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1 Principle of locality

1 Around the year 1830, Faraday had the idea that interactions at dis-
tance, e.g. Coulomb interaction, are not instantaneous but propagate. This
suppose that each point of space participates in the physical process, that
is, each point is equipped with dyanmical variables. The corresponding ma-
thematical object are fields, functions of space-time. Locality for the law of
evolution then takes the form of partial differential equations for the fields.

The next step to build our model of reality was to start from the algebra
of observables instead of trying to define particles first. In the first seminar,
we had seen the C∗-algebra structure of the observables but the idea of
measuring a certain quantity for a given region of space-time is still missing.
This is done by the following construction.

1.1 Precosheaf or net of algebras

Definition 1.1. A category C consists of
- A class of objects Ob(C), i.e. a collection of sets2 which all satisfy a

certain property.
- A class of morphisms Hom(C) such that
∗ Each morphism f ∈ Hom(C) has a unique source object a ∈ Ob(C)

and a target object b ∈ Ob(C). Write

f : a −→ b (1)

The set of homomorphisms from a to b is denoted HomC(a, b)
∗ ∀ a, b, c ∈ Ob(C), there is an associative map, composition of morphisms

◦ :

{
HomC(a, b)×HomC(b, c) −→ HomC(a, c)

( f , g ) −→ g ◦ f
(2)

∗ ∀ c ∈ Ob(C) there exist an identity 1c ∈ HomC(c, c) such that
∀f ∈ HomC(a, b)

1b ◦ f = f ◦ 1a = f (3)

This definition just points out that the set of groups or vector spaces,
have a common structure. Groups come with functions from a group to
another one preserving the group operation, same for vector spaces. What
is somehow disconcerting is that, abstracting from these examples, we don’t
require the morphisms to be applications anymore and note also that we
may have HomC(a, b) = ∅.
The category we’ll deal with is the category of open sets of the Minkowski
space, with inclusions as morphisms.

1”Nahwirkungsprinzip” in German, ([3])
2or another mathematical object. The idea of class contains the idea of set but over-

comes Russel’s paradoxe.
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Definition 1.2. A functor F from a category C to D is a map that asso-
ciates

- to each x ∈ Ob(C), an object F (x) ∈ Ob(D)
- to each morphism f ∈ HomC(a, b), a morphism F (f) ∈ HomD(F (a), F (b))

such that
∗ ∀x ∈ Ob(C)

F (1x) = 1F (x) (4)

∗ ∀f, g ∈ Hom(C)

F (g ◦C f) = F (g) ◦D F (f) (5)

Remark :
1. The very uncommon feature of this mapping is that it takes either an

object and gives and object or a morphism and gives a morphism.
2. We have implicitely defined a covariant functor. One can define a

contravariant functor by reversing the source and target object of
F (f) : F (b)→ F (a) ∈ HomD(F (b), F (a)), and

F (g ◦C f) = F (f) ◦D F (g) (6)

3. Previously, we’ve pointed out the structure of a category, here we
simply require mappings from a category to another to preserve the
composition and identity.

We’ll need an additional property for the morphisms, which generalizes
the idea of injectivity :

Definition 1.3. A morphism f ∈ HomC(a, b) is said to be a monomorphism
if

∀ g1, g2 ∈ HomC(c, a) , f ◦ g1 = f ◦ g2 =⇒ g1 = g2 (7)

Definition 1.4. Let X be a topological space, denote O(X) the category of
open sets of X with inclusions as morphisms. A C-valued presheaf3 (resp.
precosheaf) is a contravariant (resp. covariant) functor from the category
O(X) to C.

Locality Let (M, ηµν) be the Minkowski space and denote A the category
of unital C∗-algebra with C∗-algebra morphisms.

Locality is expressed by an A-valued precosheaf that maps any mor-
phisms of HomO(M) to a monomorphism of A. This last condition of map-
ping only to monomorphisms is referred to as isotony.The essence of it is
that we associate algebras to regions, and algebras of big regions contain
algebras of subregions.

It actually happens that another construction satisfies this definition,
we’ll check it explicitly.

3There is a more general definition, as always...
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Definition 1.5. A partially ordered set or poset P is a set with a binary
relation � which is

- reflexive, i.e ∀ p ∈ P , p � p
- antisymmetric, i.e ∀ p, q ∈ P , p � q & q � p ⇒ p = q
- transitive, i.e ∀ p, q, r ∈ P , p � q & q � p ⇒ p � r

The distinction with totally ordered set is that all elements of P are not
required to be comparable.

Definition 1.6. A directed set P is a poset such that

∀ p, q ∈ P , ∃ r ∈ P such that p � r & q � r (8)

Definition 1.7. Let X be a topological space and P a directed set. A net is
a function from P to X, written (xp)p∈P .

One has to interpret it as a generalization of sequences – functions from
N to X – and notice that this structure allows us to define limits.

Net of unital C∗-algebra (AU )U∈O(M) vs. A-valued precosheaf
– The directed set (O(M),⊆) is a category.
– Impose isotony for the net4 : ∀ U1, U2 ∈ O(M)
U1 ⊆ U2 =⇒ there exists an injective unital C∗-algebra morphism

iU1,U2 : AU1 −→ AU2 (9)

For U ∈ O(M) associate iU,U = idAU1
, and for U1 ⊆ U2 ⊆ U3

5

iU2,U3 ◦ iU1,U2 =: iU1,U3 (10)

is an injective unital C∗-algebra morphism.
That is a covariant functor, hence a precosheaf.

– However, we haven’t defined anything like a ”topological space of alge-
bras”. Now we only have ”local” algebras but no ”global” one anymore.
This is remedied by the following definition.

Definition 1.8. The inductive limit or direct limit of
(
(AU )U∈O(M), (iU,V )U,V ∈O(M)

)
is the set

A(M) := lim
→
AU :=

⊔
U∈O(M)AU
∼

(11)

where ∀ aU ∈ AU , aV ∈ AV

aU ∼ aV ⇐⇒ ∃W ∈ O(M) s.t. iU,W (aU ) = iV,W (aV ) (12)

There is a canonical unital C∗-algebra morphism for all U ∈ O(M)

iU : AU −→ A(M) (13)

that sends any element a ∈ AU to its equivalence class in A(M).
4cf. direct system
5(U2 ⊆ U3) ◦ (U1 ⊆ U2)
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However one has to complete A(M) to make it into a C∗-algebra6, the
so-called quasilocal algebra.

2 Haag-Kastler axioms

The goal of an axiomatic framework is to build a theory from a minimal
number of assumptions. There had been several attemps to define axioms
for quantum field theory, but none of them is completely satisfying. Rudolf
Haag and Daniel Kastler introduced in 1964 a set of axioms for the net
of algebras. Recall that the framework for quantum field theory is special
relativity (cf. Appendix), the Minkowski space-timeM with Poincaré group
P, though generalization to curved space-time exist. The axioms are the
following :

Locality 7 It expresses the independance of algebras associated to space-
like separated regions :

∀ U, V ∈ O(M), space-like separated
[a, b] = 0 , ∀a ∈ AU , b ∈ AV

(14)

Recall that two systems A1 and A2 are called independant if the whole
system is isomorphic to A1⊗A2. Requiring commutativity is a priori weaker.

Covariance Poincaré group acts on the net : ∀ g ∈ P, U ∈ O(M), there
is an isomorphism

αUg : AU −→ Ag·U (15)

such that ∀ V ⊆ U
αUg |V = αVg (16)

and ∀ g1,g2 ∈ P

αg·U
g1
◦ αUg2

= αUg1·g2
(17)

(15) says that algebras of regions related by a Poincaré transformation
are related. This is actually very strong since all pairs of points are related
by translations. (16) allows us to define the action of the Poincaré group on
the inductive limit.

More generally, the above construction is to be compared with the action
of a group G on functions. Let (X,α), (Y, β) be two actions of G, then
∀ f ∈ F(X,Y ) and g ∈ G

g · f := β(g) ◦ f ◦ α−1(g) (18)

defines an action8 of G on F(X,Y ). In particular, it sends functions with
compact support in U ⊂ X, to functions with compact support in α(g) · U .

6cf. [1, p. 14]
7or ”Micro-causality” in some QFT lessons
8α−1 such that we have a left action.
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Time-slice axiom Let U ∈ O(M) be an open set which has a Cauchy
surface ΓU then

AU ′′ ∼= AU (19)

Notice that algebras are associated to open sets, what Cauchy surfaces are
not9, but this axiom does indeed express the idea that the algebra ”asso-
ciated to a Cauchy surface” contains as much information as the algebra
of its causal completion. That is precisely the property of hyperbolic equa-
tions whose solutions are uniquely defined by initial conditions on a Cauchy
surface, however the axiom states it prior to any dynamic, any law for the
evolution of the system.

Stability condition or Spectrum condition It requires a more specific
framework, namely :

- the existence of a representation (H, π) of A(M), i.e. to each element
a ∈ A(M) is associated a bounded operator π(a) on the Hilbert space
H such that π(λ a∗+b) = λ π(a)†+π(b) and

∥∥π(a)† ◦ π(a)
∥∥ = ‖π(a)‖2.

- previous representation be such that the action of the translation
group10 on the algebra can be written as follows : ∀ g ∈ R4, and
a ∈ A(M)

π(αg(a)) = U(g) ◦ π(a) ◦ U−1(g) (20)

where U is a unitary operator on H and g→ U(g) is continuous under
the strong topology for the operator space.

The stability condition now states that the joint spectrum of the generators
of translations11 lies in the forward causal cone. Those generators being the
4-impulsion observables, this condition expresses in a covariant way that
particles have positive energy and travel slower than the speed of light.

3 Example

3.1 A toy example

I’ll present a somehow artificial example starting with just an algebra
and adding conditions successively.

Canonical Anticommutation Relation (CAR) algebra Let H be a
Hilbert space with basis {fi}i∈I and an anti-unitary involution Γ, the pro-

9cf. submanifold of codim ≥ 1.
10cf. Poincaré group.
11in the representation (H, U) of the translation group on the Hilbert space. We impli-

citely use the fact that a representation of a Lie group also gives a representation of its
Lie algebra and vice versa.
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totype being complex conjugation : ∀g, h ∈ H, λ, µ ∈ C

Γ(λg + µh) = λ̄ Γ(g) + µ̄ Γ(h) (21)
〈Γ(g),Γ(h)〉 = 〈g, h〉 (22)

Γ2 = 1 (23)

Now for all i ∈ I associate an abstract element a(fi) and define an antili-
near12 map :

a :

{
H −→ Span (a(fi), i ∈ I)
f −→ a(f)

(24)

Then extend Span (a(fi), i ∈ I) into a unital C∗-algebra A(H) such that
∀f, g ∈ H 

a(f)∗ = a(Γ(f))
{a(f), a(g)} = 0
{a(f), a∗(g)} = (f, g)1

(25)

Since in an complex algebra one can add, multiply two elements, and also
multiply by a complex number, the CAR algebra A(H) is generated by poly-
nomials in the annihilation and creation operators a(f) and a∗(f). A theorem
[4, Th. 5.2.5] states that this freely generated algebra with anticommuta-
tion relations (25) is uniquely defined up to isomorphisms.

Fock representation One can always build an algebra starting from a
vector space, namely the tensor algebra. The Fock space of a Hilbert space
H is defined in the same way

F(H) :=
⊕
n≥0

(
n⊗
i=1

H

)
=
⊕
n≥0

Hn (26)

but has an additional hermitian product on each subspace Hn. ∀ ψ ∈ F(H),
write ψ(n) its orthogonal projection on Hn. However, we are just interested
in the vector space structure of F(H) as a representation space of A(H).

∀ f ∈ H define the action of the creation and annihilation operators

on H0 by

a(f) ψ0 = 0 (27)

a∗(f) ψ0 = ψ0f 13 (28)

12It is a convention from [4], where the hermitian product is antilinear in the first
argument.

6



and on Hn, n ≥ 1

a(f) (g1 ⊗ · · · ⊗ gn) =
√
n (f, g1) g2 ⊗ · · · ⊗ gn (29)

a∗(f) (g1 ⊗ · · · ⊗ gn) =
√
n+ 1 f ⊗ (g1 ⊗ · · · ⊗ gn) (30)

Define the antisymmetric projector on each subspace Hn

∀ f1 ⊗ · · · ⊗ fk ∈ Hk

P−(f1 ⊗ · · · ⊗ fk) :=
1
k!

∑
σ∈Sk

ε(σ)fσ(1) ⊗ · · · ⊗ fσ(n) (31)

The Fermi Fock space is

F−(H) := P− (F(H)) (32)

When (and only when !) restricted and projected onto the Fermi Fock space

ã(f) := P− ◦ a(f) ◦ P− , ã∗(f) := P− ◦ a∗(f) ◦ P− (33)

the operators satisfy (25).

Indeed

ã∗(g)(h1 ⊗ · · · ⊗ hn) =
√
n+ 1

1

(n+ 1)!

∑
σ∈Sn+1

ε(σ) lσ(1) ⊗ · · · ⊗ lσ(n+1) (34)

where l1 := g, and li := hi−1 for i 6= 1. Then

a(f) ã∗(g) (h1 ⊗ · · · ⊗ hn) =
n+ 1

(n+ 1)!

∑
σ∈Sn+1

ε(σ)
(
f, lσ(1)

)
lσ(2) ⊗ · · · ⊗ lσ(n+1)

=

n+1∑
i=1

(
f, li

)  1

n!

∑
σ∈Si

n+1

ε(σ) lσ(2) ⊗ · · · ⊗ lσ(n+1)


= ã(f) ã∗(g)(h1 ⊗ · · · ⊗ hn)

(35)

where Sin+1
∼= Sn stands for permutations of n+ 1 elements such that σ(1) = i. Similarly

ã∗(g) ã(f) (h1 ⊗ · · · ⊗ hn) = ã∗(g)

√n n∑
i=1

(
f, hi

) 1

n!

∑
π∈Si

n

ε(π) hπ(2) ⊗ · · · ⊗ hπ(n)


=

n∑
i=1

(
f, li+1

) 1

n!

∑
σ∈S̃i+1

n+1

ε(σ)

 1

(n− 1)!

∑
π∈Si

n

ε(π) lσ(1) ⊗ lσ(π(2)+1) ⊗ · · · ⊗ lσ(π(n)+1)



= −
n+1∑
i=2

(
f, li

)  1

n!

∑
σ∈Si

n+1

ε(σ) lσ(2) ⊗ · · · ⊗ lσ(n+1)

 (36)

13H0 = C, i.e. ψ0 is a complex number.
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where S̃i+1
n+1 are permutations such that σ(i+ 1) = i+ 1 . Finally(
ã(f) ã∗(g) + ã∗(g) ã(f)

)
(h1 ⊗ · · · ⊗ hn) =

(
f, g
)
P−
(
h1 ⊗ · · · ⊗ hn

)
(37)

The other anticommutation calculus is straightforward.

The following calculous ∀ g1 ⊗ · · · ⊗ gn−1 ∈ Hn−1, h1 ⊗ · · · ⊗ hn ∈ Hn

(
g1 ⊗ · · · ⊗ gn−1, a(f)(h1 ⊗ · · · ⊗ hn)

)
F(H)

=
√
n (f, h1)

n−1∏
i=1

(gi, hi+1)

(
a∗(f)g1 ⊗ · · · ⊗ gn−1, (h1 ⊗ · · · ⊗ hn)

)
F(H)

=
√
n (f, h1)

n−1∏
i=1

(gi, hi+1)

(38)

shows that ã∗(f) is adjoint to ã(f) for the inner product on F(H). Therefore
a map sending a(f) and a∗(f) to ã(f) and ã∗(f) respectively preserves the
CAR and is a C∗-algebra morphism, i.e. the Fermi Fock space is a represen-
tation of A(H)14.

Implementation of a net of algebras Choose H := L2(M) and ∀ ψ ∈
F(H) 15 define

(a(f) ψ)(n)(x1, . . . , xn)) :=
√

(n+ 1)
∫
f̄(y)ψ(n+1)(y, x1, . . . , xn)(39)

(a∗(f) ψ)(n)(x1, . . . , xn)) :=
1√
n

n∑
i=1

f(x1)ψ(n−1)(x1, . . . , x̂
i, . . . , xn)(40)

This is an explicit realization of the annihilation and creation operators.
Restricting to the Fermi Fock space then yields the CAR algebra.

For each open set U ⊆ M associate the vector space of L2 functions
with compact support in U , L2(U) ⊂ L2(M). Then a CAR algebra can be
built over that Hilbert space which finally leads to a net of algebras. The
isotony property comes from the fact that functions with support in U ⊆ V
are functions with support in V , the identity is injective.

Haag Kastler axioms The question is now whether some axioms are
automatically satisfied, do impose extra conditions in previous construction,
or are even compatible at all.

14In the case of CCR there is the Stone-von Neumann uniqueness theorem, it doesn’t
seem to be the case for CAR algebra.

15It actually means ψn(x1, . . . , xn) is of the form h1(x1) · · ·hn(xn), however
(anti)commutation will still be satisfied on the bigger space of multivariable function
space.
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- Microcausality : For U, V ∈ O(M) space-like, there exist W ∈
O(M), U, V ⊆W . From previous calculous (35) and (36) we see that
∀ f ∈ L2(U) ⊆ L2(W ), ∀ g ∈ L2(V ) ⊆ L2(W ) and (h1 ⊗ · · · ⊗ hn) ∈
(L2(W ))n

[ã(f), ã∗(g)](h1 ⊗ · · · ⊗ hn) =

(f, g)︸ ︷︷ ︸
=0

(
1
n!

∑
π∈Sn

ε(π) hσ(1) ⊗ · · · ⊗ hπ(n)

)

+ 2
n+1∑
i=2

(f, li)︸ ︷︷ ︸
6=0

 1
n!

∑
σ∈Sin+1

ε(σ) lσ(2) ⊗ · · · ⊗ lσ(n+1)

 (41)

This quantity is not vanishing in general, neither are [ã(f), ã(g)] and
[ã∗(f), ã∗(g)] which is in sharp contrast with the CCR algebra case ! !
However it doesn’t mean that CAR algebras are incompatible with
microcausality, the failure comes from the implementation and more
precisely from the injection iU,W : AU → AW . The notion of precosheaf
requires the existence of such injection for U ⊆ W but not unicity of
it. The microcausality axiom constrains the choice of those injective
morphisms but in our implementation, those injection were implicitely
given by L2(U) ⊆ L2(W ).

- Covariance : The action of the Poincaré group is yet to be defined but
with (15) and (18) in mind, we see that the axiom imposes a restriction
on the (X,α) of (18). Recall the ”scalar field” (physics terminology)
representation of the Poincaré group on the Hilbert space of functions
∀ g ∈ P, ∀ ϕ ∈ L2(U)

ρUg · ϕ(x) := ϕ(g−1 · x) (42)

Since the association of an algebra to an open set was achieved through
functions, an extension of this action to the algebra fulfilling the axiom
can be written

αUg · a(f) := γ(g) · a(ρ(g) · f) (43)

where γ is an action on operators, i.e. similar to (18).
- Time-slice In our implementation, an algebra of a big region is always

strictly bigger than the algebra of a subregion, infringing the axiom.
The latter can be seen as the counterpart of the isotony, algebra of a
subregion is contained in the algebra of a bigger region but for some
specific bigger regions, the algebra does contain anything more then
the one of the smaller region. One can certainly built a net of algebra
which intrinsically incorporates the time-slice axiom but the usual
procedure is to start with a quasilocal algebra that has too many
elements and then restrict it which is the rôle of ”dynamic”.
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- Stability condition (43) corresponds to (20) with U = γ (once a
representation of the quasilocal algebra is given). This axiom contrains
the choice for γ

Examples from QFT are given in [2, Chapter II, section 3.]

3.2 Some fundamental notions

This framework allows us to give a very precise definition of some fun-
damental notions in physics. I’ll just give a list without developping.

Definition 3.1. Observables are self-adjoint elements of the C∗-algebra.

C∗-algebras can always be represented by bounded operators on some
Hilbert space but there can be a continuum of inequivalent representations
in the case of simple C∗-algebras for example. The notion of particle is a
choice of particular representations :

Definition 3.2 (Wigner). A particle is an irreducible, strongly continuous
positive energy representation of the Poincaré group.

The link with the more naive idea of particle is that irreducible repre-
sentations of the Poincaré group can be labelled by the eigenvalue of the
Casimir of the Poincaré algebra, and the latter turns out to be P 2 = m2,
the mass squared. Another elementary notion is that of state.

Definition 3.3. A state is a positive normalized linear functional on the
C∗-algebra.

Given a state, one can actually build a probability distribution on the
spectrum of a self-adjoint operator, cf. [1, p.8]. Every norm 1 vector of the re-
presentation space is a state, but the definition allows for more sophisticated
ones.

Definition 3.4. The vacuum sector is a representation which has a vector,
the vacuum, which is invariant under the Poincaré group (or the relevant
symmetry group of the system).

There is in general not unicity of such representation and not even exis-
tence in the case of symmetry breaking.

Definition 3.5. For a system with n undistinguishable particles, bosons
and fermions are respectively the trivial and signature representation of the
permutation group.

The meaning of ”indistinguishable” is that permutation is a symmetry
of the system.
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The representation of observables can be further restricted : assume the
representation of the C∗-algebra is decomposed into irreducible components,
the so called called superselection sectors, then the observables are required
to be bloc diagonal with respect to the decomposition. As a consequence,
the ”relative phase” θ in a superposition eiθψ1 +ψ2 of two states ψ1 and ψ2

belonging to two distinct superselection sectors is not observable.

4 Appendice : the special relativity framework

Definition 4.1. A piecewise smooth curve c : [a, b]→M is called causal if
all its tangent vector are time-like or lightlike.

Definition 4.2. A subset S of the Minkowski space is a Cauchy hypersurface
if every inextendible causal curve intersets S exactly once.

Definition 4.3. ∀ U ∈M its causal complement is

U
′

:= {y ∈M s.t. y − x is space-like, ∀x ∈ U} (44)

Its causal completion

U
′′

:=
{
z ∈M s.t. z − y is space-like, ∀y ∈ U ′

}
(45)
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