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Compactifications on generalized geometries
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We discuss compactifications on generalized geometries and their role as mirror configurations of compact-
ifications with background fluxes.
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1 Introduction

Perturbative string theory is a theory where the fundamental building blocks are not point-like objects
but one-dimensional extended strings. Unfortunately our current understanding of string theory is rather
incomplete and necessitates, for example, the specification of a space-time background the strings are
moving in. In order to make contact with Particle Physics one chooses a space-time background of the form

M4 × Y6 , (1)

where M4 is a four-dimensional (d = 4) infinitely extended Minkowski space while Y6 is a compact
Riemannian manifold. It turns out that the geometrical and topological properties of Y6 are directly related
to physical quantities in an effective description in the physical space-time M4 [1, 2]. For example, the
amount of supersymmetry is related to the number of globally defined spinors on Y6. This notion in turn
leads to a number of further geometrical properties of Y6 all of which turn out to be related to properties of
supersymmetric field theories. This close relationship between geometry and supersymmetry has led to a
fruitful interplay for many years.

Currently some of the most promising scenarios for new physics in the TeV region are N = 1 su-
persymmetric extension of the Standard Model. Compatibility with the experimental data requires the
supersymmetry to appear in its spontaneously broken phase. In string theory this is traditionally arranged
by choosing Y6 to be a Calabi-Yau threefold and then employ non-perturbative effects to spontaneously
break the supersymmetry.

In recent years an alternative setup has been proposed where the Standard Model or its generalization
lives on a stack of space-time filling D-branes in a type II bulk [2–5]. Such ‘Brane World Scenarios’ in
turn require to replace the product space-time (1) by a warped product and Y6 by an appropriate orientifold
thereof [5]. The N = 1 supersymmetry can then be spontaneously broken either by additionally turning on
background fluxes or choosing a manifold Y6 with torsion.

In this talk we do not review the construction and features of Brane World Scenarios and refer the
reader to [5] for a recent review. Here we focus on one particular aspect of these scenarios where Y6 is not
a Calabi-Yau manifold but instead a ‘manifold with SU(3) structure’. These manifolds admit a globally
defined spinor which however is not necessarily covariantly constant as it is for Calabi-Yau manifolds. A
particular subclass of these manifolds – so called ‘half-flat manifolds’ – have been proposed as the mirror
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of Calabi-Yau compactification with non-trivial background fluxes turned on [6]. The purpose of this talk
is to review the issue of mirror symmetry in such compactification and the computation of the low energy
effective action following [6,7].

In order to set the stage we start by briefly recalling Calabi-Yau compactifications of type II string
theories in Sect. 2. In Sect. 3 we consider turning on non-trivial background fluxes and discuss the issue of
mirror symmetry. In Sect. 4 we discuss compactifications on manifolds with SU(3) structure and revisit the
question of mirror symmetry. In particular we outline the computation of the resulting low energy effective
theory. We conclude in Sect. 5.

2 Calabi-Yau compactification of type II string theory

In order to set the stage let us start by recalling the massless spectrum of type II string theories in d = 10 [1,2].
This string theory comes in two versions called type IIA and type IIB. Both theories share the same Neveu-
Schwarz (NS) sector which contains the metric GMN , an antisymmetric tensor B2 with a three-form field
strength H3 = dB2 and the dilaton Φ. They differ in the Ramond-Ramond (RR) sector where type IIA
has a one-form C1 with a two-form field strength F2 = dC1 and a three-form C3 with a four-form field
strength F4 = dC3. Type IIB features instead a second scalar l, a second two-form C2 with a three-form
field strength F3 = dC2 and a four-form C4 with a five-form field strength F ∗

5 = dC4 which is self-dual.
The fermions arise in the Neveu-Schwarz-Ramond sector (NSR) where one finds two gravitinos Ψ1,2

M and
two dilatinos λ1,2. In type IIA they have opposite chirality while in IIB they have the same chirality. Both
theories have 32 real supercharges corresponding to N = 2 in d = 10 or N = 8 in d = 4. We summarize
the d = 10 massless spectrum in Table 1.

Table 1 Massless type II spectrum in d = 10.

IIA IIB

NS: GMN , H3 = dB2, Φ
RR: F2 = dC1, F4 = dC3 l, F3 = dC2, F ∗

5 = dC4

NSR: Ψ1,2
M , λ1,2 Ψ1,2

M , λ1,2

The next step is to consider type II strings moving in a background (1) with Y6 being a Calabi-Yau
threefold. Such background break 3/4 of the supercharges and thus lead toN = 2 supersymmetry in d = 4.
Let us review a few facts about this class of compactifications.

2.1 Calabi-Yau threefolds

When one considers strings propagating in the space-time background (1) the ten-dimensional Lorentz
group Spin(1, 9) decomposes into

Spin(1, 9) → Spin(1, 3) × Spin(6) . (2)

There is an associated decomposition of the spinor representation 16 ∈ Spin(1, 9) according to 16 →
(2,4)⊕ (2̄, 4̄). In order to achieve the minimal amount of supersymmetry one chooses Y6 to have a reduced
structure group SU(3) ⊂ Spin(6). This implies a further decomposition of the 4 ∈ Spin(6) under the
SU(3) as 4 → 3 ⊕ 1. Manifolds with a reduced structure group SU(3) admit an invariant spinor η (the
singlet 1) which is nowhere vanishing and globally well defined. Such manifolds are termed ‘manifolds with
SU(3) structure’ in the mathematical literature [8–11]. In Sect. 4 we will learn more about these manifolds
but for now we impose the additional constraint that this spinor η is also covariantly constant with respect
to the Levi-Civita connection. Geometrically this says that the holonomy of Y6 is SU(3).
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From η one can build two globally defined tensors: a two-form J and a complex three-form Ω

η†
±γ

mnη± = ± i

2
Jmn , η†

−γ
mnpη+ =

i

2
Ωmnp , η†

+γ
mnpη− =

i

2
Ω̄mnp , (3)

where η± denotes the two chiralities of the spinor. They are normalized as (η†
±η± = 1

2 ) and γm1...mp =
γ[m1γm2 . . . γmp] are anti-symmetrized products of six-dimensional γ-matrices. Using appropriate Fierz
identities one shows that with this normalization for the spinors J and Ω are not independent but satisfy

J ∧ J ∧ J =
3i
4

Ω ∧ Ω̄ , J ∧ Ω = 0 . (4)

Furthermore, lowering one index of the two-form J with the metric results in a complex structure J since
it satisfies J 2 = −1 and the associated Nijenhuis-tensor vanishes. For a fixed metric and fixed complex
structure J is a closed (1, 1)-form while Ω is a closed (3, 0)-form. Thus Y6 is a Kähler manifold with
holonomy SU(3) or in other words it is a Calabi-Yau manifold [1] which we denote as Y .

It turns out that the massless modes of the compactified d = 4 theory are in one-to-one correspondence
with the harmonic forms onY which in turn are in one-to-one correspondence with elements of the Dolbeault
cohomology groups H(p,q)(Y ) [1]. Here (p, q) denotes the number of holomorphic and anti-holomorphic
differentials of the harmonic forms. The dimensions ofH(p,q)(Y ) are called Hodge numbers and are denoted
as hp,q = dimHp,q(Y ). They are conventionally arranged in a Hodge diamond which on a Calabi-Yau
threefold simplifies as follows

h(0,0)

h(1,0) h(0,1)

h(2,0) h(1,1) h(0,2)

h(3,0) h(2,1) h(1,2) h(0,3)

h(3,1) h(2,2) h(1,3)

h(3,2) h(2,3)

h(3,3)

=

1
0 0

0 h(1,1) 0
1 h(1,2) h(1,2) 1

0 h(1,1) 0
0 0

1

. (5)

Or in other words the h(p,q) satisfy

h(1,0) = h(0,1) = h(2,0) = h(0,2) = h(3,1) = h(1,3) = h(3,2) = h(2,3) = 0 , (6)

h(0,0) = h(3,0) = h(0,3) = h(3,3) = 1 , h(2,1) = h(1,2) , h(1,1) = h(2,2) .

We see that h(1,1) and h(1,2) are the only non-trivial, i.e. arbitrary Hodge numbers on a Calabi-Yau threefold.

2.2 The moduli space of Calabi-Yau threefolds

Deformations of the Calabi-Yau metric which preserve the Calabi-Yau condition mathematically define
moduli parameters of the metric. After a Kaluza-Klein reduction they correspond to gauge neutral scalar
fields in the low energy effective action which are flat direction of the effective potential. It turns out that for
Calabi-Yau threefolds these moduli are in one-to-one correspondence with the harmonic (1, 1)- and (1, 2)-
forms [1]. The (1, 1)-forms correspond to deformations of the complexified Kähler-form Jc = B+iJ where
B is the NS two-form of type II string theories. Choosing a basis of harmonic (1, 1)-forms ωa ∈ H(1,1)(Y )
Jc can be expanded as

Jc = J + iB = ta ωa , a = 1, . . . , h(1,1) , (7)

where ta are the complex moduli parameters.
The harmonic (1, 2)-forms correspond to deformations of the complex structure or equivalently defor-

mations of the three-form Ω. It is convenient to choose a real symplectic basis of harmonic three-forms
(αK , β

L) ∈ H3(Y ) which is independent of the complex structure and obeys∫
Y

αK ∧ βL = δL
K ,

∫
Y

αK ∧ αL = 0 =
∫

Y

βK ∧ βL , K, L = 0, . . . , h(1,2) . (8)
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In terms of this basis Ω can be expanded as

Ω(z) = ZK(z)αK − FΩ
L (z)βL , (9)

where ZK(z) and FΩ
L (z) are holomorphic functions of the h(1,2) complex moduli zk. Furthermore

FΩ
L =

∂Fcs

∂ZL
, (10)

where the holomorphic prepotential FΩ is a homogeneous function of ZL of degree two. Therefore one
can choose ‘special’ coordinates where

FΩ = (Z0)2 fΩ(zk) , zk =
Zk

Z0 , (11)

with fΩ(zk) being an arbitrary holomorphic function of the complex structure deformations zk. Ω is only
defined up to complex rescalings which can be used to choose Z0 = 1.

The ta and zk can be viewed as the coordinates of what is called the geometrical moduli space M of the
Calabi-Yau manifolds [12,13]. It is locally is a direct product

M = Mh(1,2)

Ω × Mh(1,1)

J , (12)

where Mh(1,2)

Ω is the h(1,2)-dimensional component spanned by the complex structure deformations zk

while Mh(1,1)

J is the h(1,1)-dimensional component spanned by the Kähler deformations ta. The metric on

Mh(1,2)

Ω is a special Kähler metric with a Kähler potential given by [13]

gkl̄ = ∂zk∂z̄l̄ KΩ , KΩ = − ln
[

− i

∫
Y

Ω ∧ Ω̄
]

= − ln i
[
Z̄KFΩ

K − ZKF̄Ω
K

]
. (13)

Manifolds with a Kähler metric whose Kähler potential is in this way entirely determined by a holomorphic
prepotential F are termed special Kähler manifolds [14–17].

Mh(1,1)

J spanned by the coordinates ta also is a special Kähler manifold with a Kähler potential and
prepotential fJ(t) given by [12]

KJ = − ln
∫

Y

J ∧ J ∧ J , fJ(t) = Kabct
atbtc , (14)

where Kabc =
∫
ωa ∧ ωb ∧ ωc are topological intersection numbers.

The fact that fJ(t) is a cubic polynomial only holds in the large volume limit. In general world-sheet
instanton effects correct the prepotential by terms of the form O(e−t). These terms can be computed using
mirror symmetry, a property of Calabi-Yau manifolds we turn to now.

2.3 Mirror symmetry

The status of mirror symmetry is somewhat murky [18]. Originally it was conjectured that for every Calabi-
Yau Y there exists a mirror manifold Ỹ with reversed Hodge numbers, i.e.

h1,1(Y ) = h1,2(Ỹ ) , h1,2(Y ) = h1,1(Ỹ ) . (15)

In terms of the Hodge diamond (5) this corresponds to a reflection along the diagonal or in other words the
third cohomology H(3) = H(3,0) ⊕H(2,1) ⊕H(1,2) ⊕H(0,3) is interchanged with the even cohomologies
H(even) = H(0,0) ⊕H(1,1) ⊕H(1,2) ⊕H(3,3).
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Furthermore, the respective (complexified) moduli spaces given in (12) are conjectured to be identical
for a mirror pair of Calabi-Yau manifolds

Mh(1,2)

Ω (Y ) ≡ Mh(1,1)

J (Ỹ ) , Mh(1,1)

J (Y ) ≡ Mh(1,2)

Ω (Ỹ ) , (16)

or equivalently

fΩ(Y ) ≡ fJ(Ỹ ) , fJ(Y ) ≡ fΩ(Ỹ ) . (17)

Mirror symmetry has been rigorously established on a subspace of Calabi-Yau manifolds [19] but has
not been proven in general. In fact so called rigid Calabi-Yau manifolds which have h(1,2) = 0 cannot have
a Calabi-Yau mirror since the Kähler-form J always exists on Y and thus h(1,1) > 0 always holds. The
believe is that one has to enlarge the space of manifolds mirror symmetry acts on in order to fully establish
the symmetry [20].

Even though mirror symmetry is not yet proven it has been an extremely useful concept in order to
compute the holomorphic prepotential of the effective action. For example the instanton corrections to the
cubic prepotential fJ of the Kähler moduli (14) have been determined using mirror symmetry [21].

In type II string theory mirror symmetry manifests itself by the equivalence of the two different type II
string theories in mirror symmetric background or in other words the following equivalence holds

IIA in background M4 × Y ≡ IIB in background M4 × Ỹ . (18)

Therefore one can focus the attention on one of the two string theories and infer couplings of the other
one by mirror symmetry. However, depending on the precise question it might be easier to perform the
computation either in type IIA or in type IIB.

2.4 The low energy effective action

For both type IIA and type IIB the low energy effective action is a N = 2 supergravity coupling the
gravitational multiplet to vector-, tensor- and hypermultiplets. For massless tensor fields (which is the case
in Calabi-Yau compactifications) one can dualize the tensor to a scalar and express the action in terms of
vector- and hypermultiplets only. An N = 2 vector multiplet contains a one-form V and a complex scalar
φ as bosonic components. A hypermultiplet instead features four real scalars qA. The most general action
for these multiplets coupled to N = 2 supergravity reads [14,22,23]

S
(4)
IIB =

∫
− 1

2
R ∗1 +

1
4

ReMKL(φ, φ̄)FK ∧ FL +
1
4

ImMKL(φ, φ̄)FK ∧ ∗FL

−gkl̄(φ, φ̄) dφk ∧ ∗dφ̄l̄ − hAB(q) dqA ∧ ∗dqB , (19)

whereFK = dV K ,K = 0, . . . , nV is the field strength of the vectors V k, k = 1, . . . , nV in the vector mul-
tiplets together with the graviphoton denoted by V 0. M(φ, φ̄) are φ-dependent gauge couplings functions
which can be expressed in terms of the holomorphic prepotential F(φ) (see [23] for an explicit formula).
N = 2 supersymmetry constrains the metric gkl̄ for the scalars φk to be a special Kähler metric [14].

The metric hAB of the 4nH scalars in the hypermultiplets is constrained to be quaternionic [22]. Thus the
N = 2 moduli space has the form

M = MnH

Q × MnV

SK , (20)

where MnH

Q is the quaternionic component spanned by the scalars in the hypermultiplet while MnV

SK is the
special Kähler component spanned by the scalars in the vector multiplet.

For Calabi-Yau compactifications of type II theories the geometrical moduli space discussed in Sect. 2.2
is a subspace of the N = 2 moduli space. Explicitly one finds for the two cases

IIA : MnV

SK = Mh(1,1)

J , MnH

QK ⊃ Mh(1,2)

Ω ,
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IIB : MnV

SK = Mh(1,2)

Ω , MnH

QK ⊃ Mh(1,1)

J .

We see that the geometrical moduli space of Calabi-Yau threefolds has to be the product of two special
Kähler manifolds in order to be consistent with N = 2 supergravity combined with mirror symmetry. The
quaternionic component on the other hand is not the most general manifold allowed by N = 2 in that for
Calabi-Yau compactification they have a special Kähler submanifold. This class of quaternionic manifolds
have been termed ‘dual quaternionic manifold’ [24]. Exactly as special Kähler manifolds they are entirely
characterized by a holomorphic prepotential f . The additional scalars in MQK arise from a Kaluza-Klein
reduction of the gauge potentials in the RR-sector and the explicit form of hAB can be found in [25].

3 Background fluxes

3.1 General discussion

If localized sources such as D-branes are present it is possible to turn on background fluxes on the Calabi-
Yau manifold [5,26,27]. Generically background fluxes eI arise from integrating a p-form field strength Fp

over a set of p-cycles γI
p in Y

∫
γI

p∈Y

Fp = eI 	= 0 . (21)

In order to keep the Bianchi identity and the equation of motion intact one insists that dFp = 0 = d†Fp

holds. This implies that the background fluxes eI have to be constants. Equivalently one can expand Fp in
terms of harmonic forms ωI

p with constant coefficients eI

Fp = eI ω
I
p , ωp ∈ Hp(Y ) , (22)

such that the ωI
p are dual to the cycle γI

p .
Due to a Dirac quantization condition the eI are quantized in string theory [26]. However in the low

energy/large volume approximation we are considering here they appear as continuous parameters which
deform the low energy supergravity. If one keeps the eI as small perturbations the light spectrum does not
change. Instead the low energy supergravity turns into a gauged or massive supergravity where the fluxes
eI appear as additional gauge couplings or as mass parameters. As a consequence a potential is generated
which at least partially lifts the vacuum degeneracy of string theory. Furthermore at the minimum of this
potential supersymmetry is generically spontaneously broken.

3.2 Fluxes in type IIB

Let us be slightly more specific and consider background fluxes in IIB compactifications. In this case one
can turn on three-form flux for G3 ≡ F3 − τH3 where τ ≡ l + ie−φ. Expanded into the symplectic basis
one has

G3 = mK(τ)αK + eK(τ)βK , (23)

where

eK(τ) = eRR
K − τ eNS

K , mK(τ) = mRR K − τ mNS K . (24)

Altogether these are 2(h(1,2) + 1) RR-flux parameters and 2(h(1,2) + 1) NS-flux parameters.
The electric fluxes gauge a translational isometry of the quaternionic manifold MQ in that the ordinary

derivatives are replaced by covariant derivatives [28–30]

∂µq
1,2 → Dµq

1,2 = ∂µq
1,2 + eNS,RR

K AK
µ . (25)
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Here q1,2 denote the dual scalars of the two space-time two-forms B2 and C2 which are scalar fields in the
hypermultiplets. For the magnetic fluxes the situation is slightly more involved in that B2 and C2 become
massive with mK being related to the mass parameters [30,31]. In both cases the induced scalar potential
reads [32,33]

V (z, τ) = −(ē− M̄ · m̄)K(ImM)−1KL(e− M ·m)L , (26)

where M(z, z̄) is the matrix of gauge couplings appearing in (19). In terms of Calabi-Yau data the potential
V (z, τ) depends on the quantity [32,34]

W =
∫

Y

Ω ∧G3 . (27)

3.3 Fluxes in IIA and mirror symmetry

In type IIA compactified on the mirror Calabi-Yau Ỹ one can turn on the RR-fluxes [30,35]

F2 = −m̃RR aωa , F4 = ẽRR
a ω̃a , (28)

and the NS-fluxes

H3 = m̃NS KαK − ẽNS
K βK . (29)

Two additional RR-flux arises from the dual of the four-dimensional space-time three-formC3 and from the
mass parameter of the ten-dimensional massive IIA supergravity [36]. Thus altogether we have 2(h(1,1)+1)
RR-fluxes and 2(h(1,2) + 1) NS-fluxes in type IIA.

An interesting question is the fate of mirror symmetry in the presence of fluxes. Just by counting the
flux-parameters we immediately see that in the RR-sector the numbers nicely match. In this case one also
finds perfect agreement of the corresponding effective actions S if one identifies the fluxes. Or in other
words one finds [30]

SIIB(Y, eRR,mRR) ≡ SIIA(Ỹ , ẽRR, m̃RR) , (30)

if one identifies eRR = ẽRR, mRR = m̃RR.
However, for NS-fluxes the situation is considerably more complicated. In this case there is no obvious

mirror symmetry since in both theories the three-form H3 is expanded in terms of the third cohomology
H(3) and thus 2(h(1,1) + 1) flux parameters are missing on both sides. Since we are in the NS-sector
these missing fluxes can only come from the internal metric or in other words must arise from geometrical
quantities. Technically one needs a NS two-form and a NS four-form which complexify the RR-fluxes (28)
and which then could map to the fluxes of the complex type IIB three-formG3 (23) under mirror symmetry.
It has been suggested in [37] to compactify on a ‘non-Calabi-Yau’ manifold Y6 where an NS-four-form
arises from the non-integrability of the complex structure. This proposal was made more concrete in ref. [6]
where Y6 was identified as a ‘half-flat manifold’ considered before in the mathematical literature [11,38].
Therefore we discuss such manifold in the next section.

4 Compactifications on manifolds with SU(3)-structure

4.1 Mathematical properties

In the study of space-time backgrounds of the form (1) one needs to distinguish two conditions. First of
all for phenomenological reasons one is interested to choose Y6 in such a way that the effective four-
dimensional theory has the minimal amount of supersymmetry. Therefore, as reviewed in Sect. 2.1, one
needs to demand that Y6 admits a globally defined spinor η or equivalently one needs to choose Y6 to be
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a manifold with SU(3) structure. If one further insists that this supersymmetry is unbroken an additional
condition has to be imposed. Since all spinorial quantities vanish in a ground state which preserves four-
dimensional Poincaré invariance, one has to examine the supersymmetry transformation of the spinors
(which are bosonic quantities) and in particular the supersymmetry transformation of the gravitino ΨM .
Schematically it reads

δΨM = ∇Mη +
∑

p

(γ · Fp)M η + . . . , M = 0, . . . , 9 , (31)

whereη is the parameter of the supersymmetry transformations. In (31) we have written the contribution of all
p-form field strength appropriately contracted with (anti-symmetrized) products of γ-matrices symbolically
as (γ · Fp)M . For the argument here the precise form of these terms is irrelevant but they can be found for
example in [7, 39]. What we see immediately from (31) is that if all background fluxes vanish unbroken
supersymmetry requires the existence of a covariantly constant spinor η or in other words demands that Y6
is a Calabi-Yau manifold. If on the other hand the background fluxes are non-zero one has two choices.
Either one still insists on keeping some fraction of the supercharges unbroken. This requires ∇Mη 	= 0 or
in other words the geometry back-reacts to the presence of the fluxes. If one does not require the existence
of unbroken supercharges the fluxes and/or ∇Mη can be non-zero without an exact cancellation and as a
consequence supersymmetry is broken spontaneously. In this section we do not specify which case occurs
but consider the generic situation that η exists but is not covariantly constant ∇Mη 	= 0. This situation has
first been studied in refs. [40,41] while the more recent developments are reviewed in [5] where also a more
complete list of references can be found.

In general manifolds which admit a G-invariant tensor or spinor are called ‘manifolds with G-structure’
in the mathematical literature [8–11].1 Even though generically ∇η 	= 0 for the Levi-Civita connection one
can show that there always is a different connection with torsion which satisfies ∇(T )η = 0.

Once an invariant spinor η exists one can use it to define a two-form J and a three-form Ω in exact analogy
with the construction reviewed in Sect. 2.1 and explicitly given in eqs. (3) and (4). This construction never
used the fact that η is covariantly constant and therefore it goes through as long as η is well defined.
However, in general the associated tensor J is merely an almost complex structure in that it continues to
satisfy J 2 = −1 but the associated Nijenhuis-tensor no longer vanishes. Similarly both J and Ω are no
longer closed precisely due to the presence of torsion.

One decomposes dJ and dΩ according to their SU(3) representation and in this way defines five irre-
ducible torsion classes Wα, α = 1, . . . , 5 [11]. More precisely one has

dJ =
3i
4

(
W1Ω̄ − W̄1Ω

)
+W4 ∧ J +W3 ,

dΩ = W1 J ∧ J +W2 ∧ J + W̄5 ∧ Ω , (32)

whereW1 is a zero-form (1 ⊕ 1̄),W4,W5 are one-forms (3 ⊕ 3̄),W2 is a two-form (8 ⊕ 8̄) and finallyW3
is a three-form (6 ⊕ 6̄) where in brackets we give their SU(3) representation. As a consequence of (4) the
Wα further satisfy

W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0 . (33)

We summarize the torsion classes in Table 2.
Generically manifolds with SU(3) structure are neither complex, nor Kähler, nor Ricci-flat. Only for a

particular choice of the torsion where some of theWα vanish one has manifolds with additional properties.
For example Calabi-Yau manifolds are manifolds of SU(3) structure where all five torsion classes vanish
Wα = 0.

1 This notion was first introduced in a physics context in [42].
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Table 2 SU(3) torsion classes.

component interpretation SU(3)-representation

W1 J ∧ dΩ or Ω ∧ dJ 1 ⊕ 1
W2 (dΩ)2,2

0 8 ⊕ 8
W3 (dJ)2,1

0 + (dJ)1,2
0 6 ⊕ 6̄

W4 J ∧ dJ 3 ⊕ 3̄
W5 dΩ3,1 3 ⊕ 3̄

4.2 Half-flat manifolds as mirrors of electric NS 3-form flux

Let us now return to the question of mirror symmetry for Calabi-Yau compactifications with NS three-form
flux. In Sect. 3.3 we argued that the mirror symmetric compactification has to feature a different geometrical
manifold and in the previous section we identified manifolds with SU(3) structure as promising candidates.

In [6] we proposed that the mirror of the electric fluxes defined in (23) are found among the manifolds
termed ‘half-flat manifolds’ [11, 38]. These are manifolds within the class of SU(3) structure manifolds
discussed in the previous section which in addition satisfy

W4 = W5 = ImW1 = ImW2 = 0 , (34)

or equivalently

d(ImΩ) = 0 = d (J ∧ J) . (35)

In this case the ‘missing’ NS 4-form is FNS
4 ∼ dReΩ which when expanded in a basis of (2, 2) forms

provides for the mirror of the electric fluxes

F4 ∼ d(ReΩ) = ei
NS ω

i
4 . (36)

This proposal is supported by the following facts. First of all one can take a limit in moduli space – called
the SYZ limit – where a Calabi-Yau can be viewed as a T 3 fibration over some base manifold B [43]. In
this limit mirror symmetry corresponds to T -duality of the T 3 which can be performed explicitly using the
Buscher rules [44]. Starting from type IIB with electric fluxes one indeed derives a geometry satisfying (35)
with no H-flux turned on [6].

A second check can be performed by matching the type IIB N = 1 BPS-domain-wall solution of [45]
with the type IIA solution of the half-flat geometry [38,46]. Finally one can compute the low energy effective
action for type IIA compactified on Y6 [6,7] and compare it to its type IIB mirror action. This computation
is the topic of the next section.

Before we continue let us note that the mirror geometry of magnetic fluxes is not yet clear. In ref. [7]
we conjectured that is arises from an even more generalized class of manifolds called ‘manifolds with
SU(3) × SU(3) structure’. However it is also possible that one needs to further enlarge the concept of
compactifications and also allow for the possibility of non-commutative or other non-geometrical structures
[47–50].

Finally, we have identified half-flat manifolds a possible mirror compactifications of Calabi-Yau compact-
ifications with background fluxes and the torsion as the geometrical equivalent of the fluxes. Two questions
immediately come to mind: What is the role played by compactifications on manifolds with SU(3) structure
which are not half-flat and what is the low-energy/supergravity meaning of the torsion. Both questions we
address (and answer) in the next section.
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4.3 Low energy effective action for compactifications on manifolds with SU(3) structure

In order to compute the low energy effective action for compactifications on manifolds withSU(3) structure
one needs to perform a Kaluza-Klein reduction in a space-time background (1) where Y6 is not a Calabi-Yau
manifold but instead a manifold with SU(3) structure. The subtlety is that in order to make sense of this
reduction one has to keep the light modes and integrates out the heavy ones. This is straightforward for a
Calabi-Yau compactification where only the massless modes corresponding to harmonic forms on Y are
kept. However, backgrounds with a generic Y6 do not necessarily have a flat Minkowskian ground state
and the distinction between heavy and light is not straightforward. Guided by mirror symmetry the Kaluza-
Klein expansion was performed in [6] in terms of the same basis of forms as in the mirror Calabi-Yau.
This ensured the same light spectrum but, as a consequence of (32), this basis also contains non-harmonic
forms corresponding to the modes which become massive. The deviation from being harmonic is precisely
measured by the torsion which thus plays the ‘mirror role’ of the fluxes.

In [7] a slightly different approach inspired by [51] was pursued. Without any Kaluza-Klein reduction one
first rewrites the ten-dimensional theory in a space-time background of the form (1) withY6 being a manifold
with SU(3) structure. This breaks the Lorentz group to Spin(1, 3) × SU(3) and one can decompose all
ten-dimensional fields given in Table 1 group theoretically. For simplicity we insisted that only the two
gravitinos in the gravitational multiplet survive this decomposition. One way to ensure this is to truncate
away all 3 + 3̄ representations of SU(3) or equivalently all one-forms of Y6. This in turn constrains the
class of manifolds under consideration since it implies

W4 = W5 = 0 ⇔ d (J ∧ J) = 0 , dΩ(3,1) = 0 . (37)

Note that this class of manifolds is more general than half-flat manifolds discussed in the previous section
since there is no condition on W1,2 or equivalently d(ImΩ) 	= 0.

After decomposing the ten-dimensional fields given in Table 1 under the Lorentz group Spin(1, 3) ×
SU(3) they can be arranged inN = 2 multiplets of Spin(1, 3). For concreteness we give the results of this
decomposition for type IIA in Table 3. The indices µ, ν = 0, . . . , 3 indicate the representation of Spin(1, 3)
while m,n, p = 1, . . . , 6 label the vector representation of SO(6) ⊃ SU(3). Let us stress that all fields
still do depend on all ten space-time coordinates and no Kaluza-Klein reduction has been performed yet.

Table 3 SU(3) decomposition of type IIA.

multiplet SU(3) rep. field content

gravity multiplet 1 (gµν , Cµ, ψµ)

tensor multiplet 1 (Bµν ,Φ, Cmnp, λ)

vector multiplets 8 + 1 (Cµnp, gmn, Bmn, ψm)

hypermultiplets 6 (gmn, Cmnp, ψm)

Inserting this decomposition into ten-dimensional action of the NS sector results in

SNS =
∫
d10x

√
g e−2Φ

[
R+ 4(∂Φ)2 − 1

12
H2

]

=
∫
d10x

√
g(4)

[
R(4) − 2∂µΦ(4)∂µΦ(4) − 1

12
e−4Φ(4)

HµνρH
µνρ

− 1
4
gmpgnq(∂µgmn∂

µgpq + ∂µBmn∂
µBpq) + . . .

]
,
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where we defined

g(4)
µν = e−2Φ4gµν , Φ(4) = Φ − 1

4
ln det gmn . (38)

The terms omitted in (38) correspond to terms without any derivative ∂µ or in other words in (38) we only
kept terms corresponding to kinetic terms from a four-dimensional point of view. The last term in (38) can
be interpreted as the metric on the space M of metric/B-field deformations. It is shown in [7,52] that M
is product of two special geometries

M = MJ × MΩ (39)

with Kähler potentials

e−KJ = J ∧ J ∧ J , e−KΩ = Ω ∧ Ω̄ . (40)

Let us stress one more time that this is derived without any truncation but instead contains an infinite number
of modes – the entire Kaluza-Klein tower. Nevertheless this ten-dimensional theory strongly resembles a
four-dimensional N = 2 theory in that it has a product of special geometries governing the kinetic terms.
Furthermore the form of the Kähler potential coincides with the form of the Kähler potential for Calabi-Yau
threefolds given in (13) and (14). The reason being that the computation of the metric on M exactly parallels
the Calabi-Yau computation [12,13] since the derivatives ∂m along Y6 can never enter. Therefore the torsion
components dJ and dΩ do not appear.

Similarly one can compute the scalar potential in this approach. It turns out that it is easiest to first
compute the Killing prepotential from the supersymmetry transformations of the gravitinos and then use
the N = 2 formula which expresses the scalar potential in terms of the Killing prepotential [23]. The
supersymmetry transformation of the ten-dimensional gravitinos can also be written in a form resembling
the d = 4, N = 2 form. It reads [23]

δψA µ = DµεA + iγµSABε
B + . . . , A,B = 1, 2 , (41)

where

SAB =
i

2
e

1
2 KV �σAB

�P , (42)

The vector �P is called the Killing prepotential. Starting from the ten-dimensional gravitino transformation
and inserting the decomposition of Table 3 one finds for IIA

P 1 + iP 2 = e
1
2 KΩ+Φ(4)[

e−Jc ∧ dΩ]
, P 3 = e2Φ

(4)[
e−Jc ∧ FA

]
, (43)

where FA ≡ ∑
k F2k is the sum of the RR-forms. For type IIB one obtains

P 1 + iP 2 = e
1
2 KJ+Φ(4)[

Ω ∧ de−Jc
]
, P 3 = e2Φ

(4)[
Ω ∧ FB

]
, (44)

with FB ≡ ∑
k F2k+1. As expected the fluxes and torsion enter in that �P depends on F, dJ and dΩ. For

Calabi-Yau threefolds without fluxes one thus has �P = 0.
We see that (43) and (44) are mirror symmetric under the exchange

e−Jc ↔ Ω , FA ↔ FB , (45)

as long as d(Jc ∧ Jc) = 0. This latter condition expresses the fact that one obtains only an ‘electric mirror
symmetry’. In order to see a ‘magnetic mirror symmetry’ it is necessary to consider a yet more general class
of compactifications.
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The next step is to perform the Kaluza-Klein reduction or in other words truncate the infinite-dimensional
space of modes to a finite subspace. The idea is to truncate in such a way that all the N = 2 structures are
preserved. Or in other words we insist on a special Kähler geometry on this subspace and demand that K
and �P descend to the subspace. This in turn requires that the space of even/odd forms is non-degenerate.
(The precise condition is given in [7].) On this subspace one then has

e−KJ =
∫

Y6

J ∧ J ∧ J , e−KΩ =
∫

Y6

Ω ∧ Ω̄ (46)

and

P 1 + iP 2 = e
1
2 KΩ+Φ(4)

∫
Y6

[
e−Jc ∧ dΩ]

, P 3 = e2Φ
(4)

∫
Y6

[
e−Jc ∧ FA

]
, (47)

for type IIA and

P 1 + iP 2 = e
1
2 KJ+Φ(4)

∫
Y6

[
Ω ∧ de−Jc

]
, P 3 = e2Φ

(4)
∫

Y6

[
Ω ∧ FB

]
, (48)

for type IIB.

5 Conclusions

Let us conclude by briefly summarizing our results and by stating some of the open questions. We argued
that manifolds with SU(3) structure enlarge the space of supersymmetric compactifications. A particular
subclass of such manifolds called half-flat manifolds are mirror symmetric to compactification of Calabi-
Yau compactifications with electric NS three-form flux. However mirror symmetry acts more generally on
the entire space of manifolds with SU(3) structure with mirror symmetry for Calabi-Yau manifolds being
only a subset.

The computation of the effective action for these generalized compactifications is not entirely straight-
forward. We argued that one way to proceed is a reorganization of the ten-dimensional supergravity which
makes the N = 2 couplings manifest. In particular on the infinite-dimensional space of metric deforma-
tions a special Kähler geometry does appear. Truncating to a (non-degenerate) finite subspace results in
a four-dimensional N = 2 effective action with a Kähler potential which takes exactly the same form as
in Calabi-Yau compactifications. The reason is that it only depends on the existence of a globally defined
spinor but not on its derivatives. Instead the derivatives – which are related to the intrinsic torsion – appear
in the Killing prepotential or equivalently in the scalar potential.

One of the main open issues is the extension of mirror symmetry to also include magnetic NS-fluxes.
This requires a further enlargement of the class on backgrounds. Manifolds with SU(3) ×SU(3) structure
and/or non-geometric background have already been advocated [7,47–50].

A second interesting open question is the precise mathematical definition of the deformation or moduli
space of manifolds with SU(3) structure. Mirror symmetry suggests that this moduli space is closely related
to Calabi-Yau moduli space. Such a relation has already been suggested in [53].
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