad� bc � � � ��
�

where a� b� c� d � Z	�� It has two generators S� T
which act as

T  T � T � i

S  T � ��
T ����

The transformation ��
� maps the ReT � �
region in a rather complicated way onto itself	
However� one can de�ne a fundamental region by
the requirement that every point of the ReT � �
complex plane is mapped into this region in a
unique way	 One conventionally chooses 

+ � f��

�
	 ImT 	 �

�
�ReT � �� jT j� � �g ����

as the fundamental domain �gure ��	 No two
distinct points in + are equal under a modular
transformation	 There are two �xed points of the
map ��
� on this fundamental domain� namely

T � � and T � � � e
i�
� 	

ReT

ImT

�

i
�

Figure �	 Fundamental region + of the modular
group	

A modular form FrT � of weight r is de�ned to
be holomorphic and to obey the transformation
law

FrT � � icT � d�rFrT � � ����

��It is common to choose a di�erent convention for T
where real and imaginary part are exchanged� More pre�
cisely� for � � iT one has � � a��b

c��d
�
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One can show that there are no modular forms of
weight � and � while at weight � and � one has
the Eisenstein functions

E�q� � � � ���
�X
n	�

n�qn

�� qn

� � � ���q� ����q� � � � � ����

E�q� � �� ���
�X
n	�

n�qn

�� qn

� �� ���q� ���
�q� � � � �

where q � e���T 	 Both function have no pole
including T � �� on the entire fundamental do�
main� E� has exactly one simple zero at T � �
while E� has one simple zero at T � �	 One can
construct modular forms of arbitrary even weight
from products of these two Eisenstein functions	

A modular form which vanishes at T � � is
called a cusp form	 There is no cusp form of
weight r � �� and for r � �� there is the unique
cusp form ��� where

�q� � q
�
��

�Y
n	�

�� qn� ����

is the Dedekind ��function	 � does not vanish at
� or �	�

One can also construct a modular invariant
function but it necessarily has a pole somewhere
on the fundamental domain	 The j�function de�
�ned by

jq� � E�
�

���
�

E�
�

���
� ����

� q�� � ��� � ������q� � � � ����

has a simple pole at T � � and a triple zero
at T � �	 This function maps the fundamental
domain of SL��Z� onto the complex plane	

In general the derivative of a modular form
is not a modular form since it does not satisfy
eq	 ����	 An exception is the derivative �nTF��n
which transforms according to

�nTF��n � icT � d��n
���nTF��n ����

and thus is a modular form of weight n � �	

B� Calabi�Yau manifolds

In this appendix we brie�y recall a few facts
about Calabi�Yau manifolds which we frequently
use in the main text	 For a more extensive review
see the lectures by R	 Plesser or for example ���
����	�

A Calabi�Yau manifold Y is a Ricci��at K�ahler
manifold of vanishing �rst Chern�class	 Its holon�
omy group is SU n� where n is the complex di�
mension of Y 	 The simplest Calabi�Yau mani�
folds are tori of complex dimension �	 For n � �
all Calabi�Yau manifolds are topologically equiv�
alent to the K
 surface Kummers third surface��
while for n � 
 one �nds many topologically dis�
tinct Calabi�Yau threefolds	 Such manifolds are
of interest in string theory since they break some
of the supersymmetries when a ten�dimensional
string theory is compacti�ed on Y 	 See ta�
ble ���	�

The massless modes of a string vacuum are di�
rectly related to the zero modes of the Laplace
operator on Y 	 These zero modes are the non�
trivial di�erential k�forms on Y and they are el�
ements of the cohomology groups HkY �	 On a
compact K�ahler manifold one can decompose any
k�form into a p� q��form with p holomorphic and
q antiholomorphic di�erentials	 Analogously� the
associated cohomology groups decompose accord�
ing to

HkY � � 
p
q	k Hp�qY �� ����

The dimension of Hp�qY � is called the Hodge
number hp�q hp�q � dimHp�q�� it is symmetric
under the exchange of p and q� i	e	 hp�q � hq�p�
and Poincar,e duality identi�es hp�q � hn�p�n�q	
Finally� the Euler number is given by

� �
X
p�q

���p
q hp�q � ����

For a K
 surface one �nds for the indepen�
dent Hodge numbers h��� � h��� � h��� � ��
h��� � h��� � � and h��� � ��� hence eq	 ����
implies �K
� � ��	 For a Calabi�Yau three�
fold Y the independent Hodge numbers obey
h��� � h��� � �� h��� � h��� � � while h���
and h��� are arbitrary	 Thus eq	 ���� implies
�Y � � �h��� � h����	 h��� is the number of



��

K�ahler moduli� which are nontrivial deformations
of the metric and the antisymmetric tensor� h���
is the number of moduli� which are nontrivial de�
formations of the complex structure	 The moduli
space is locally a direct product of the K�ahler
moduli space and the complex structure moduli
space

M � Mh��� �Mh��� � ��
�

It is believed that most Calabi�Yau three�
folds if not all� have a mirror partner �����
����	 That is� for a given Calabi�Yau threefold
Y with given h���Y � and h���Y � there exists a

mirror manifold #Y with h��� #Y � � h���Y � and

h��� #Y � � h���Y �	 This implies in particular

�Y � � �� #Y �	�
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