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CHAPTER 1

Von Neumann algebras

1.1 Definition of the Neumann algebra

A von Neumann algebra or W*-algebra is a *-subalgebra of B(H) that is unital and

closed in the weak operator topology. This algebra is needed for the Tomita-Takesaki

theory. That is the reason why important definitions and properties will be intro-

duced.

Recall. A seminorm ν(·) is a function from a vector space V to the real numbers satisfying

following properties, ∀ x, y ∈ V and all scalars c:

• ν(x) ≥ 0 non-negativity (ν(x) = 0 does not imply that x = 0, ohterwise norm)

• ν(c · x) = |c| ν(x) homogeneity

• ν(x + y) ≤ ν(x) + ν(y) triangle inequality
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CHAPTER 1: VON NEUMANN ALGEBRAS

Definition 1.1. (Topology induced by seminorm)

Define 4 standard topologies on the set B(H) of bounded linear operators onH [1]:

• The uniform topology on B(H) is defined in terms of a single norm:

‖A‖ = sup{‖Aψ‖ : ψ ∈ H, ‖ψ‖ ≤ 1},

with a given vector norm on H. Hence, an operator A is a limit point of the sequence

(Ai)i∈N if and only if (‖Ai − A‖)i∈N converges to 0.

• The weak topology on B(H) is defined in terms of the family {νφ,ψ : φ, ψ ∈ H} of

seminorms where

νφ,ψ(A) = 〈φ | Aψ〉.

This topology (defined by a system of seminorms) is not first countable. So the closure

is the set of limit points of "generalized sequences" (nets). Thus, a net of sequences

of operators (Ai)i∈I converges weakly if all matrix elements 〈φ | Aiψ〉i∈I between

arbitrary state vectors converge.

• The strong topology on B(H) is defined in terms of the family {νψ : ψ ∈ H} of

seminorms where

νψ(A) = ‖Aψ‖.

Thus, a net (Ai)i∈I converges strongly to A if and only if (νψ(Ai))i∈I converges to

νψ(A) for all ψ ∈ H.

• The ultraweak topology on B(H) is defined in terms of the family {νρ : ρ ∈ T (H)}
where T (H) is the set of positive, trace 1 operators onH ("density operators") and

νρ(A) = Tr(ρA).

Thus, a net (Ai)i∈I converges ultraweakly to A just in case (Tr(ρAi))i∈I converges to

Tr(ρA) for all ρ ∈ T (H).
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CHAPTER 1: VON NEUMANN ALGEBRAS

Recall. For any subsetM⊂ B(H), is the commutant

M′ = {x ∈ B(H) : mx = xm ∀m ∈ M} the set of all bounded operators on Hilbert space

H commuting with elements ofM.

IfM is selfadjoint, i.e.M is a *-subalgebra, thenM′ is a C*-algebra of B(H) that is

closed.

Definition 1.2. A von Neumann algebraM on a Hilbert spaceH is a *-subalgebra of B(H),

such that

M =M”

Theorem 1.1. (Bicommutant theorem)

LetM be a unital *-algebra of B(H), then following conditions are equvivalent:

• M =M”

• M is closed on the weak operator topology

• M is closed on the strong operator topology

Corollary. Let A be a unital *-algebra of B(H), then it follows that if M = A” a von

Neumann algebra, i.e.M =M”, then Aiv ⊆ A” .

1.2 Some facts

In the following we state some interesting properties for a von Neumann algebraM.

• If A ∈ M is a selfadjoint operator and commutes with some O ∈ B(H), such

that AO = OA, then O commutes also with all spectral projections Pi of A with

A = ∑i λiPi, where λi ∈ R, such that OPi = PiO, then Pi ∈ M, i.e. Pi lies also in

M. Furthermore the span of all spectral projections is dense inM.

• In order to understand the second property let us introduce the

polar decomposition (from O. Bratteli D. W. Robinson [2])

– The general polar decomposition represents each closed, densely defined

operator A on a Hilbert space as a product A = U(A∗A)1/2 of a partial
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CHAPTER 1: VON NEUMANN ALGEBRAS

isometry U and a positive selfadjoint operator |A| = (A∗A)1/2. The square

root (A∗A)1/2 is well defined, because A∗A > 0 positive.

– (Polar decomposition for bounded operators on a Hilbert space)

Let A ∈ B(H) and |A| = (A∗A)1/2. Now define an operator U on D =

{|A|ψ} with ψ ∈ H by

U |A|ψ = Aψ.

This defines a linear operator, because |A|ψ = 0 implies Aψ = 0 (0 =

‖|A|ψ‖ = 〈|A|ψ | |A|ψ〉1/2 = 〈(A∗A)1/2ψ | (A∗A)1/2ψ〉1/2 = 〈Aψ |
Aψ〉1/2 = ‖Aψ‖ → Aψ = 0). Furthermore, U is isometric on D because

‖U |A|ψ‖ = ‖Aψ‖ = ‖|A|ψ‖ holds and it is partial isometric on H by

setting it equal to zero on D and extending by linearity. This provides the

polar decomposition of A = U |A|.

For an oparator A ∈ unital C*-algebra, one can decompose the operator A (with-

out proof) such that A = ∑4
i=1 aiUi, with ai ∈ C and Ui unitary elements. Then

for a bounded operator on the Hilbert space A ∈ B(H), A ∈ M if and only if

for all unitary elements V ∈ M′ we have VAV∗ = A. Hence, if A = U|A| is the

polar decomposition of A ∈ M, U and |A| lie also inM.

PROOF. A ∈ B(H): A ∈ M ⇔ ∃V ∈ M′ s.t. VAV∗ = A, then U |A| = A =

VAV∗ = VU |A|V∗ = VUV∗V |A|V∗ ⇒ U, |A| ∈ M.
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CHAPTER 2

Tomita-Takesaki theory

First of all, we will introduce and recall some definitions, which we will need for

the Tomita-Takesaki theory. After that, the modular structure implied by the Tomita-

Takesaki theory will be defined and in the end, the relation to the KMS-states will be

demonstrated.

2.1 Preliminaries

Definition 2.1. A vector Ω is called separating for a von Neumann algebraM on a Hilbert

spaceH if for any A ∈ M, AΩ = 0 for all Ω ∈ H implies A = 0.

Definition 2.2. A vector Ω, Ω ∈ H, is called a cyclic vector forM being a *-subalgebra of

all bounded operators on Hilbert space, then span(MΩ)
dense
⊂ H.

The GNS-vacuum of a state over some *-algebraM is always cyclic.

One can show that there exists a dual relation for a cyclic vector inM and a separat-

ing vector in the commutantM′.

Remark 2.1. LetM be a von Neumann algebra onH and Ω ∈ H, then following statements

are equivalent:

• Ω is cyclic forM

• Ω is separating forM′
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CHAPTER 2: TOMITA-TAKESAKI THEORY

PROOF.

• (1)→ (2): Ω is cyclic forM. Choose A′ ∈ M′ such that A′Ω = 0. Then for any

B ∈ M, A′BΩ = BA′Ω = 0, hence {BΩ, B ∈ M}
dense
⊂ H and A′ = 0 onH.

• (2)→ (1): The Hilbert space is H = MΩ ⊕ (MΩ)⊥ ≡ m ⊕ m⊥. Let P = Pm

be the projector on the non-orthogonal elements of H, hence Pm ∈ M′. For

Ω separating for M′, (1− Pm)Ω = 0 with PmΩ = Ω, since 1 ∈ M it follows

1− Pm = 0 andMΩ
dense
⊂ H.

For the next proposition the following Definitions are needed.

Definition 2.3. LetM be a von Neumann algebra. An operator A ∈ M is called positive

if there exists a B ∈ M with A = B∗B; one writes A ≥ 0. LetM+ be the Definition of a von

Neumann algebra containing positive elements.

Definition 2.4. (Normal state)

A normal state of a von Neumann algebraM is an ultraweakly continuous state.

Proposition 2.1. LetM be a von Neumann algebra on Hilbert spaceH, then the statements

• For ω normal: ω faithful normal state, i.e. ω(A)> 0 for all positive nonzero elements

A ∈ M+

• GNS-construction w.r.t. (M, ω) yields a separating and cyclic vector

are equivalent.

It means that if one has a von Neumann algebra on a Hilbert space, then it is suffi-

cient to demand a faithful normal state to get a representation with a separating and

cyclic vector. Also, the other way round is true, i.e. by performing a GNS-construction

one gets a faithful normal state automatically.

2.2 Modular structure and the Tomita-Takesaki theorem

In order to construct the modular theory within the Tomita-Takesaki theory let us first

of all define an anti-linear operator on the Hilbert spaceH.
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CHAPTER 2: TOMITA-TAKESAKI THEORY

Definition 2.5. (Anti-linear oparators S and F)

Let Ω be a separating and cyclic vector for the von Neumann algebra M, then Ω is also

separating and cyclic for the commutantM′ (recall Remark 2.1.). Define the operators:

• S0: S0AΩ = A∗Ω for A ∈ M, well defined on the domain D(S0) =MΩ

• F0: F0A′Ω = A′∗Ω for A′ ∈ M′, well defined on the domain D(F0) =M′Ω

• S0 and F0 are closable and:

S∗0 = F0 ≡ F

F∗0 = S0 ≡ S

• polar decomposition of S:

S = J∆1/2,

where

– ∆ is a positive, selfadjoint operator (modular oparator associated with the pair

(M, Ω))

– J is a anti-linear operator (modular conjugation)

For the anti-linear operators defined above following relations are true:

Proposition 2.2. (Relations)

• ∆−1/2 = J∆1/2 J

• ∆ = FS

• ∆−1 = SF

• J2 = 1

• J = J∗
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CHAPTER 2: TOMITA-TAKESAKI THEORY

PROOF. From the Definition 2.3. we have S∗ = F, S = J∆1/2, S = S−1 and J−1 = J∗.

1. From S = S−1 ⇒ J∆1/2 = ∆−1/2 J∗ |·J from right

⇒ J∆1/2 J = ∆−1/2 J∗ J = ∆−1/2

2. S∗S = FS = ∆1/2 J∗ J∆1/2 = ∆1/21∆1/2 = ∆

3. SS∗ = SF = J∆1/2∆1/2 J∗ = J∆1 J∗ = 1∆−1 = ∆−1

4. From S = S−1 ⇒ J∆1/2 = ∆−1/2 J∗ |·J from left

⇒ J2∆1/2 = J∆−1/2 J∗. J∆−1/2 J∗ is a positive operator and because of the

uniqueness of the polar decomposition it follows that J2 = 1

5. J J = 1 = J∗ J⇒ J∗ = J

Now we can formulate the Tomita-Takesaki theorem. For the proof, please refer to

the book of O. Bratteli and D. Robinson [2].

Theorem 2.1. (Tomita-Takesaki theorem)

Let M be a von Neumann algebra with a cyclic and separating vector Ω, ∆ the associated

modular operator and J the associated conjugation operator,

then

• JMJ =M′ and

• ∆itM∆−it =M ∀t ∈ R

Note that the unitary operators ∆it are well defined by the Borel functional calcu-

lus.

2.3 The modular automorphism group and KMS-states

Definition 2.6. The unitaries ∆it, t ∈ R, induce a one parameter automorphism group {σt}
ofM by

σt(A) = ∆−it/β A∆it/β, A ∈ M, t ∈ R.
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CHAPTER 2: TOMITA-TAKESAKI THEORY

Recall. (KMS-condition)

Let M be a von Neumann Algebra and {αt|t ∈ R} a one parameter group of automor-

phisms ofM, then the state ω onM satisfies the KMS-condition at β, 0 < β < ∞, (where

β = 1
kBT denotes the inverse temperature) w.r.t. {αt} if for any A, B ∈ M the mapping

t −→ ω(Aαt(B)) has a analytical continuation for 0 < =t < β such that

ω(αt(A)B) = ω(Bαt+iβ(A)), ∀t ∈ R.

Theorem 2.2. Every faithful normal state satisfies the KMS-condition (modular condition)

w.r.t. the corresponding automorphism group, then αt(A) = σt(A).

Let M be a von Neumann algebra and ω a faithful normal state on M, then one

can find a cyclic and separating representation (Hω, πω, Ωω) (by GNS-construction,

therefore recall Proposition 2.1.). For A, B ∈ M

ω(Bσiβ(A)) =

= 〈Ω | Bσiβ(A)Ω〉ω
∆−1|Ω〉=|Ω〉

= 〈Ω | B∆A∆−1Ω〉ω = 〈Ω | B∆AΩ〉ω =

= 〈B∗Ω | ∆1/2∆1/2 AΩ〉ω = 〈JBΩ | JA∗Ω〉ω = 〈Ω | ABΩ〉ω =

= ω(AB)ω

= ω(σt=0(A)B)ω KMS-CONDITION

(2.3.1)

The analytic continuation of ω(σt(A)) is periodic in imaginary time directions and

bounded in real time directions, hence a bounded entire function. Therefore it is

constandt by Liouville’s theorem.

It is quite remarkable that there is a strong connection between the Tomita-Takesaki

theory and the theory of equilibrium states in quantum statistical physics. The

former is defined by topological notions on v. Neumann algebras whereas the latter

notions come from the KMS-condition and both are connected via their modular

structure.

Again, for every faithful normal state ω , the GNS-construction yields a separating

vector Ω, hence Ω is also KMS-state w.r.t. the modular group σt.

Having a KMS state ω on a C*-algebra A, one gets a von Neumann algebra M by

πω(A)” =M and a cyclic and separating vector Ωω forM.
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