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The Unruh effect [5] is a name for the fact that uniformly accelerated ob-
servers in Minkowski spacetime associate a KMS state (i.e. a thermal state)
to the vacuum state seen by initial Minkowski observers. In other words, the
particle content of a field theory is observer dependent [3].

But we do not want to stress here the possibly philosophical implications of
the Unruh effect, but rather want to derive and explain it. To this end we first
have to get familiar with field theory in curved spacetimes and its ramifications
in section 1. We proceed introducing appropriate coordinates in Minkowski
spacetime in section 2 until we can finally derive the Unruh effect in section 3.
Our notation will be as follows: as we are working in four dimensional space-
time we usually use four vectors which are denoted by x, x′, . . . If we consider
only their spatial part (i.e. on the Cauchy hypersurface) we write ~x, ~x′, . . .
Furthermore we make use of a metric with signature (+,−,−,−). Finally, we
suppress any factors of 2π in the integral measures as they are only introduced
for normalization reasons.

1 Static Spacetimes

1.1 Our Framework

We consider an ultrastatic spacetime which is a four-dimensional globally hy-
perbolic manifold R× Σ with causal structure and a metric of the form

g = dt2 − h , (1)

where h is a time-independent metric on the remaining three-dimensional space
Σ. Moreover we want Σ to be a Cauchy hypersurface, i.e. a closed hypersurface
which is intersected by each inextendible timelike curve only once [3].

To build a field theory in this spacetime—in our case the simplest one,
containing only scalar fields—we need to define a differential operator in the
(probably curved) spacetime. The d’Alembertian is in this case given by

�g = ∂2t −∆h (2)

and the Laplacian on the Cauchy hypersurface Σ is given by ∆h = 1√
|h|
∂ih

ij
√
|h|∂j ,

with h the determinant of the metric.
Now one can simply add the square of the mass and arrives at the famous

Klein-Gordon equation. But in our case it is more convenient to define the
operator A = −∆h +m2 so that the Klein-Gordon equation reads

(�g +m2)ϕ(x) = (∂2t +A)ϕ(x) = 0 , (3)

where ϕ(x) is assumed to be a solution to this equation.

1.2 Two-Point Function

If one studies the solutions of the Klein-Gordon equation in Minkowski space-
time one usually builds them out of eigenfunctions of the energy-momentum op-
erator k, i.e. e±ikx. After that one can define the vacuum state as the one being
annihilated by all annihilation operators which are in turn those eigenfunctions
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with positive frequency (e−ik0x0 , k0 > 0). Applying the eigenfunctions with
negative frequency to the vacuum state one defines states with a well-defined
number of particles. But in this construction one makes essential use of the
time translation symmetry of Minkowski spacetime in order to define positive
and negative frequency functions.

In the general case of a curved spacetime one has no obvious time translation
symmetry to do that. But one can define an inner product of solutions to the
Klein-Gordon equation, quantize them and search for a complete set of solutions
(complete w.r.t. the inner product), such that one can define one half of them
to be of positive frequency. Expanding a general solution in these functions
one finds creation and annihilation operators as coefficients with which one can
then define a vacuum state (which depends heavily on the choice of positive
frequency functions).1

We want to put the cart before the horse and state the result for a general
state in the sense of the algebraic approach to quantum field theory. Then we
prove its main properties to motivate to call it a state (cf. the talk on Algebraic
Quantum Mechanics for the definition and properties of a state).

Define a general state ω via the so-called n-point function of the ground
state ωn(f1, . . . , fn) = ω(ϕ(f1) · · ·ϕ(fn)), which has to be viewed in a distribu-
tional sense, i.e. evaluated with testfunctions fi. In our case it is sufficient to
restrict this general treatment to two-point functions, defined as ω(ϕ(f)ϕ(h)) =∫
d4x d4x′ ω2(x, x′)f(x)h(x′). And for ϕ being a general solution to Eq. (3) we

present the resulting state

ω2(t, ~x, t′, ~x′) =
1

2
√
A
e−i
√
A(t−t′)(x, x′) (4)

which is taken from [1]. The squareroot of A in this expression is well-defined,
because A is positive as it can be identified with ω2 (via the spectral theorem,
see below). Again, this has to be thought of in a distributional sense. In order
to motivate this solution we have to check that this defines really a state. Thus,
we have to check the positivity of ω2 and that ω2 really solves Eq. (3).

1.3 Check 1: Solution of the Klein-Gordon-Equation

To start with the latter, we get∫
d4x
√
|g| d4x′

√
|g| (∂t +A)

1

2
√
A
e−i
√
A(t−t′)f(x)h(x′)

=

∫
d4x
√
|g| d4x′

√
|g|
(
− A

2
√
A
e−i
√
A(t−t′) +

A√
A
e−i
√
A(t−t′)

)
f(x)h(x′)

= 0 ∀f, h

Obviously, this also holds for taking the derivative with respect to t′.

1.4 Check 2: Positivity

Proving the positivity of ω2 takes more effort and needs a bit preparation.
Namely, the spectral theorem states, that for a self-adjoint operator A on a

1This procedure is described and executed in more detail in [3].
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Hilbert space H with eigenvectors φk of A (i.e. Aφk = ω2
kφk) one can define an

arbitrary function f of A acting on h ∈ H by

f(A)h =

∫
f(ω2

k)dPk(h) =

∫
f(ω2

k)φk(φk, h)dµk . (5)

Here, Pk is an orthogonal projector, (·, ·) denotes the scalar product on H and
dµk is an integration measure.

As we are working in a square integrable (L2) Hilbert space with basis {φ~k}
we can write ω2(x, x′) =

∫
d~k 1

2
√
A
e−i
√
A(t−t′)φ~k(~x)φ∗~k(~x′). The spectral theorem

then allows us to identify A with ω2 (if acting on φ~k) and hence

ω2(f, f∗) =

∫
d4x
√
|g| d4x′

√
|g| d

~k

2ω
e−iωtφ~k(~x)f(x)eiωt

′
φ∗~k(~x′)f∗(x′)

=

∫
d4x
√
|g| d4x′

√
|g| d

~k

2ω
ψ~k(x)f(x)ψ∗~k(x′)f∗(x′)

=

∫
d~k

2ω
|c(~k)|2 ≥ 0 ,

where we introduced functions ψ~k(x) = e−iωtφ~k(~x) in the second line and num-

bers c(~k) =
∫
d4x
√
|g|ψ~k(x)f(x) in the last line.

All in all our two-point function is a solution to the Klein-Gordon equation
and is positive, hence defines a state.
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2 Rindler Spacetime

Our aim in this section is to introduce and understand the Rindler spacetime.

2.1 Rindler Coordinates

We begin with Minkowski spacetime where one considers the (flat) manifold
M = R× R3 with metric

g = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2 . (6)

This is an ultrastatic and globally hyperbolic spacetime according to the above
definitions. As probably known this spacetime is also invariant under Lorentz
boosts of the form

x0 −→ x0′ = x0 cosh z + x1 sinh z

x1 −→ x1′ = x0 sinh z + x1 cosh z

with rapidity z. This already suggests the coordinate transformation

x0 = eλ sinh θ

x1 = eλ cosh θ

x2 = y

x3 = z (7)

to Rindler coordinates θ, λ, y, z where worldlines represent constantly acceler-
ated observers. To calculate the metric in these coordinates we need

dx0 = eλ(sinh θdλ+ cosh θdθ)

dx1 = eλ(cosh θdλ+ sinh θdθ)

⇒ (dx0)2 − (dx1)2 = e2λ
[
sinh2 θ(dλ)2 + cosh2 θ(dθ)2 + 2 sinh θ cosh θ dλ dθ

− cosh2 θ(dλ)2 − sinh2 θ(dθ)2 − 2 sinh θ cosh θ dλ dθ
]

= e2λ
[
(sinh2 θ − cosh2 θ)(dλ)2 + (cosh2 θ − sinh2 θ)(dθ)2

]
.

So that using the relation cosh2 θ − sinh2 θ = 1 the metric reads

g = e2λ(dθ)2 − e2λ(dλ)2 − (dy)2 − (dz)2 (Rindler metric) . (8)

This kind of metric is now called a static spacetime as the time coordinate ap-
pears with a constant prefactor. Additionally, the Rindler spacetime is globally
hyperbolic with Cauchy hypersurfaces θ = const . Note that, doing this coor-
dinate transform we restricted ourselves into the region {x ∈ M | |x0| < x1} of
Minkowski spacetime, also called right Rindler wedge.

2.2 Acceleration in General Relativity

As a translation in the Rindler coordinate θ can be interpreted as a constant
acceleration a in x1 direction, we want to compute this acceleration: In general
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the acceleration is the time derivative of the (four) velocity v. In the case of
relativity this becomes

a =
d

dt
(γv) = const. (9)

⇒ at+ b = γv .

With the initial condition v(0) = 0 we can set b = 0. Hence,

at = γv =
v√

1− v2

⇒ v =
at√

1 + a2t2
=
dx

dt

⇒ x =

∫
dt

at√
1 + a2t2

=
1

a

√
1 + a2t2 + c ,

where the integration constant c can be set to zero by an appropriate shift/redefinition
of x. To this end we are left with

x2 − t2 =
1

a2
(10)

⇒ e2λ(cosh2 θ − sinh2 θ) = e2λ =
1

a2
. (11)

The acceleration is thus given by a = e−λ in Rindler coordinates.
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3 Unruh Effect

We will next calculate an expression for the state defined by ω2 on Minkowski
space, then transform it to Rindler coordinates and observe very interesting
consequences.

3.1 The Minkowski Two-Point Function ...

In section 1 we defined the differential operator A = −∆ + m2 now acting on
the Hilbert space L2(R3). A is only essential self-adjoint, but can be extended
to an self-adjoint operator which will be denoted by A, too. As aforementioned

the solutions of Aφ~k = ω2
~k
φ~k are φ~k = ei

~k·~x with ω2
~k

= ~k2+m2. Additionally, we

define the scalar product to be (f, h) =
∫
d~x f∗(~x)h(~x) and choose the integral

measure d~k. With the help of the spectral theorem we can then express arbitrary
functions f(A) of the operator A by

f(A)h(~x) =

∫
d~k f(ω2

~k
)ei

~k·~x
∫
d~x′ e−i

~k·~x′
h(~x′) =

∫
d~k d~x′ f(ω2

~k
)e−i

~k·(~x′−~x)h(~x′)

(12)

and can thus identify

f(A)(~x, ~x′) =

∫
d~k e−i

~k·(~x′−~x) (13)

as the kernel of a distribution. This procedure applied to the state ω2 of Eq.
(4) and making use of the Minkowski metric η = diag(1,−1,−1,−1) we get

ω2(t, ~x, t′, ~x′) =

∫
d~k

e−iω(t−t
′)

2ω
e−i

~k·(~x′−~x) =

∫
d~k

1

2ω
e−ik·(x−x

′) , (14)

defining k = (ω,~k) and x = (t, ~x).

3.2 ... becomes a Rindler Two-Point Function

With this result we perform a coordinate change to Rindler coordinates accord-
ing to Eqs. (7):

ω2(θ, λ, y, z, θ′, λ′, y′, z′) =

∫
d~k

2ω
exp[−iω(eλ sinh θ − eλ

′
sinh θ′)

+ik1(eλ cosh θ − eλ
′
cosh θ′) + ik2(y − y′) + ik3(z − z′)]

Now one can check—which we will actually do in a moment—that this defines
a KMS state. Again this needs a short preparation.

3.3 KMS States

Recall from the second talk on the KMS Condition that the KMS condition for
a free field, i.e. our two-point function, takes the form

ω2(θ, λ, y, z, θ′, λ′, y′, z′) = ω2(θ′, λ′, y′, z′, θ + iβ, λ, y, z) . (15)
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If this holds, ω2 is invariant under the one parameter automorphism group of
time translations and thus defines a thermal state with inverse temperature β.

To prove that Eq (15) really holds we begin with a translation

θ −→ θ − θ + θ′

2
=
θ − θ′

2
, θ′ −→ θ′ − θ + θ′

2
= −θ − θ

′

2

corresponding to a Lorentz transformation in x1-direction as seen before. After
that, ω2 becomes

ω2 =

∫
d~k

2ω
exp[−iω(eλ sinh

θ − θ′

2
+ eλ

′
sinh

θ − θ′

2
)

+ik1(eλ cosh
θ − θ′

2
− eλ

′
cosh

θ − θ′

2
) + ik2(y − y′) + ik3(z − z′)] .

Then

ω2(θ′, λ′, y′, z′, θ + iβ, λ, y, z) =

∫
d~k

2ω
exp[−iω(eλ

′
+ eλ) sinh

θ′ − θ − i2π
2

+ik1(eλ
′
− eλ) cosh

θ′ − θ − i2π
2

+ik2(y′ − y) + ik3(z′ − z)]

=

∫
d~k

2ω
exp[iω(eλ

′
+ eλ) sinh

θ′ − θ
2

−ik1(eλ
′
− eλ) cosh

θ′ − θ
2

−ik2(y − y′)− ik3(z − z′)]

=

∫
d~k

2ω
exp[−iω(eλ + eλ

′
) sinh

θ − θ′

2

+ik1(eλ − eλ
′
) cosh

θ − θ′

2
+ik2(y − y′) + ik3(z − z′)]

= ω2(θ, λ, y, z, θ′, λ′, y′, z′)

setting β = 2π in the first, using trigonometric relations2 in the second and
changing variables3 k2,3 −→ −k2,3 in the third line. Thus, ω2 defines indeed a
KMS state with temperature T = 1

β = 1
2π .

Observe that we considered a in the calculation above (see Eq. (9)) to
be constant, hence also λ is constant (and of course y and z are). Thus the
eigentime for an accelerated observer in Rindler coordinates is

(dτ)2 = e2λ(dθ)2

⇒ dτ = eλdθ . (16)

2Those are in particular

sinh(x− y) = sinhx cosh y − coshx sinh y ,

cosh(x− y) = coshx cosh y − sinhx sinh y ,

cosh(ix) = cosx ,

sinh(ix) = i sinx .

3This leaves the integral invariant as the minus sign from dk2,3 −→ −dk2,3 will be ”eaten”
by again changing the integration boundaries to get their right order back.
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Hence, in eigentime τ of the observer, one has to substitute τ −→ τ+ iβa instead
of θ −→ θ + iβ. That is the reason why we have to substitute 2π by 2π

a for β.
To summarize, one can say that an accelerated observer sees the vacuum as

a thermal bath with temperature T = a
2π which is known as the Unruh effect.

3.4 Remarks

We finally want to comment on two observations: Firstly, ω2 in Minkowski
spacetime defines a pure state whereas the restriction to the Rindler wedge
makes it a mixed state. Secondly, as the Unruh effect is a consequence of
mathematical definitions it does not need an experimental verification by its
own. Although it can be helpful to interpret experimental results as seen by a
Rindler observer and not an inertial Minkowski observer. Moreover the tem-
perature seen by such an Rindler observer is—at least for macroscopic objects
and usual accelerations—far from being detectable: e.g. a moving object with
acceleration a = 5ms−2 would be seen to be in a thermal bath with temper-
ature T ∼ 10−19K. Thus, this effect could become relevant for linear particle
accelerators, because one has to keep in mind that the above computation is
valid only for linear accelerations. Ultimately, harder computations show that
the Unruh effect is even valid in interacting theories and not only for scalar
particles [3].
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