

II. Institut für Theoretische Physik Universität Hamburg

Cosmological Horizons and Reconstruction of Quantum Field Theory

Claudio Dappiaggi Torun - 27/06/2008

based upon:

· C. D., V. Moretti and N. Pinamonti, "Cosmological horizons and reconstruction of quantum field theory" arXiv:0712.1770 [gr-qc]

Motivations

- General one: Cosmology is nowadays the main viable source for experimental data related to QFT on curved backgrounds, but... many models, a lot of folk results, few mathematically sound statements.
- Particular one: It was recently shown that it is possible to encode the information of a bulk field theory in terms of a suitable counterpart living on the boundary; this holds both in AdS^a and in asymptotically flat spacetimes^b.

A proposal:

- 1. What about cosmological spacetimes considering the cosmological horizon as a boundary? Is it feasible?
- 2. Has the cosmological horizon geometric properties similar to those of null infinity in an asymp. flat spacetime?
- 3. Does it exists also in this scenario a distinguished algebraic state as in the asymp. flat case?

^aK. H. Rehren, Annales Henri Poincaré 1 (2000) 607,

M. Dütsch and K. H. Rehren, Annales Henri Poincaré 4 (2003) 613.

^bC. D., V. Moretti and N. Pinamonti: Rev. Math. Phys. 18 (2006), 346

Outline of the talk

- 1. Looking at the Geometry of the Problem: The distinguished role of the cosmological horizon
- 2. Looking at the Field Theoretical Side of the Problem: a real scalar QFT on FRW spacetimes and the counterpart on the horizon, *i.e.*, shades of a bulk-to-boundary correspondence.

Glimpses of Asymptotic Flatness

What is an asymptotically flat spacetime? Why is interesting?

A 4D manifold M with a metric g solving Einstein vacuum equations is called asymptotically flat with past timelike infinity at null infinity \Im^- , if it exists a second manifold $(\widehat{M}, \widehat{g})$, an embedding $\lambda : M \to \widehat{M}$, a preferred point $i^- \in \widehat{M}$ and a conformal factor $\Omega \geq 0$ such that

- 1. $\Omega^2 g_{\mu\nu} = \lambda^*(\widehat{g}_{\mu\nu})$ in M,
- 2. $\lambda(M) = J^+(i^-) \setminus \partial J^+(i^-)$ and $\partial(\lambda(M)) = \Im^- \cup i^-$,
- 3. $\Omega \in C^{\infty}(\widehat{M})$ and $\Omega = 0$ on $\Im^- \cup i^-$,
- 4. $d\Omega \neq 0$ on $\Im^- \cup i^-$ but $\widehat{\nabla}_{\mu} \widehat{\nabla}_{\nu} \Omega = -2\widehat{g}_{\mu\nu}$ on i^- ,
- 5. other technical requirements.
- N.B. ℑ[−] plays the role of a preferred codimension one submanifold of a bulk field theory. For a real massless scalar field conformally coupled to scalar curvature, this entails the selection of a preferred bulk Hadamard state etc. etc. etc...

Geometrical Setup

First hypothesis: Cosmological Principle ⇒

$$g_{FRW} = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 dS^2(\theta, \varphi) \right], \quad M \sim I \times X_3$$

where k = 0, 1, -1 and $a(t) \in C^{\infty}(I, \mathbb{R}^+)$, being $I \subset \mathbb{R}$.

Important properties:

- Consider a co-moving observer as the integral line $\gamma(t)$ of ∂_t . If $M \setminus J^-(\gamma) \neq \emptyset$, then causal signal departing from each $x \in M \setminus J^-(\gamma)$ never reach $\gamma(t)$. Then we call $\partial J^-(\gamma)$ the (future) **cosmological horizon**,
- if one introduces the conformal time $d\tau = \frac{dt}{a(t)}$ and rescales the metric as

$$g_{FRW} = a^2(\tau) \left[-d\tau^2 + \frac{dr^2}{1 - kr^2} + r^2 dS^2(\theta, \varphi) \right],$$

then τ ranges in $(\alpha, \beta) \subset \mathbb{R}$. Sufficient condition for the existence of an horizon is $\alpha > -\infty$ and/or $\beta < \infty$.

Second hypothesis: Let us consider a FRW spacetime with k = 0 and $M \sim I \times \mathbb{R}^3$.

Third hypothesis: $a(\tau) = \frac{\gamma}{\tau} + O(\frac{1}{\tau^2})$ with $I = (-\infty, 0)$ and $\gamma < 0$ or $I = (0, \infty)$ and $\gamma > 0$. Note that:

$$a(au) = rac{\gamma}{ au} \implies a(t) = a(\overline{t}) \ e^{-rac{t-\overline{t}}{\gamma}}.$$

Theorem: Under the previous assumptions the spacetime (M, g_{FRW}) can be extended to a larger spacetime $(\widehat{M}, \widehat{g})$ which is a conformal completion of the asymptotically flat spacetime at past (or future) null infinity $(M, a^{-2}g_{FRW})$, i.e., "a" plays the role of the conformal factor.

The manifold $M \cup \Im^{\pm}$ enjoys:

- 1. the vector ∂_{τ} becomes tangent to \Im^{\pm} approaching it and coincides with $-\gamma \widehat{\nabla}^b a$,
- 2. the metric restricted on \Im^{\pm} takes a Bondi-like form $\widehat{g}|_{\Im^{\pm}} = \gamma^2 \left[-2dlda + dS^2(\theta, \varphi) \right]$

Cosmological horizon: general notion

A globally hyperbolic spacetime (M, g) equipped with $\Omega \in C^{\infty}(M, \mathbb{R}^+)$ and with a future-oriented timelike vector X on M is called an **expanding Universe with** cosmological past horizon if:

- 1. (M,g) can be isometrically embedded as the interior of a submanifold with boundary $(\widehat{M},\widehat{g})$ such that $\Im^- = \partial M$ and $\Im^- \cap J^+(M,\widehat{M}) = \emptyset$,
- 2. Ω can be made smooth on \widehat{M} and $\Omega|_{\Im^-}=0$, but $d\Omega|_{\Im^-}\neq 0$,
- 3. X is a conformal Killing field on \widehat{g} in a neighborhood of \Im^- in M with

$$\mathcal{L}_X(\widehat{g}) = -2X(\ln\Omega)\widehat{g},$$

4. $\Im^- \sim \mathbb{R} \times S^2$ and the metric $\widehat{g}|_{\Im^-}$ takes in a suitable frame the form

$$\widehat{g} = \gamma^2 \left[-2dld\Omega + dS^2(\theta, \varphi) \right].$$

N.B.

• \Im^- is a null 3-submanifold and the curves $l \mapsto (l, \theta, \varphi)$ are null \widehat{g} -geodesics.

On the role of X and of bulk isometries

Question 1: What X teaches us?

X projects on \mathfrak{F}^- to \widetilde{X} which has the form $f(\theta,\varphi)\partial_l$ when we represent \mathfrak{F}^- as $\mathbb{R} \times S^2$ and f is smooth and nonnegative.

Consequence: In a FRW universe f = 1. Therefore a non constant f is a measure of the failure of (M, g) to be isotropic!

Question 2: How are isometries of g and of \hat{g} encoded on the horizon?

Consider an expanding Universe with cosmological horizon and Y a Killing field of (M, g), then

- a) Y extends to a smooth vector field of \widehat{Y} on \widehat{M} ,
- b) $\mathcal{L}_{\widehat{Y}}\widehat{g} = 0$ on $M \cup \Im^-$,
- c) $\widetilde{Y} = \widehat{Y}|_{\Im^-}$ is uniquely determined by Y and it is tangent to/preserves \Im^- iff $\lim_{\Im^-} g(Y,X) = 0$

The group SG_{\Im^-} of isometries of the horizon

What is the group of all isometries preserving the horizon structure?

Definition: The horizon symmetry group SG_{\Im^-} is the set of all diffeomorphisms of $\mathbb{R} \times S^2$ such that, given a Bondi-like frame (l, z, \bar{z})

$$z \longrightarrow z' = R(z) \quad R \in SO(3)$$

 $l \longrightarrow l' \doteq e^{f(z,\bar{z})}l + g(z,\bar{z}),$

where $g(z,\bar{z})$ and $f(z,\bar{z})$ lie in $C^{\infty}(S^2)$.

The composition law between two elements of $SG_{\mathfrak{F}^-}$ is

$$(R, f, g)(R', f', g') = (RR', f' + f \circ R, e^{f \circ R'}g' + g \circ R').$$

The horizon symmetry group has the structure of an **iterated semidirect product**:

$$SG_{\mathfrak{I}^-} = SO(3) \ltimes (C^{\infty}(S^2) \rtimes C^{\infty}(S^2)).$$

Goal: Construct a $SG_{\mathbb{S}^-}$ invariant (real scalar) field theory on \mathbb{S}^- !

Field Theory on the Horizon

Prequel: The bulk

N.B. Since (M,g) is globally hyperbolic, Cauchy problems are meaningful.

Proposition: Consider $\phi: M \to \mathbb{R}$

$$\left(\Box + \xi R + m^2\right)\phi = 0 \quad \xi \in \mathbb{R}, \ m^2 > 0$$

- $\phi \in C^{\infty}(M)$ with compactly supported Cauchy data
- The set of solutions S(M) of our equation is a symplectic space if endowed with

$$\sigma(\phi_1, \phi_2) \doteq \int\limits_{S} (\phi_1 \nabla_N \phi_2 - \phi_2 \nabla_N \phi_1) \, d\mu_g^{(S)}$$

• A Weyl C^* -algebra $\mathcal{W}(M)$ can be associated to $(S(M), \sigma)$. This is unique, up to *-isomorphisms, and its non vanishing generators $W_M(\phi)$ satisfy:

$$W_M(-\phi) = W_M(\phi)^*, \quad W_M(\phi)W_M(\phi') = e^{\frac{i}{2}\sigma(\phi,\phi')}W_M(\phi + \phi'),$$

Part I: The boundary

What is the space of wavefunctions on the horizon?

Def: The space of real wavefunctions is

$$\mathcal{S}(\Im^-) = \{ \psi : \Im^- \to \mathbb{R} \mid \psi \text{ and } \partial_l \psi \in L^2 \left(\mathbb{R} \times \mathbb{S}^2, dldS^2(z, \bar{z}) \right) \}.$$

N.B.: $\mathcal{S}(\Im^-)$ is a symplectic space if endowed with $\sigma': \mathcal{S}(\Im^-) \times \mathcal{S}(\Im^-) \to \mathbb{R}$ such that

$$\sigma'(\psi_1, \psi_2) = \int_{\mathbb{R} \times \mathbb{S}^2} \left(\psi_1 \frac{\partial \psi_2}{\partial l} - \psi_2 \frac{\partial \psi_1}{\partial l} \right) dl dS^2(z, \bar{z})),$$

on which the **left action** of $g \in SG_{\Im^-}$ acts as a symplectomorphism, *i.e.*,

- $L(g)\psi(x) \doteq \psi(g^{-1}x) \in SG_{\Im^-} \text{ iff } \psi(x) \in \mathcal{S}(\Im^-),$
- $\sigma'(L(g)\psi, L(g)\psi') = \sigma'(\psi, \psi'), \forall \psi, \psi' \in \mathcal{S}(\Im^-)$

Consequence: We can associate a Weyl C^* -algebra $\mathcal{W}(\Im^-)$ to $(\mathcal{S}(\Im^-), \sigma')$ as well as:

$$\alpha_g(W(\psi)) \doteq W(L(g)\psi), \quad \forall W(\psi) \in \mathcal{W}(\Im^-), \ \forall g \in SG_{\Im^-}$$

Part II: The state

We can introduce a distinguished state $\lambda: \mathcal{W}(\Im^-) \to \mathbb{C}$ unambiguously defined as

$$\lambda\left(W(\psi)\right) = e^{-\frac{\mu(\psi,\psi)}{2}}, \quad \forall W(\psi) \in \mathcal{W}(\Im^{-})$$

where $\forall \psi, \psi' \in \mathcal{S}(\Im^-)$

$$\mu(\psi, \psi') = \int_{\mathbb{R} \times S^2} 2k\Theta(k) \overline{\widehat{\psi}(k, \theta, \varphi)} \widehat{\psi}'(k, \theta, \varphi) dk dS^2(\theta, \varphi),$$

being $\psi(k), \psi'(k)$ the Fourier-Plancherel transform

$$\psi(k) = \int_{\mathbb{R}} dl \; \frac{e^{ikl}}{\sqrt{2\pi}} \psi(l, \theta, \varphi).$$

The state λ enjoys the following (almost straightforward) properties:

- it is quasifree and pure,
- referring to its GNS triple $(\mathcal{H}, \Pi, \Upsilon)$ it is invariant under the left action of $SG_{\mathfrak{F}}$.

Furthermore for any timelike future directed vector field Y whose projection on the horizon is \widetilde{Y} :

• The unitary group $U_t^{\widetilde{Y}}$ which implements $\alpha_{\exp(t\widetilde{Y})}$ leaving fixed the cyclic GNS vector is strongly continuous with nonnegative self-adjoint generator

$$H^{\widetilde{Y}} = -i \left. \frac{dU_t^{\widetilde{Y}}}{dt} \right|_{t=0},$$

- if $\widetilde{Y} = \partial_l$, then λ is the **unique** quasifree pure state on $\mathcal{W}(\mathfrak{F}^-)$ which is invariant under $\alpha_{\exp(t\partial_l)}$,
- Each folium of states on $\mathcal{W}(\Im^-)$ contains at most one pure state which is invariant under $\alpha_{\exp(t\partial_l)}$.

Part III: Bulk to Boundary Interplay

Notice: each element $\phi \in S(M)$ can be extended to a unique smooth solution of the same equation on the whole \widehat{M} and, hence, $\Gamma \phi \doteq \phi|_{\Im^-} \in C^{\infty}(\Im^-)$.

Hypothesis: Suppose that each element $\phi \in S(M)$

- projects/can be restricted to \Im^- to an element $\Gamma \phi \in \mathcal{S}(\Im^-)$,
- the projection/restriction preserves symplectic forms, *i.e.*, for any $\phi_1, \phi_2 \in S(M)$:

$$\sigma(\phi_1, \phi_2) = \gamma^2 \sigma'(\Gamma \phi_1, \Gamma \phi_2),$$

then it exists an isometric *-homomorphism $i: \mathcal{W}(M) \to \mathcal{W}(\Im^-)$

$$i(W_M(\phi)) \doteq W(\Gamma \phi) \quad \forall \phi \in \mathcal{W}(M).$$

In other words we see the bulk algebra a sub *-algebra of the boundary counterpart.

The injection map between algebras allows to pull-back states!

Big Statement: The distinguished state λ in the boundary identifies a bulk state λ_M as

$$\lambda_M(a) = \lambda(i(a)). \quad \forall a \in \mathcal{W}(M).$$

Furthermore λ_M enjoys some interesting properties:

- it is invariant under the natural action of any bulk isometry Y on the algebra. The one-parameter U_t^Y group implementing such an action leaves fixed the cyclic vector in the GNS representation of λ_M ,
- if Y is everywhere timelike and future-directed in M then the 1-parameter group U_t^Y has positive self-adjoint operator,

Conclusions

- Do our hypotheses hold on all the backgrounds we considered?
- Can we prove that the bulk state is Hadamard?
- Can we recast the construction for a scalar field interacting with a non constant potential $V(\phi)$? This could provide useful insights on cosmological theories^a.

^aSee also: C. D., Klaus Fredenhagen & Nicola Pinamonti: Phys. Rev. D. **77** (2008) 104015