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CHAPTER I

Introduction

1. Superposition Principle and Superselection Sectors

The wave properties of quantum mechanical states manifest themselves in the pos-

sibility of coherent superposition: If  
1

and  
2

are the wave functions of two states,

then the superposition principle states, that also every linear combination

 = � 

1

+ � 

2

is a wave function of a quantum mechanical state. For classical waves, which are

solutions of a linear wave equation, this principle has an obvious interpretation. Its

assertion for quantum mechanics is not so easy to understand. For as is well known the

value of the wave function at a point has no direct physical meaning, and multiplication

of the wave function with a complex number does not change the physical state. Hence

the superposition given above can not be described by states; if we replace e.g.  
1

by

e

i'

 

1

; ' 2 R, then

 

0

= �e

i'

 

1

+ � 

2

in general describes a different state than  . The observability of the relative phase ei'

in superpositions is the characteristic of quantum theory.

Through their ability of interference quantum mechanical states behave completely

differently from classical states, where a system is at any time exactly at one point of

phase space, or, upon incomplete knowledge of the state, with a certain probability

distributed in phase space. Hence quantum theory, which in principle is also valid

for macroscopic systems, gives statements that are in complete opposition to classical

physics. A drastic example is Schrödinger’s cat.

Actually quantum mechanical states cannot always be superposed coherently, i.e.

there are cases, in which the relative phase of two wave functions is not observable.

The example from which Wick, Wightman and Wigner made this observation, is a

superposition of a spin-1
2

particle state with a spin-0 particle state

 = � 

1

+ � 

2

:

A rotation by 2� changes  
1

into � 
1

,  
2

into  
2

and therefore  into

 

0

= �� 

1

+ � 

2

:

1
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For all experiments  0 has the same properties as  . Thus if A is an observable, then

(8�; �)

( ;A ) = ( 

0

; A 

0

)

= j�j

2

( 

1

; A 

1

) + j�j

2

( 

2

; A 

2

)�

�

���( 

1

; A 

2

) + �

�

�( 

2

; A 

1

)

�

must hold for either sign and hence ( 

1

; A 

2

) = 0. In the state determined by  the

observables have the same expectation values as in the state that is described by the

density matrix

� = j�j

2

j 

1

ih 

1

j+ j�j

2

j 

2

ih 

2

j :

The impossibility to superpose such states coherently is called a superselection rule.

The existence of superselection rules leads to the following picture of the quantum

mechanical state space: The Hilbert space of quantum mechanical state vectors is a

direct sum of orthogonal subspaces

H =

M

i

H

i

:

Every vector � has a unique decomposition

� =

X

�

i

; �

i

2 H

i

:

Calling A
i

the restriction of A toH
i

,

A

i

= A

�

�

�

H

i

and writing � =

P

�

i

as a column vector with components in H
i

, A is written as the

diagonal matrix

A =

0

B

B

@

A

1 . . .
0

A

i

0

. . .

1

C

C

A

:

Coherent superpositions are only possible within one subspace H
i

. A set of states, for

which the superposition principle is valid without restriction, is called a superselection

sector.

2. Algebraic Formulation of Quantum Physics

In order to understand the occurrence of superselection sectors, we take a look at the

structure of the algebra generated by the observables. This algebra consists of the

operators

A =

0

B

B

@

A

1 . . .
0

A

i

0

. . .

1

C

C

A
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withA
i

2 B(H

i

) (set of bounded operators inH
i

) and sup

i

kA

i

k <1. It possesses the

center

Z( ) =

n

0

B

B

@

�

1 . . .
0

�

i

0

. . .

1

C

C

A

�

�

��

i

2 C

o

:

The states in a joint eigenspace of the center are exactly the ones constituting a super-

selection sector.

As an example we consider a system, in which the operatorsL
i

of angular momentum

generate the algebra of observables. This algebra contains as the center the multiples

of ~L2. Hence the sectors are distinguished through the angular momentum quantum

number l.

If one views the algebraic structure of the observables as the defining property of a

physical system, then one needs a definition of states, which does not make use of the

realization of the observables as operators on a Hilbert space. A state assigns to each

observable a probability distribution of results of the measurement . Ifa
1

; : : : ; a

n

are the

spectral values of A, then the state ! yields the the probabilities w
i

for the occurrence

of the value a
i

as a result of the measurement. ! is conveniently characterized by the

expectation values of all observables

!  ! !(A) =

X

w

i

a

i

; A 2 :

Thus, ! defines a linear functional on with the following properties

(i) !( ) = 1 (normalization)

(ii) !(A�A) � 0 8A 2 (positivity)

Here we used that is a �-algebra (the �-invariant elements are the observables) and

contains a unit. If is a matrix algebra over C , then A� is the adjoint matrix to A,

(A

�

)

ik

= A

ki

:

If is an operator algebra on a Hilbert space, then A� is the adjoint operator to A.

For a self-adjoint element A = A

� of the probability distribution can be recon-

structed from the expectation values. Namely, the probability measure is determined

by its moments

Z

d�

!;A

(�)�

n

= !(A

n

) ; kAk <1 :

The spectrum of A 2 can also be directly characterized algebraically. It is the set

of � 2 C , such that (A� � ) possesses no inverse in . Let e.g. A2

= , then

(A� � )(A� � ) = A

2

� (�+ �)A+ ��

= (1 + ��) � (�+ �)A ;

i.e. (1��2)�1(A+� ) for � 6= �1 is an inverse of (A�� ). Hence,A’s only possible

spectral values are �1.
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Now let !(A) = �, then for the probabilities of the two possible results of a

measurement holds

w(+1) + w(�1) = 1

w(+1)� w(�1) = � ;

and thus w(+1) = 1

2

(1 + �); w(�1) =

1

2

(1� �) are determined.

The algebraic description also applies to classical physics. Let be the algebra

of complex valued functions on the phase space of a mechanical system. Let f 2

with suppf � K , where K is a compact region. Let � 62 f(K), then the function

f

�

(x) = (f(x)��)

�1 is continuous, i.e. f �� possesses an inverse, and the spectrum

of f lies in f(K). Normed positive linear functionals on are Radon measures, which

are connected to probability measures in the usual way,

�(f) =

Z

fd� :

If is an operator algebra on a Hilbert space H, then every vector  2 H with

 6= 0 defines a state through

!

 

(A) =

( ;A )

k k

2

:

One obtains further states from density matrices inH. Let � 2 B(H) be a self-adjoint

operator with � � 0 and Tr� = 1. Then one defines

!

�

(A) = Tr�A :

For kAk � 1 the operator �A is a trace class operator, !
�

is thus well-defined. It is

obviously linear and normalized. The positivity can e.g. be recognized by diagonalizing

�,

� =

X

�

i

j 

i

ih 

i

j

with ( 

i

;  

j

) = �

ij

; ( 

i

)

i2N

an orthonormal basis ofH, �
i

� 0;

P

�

i

= 1:

Tr�A�A =

X

i

( 

i

; �A

�

A; 

i

)

=

X

i

�

i

kA 

i

k

2

� 0 :

Characteristic for the algebraic concept of state is the unified description of pure and

mixed states.

The set of states forms a convex set. If !
1

and !
2

are states, then so are �!
1

+ (1 �

�)!

2

; � 2 (0; 1). In physical terms one should think of the mixture �!
1

+ (1 � �)!

2

as a state in which the state !
1

is present with a probability � and the state !
2

with a

probability 1��. Now, pure states are those, which cannot be decomposed into convex

combinations of other states.

In order to avoid complications we will first confine ourselves to the finite dimen-

sional case. Then our algebra is isomorphic to a multi-matrix algebra,

=

M

i

M

n

i

(C ) ; n

i

2 N; i = 1; : : : ; k ;

where M
n

i

(C ) is the set of (n
i

� n

i

)-matrices with complex elements.
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Let us take a look at the case n
i

= 1; 8i at first. Then is Abelian, = Z( ). The

states are of the form

!(A) =

X

!

i

A

i

with A
i

2 C ; !

i

� 0;

P

!

i

= 1. There are k pure states, each of which constitutes a

superselection sector.

Next we consider the case k = 1; n

1

= 2. In this case the states are of the form

!(A) =

1

2

Tr( + ~n~�)A

with the Pauli matrices ~� = (�

1

; �

2

; �

3

) and a vector ~n 2 R3

; j~nj � 1. (( + ~n~�); ~n 2

R

3 is the general form of a hermitian 2 � 2-matrix with trace 1. Its determinant is
1

4

(1 � ~n

2

). Hence, positivity requires j~nj � 1.) Thus, the set of states is, as a convex

set, isomorphic to the unit ballB3

� R

3. The marginal points of the ball correspond to

the pure states.

quantum system classical system

pure states

mixed states

FIGURE I.1. State spaces

The case n
1

> 2 yields a more complicated picture. The state space contains so-

called faces, i.e. subsets of a convex set, that are stable under convex decomposition.

These faces are characterized by the kernels (null spaces) of the density matrices.

In the general case k � 1; n

i

� 1 the state space has the form

! �! (�

1

; : : : ; �

n

)

with �
i

2M

n

i

(C ); �

i

� 0;

P

Tr�
i

= 1. For the observables of the center of

Z( ) =

n

 

�

1 1

0

. . .
0 �

n n

!

; �

i

2 C

o

there holds

!(A) =

X

(Tr�
i

)�

i

:

Thus, for these observables the state space is classical. The quantum nature of the state

space does not become visible before non-diagonal observables are taken into account.

Thus, the occurrence of superselection sectors reflects a classical feature of the system.

It is an interesting fact that such classical features of the state space can arise in infinite

quantum systems, even if the algebra of observables does not possess a nontrivial center.

As a simple example we examine a system of spins. Let at every point x 2 Z

reside a spin-1
2

degree of freedom, which is described by the Pauli matrices �
i

(x) with

[�

i

(x); �

j

(y)] = 0 for x 6= y.
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At first we convince ourselves of the fact that the center of the algebra generated

by �
i

(x); x 2 Z; i = 1; 2; 3 is trivial. Suppose A 2 Z( ). Then for every x 2 Z,A is

of the form

A =

X

i

�

i

(x)A

i

+A

0

;

where A
i

; i = 0; : : : ; 3 are finite sums of finite products of �
j

(y); j = 1; 2; 3; y 2

Zn fxg. Since A 2 Z( ), it follows [A;�
j

(x)] = 0, thus

�

ijk

�

k

(x)A

i

= 0 ;

i.e., e.g. �
1

A

3

� �

3

A

1

= 0. The commutator with �
1

yields �
2

A

1

= 0. Multiplication

with �
2

yields A
1

= 0. Thus, A
i

= 0; i 6= 0. Iteration of the argument gives, that A is

a multiple of .

Now we realize this algebra as an operator algebra on the Hilbert space of sequences

H =

n

X

�

s

jsi;

X

j�

s

j

2

<1; s : Z! f�1g

o

through

�

3

(x)jsi = s(x)jsi

�

1

(x)jsi = js

0

i

�

2

(x)jsi = is(x)js

0

i ;

s

0

(x) = �s(x); s

0

(y) = s(y); y 6= x. H is a Hilbert space with a non-countable

basis (dimH = #(R)). The algebra of observables on the contrary possesses the

countable basis
n

�

j

1

(x

1

) : : : �

j

k

(x

k

); x

1

< � � � < x

k

; j

1

; : : : ; j

k

2 f1; 2; 3g; k 2 N

0

o

(the product of no factors is defined as ). It is therefore obvious, that the spin algebra

cannot transform arbitrary vectors into each other. There rather holds

hs

0

jAjsi = 0 ; 8A 2

if s0(x) 6= s(x) for infinitely many x 2 Z. Hence,H decomposes into a non-countable

sum of subspaces, that are each invariant under ,

H =

M

[s]

H

[s]

with

H

[s]

= jsi =

n

X

s

0

2[s]

�

s

0

js

0

i 2 H

o

and

[s] =

n

s

0

: Z! f�1g; s

0

(x) 6= s(x) only for finitely many x 2 Z
o

:

We consider the two subspaces H
[s

�

]

with s
�

(x) = �1; 8x 2 Zand show, that the

states are not able to interfere. For that purpose we consider the sequence of observables

M

n

=

1

2n + 1

n

X

x=�n

�

3

(x) ; n 2 N :
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There holds

(1) [M

n

; A]! 0; 8A 2

(2) M
n

�

�

! ��

�

; �

�

2 H

[s

�

]

and with it

(�

+

; A�

�

) = lim(�

+

;M

n

A�

�

) = lim(�

+

; AM

n

�

�

) = �(�

+

; A�

�

) ;

i.e. (�
+

; A�

�

) = 0. This consequence holds for every simultaneous realization of the

states �
+

; �

�

as Hilbert space vectors.

3. Operator Algebras

This section is intended to present the most important mathematical properties of

operator algebras. For a more detailed treatment refer to the relevant textbooks and the

lectures Operator Algebras and Local Quantum Physics by Detlev Buchholz.

DEFINITION. A C

�-Algebra is a complex (associative) algebra with an involution

A! A

� and a norm k � k, such that 8A;B 2

kABk � kAk kBk

kA

�

k = kAk

kA

�

Ak = kAk

2

and such that is complete with respect to this norm.

Interesting is the fact that on a C�-algebra there exists only one norm fulfilling the

stated properties. For some special operators this is easily seen.

Let 2 ; 6= f g be the unit ( A = A = A;

�

= ), then

k k = k k = k k

2

) k k = 1 :

Let U be an isometry, i.e. U�

U = , then it follows that

kUk

2

= kU

�

Uk = k k = 1 ) kUk = 1 :

Let P be a projection, i.e. P = P

2

= P

� (orthogonal projection). It follows that

kPk = kP

2

k = kP

�

Pk = kPk

2

:

Thus, kPk = 1 for P 6= 0. In general in a C�-algebra with there holds

kAk = inf

n

� 2 R

+

; A

�

A� r

2 is invertible in 8r > �

o

:

The norm is thus an intrinsic property of the algebra, in particular every isomorphism

is isometric, i.e. norm conserving. Furthermore is the inverse of A�A � r

2 , if it

exists, contained in the C�-subalgebra of generated by A�A and . Embeddings

of C�-algebras in larger C�-algebras are thus isometric, too. Homomorphisms are

automatically contracting, i.e. if � : ! B is a (�-algebra) homomorphism, then

k�(A)k � kAk. If (
1

; k � k

1

) is a Banach �-algebra, i.e. all the properties of a C�-

algebra except for kA�Ak
1

= kAk

2

1

are fulfilled, and � :

1

! a homomorphism

into a C�-algebra, then

k�(A)k � kAk

1

:
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WARNING. The uniqueness holds only for norms on the whole (complete) algebra.

On an arbitrary �-algebra there may be more than one norm (or none) with the demanded

properties.

EXAMPLES.

(i) Let X be a compact Hausdorff space, and let C(X) be the �-algebra of contin-

uous functions f : X ! C with f�(x) = f(x). (jf(x)j2 � r2)�1 is continuous

on X; 8r > � if and only if � � sup

x2X

jf(x)j. Thus,

kfk = sup

x2X

jf(x)j :

(ii) Let = M

n

(C ). A

�

A � r

2 is invertible, A 2 , if r2 is no eigenvalue of

A

�

A. Thus,

kAk = � ;

where �2 is the largest eigenvalue of A�A. This norm coincides with

kAk = sup

� 2 C

n

k�k = 1

kA�k ;

where Cn was turned into a Hilbert space by k�k2 =
n

P

n=1

j�

n

j

2.

(iii) Let H be a Hilbert space and a norm-closed, self-adjoint algebra of bounded

Hilbert space operators. Then

kAk = sup

� 2 H

k�k = 1

kA�k :

(iv) Let
0

be the algebra of observables of the spin chain.
0

possesses a unique

C

�-norm, since every element A�A; A 2
0

generates a subalgebra of a finite

dimensional matrix algebra, on which the norm is uniquely determined.

(v) Let K be a Hilbert space and � an anti-unitary involution on K, i.e.

�(�f + �g) = ��f + ��g ; f; g 2 K; �; � 2 C

(�f;�g) = (g; f)

�

2

= 1 :

We consider the �-algebra with generated by the symbols B(f); f 2 K with

the relations

f ! B(f) linear

B(f)

�

= B(�f)

fB(f); B(g)g = (�f; g) :

For every 2n-dimensionald �-invariant subspace ofK the corresponding subal-

gebra is isomorphic to M
2

n

(C ). Hence, again the C�-norm is unique. It holds
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e.g. for f with �f = f

kB(f)k = kB(f)

�

B(f)k

1

2

= kB(�f)B(f)k

1

2

= kB(f)

2

k

1

2

= k

1

2

fB(f); B(f)gk

1

2

= k

1

2

(�f; f)k

1

2

= (

1

2

kf

2

k)

1

2

=

1

p

2

kfk :

This C�-algebra is called the CAR-algebra (’canonical anticommutation re-

lation’) to (K;�), notation CAR(K;�). It is important for the description of

fermions.

(vi) Let L be a real vector space with a non-degenerate symplectic form �, i.e.

� : L� L! R

�(f; g) = ��(g; f)

�(�f + �g; h) = ��(f; h) + ��(g; h)

�(f; g) = 08g ) f = 0 :

We consider the �-algebra generated by the symbols W (f) with the relations

W (f)W (g) = e

i�(f;g)

W (f + g)

W (f)

�

= W (�f) :

This algebra possesses W (0) as the unit. On this algebra there is a unique

C

�-norm (cf. Bratteli, Robinson). The algebra thus defined is denoted as the

Weyl algebraW(L; �).

(vii) We consider the �-algebra generated by n elements  
i

; i = 1; : : : ; n with the

relations

 

�

j

 

i

= �

ij

n

X

i=1

 

i

 

�

i

= 1 :

This algebra possesses a unique C�-norm (Cuntz, DR). The generated C

�-

algebra is called the Cuntz algebra O
n

. It plays an important role in the

Doplicher-Roberts theory of group duals.

(viii) Let
0

be the �-algebra with that is generated by a self-adjoint element A.

This algebra possesses a lot of C�-norms. The general element of the algebra

is a polynomial in A; p
n

(A). Every compact region K � Rdefines by

kp

n

(A)k

K

= sup

x2K

jp

n

(x)j

a C�-norm on
0

. The completion with respect to the norm k � k
K

yields the

algebra C(K) of continuous functions on K .

Concerning the structure of C�-algebras the following two theorems hold:

THEOREM 1. Every commutative C�-algebra with is isomorphic to the algebra of

continuous functions on a compact Hausdorff space.

THEOREM 2. Every C�-algebra is isomorphic to a norm-closed, self-adjoint algebra

of operators on a (not necessarily separable) Hilbert space.
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If we apply Theorem 1 to the C�-algebra generated by a self-adjoint element A, then

the mentioned Hausdorff space is the spectrum of A,

sp(A) =
n

� 2 C

�

�

�A� � not invertible in
o

:

The spectrum is a closed subspace of the interval [�kAk; kAk]. The element corre-

sponding to the continuous function f is denoted by f(A). Here A corresponds to the

identical function sp(A) 3 x 7! x, to every polynomial corresponds the corresponding

polynomial in A, and f(A) can be obtained as the limit of the sequence

f(A) = lim

n!1

p

n

(A) ;

if the sequence of polynomials p
n

on sp(A) converges uniformly to f .

Now we take a look at representations and states. A representation of a C�-algebra

is a homomorphism � from into the algebra of bounded operators B(H) on a

Hilbert space H, such that

�(A)

�

= �(A

�

) :

Here �(A)� is the adjoint operator to �(A). According to the mentioned properties of

the norm, representations are automatically continuous,

k�(A)k � kAk ;

and they are isometric, if they are faithful (i.e. if their kernel ker = fA 2 ; �(A) =

0g = f g).

Connected to a representation is a family of states

S

�

( ) =

n

! 2 S( )

�

�

�9� 2 B(H); � � 0;Tr� = 1 with !(A) = Tr��(A)
o

:

Here S( ) is the set of states of , i.e. the set of linear functionals on satisfying the

two conditions !(A�A) � 0; A 2 and !( ) = 1. States are hermitian,

!(A

�

) = !(A) ;

which follows from

0 � !

�

(� +A)

�

(� +A)

�

= j�j

2

+ �!(A) + �!(A

�

) + !(A

�

A) 8� 2 C :

If we set � = !(A), then

j!(A)j � !(A

�

A)

1

2

:

From this now follows that states are automatically continuous. For kA�Ak � A�A

is a positive continuous function of A�A and hence possesses a representation

kA

�

Ak �A

�

A = C

�

C

for some C 2 (e.g. C = (kA

�

Ak �A

�

A)

1

2

). Thus,

0 � !(C

�

C) = kA

�

Ak!( )� !(A

�

A) ;

thus,

j!(A)j � !(A

�

A)

1

2

� kA

�

Ak

1

2

= kAk ;
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i.e.

k!k = sup

A 2

kAk = 1

k!(A)k = 1 :

On S( ) can be defined a metric by

d(!

1

; !

2

) = k!

1

� !

2

k :

S( ) is a norm-closed subset of �, the dual space of .

S

�

( ) is called a folium, i.e. a set S of states with the property

X

i

!(A

�

i

A

i

) = 1 ) A 7!

X

i

!(A

�

i

AA

i

) 2 S ;

where ! 2 S and A
1

; : : : ; A

n

2 . S
�

( ) is a closed (with respect to the metric d)

subset of S( ).

Intertwiners play an important role in comparing two representations. Let �
1

and

�

2

be two representations of in Hilbert spaces H
1

and H
2

, respectively. We call

bounded operators T : H

1

! H

2

with the property

T�

1

(A) = �

2

(A)T ; 8A 2

intertwiners from �

1

to �
2

. Let the set of intertwiners from �

1

to �
2

be denoted by

(�

1

; �

2

). There holds

T 2 (�

1

; �

2

) ) T

�

2 (�

2

; �

1

)

T 2 (�

1

; �

2

); S 2 (�

2

; �

3

) ) ST 2 (�

1

; �

3

)

and hence

T 2 (�

1

; �

2

) ) T

�

T 2 (�

1

; �

1

) :

We now introduce the following concepts:

(i) A representation � is called irreducible, if no subspace of H, apart from f g

and H, exists that is invariant under �( ). (It suffices to demand that there

exists no closed invariant subspace.) For irreducible representations Schur’s

Lemma holds: (�; �) = C .

(ii) Two representations �
1

and �
2

are called unitarily equivalent,�
1

' �

2

, if there

exists a unitary (U�

U = UU

�

= ) intertwiner U 2 (�

1

; �

2

).

(iii) Two representations �
1

and �
2

are called disjoint, �
1

�

2

, if no intertwiner apart

from exists, (�
1

; �

2

) = f g. There holds:

�

1

; �

2

irreducible: �

1

6' �

2

, �

1

�

2

�

1

�

2

, dist(S
�

1

( ); S

�

2

( )) = 2 :

(iv) Quasiequivalence:

�

1

� �

2

, S

�

1

( ) = S

�

2

( )

�

1

; �

2

irreducible : �

1

� �

2

, �

1

' �

2

:
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(v) � is called factorial if the center of algebra of selfintertwiners is trivial,

Z(�; �) = C . In this case � is quasiequivalent to all its subrepresentations,

and S
�

( ) does not contain a closed subfolium. Two factorial representations

are either quasiequivalent or disjoint.

Besides the norm topology there exists the �-weak topology on the state space. It is

generated by the semi-norms

k'k

A

= j'(A)j ; A 2 ; ' 2

�

on the space � of continuous linear functionals on . The following important

proposition holds:

FELL’S THEOREM. Let � be a faithful representation of . Then S
�

( ) is �-weakly

dense in S( ).

This theorem explains ’in principle’, why and in what sense states of a folium can

approximate an arbitrary given state. Yet, in the application of the theorem one has

to pay attention that in a physical situation in general not all states of a folium are

available, but only the ones that can be prepared at ’finite expense’.

We have seen that density matrices describe states in representations. In fact one

obtains all states in this way. There even holds the following proposition:

THEOREM (GNS-CONSTRUCTION). Let ! be a state of a C�-algebra . Then there

exists a Hilbert spaceH, a vector 
 2 H, and a representation � of in H, such that

(i) (
; �(A)
) = !(A); 8A 2 ,

(ii) �( )
 is dense inH (i.e. 
 is cyclic for �( )).

(H; �;
) is called GNS-triple to !. Let (H0; �0;
0) be another triple fulfilling (i) and

(ii). Then there exists a unitary operator U 2 (�; �

0

) with U
 = 


0. (One says, the

GNS-triple is unique (up to unitary equivalence)).

PROOF. We define on the sesquilinear form (A;B)

!

= !(A

�

B). ( � ; � )

!

is a

semidefinite scalar product, i.e.

(i) linear in the right, antilinear in the left argument ( In the mathematical

literature mostly the opposite.),

(ii) hermitian

(B;A)

!

= !(B

�

A) = !(A

�

B) = (A;B)

!

;

(iii) positive semidefinite.

In particular the Schwarz inequality holds

j!(A

�

B)j

2

� !(A

�

A)!(B

�

B) :

Hence the setN
!

= fA 2 j!(A

�

A) = 0g is a subspace of . N
!

is even a left ideal,

i.e. A 2 N
!

; B 2 ) BA 2 N

!

, since (with C = ((BA)

�

B)

�)

!((BA)

�

BA) = !(C

�

A) � !(C

�

C)

1

2

!(A

�

A)

1

2

= 0

because of !(A�A) = 0. We now consider the space H
0

= =N

!

with the canonical

map
�

! H

0

A 7!

^

A = A+N

!

:
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H

0

is a pre-Hilbert space with positiv definite scalar product

(

^

A;

^

B) = (A;B)

!

:

Its completion is a Hilbert space H
0

= L

2

( ; !). On H
0

a representation can be

defined through left multiplication,

�

0

(A)

^

B =

d

AB :

�

0

is well-defined, for N
!

is a left ideal. In addition �
0

(A) is bounded. Namely,

k�

0

(A)

^

Bk

2

= k

d

ABk

2

= !((AB)

�

AB) = !(B

�

A

�

AB) :

Since kA�Ak �A�A = C

�

C for a C 2 , from !(B

�

C

�

CB) � 0 follows

k�

0

(A)

^

Bk

2

= kAk

2

kBk

2

;

i.e. k�
0

(A)k � kAk. Hence, �
0

(A) can be uniquely continued to a bounded operator

�(A) on H. That � is a �-representation follows from

(

^

C; �(A

�

)

^

B) = !(C

�

A

�

B) = !((AC)

�

B) = (�(A)

^

C;

^

B) :

We set 
 =

^ and obtain a GNS-triple (H; �;
). The uniqueness of the GNS-triple

emerges from the unitary intertwiner U 2 (�; �

0

),

U�(A)
 = �

0

(A)


0

; A 2 :

U is densely defined (since 
 is cyclic), isometric

kU�(A)
k

2

= k�

0

(A)


0

k

2

= (


0

; �

0

(A

�

A)


0

) = !(A

�

A)

= (
; �(A

�

A)
) = k�(A)
k

2

;

and onto (since 


0 is cyclic), thus unitary. The intertwining properties follow from

U�(A)�(B)
 = U�(AB)
 = �

0

(AB)


0

= �

0

(A)�

0

(B)


0

= �

0

(A)U�(B)


on �( )! = H

0

and onH by continuity.

Another mathematical concept we need is the von Neumann algebra or W �-algebra.

Von Neumann algebras can be introduced in different ways. The most direct method

starts from a �-algebra of Hilbert space operators. On the algebra B(H) there exist

besides the norm topology a whole lot of further topologies.

(i) The weak operator topology. This is generated by the semi-norms

kAk

�; 

= j(�;A )j ; �;  2 H :

(ii) The strong operator topology. It is generated by the semi-norms

kAk

�

= kA�k ; � 2 H :

(iii) The ultraweak (or �-) operator topology. It is generated by the semi-norms

kAk

�;�

= jTr�Aj ; � density matrix inH :

(iv) The ultrastrong (or s-) operator topology, generated by the semi-norms

kAk

s;�

= (Tr�A�A)
1

2

; � density matrix :
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(v) The �-ultrastrong (or s�-) operator topology, generated by the semi-norms

kAk

s

�

;�

= (kAk

2

s;�

+ kA

�

k

2

s;�

)

1

2

; � density matrix :

If H is infinite-dimensional, then none of these topologies satisfies the axioms of

countability. Therefore they cannot be characterized by convergent sequences, one

needs convergent nets, instead. Comparison of the topologies yields

weak < strong < strong�

^ ^ ^

� < s < s

�

< norm

:

One can now close a �-subalgebra of B(H) in either of these topologies. Surprisingly

one obtains for all topologies between weak and s� the same closure. This is again a

�-algebra. A �-subalgebra of B(H) (closed in this topology) is called von Neumann

algebra or W �-algebra.

Von Neumann algebras always have a unit. Yet, this does not necessarily have to be

the unit operator on the Hilbert space, but may be a projection. If one speaks of a von

Neumann algebra on a Hilbert space though, then it is meant that the of the algebra

is the operator, too. Thus if necessary,H is replaced by PH.

Next an algebraic definition of von Neumann algebras will be given. Let be

a �-algebra of operators on a Hilbert space H containing the operator. Then von

Neumann’s bicommutant theorem holds.

THEOREM. The von Neumann algebra generated by is

00

=

n

A 2 B(H)

�

�

�8B 2 B(H) with [B;A

0

] = 08A

0

2 holds [B;A] = 0

o

:

For a setM� B(H)

M

0

=

n

B 2 B(H)

�

�

� [B;C] = 08C 2 M

o

is called the commutant of M. 00 is thus the commutant of the commutant (the

bicommutant) of .

The characterization of von Neumann algebras through the bicommutant theorem

uses the embedding of the algebra in B(H). As a matter of fact it is possible to

characterize von Neumann algebras intrinsically. For that purpose one notes that the

�-, s- and s�-topologies are described by density matrices, thus by states of a folium.

Von Neumann algebras N can now also be characterized by the fact that they are

C

�-algebras with a distinguished (closed) folium, the folium of normal states S
n

(N ).

This folium satisfies the conditions:

(i) A;B 2 N ; !(A) = !(B)8! 2 S

n

(N ) ) A = B.

(ii) Let f : S

n

(N )! C be a bounded function with

f(�!

1

+ (1 � �)!

2

) = �f(!

1

) + (1� �)f(!

2

) ;

where � 2 [0; 1] and !
1;2

2 S

n

(N ). Then there exists a A 2 N with

f(!) = !(A) :

REMARKS.



3. OPERATOR ALGEBRAS 15

(i) One can describe these conditions also in the way, that N is the space of

continuous linear functionals on the subspace N
�

of N � generated by S
n

(N ),

N = (N

�

)

�. One calls N
�

the predual of N .

(ii) Whether a state on a von Neumann algebra N is normal, can be decided from

the following property. Let

A

�

2 N

+

=

n

A 2 N

�

�

�9B 2 N with B�

B = A

o

be a monotoneously increasing net, i.e.

A

�

� A

�

0 for � � �0

with an upper bound c . By

f(!) = sup

�

!(A

�

)

a bounded linear function on S
n

(N ) is defined. Hence, there exists A 2 N

with f(!) = !(A). A is per constructionem the lowest upper bound of the set

(A

�

)

A = supA

�

:

A state ! on N is called normal (is an element of S
n

(N )), if for all bounded

monotoneously increasing nets

sup!(A

�

) = !(supA

�

) :

(iii) Singular (i.e. not normal) states on von Neumann algebras occur mostly in the

following context: Let � N be a �-dense �-subalgebra of N , and let !

be a state on . Due to the Hahn-Banach theorem (which in its turn is based

upon Zorn’s lemma) ! possesses a continuation to a state on N . A normal

continuation yet exists only, if ! is �-continuous.

(iv) �-isomorphisms of von Neumann algebras are automatically continuous with

respect to the �-, s- and s�-topologies.

EXAMPLES.

(i) Let 2 C([0; 1]) be the C�-algebra of continuous complex-valued functions

on the interval [0; 1]. The Lebesgue measure defines by

�(f) =

Z

dxf(x)

a state on . Other states in the folium of � are of the form

�

g

(f) =

Z

dxg(x)f(x)

with g 2 , g � 0 and
R

dxg(x) = 1. The distance between two states of this

form is

d(�

g

1

; �

g

2

) = sup

f;kfk�1

�

�

�

Z

dx(g

1

(x)� g

2

(x))f(x)

�

�

�

=

Z

dxjg

1

(x)� g

2

(x)j = kg

1

� g

2

k

1

:

The closure of the folium therefore contains all states of the form �

g

with

g 2 L

1

([0; 1]), g � 0 and
R

dxg(x) = 1, i.e. all Lebesgue absolute continuous



16 I. INTRODUCTION

probability measures. The von Neumann algebra corresponding to this folium

is L1([0; 1]), i.e. the algebra of all essentially bounded measurable functions,

modulo the functions, that differ from zero only on a set of measure null.

(ii) LetK
1

be the algebra of operators� +A, � 2 C , A compact, on a Hilbert space

H. K
1

is generated (as a closed linear space) by and the rank-1 operators

j�ih j. Hence, a state ! 2 S(K

1

) is fixed by its values !(j�ih j) for all

�; 2 H. We now define an operator � onH by its matrix elements

(�; � ) = !(j ih�j) :

One easily shows (with j!(A)j � kAk and kj ih�jk = kj ih�j�ih jk

1

2

=

k�k k k), that � is bounded. Positivity of � follows from

(�; ��) = !(j�ih�j) � 0 because of j�ih�j � 0 :

� is a trace class operator, because for every orthonormal system (�

n

) 2 H

holds

N

X

n=1

(�

n

; ��

n

) = !(

N

X

n=1

j�

n

ih�

n

j) � 1 :

Hence, a state ! is characterized by a positive trace class operator � with

Tr� � 1,

!(� +A) = � + Tr�A ; A compact ;

and possesses the decomposition into disjoint minimal folia

! = (1 � Tr�)!
1

+ Tr�
Tr(� �)

Tr�

with !
1

(� +A) = �; A compact.

Consider the folium with Tr� = 1. Let f be a linear functional on the trace

class operators, that is bounded on the density matrices. Then

f(j�ih�j) = (�;A�)

defines a bounded linear operatorA onH. Conversely, everyA 2 B(H) defines

a linear functional on the trace class operators. We therefore see, that the density

matrices form the folium of normal states on the von Neumann algebra B(H).

4. Process of Measurement

The occurrence of superselection sectors gives an answer to the problem of the

quantum mechanical description of the process of measurement. According to the

formulation of von Neumann the process of measurement consists of a reduction of

the wave packet: Let e.g. P be a projection, then the measurement of P effects a

transformation of the pure state  into the mixture

jP ihP j+ j(1� P ) ih(1 � P ) j ;

in which the two components P and (1 � P ) occur with the probabilities kP k2

and k(1�P ) k2. Since a unitary time evolution could never yield this result, this was

taken as an additional interaction, what of course is very dissatisfying.
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However, even if one finds a mechanism turning pure states into mixtures, e.g.

coupling of the system to a second system and subsequent separation, then the problem

still remains, that a mixture has a lot of decompositions into pure states, so reading off

kP k

2 is not obvious (there is only one decomposition into orthogonal states, however

it seems to be a little artificial to claim, that this happens in the process of measurement).

A much better interpretation has been developed by Hepp (see Landsman for a current

overview). According to him the essential point is, that the system to be observed either

possesses superselection sectors by itself or will be coupled to such a system, and that

in the limit of large evolution times the state turns into a mixture of disjoint states. The

observation of the intensity of the single components then is a measurement of a central

observable, that is not disturbed by quantum physical interference.

As a first example we consider a non-relativistic particle, whose pure states are

described by 2 L2

(R

3

); k k = 1. As the algebra of observables we considerK
1

. We

want to measure the transition probability to a state described by � 2 L2

(R

3

); k k = 1.

For that purpose we choose a Hamilton operatorH , that possesses � as the only bound

state and has on the orthogonal complement of � a Lebesgue absolute continuous

spectrum. The time evolution on K
1

is given by the automorphism

�

t

( � ) = e

iHt

� e

�iHt

�

We obtain for A = j�

1

ih 

1

j; �

1

;  

1

2 H; ! = !

 

= ( ; � ),

!

 

�

t

(A) = !

 

�

t

(j�

1

ih 

1

j) = ( ;�

t

(j�

1

ih 

1

j) ) = ( ; e

iHt

�

1

) ( 

1

; e

�iHt

 ) :

Let  = (�; )�+  

?. There holds

( 

?

; e

iHt

�

1

) =

Z

dEe

iEt

( 

?

(E); �

1

(E))! 0 ; t!1 ;

since E 7! ( 

?

(E); �

1

(E)) 2 L

1

(R) (Riemann-Lebesgue lemma). Thus,

!

 

�

t

(A)! j(�; )j

2

(�;A�) ; t!1

for A compact and

!

 

�

t

! j(�; )j

2

!

�

+ (1 � j(�; )j

2

)!

1

; t!1 :

Thus, !
 

�

t

decomposes asymptotically into two disjoint components !
�

and !
1

, and

the intensity of the component !
�

is given by the transition probability j(�; )j2.

Next we will take a look at the following example. Let  
�

; � = 1; 2 be the massive

free Dirac field in two dimensions.

 =

 

 

1

 

2

!

is a solution of the Dirac equation

(im+ 

�

@

�

) = 0 ; 

0

=

 

1 0

0 �1

!

; 

1

=

 

0 1

�1 0

!



�



�

+ 

�



�

= 2g

��

; (

0

)

�

= 

0

; (

1

)

�

= �

1
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in the sense of operator valued distributions. One considers the operators

 (f) =

X

�;�

Z

d

2

xf

�

(x) 

�

(x)(

0

)

��

; f 2 D(R

2

; C

2

)

and demands

 ((

�

@

�

+ im)f) = 0 ; 8f 2 D(R

2

; C

2

) :(1)

On the spacelike hyperplanes the commutation relations take a particularly simple form.

For f; g 2 D(R; C2),

f (f 
 �

t

);  (g 
 �

t

)g = 0

f (f 
 �

t

);  (g 
 �

t

)

�

g = (f; g) �

2

X

�=1

Z

dxf

�

(x)g

�

(x) :

(That  is well-defined on f 
 �
t

, too, follows from (1) and properties of the Dirac

equation). The Fock space is the GNS Hilbert space to the state

!( (f

1

) � � � (f

n

) (g

m

)

�

� � � (g

1

)

�

) = �

nm

det

�

S

+

(f

i

; g

j

)

�

; i; j = 1; : : : ; n :

Here,

S

+

(f; g) =

X

�;�

Z

d

2

xd

2

yf

�

(x)S

+

(x� y)

��

g

�

(y)

and

S

+

(x) = i

0

(

�

@

�

� im)�

+

(x)

= i

0

(

�

@

�

� im)

+1

Z

�1

dp

2

p

m

2

+ p

2

e

�i(

p

m

2

+p

2

x

0

�px

1

)

(2�)

�3

:

Because of the anticommutation relations the Dirac field cannot be interpreted as

an observable itself, but combinations, which are invariant under the global gauge

transformation  ! e

i�

 ; � 2 R. Let be the C�-algebra, that is generated by

operators of the form  (f)

�

 (g). We consider now in Fock space the expression

q(x) =

x

1

Z

�1

dy

1

j

0

(x

0

; y

1

) ; j

0

(x) =

X

�

: 

�

�

 

�

(x) : :

j

0

is the charge density of the free Dirac field, the double dots stand for the subtraction

of the (divergent) vacuum expectation value. Formally,

@

1

q(x) = j

0

(x)

@

0

q(x) =

x

1

Z

�1

dy

1

@

0

j

0

(x

0

; y

1

) = �

x

1

Z

�1

dy

1

@

1

j

1

(x

0

; y

1

) = �j

1

(x)

with j
1

(x) =: 

�

(x)

0



1

 (x) :. Furthermore

�q(x) = (@

2

0

� @

2

1

)q(x) = �@

0

j

1

� @

1

j

0

= �2im : 

�



0



5

 : :
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: 

�



0



5

 : (x) can now be expressed as a function of q(x),

�2im : 

�



0



5

 : (x) = 2m

2

... q(x)(cos(2�q(x))� 1)

... ;

where

... e
2�i�q(x)

... =

e

2�i�q(x)

!

0

(e

2�i�q(x)

)

:

Thus, one can see that q is a solution of the Sine-Gordon equation with a certain

coupling constant. In fact it is a special case of the connection between Sine-Gordon

and massive Thirring model (see Coleman, Lehmann-Stehr, Schroer-Truong). q (re-

spectively bounded operators constructed from it) can be understood as an observable,

for it commutes in spacelike distances with all other observables and also with itself.

Since the transformation q(x) ! q(x) + conserves all algebraic relations (in par-

ticular the field equation for q), it represents a symmetry. However, this symmetry is

spontaneously broken. Since the vacuum expectation value of q in Fock space vanishes,

!

0

(q(x) + ) = 1 = !

1

(q(x)) :

We thus obtain a family of vacua !
n

; !

n

(q(x)) = n; n 2 Z. The corresponding GNS

representations are disjoint. We now consider the one particle state

!

g

= ( (g)
; �( � ) (g)
)

with g 2 D(R2

; C

2

),

kgk

2

= (2�)

�3

Z

R

dp

p

p

2

+m

2

X

�

�

�

�~g

�

(

q

p

2

+m

2

; p)

�

�

�

2

= 1 :

The following holds:

!

g

(q(x)) �!

8

<

:

0 x! left spacelike1

�1 x! right spacelike1
:

Thus, this state interpolates between two vacua, it is a soliton (and can be identified

with the soliton of the Sine-Gordon theory).

Now we consider the time evolution of this state. Let �
t

be the time evolution

induced by the Dirac equation. Then,

!

g

� �

t

�!

w

�

kP

+

gk

2

!

0

+ kP

�

gk

2

!

1

with

kP

�

gk

2

=

Z

R

�

dp

p

m

2

+ p

2

X

�

�

�

�~g

�

(

q

m

2

+ p

2

; p)

�

�

�

2

:

We thus see, that in the limit t!1 the one particle state decomposes into two disjoint

components with intensities equal to the probability, that the particle is moving to the

right or left, respectively.
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CHAPTER II

Local Quantum Physics

1. Principle of Locality

One of the most important principles in physics is the principle of locality. It says that

physical systems can only influence each other locally. Where actions over distances

are observed, there has to be a mediating system, as e.g. the electric field for the

Coulomb force between charges. The principle of locality allows to approximately

isolate systems and strongly restricts the possible physical laws.

In quantum theory one can formulate the principle of locality in the following way.

Let be the C�-algebra of the quantum mechanical observables. possesses a

norm-dense subalgebra
0

, whose self-adjoint elements can be interpreted as local

measurements. One thereby associates to each A 2

0

the set L(A) of spacetime

regions, in which A can be measured, such that

(i) O 2 L(A); O
1

� O ) O

1

2 L(A)

(ii) If B is an element of the �-algebra generated by A
1

; : : : ; A

n

, then

L(B) �

n

\

i=1

L(A

i

) ;

i.e. if all A
i

can be measured in one region, then so can B.

One can now consider for each spacetime region O the algebra

(O) =

n

A 2

0

; O 2 L(A)

o

:

(O) can be viewed as the algebra of observables of the subsystem connected to the

region O.

According to Haag and Kastler a quantum field theoretical model can be completely

characterized by the map from regionsO to operator algebras (O) on a Hilbert space

H, such that

O

1

� O

2

) (O

1

) ,! (O

2

) ; (unital embedding) :

It is sufficient to fix the Haag-Kastler net = ( (O))

O

on regions of the form

O = (V

+

+ x) \ (V

�

+ y) ; y � x 2 V

+

;

the so-called double cones. Here

V

�

=

n

x 2 R

4

�

�

�x

0

>

<

� j~xj

o

21
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is the forward-, backward cone, respectively. Algebras for general regions G can now

be introduced through the definition

(G) = �-algebra (C�-algebra, von Neumann algebra) generated by (O); O 2 G

One often initially knows the algebras (O) only as abstract algebras. Then in

addition one needs to have knowledge of the embedding homomorphisms

i

O

1

O

2

: (O

1

)! (O

2

) ; forO
1

� O

2

with the compatibility condition i
O

3

O

2

�i

O

2

O

1

= i

O

3

O

1

forO
1

� O

2

� O

3

. This system

then defines an abstract global algebra
1

, which is characterized by the following

universality condition:

(i) 9 embeddings i
O

: (O)!

1

, such that

i

O

2

� i

O

2

O

1

= i

O

1

; O

1

� O

2

:(2)

(ii) For every family of homomorphisms '
O

: (O) ! B with the compatibility

condition (2) there is a homomorphism ' :

1

! B with ' � i
O

= '

O

.

1

is generated by the elements i
O

(A); A 2 (O); O 2 K with the relations

(i) (O) 3 A! i

O

(A) is a -preserving �-homomorphism

(ii) i
O

2

(i

O

2

O

1

(A)) = i

O

1

(A); A 2 (O

1

); O

1

� O

2

By this
1

is uniquely fixed as a unital �-algebra.

Now we want to make use of the fact that the set K of double cones of Minkowski

space is directed, i.e.

O

1

;O

2

2 K ) 9O 2 K withO
1

� O; O

2

� O :

For that reason,

1

=

[

O

i

O

( (O)) :

If now every local algebra (O) is aC�-algebra, then
1

possesses a uniqueC�-norm,

and one can introduce the completion

=

[

O

i

O

( (O)) :

is called the quasilocal algebra. One talks about theC�-inductive limit of the system

( (O)).

The C�-inductive limit has the property, that no new relations can arise. For let

� be a representation of , and �(A) = 0 for an A 2 . There exists a sequence

O

n

2 K; A

n

2 (O

n

) with kA
n

�Ak ! 0. Then, k�(A
n

)k ! 0. Now,

k�(A

n

)k = inf

n

kA

n

�B

n

k; B

n

2 (O

n

); �(B

n

) = 0

o

:

Hence there exists a sequence B
n

2 (O

n

); �(B

n

) = 0 with kA
n

�B

n

k ! 0, thus,

kA

n

�B

n

k � kA�A

n

k+ kA�B

n

k ! 0 ;

i.e. the kernel of � is the completion of the union of the kernels of �j
(O)

. If in

particular �j
(O)

is faithful for all O, then � is faithful, too.

Let us consider as an example the spin algebra from the introductory chapter. We

consider the setM of intervals I = fn 2 Z; n

1

� n � n

2

g; n

2

� n

1

in Z. To every
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interval the algebra (I) is associated, which is generated by the �-matrices at the point

n 2 I . This algebra is isomorphic to M
2

n

2

�n

1

(C ). The embeddings (I) ,! (J)

for I � J are defined in a natural way. The C�-inductive limit is the C�-algebra of

the spin chain we already considered. Since the local algebras (I) are simple (do not

possess any nontrivial ideals), is simple, too, and all representations are faithful.

Let us now take a look at the structure of the state space. We assume that every local

algebra (O) possesses a distinguished folium S

n

( (O)) of states (possibly states

with finite energy density in quantum field theoretical examples). Equivalently, we

can assume every local algebra to be a von Neumann algebra. We now consider the

set S
ln

( ) of locally normal states of , these are states ! 2 S( ) with the property

!j

(O)

2 S

n

( (O)). Even if the local folia are minimal (as in the example of the spin

algebra), S
ln

( ) possesses in general a lot of different minimal folia. In the example of

the spin algebra one can choose for every k 2 Za vector ~n(k) 2 B3, which describes

on (fkg) the state !(k) with the density matrix �(k) =

1

2

( + ~n(k)~�(k)). Every

such sequence defines a state on . The folium generated by it is minimal (the state

is primary, i.e. the GNS representation is factorial). Two such sequences (!(k); !0(k))

define disjoint folia if
X

k

k!(k)� !

0

(k)k

2

=

X

k

j~n(k)� ~n

0

(k)j

2

=1 ;

for the following estimate holds:

k! � !

0

k � 2(1 � e

�

1

8

P

k!(k)�!

0

(k)k

2

) :

PROOF. We have

k!(k)� !

0

(k)k = k�(k)� �

0

(k)k

1

� k(

q

�(k)�

q

�

0

(k))(

q

�(k) +

q

�

0

(k))k

1

� k

q

�(k)�

q

�

0

(k)k

2

k

q

�(k) +

q

�

0

(k)k

2

= 2

r

1� (Tr
q

�(k)

q

�

0

(k))

2

:

Furthermore (for �
N

=

Q

N

k=1

�(k)),

�

p

�

N

�

q

�

0

N

�

p

�

N

�

q

�

0

N

�

p

�

N

+

q

�

0

N

and hence (A =

p

�

N

�

q

�

0

N

; B =

p

�

N

+

q

�

0

N

),

�1 � B

�

1

2

AB

�

1

2

� 1 :

(Here B�

1

2 is defined to null on the null space of B.) Thus,

k! � !

0

k � k(! � !

0

)(B

�

1

2

AB

�

1

2

)k = Tr(�
N

� �

0

N

)B

�

1

2

AB

�

1

2

:

�

N

� �

0

N

=

1

2

(AB +BA) and cyclicity of the trace yield

k! � !

0

k � TrAB�

1

2

AB

�

1

2

= Tr(B�

1

4

AB

�

1

4

)

�

B

�

1

4

AB

�

1

4

= TrC�

C

with C = B

�

1

4

AB

�

1

4 . Because of

Tr(C�

C + CC

�

� C

2

�C

�

2

) = Tr(C �C�

)

�

(C � C

�

) � 0
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we have TrC�

C =

1

2

Tr(C�

C + CC

�

) �

1

2

Tr(C2

+ C

�

2

). However,

TrC2

= TrC�

2

= TrA2

= k

p

�

N

�

q

�

0

N

k

2

2

= 2(1 � Tr
p

�

N

q

�

0

N

) ;

so that k! � !0k � 2(1 � Tr
p

�

N

q

�

0

N

). Now,

Tr
p

�

N

q

�

0

N

=

N

Y

k=1

Tr
q

�(k)

q

�

0

(k) :

From the estimate for k!(k)� !0(k)k follows

1� (Tr
q

�(k)

q

�

0

(k))

2

�

1

4

k!(k)� !

0

(k)k

2

or

Tr
q

�(k)

q

�

0

(k) �

s

1 �

1

4

k!(k)� !

0

(k)k

2

� e

�

1

8

k!(k)�!

0

(k)k

2

:

Thus,

Tr
p

�

N

q

�

0

N

� e

�

1

8

P

N

k=1

k!(k)�!

0

(k)k

2

and therefore

k! � !

0

k � 2(1 � e

�

1

8

P

N

k=1

k!(k)�!

0

(k)k

2

)

for all N .

A new situation occurs if the system of subsets, over which the local algebras are

defined, is not directed, e.g. if one considers a theory on a globally hyperbolic Lorentz

manifold � � R, � compact, and the algebras (K) for contractible regions in � are

given. Then one can consider again the �-algebra generated by i
K

; A 2 (K) with

the mentioned relations. This however does not have the structure of a union of local

algebras. For that reason there arise algebraic expressions, which cannot be calculated

in the local algebras. Hence, the algebra can fulfill new relations. In particular there

is no unique C�-(semi)norm on this algebra. However, there is a uniquely determined

maximal C�-seminorm, and if there exists a family of faithful representations �
K

of

(K) in a Hilbert space H with �

K

� i

KK

0

= �

K

0 for K0 � K, then this maximal

C

�-seminorm coincides on the local algebras with the C�-norm of the local algebras.

As an example we consider the CAR algebra over L2

(S

1

) with � as complex con-

jugation. For every proper interval I in S1 wie define (I) as the even subalgebra

of CAR(L2

(I);�), i.e. the subalgebra, which is generated by products containing an

even number of Fermi operators B(f). If I � J , then L2

(I) is in a natural way a

subspace of L2

(J). This defines an embedding i
JI

: (I) ! (J). The family of

these embeddings satisfies the compatibility condition

i

KJ

� i

JI

= i

KI

; for I � J � K

and hence defines an algebra (S

1

). The structure of (S

1

) is easy to describe.

First, (I) is the algebra spanned by operators of the form

b

I

(f; g) = 2B(f)B(g) ; f; g 2 L

2

real(I); �f = f; �g = g
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The canonical anticommutation relations for B,

fB(f); B(g)g = (f; g)

lead to the relations

(i) f; g ! b

I

(f; g) is real bilinear

(ii) b
I

(f; f) = kfk

2

(iii) b
I

(f; g)b

I

(g; h) = kgk

2

b

I

(f; h)

(S

1

) now is the algebra generated by b
I

(f; g); f; g 2

1

2

( +�)L

2

(I) for all I and the

additional relation

(iv) b
I

(f; g) = b

J

(f; g) for I � J .

Let now I

1

; I

2

; J

�

be intervals on S1 with

I

1

[ I

2

� J

�

J

+

[ J

�

= S

1

I

1

\ I

2

= ;

and there is no interval I with I

1

\ I

2

� I � J

+

\ J

�

. Let f 2 L

2

(I

1

); g 2

I

1

I

2

J

+

J

�

FIGURE II.2. Intervals on S1

L

2

(I

2

); �f = f; �g = g; kfk = kgk = 1. We consider the operator

Y = b

J

+

(f; g)b

J

�

(g; f)

Y does not depend on the choice of g, for let g0 2 L2

(I

2

) with kg0k = 1 and �g

0

= g

0.

Then,

b

J

+

(f

0

; g

0

) = b

J

+

(f; g)b

J

+

(g; g

0

) = b

J

+

(f; g)b

I

2

(g; g

0

)

and

b

J

�

(g

0

; f) = b

I

2

(g

0

; g)b

J

�

(g; f) :

With b
I

2

(g; g

0

)b

I

2

(g

0

; g) = b

I

2

(g; g) = follows

b

J

+

(f; g

0

)b

J

�

(g

0

; f) = Y :

With b
J

+

(f; g) = �b

J

+

(g; f) also follows the independence of f . Then, however, Y

also becomes independent of the choice of the intervals, and we have

Y

2

= 1
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and

[Y; b

I

(f; g)] = 0 ; 8f; g 8I :

Every element A 2 (S

1

) can be decomposed into

A = A

+

+A

�

; with A
�

=

1

2

( + Y ) ;

and (S

1

) possesses the corresponding decomposition

(S

1

) =

+

(S

1

)�

�

(S

1

) :

+

(S

1

) is obviously isomorphic to the even part of CAR(L2

(S

1

);�), for b
I

(f; g)

+

is

independent of I . Namely, let I
1

; I

2

be two intervals with f; g 2 L2

(I

1

) \ L

2

(I

2

). If

there exists an interval with I � I

1

[ I

2

, then

b

I

1

(f; g) = b

I

(f; g) = b

I

2

(f; g) :

If there is no such interval, then I
1

[ I

2

= S

1 and I
1

\ I

2

has two components I
�

. We

decompose f and g into f = f

+

+ f

�

; g = g

+

+ g

�

, which each have support in one of

the components, and obtain a corresponding decomposition of b
I

1

(f; g) and b
I

2

(f; g).

We have

b

I

1

(f

�

; g

�

) = b

I

�

(f

�

; g

�

) = b

I

2

(f

�

; g

�

)

and

b

I

1

(f

�

; g

�

)

+

= [Y; b

I

2

(f

�

; g

�

)]

+

= b

I

2

(f

�

; g

�

)

+

:

+

(S

1

) corresponds to the so-called Ramond sector (fermions on S1 with periodical

boundary conditions). We now want to convince ourselves of the fact, that
�

(S

1

) cor-

responds to the Neveu-Schwarz sector (fermions on S1 with antiperiodical boundary

conditions). We consider the twofold covering ~

S

1 of S1 and the Hilbert space

L

2

(

~

S

1

)a = ff 2 L
2

(

~

S

1

); f(�

p

z) = �f(

p

z)g :

(We have embedded ~

S

1 into the Riemann surface of
p

z). Over this space we can

again consider the even CAR algebra. It describes fermions on S1 with antiperiodical

boundary conditions. We choose a covering map ~

S

1

! S

1 by distinguishing a point z
0

in S1. The inverse image of an interval I � S

1 is the union of two intervals I(1) [ I(2)

on ~

S

1. We now choose I

(1)

� (

p

z

0

;�

p

z

0

) if I 63 z

0

and otherwise such that

I

(1)

3 (�

p

z

0

). Now to every f 2 L2

(I); I � S

1 will be associated a ~

f

I

2 L

2

(

~

S

1

)a by

supp ~

f

I

� I

(1)

[ I

(2)

;

~

f(

p

z) =

8

<

:

f(z)

p

z 2 I

(1)

�f(z)

p

z 2 I

(2)

:

Through the identification

b

I

(f; g) = 2B(

~

f

I

)B(~g

I

)

now an isomorphism is defined from CAR(L2

(

~

S

1

)a;�)even to
�

(S

1

).

This algebra (S

1

) =

+

(S

1

) +

�

(S

1

) possesses as a unique C�-norm

kAk = sup

n

kA

+

k; kA

�

k

o

;
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z

0

S

1

I

~

S

1

p

z

0

�

p

z

0

I

(2)

I

(1)

FIGURE II.3. Covering S1

where the C�-norms on the even CAR algebras
+

(S

1

) and
�

(S

1

) are unique.

2. Haag-Kastler axioms

The guiding principle in algebraic quantum field theory is that a quantum field

theoretical model is defined by the system of the local algebras and the corresponding

embeddings (local quantum physics). A model representing a relativistic theory of

elementary particles should exhibit the following properties:

(1) If O
1

is spacelike to O
2

andO
1

[ O

2

� O, then in (O) holds

[A

1

; A

2

] = 0 ; for A
1

2 (O

1

); A

2

2 (O

2

) :

This describes the relativistic causality. Operations in O
1

(described by isome-

tries V 2 (O

1

)) do not influence the results of measurement of observables

in O
2

,

!(V

�

AV ) = !(A) ; A 2 (O

2

); V 2 (O

1

); V

�

V = 1; ! 2 S( ) :

This condition continues to make sense in general spacetimes with causal struc-

ture.

(2) Poincaré transformations P
"

+

3 L = (a;�) are represented by automorphisms

�

L

of , with

�

L

( (O)) = (LO) :

This condition can be transferred analogously to spacetimes with other symme-

tries. In a general curved spacetime this condition has no analogue.

(3) Stability: This condition has not found a really satisfying formulation. One for

most cases sufficient formulation is the existence of a Poincaré invariant ground

state !
0

inducing a faithful GNS representation. Here a state !
0

is a ground

state (with respect to a 1-parameter group �
te

; e 2 V

+

; e

2

= 1 of timelike

translations) if for all A;B 2 the function

R3 t 7! !

0

(A�

te

(B))
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is continuous and boundary value of a bounded analytic function on the upper

half plane. Then, !
0

is automatically invariant, !
0

��

te

= !

0

, since forA = A

�

!

0

(�

t

(A)) = !

0

( �

t

(A)) = !

0

(�

t

(A)) ;

i.e. !
0

�

t

is entire and bounded. In this case one defines in the GNS Hilbert

space H
0

to !
0

a unitary time evolution operator by

U(t)�

0

(A)


0

= �

0

�

te

(A)


0

:

The isometry ofU(t) follows from the invariance of !
0

, the invertibility directly

from U(�t)U(t) = . By definition t 7! U(t) is continuous in the weak

operator topology and then also in the strong operator topology because of

kU(t)� U(s)�k

2

= 2

�

k�k

2

� Re(U(t)�;U(s)�)
�

= 2Re(U(t)�; (U(t)� U(s))�)

It follows that U(t) is a strongly continuous unitary 1-parameter group. By the

Stone theorem there is a unique self-adjoint operator H with

U(t) = e

iHt

:

ObviouslyH


0

= 0. FurthermoreH possesses spectrum inR
+

, for if f 2 D(R)

with suppf � R
�

with Fourier transform ~

f , then

(�

0

(A)
; f(H)�

0

(B)
) =

Z

dt

~

f(t)(�

0

(A)
; U(t)�

0

(B)
)

=

Z

dt

~

f(t)!

0

(A

�

�

te

(B))

=

Z

�

dz

~

f(z)F

A

�

B

(z) :

Using the estimate

j

~

f(z)je

�E

0

Imz
(jRezj2 + 1)

n

<

Z

dE

�

�

�((1 �

d

2

dE

2

)

n

f)(E)

�

�

�

E

0

= supfE; E 2 suppfg, and the path � of figure 2, we find f(H) = 0.

R0�R

iR

FIGURE II.4. The path �.

(4) Existence of a dynamical law.

If f is the solution of a hyperbolic differential equation, then f(x) is deter-

mined by the values of f and its normal derivative on a space hypersurface C ,

possessing the property that every past directed (future directed) inextendible

causal curve starting at x intersects the surface C .
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In quantum field theory the exact formulation of a dynamical law is difficult

(and has been achieved only in a few exceptional cases). In the algebraic frame

one can however formulate the so-called time slice axiom:

Let G be a globally hyperbolic region, and let U be a neighborhood of a Cauchy

surface of G. Then,

(G) = (U) :

Curiously, the time slice axiom has not found any interesting applications.

This is definitely due to the fact, that the characterization of dynamics in

the framework of algebraic quantum field theory has not yet been achieved

satisfactorily. The time slice axiom has as a consequence the additivity of the

net,

(O) =

_

�

(O

�

) ; 8 coverings (O
�

) of O :

PROOF. Let (O
�

) be a covering and C be a Cauchy sequence. Let U be a

neighborhood of C with the property, that every double cone in U lies in a

double cone O
�

. Then,

(U) �

_

�

(O

�

) � (O) :�

3. Examples of Quantum Field Theories

The standard example for a quantum field theory is the free scalar hermitian field,

which is characterized by the field equation

(�+m

2

)' = 0 ; ' = '

�

:

In quantum field theory ' we interpret ' as an operator valued distribution, i.e. '(f) is

an operator for every test function f 2 D(R4

). The field equation then means

'((�+m

2

)f) = 0 ; f 2 D(R

4

) :

Poincaré transformations act through automorphisms

�

(�;a)

('(x)) = '(�x+ a) ;

i.e.

�

(�;a)

('(f)) = '(f

(�;a)

) ; f

(�;a)

= f(�

�1

(x� a)) :

We now consider the �-algebra
0

generated by the symbols '(f); f 2 D(R4

) with

the relations

f 7! '(f) is linear.

'(f)

�

= '(f)

'((�+m

2

)f) = 0

['(f); '(g)] = 0 if suppf
�

suppg :
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Let !
0

be a Poincaré invariant ground state of
0

. !
0

is characterized by the multilinear

functionals

f

1

; : : : ; f

n

7! !

0

('(f

1

) � � �'(f

n

)) :

We will assume that these functionals can be continued to tempered distributions W
n

on S(R4

).

The spectrum condition and Poincaré invariance yields the general form of the two-

point functionW
2

,

W

2

(x; y) =

Z

V

+

d

4

p�(p

2

)e

�ip(x�y)

with a Lorentz invariant measure �(p2)d4p on V
+

. Due to the field equation the measure

has to be concentrated on the mass shell p2 = m

2, i.e. �(p2) = c�(p

2

� m

2

); c > 0.

Then,

!

0

(['(f); '(g)]) = c

Z

d

4

xd

4

yf(x)g(y)�(x� y)

with

�(x) = �2(2�)

�3

Z

d

3

~p

2E(~p)

sin(E(~p)x

0

� ~p~x) :

One now shows (Jost-Schroer-Pohlmeyer theorem, see Streater-Wightman) that the

commutator ['(f); '(g)] is a multiple of if 
 is the unique ground state inH.

For this purpose, one decomposes the field operator '(f) into creation and annihila-

tion parts,

'(f) = '(f

+

) + '(f

�

)

with f
�

2 S(R

4

); supp ~

f

�

� V

�

;

~

f

+

(p) =

~

f (p) ; p

2

= m

2

; p

0

= E(~p)

~

f

�

(p) =

~

f (p) ; p

2

= m

2

; p

0

= �E(~p) :

Let 
 be the vector in the GNS representation of !
0

inducing !
0

. We have '(f
�

)
 = 0

and therefore

['(f); '(g)]
 = ['(f

+

); '(g

+

)]
 +

�

'(f

�

)'(g

+

)� '(g

�

)'(f

+

)

�


 :

The momentum transfer due to '(f
�

)'(g

+

)� '(g

�

)'(f

+

) is contained in

� =

n

p � q; p

2

= q

2

= m

2

; p

0

; q

0

> 0

o

� f0g [ fp j p

2

< 0g :

From the spectrum condition follows
�

'(f

�

)'(g

+

)� '(g

�

)'(f

+

)

�


 = P

0

�

'(f

�

)'(g

+

)� '(g

�

)'(f

+

)

�


 ;

where P
0

is the projection on the ground state vectors. If 
 is the unique ground state

vector, then
�

'(f

�

)'(g

+

)� '(g

�

)'(f

+

)

�


 =

�


; ['(f); '(g)]


�


 ;
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and therefore

['(f

+

); '(g

+

)]
 = (1� P

0

)['(f); '(g)]
 :

If we substitute f and g by their translates f
x

; g

x

, then we obtain on the left side the

boundary value of a function analytic in Imx; Imy 2 V

+

vanishing on the open set

f(x; y); suppf + x

�

suppg + yg. Thus, ['(f
+

); '(g

+

)]
 = 0 and

['(f); '(g)]
 = P

0

['(f); '(g)]
 :

According to the Reeh-Schlieder theorem (next chapter)
0

(O)
 is dense in H. This

fact implies that if A�
 = 0 for A 2
0

(O), then for all B 2
0

(O

1

); O

1

� O

0 and

for all � 2
0




(B
; A�) = (A

�

B
; �) = (BA

�


; �) = 0 ;

i.e. A� = 0, thus A = 0. We conclude that the commutator above coincides with

its scalar value on 
. Hence, the free scalar quantum field is up to the choice of the

constant c uniquely determined. The value c = 1 can be fixed by the condition that the

Hamilton operator in the limit of correspondence coincides with the classical energy.

The algebra �(
0

) possesses apart from null no C

�-seminorm, since the opera-

tors �
0

('(f)) 6= 0 are necessarily unbounded because of the canonical commutation

relations. We hence substitute the algebra by the Weyl algebraW(L; �) with

L = D(R

4

;R)

.

image(�+m

2

)

�(f; g) =

Z

f(x)�(x� y)g(y) :

� is a non-degenerate symplectic form on L. The ground state is characterized by

!

0

(W (f)) = e

�

1

2

kfk

2

with

kfk

2

=

Z

d

3

~p

2E(~p)

j

~

f(E(~p); ~p)j

2

:

The corresponding GNS Hilbert space is the symmetric Fock space

H =

1

M

n=0

(H

1


 � � � 
 H

1

| {z }

n

)symm ; H

1

= L

2

(R

3

;

d

3

~p

2E(~p)

)

and

(W (f)
)

n

(~p

1

; : : : ; ~p

n

) =

i

n

p

n!

~

f (E(~p

1

); ~p

1

) � � �

~

f(E(~p

n

); ~p

n

)e

�

1

2

kfk

2

:

The described model satisfies the time slice axiom. The first observation is that

additivity holds. For ifO =

S

d

�

O

�

is a covering ofO and f 2 D(O), then there exist

�

1

; : : : �

n

such that suppf �
S

O

�

i

. Let '
i

2 D(O

�

i

) with �'

�

i

= 1 on suppf . Then,

W (f) =

n

Y

j=1

W (f'

j

)e

1

2

P

j<k

�(f'

j

;f'

k

)
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and therefore

W (f) 2

n

(O

�

i

); i = 1 : : : ; n

ogenerated algebra
:

The time slice axiom now follows from properties of the Klein-Gordon equation. Let

O

1

be a double cone in the future dependence region of U , and let f 2 D(O
1

). Then

F = �

av

�f is a solution of the inhomogeneous Klein-Gordon equation (�+m

2

)F =

f with suppF � O
1

+ V

�

. Let h be a C1-function with supph � U + V

+

and

h = 1 on (O

1

+ V

�

) n (U + V

+

). Set g = (� + m

2

)Fh. Fh vanishes outside

(O

1

+ V

�

) \ (U + V

+

) and coincides in the complement of U + V

+

with F . Hence,

suppg � (U+V

+

)\(U+V

�

) = U ifU contains along with every two points connected

by a causal curve also the curve. Now,

f � g = (�+m

2

)F (1� h) ;

but suppF (1 � h) � (O

1

+ V

�

) \ (U + V

+

) is compact, thus W (f) = W (g), i.e.

(U) � (O

1

).

With this model one can obtain new models by tensor multiplication. For this

purpose, one substitutes the symplectic spaces by direct sums

L =

M

L

i

with symplectic form �(f; g) =

P

i

�

i

(f

i

; g

i

) and ground state

!

0

(W (f)) =

Y

i

!

(i)

a

(W (f

i

)) = e

�

1

2

kfk

2

; kfk

2

=

X

kf

i

k

2

i

:

If the masses of the fields are equal, then the theory possesses O(n) as the symmetry

group,

O(n) 3 g 7! �

g

; �

g

(W (f)) = W (gf) ; gf

i

=

X

j

g

ij

f

i

:

Now one can consider in the vacuum representation for every closed subgroupG of

O(n) the algebras

G

(O) =

n

A 2 (O); �

g

(A) = A; 8g 2 G

o

:

These algebras form the prototype of the algebras of observables in the theory of

superselection sectors. We will examine, from which properties of the net the groupG

can be read off.

As a first example we consider in the case n = 1 the groupZ
2

with the automorphism

(W (f)) = W (�f) :

The invariant algebra is generated by the operators

V (f) =

1

2

�

W (f) +W (�f)

�
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with the relations

V (f) = V (�f)

V (f)

�

= V (f)

V (f)V (g) =

1

2

n

e

�

i

2

�(f;g)

V (f + g) + e

i

2

�(f;g)

V (f � g)

o

:

We now consider two spacelike separated double cones O
1

andO
2

and define the two

algebras

min(O1

[ O

2

) =

n

(O

1

); (O

2

)

ogenerated algebra

=

n

X

finite

�

f;g

�

V (f + g) + V (f � g)

�
�

�

�

suppf � O
1

; suppg � O
2

; �

f;g

2 C

o

max(O1

[ O

2

) = \

\

O

3

�O

0

1

\O

0

2

(O

3

)

0

=

n

X

finite

�

f;g

V (f + g)

�

�

� suppf � O
1

; suppg � O
2

; �

f;g

2 C

o

:

min and max are different, for there exists an automorphism on max, which acts

trivial on min,



0

(V (f + g)) = V (f � g) :

Now one can construct a conditional expectation of max on min,

E(A) =

1

2

(A+ 

0

(A)) :

E has the properties

(i) linear,

(ii) positive, E(A) � 0 for A � 0,

(iii) normalized, E( ) = 1,

(iv) E(A
1

BA

2

) = A

1

E(B)A

2

; A

i

2 min; B 2 max.

One now considers the inequality

E(A) � �A ; A � 0; � � 0

and defines ind
E

= inf �

�1. ind
E

corresponds to the Jones index. In our case obviously

ind
E

� 2. One easily shows, that actually ind
E

= 2 holds. Here, 2 is the order of the

group Z
2

.

As a further class of models we consider the spin-1
2

fields, which are characterized

by the Dirac equation

(

�

@

�

+ im) = 0 ; f

�

; 

�

g = 2g

��

; 

0

= 

�

0

; 

j

= �

�

j

; i = 1; 2; 3 :

We consider the smeared field operators

 (f) =

Z

d

4

x(f(x); 

0

 (x)) :

Let C be an antilinear operator in C 4 with C

2

= 1 and C

�

C = �

�

. Then C

anticommutes with the Dirac operator D = 

�

@

�

+ im and we obtain on K
0

=
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D(R

4

; C

4

)

.

image(D) an involution �

0

with (�

0

f)(x) = �C(f(x)). The scalar prod-

uct on K
0

is defined by

(f; g) =

Z

d

4

x

�

f(x); 

0

(

�

@

�

+ im)�(x� y)g(y)

�

=

Z

d

3

~p

X

�

�

~

f(�E(~p); ~p); P

�

(~p)~g(�E(~p))

�

with

P

�

(~p) =



0

(

�

p

�

+m)

2E(~p)

; p

0

= �E(~p); P

+

+ P

�

= ; P

+

P

�

= :

If in particular f(x0; ~x) = �(x

0

� t)g(~x), then

(f; f) =

Z

d

3

~pj~g(~p)j

2

=

Z

d

3

xjg(~x)j

2

:

�

0

is an antiunitary involution on the Hilbert space K arising from the completion of

K

0

.

A Majorana field � satisfies the condition C�(x) = �(x). One defines the corre-

sponding CAR algebra CAR(K;�
0

) by

B(f) = �(�

0

f) :

We have

�(�

0

f)

�

=

Z

d

4

x

�

�Cf(x); 

0

�(x)

�

�

=

Z

d

4

x

�

C�(x); 

0

f(x)

�

= �(f)

and therefore, as required

B(f)

�

= B(�

0

f) :

For a Dirac field one chooses the Hilbert space

K

D

= K �K

with the involution �(f; g) = (�

0

g;�

0

f) and identifies

B(f; g) =  (�

0

f) +  (g)

�

:

K

D

decomposes into the two �-invariant subspaces

K

1

=

n

(f; f); f 2 K

0

o

; K

2

=

n

(if;�if); f 2 K

0

o

:

This decomposition corresponds to a decomposition of the Dirac field  in 2 anticom-

muting Majorana fields

 (f) = B(�

0

f; 0) =

1

2

B(�

0

f;�

0

f) +

1

2i

B(i�

0

f;�i�

0

f)

=

1

p

2

�

1

(f) +

i

p

2

�

2

(f) :
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If we couple n anticommuting Majorana fields, then we obtain

K

(n)

= K 
 C

n

; �

(n)

(f

1

; : : : ; f

n

) = (�

0

f

1

; : : : ;�

0

f

n

) :

The symmetry group O(n) again acts in a natural way. The Poincaré group acts by

U(A; a) (x)U(A; a)

�1

= S(A)

�1

 (�(A)x+ a) :

Here A 7! S(A) is a representation of SL(2; C ) in C 4 equivalent to

A 7!

 

A 0

0 A

!

:

The Lorentz transformation �(A) belonging to A is defined by

�(A) = Ax

�

A

�

; x

�

= x

0

+ ~x~� :

S(A) is defined by its commutation relation with the -matrices,

S(A)

�

S(A)

�1

= �(A)

�

�



�

:

In particular: S(A�1) = 

0

S(A)

�



0

. A ground state is found in the following way. We

have

�

t

B(f) = B(e

iht

f) ; (hf)(x) =

1

i



0

(

k

@

k

+ im)f

and �

0

h = �h�

0

. For the projections P
�

on positive and negative energies,

g

P

�

f (p

0

; ~p) = P

�

(~p)

~

f(�E(~p); ~p)

then holds

�

0

P

+

= P

�

�

0

:

A ground state is then characterized by

!

0

(AB(f)) = !

0

(AB(P

+

f)) :

One finds

!

0

(B(f)A) = !

0

(B(P

�

f)A)

and the recursive relation

!

0

(B(f

1

) � � �B(f

n

)) =

n

X

k=2

(�1)

k

(f

1

; P

+

f

k

)!

0

(B(f

2

) � � �B(f

k

) � � �B(f

n

))

with the solution

!

0

(B(f

1

) � � �B(f

n

)) = 0 ; n odd

!

0

(B(f

1

) � � �B(f

2n

)) =

X

� 2 S

2n

�(1) < � � � < �(n)

�(i) < �(i+ n)

sign(�)
Y

(f

�(i)

; P

+

f

�(n+i)

)(�1)

n(n+1)

2

:

One for the theory of superselection sector interesting class are the chiral models in 2

dimensions. These are theories, whose field equation takes on the simple form

�

te

= id ; t 2 R
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for a lightlike vector e. Double cones in 2 dimensions have the simple form

O =

n

(x

0

; x

1

); x

0

+ x

1

2 I; x

0

� x

1

2 J

o

for two open intervals I; J � R. Because of the chirality condition �
te

= id one of the

two intervals can be shifted without changing the algebra of the double cone,

0

(I � fJ + xg) =

0

(I � J) :

The chiral net is now defined by

(I) =

[

J

(I � J) :

If the original net is additive then (I � J) is even independent from J . From the

locality condition for
0

follows

[ (I); (J)] = 0 ; for I \ J = ; :

At first we consider the free massless field in 2 dimensions. Let ' be a solution of the

(J)

J

I

(I)

FIGURE II.5. Shifting one of the intervals

field equation �' = 0. Then j = (@

0

� @

1

)' satisfies the chirality condition

(@

0

+ @

1

)j = 0 :

With u = x

0

� x

1 we have

(
; j(u)j(u

0

)
) =

1

�

1

Z

0

dp pe

�ip(u�u

0

)

lim

�"0

�1

�(u� u

0

� i�)

2

and [j(u); j(u

0

)] = 2i�

0

(u � u

0

). The corresponding Weyl algebra is defined through

the symplectic space (D(R); �) with

�(f; g) = 2

Z

fdg :

Note that � is invariant under orientation preserving diffeomorphisms � 2 Diff+(R).

The ground state is defined by

!

0

(W (f)) = e

�

1

2

kfk

2
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with

kfk

2

= 2

1

Z

0

dp pj

~

f (p)j

2

:

One again obtains interesting other models by tensor multiplication and transition to

subtheories. One obtains a simple class e.g. by restriction of the test functions to the

ones of the form P (

d

du

)f; f 2 D(R).

4. Positive Energy Representations, Reeh-Schlieder Theorem, Borchers Property

The most important class of representations for elementary particle physics are the

positive energy representations. A positive energy representation of a C�-algebra

with an automorphism group (�

t

)

t2R

is a representation � of in a Hilbert space H

together with a strongly continuous unitary representation U of R inH, such that

U(t)�(A)U(t)

�1

= ��

t

(A)

and such that the self adjoint generator H =

1

i

d

dt

U(t)j

t=0

of (U(t)) possesses a non-

negative spectrum. In this case the Borchers-Arveson theorem holds:

THEOREM. Let (�;U) be a positive energy representation of ( ; �). Then there

exists a strongly continuous group V (t) 2 �( )

00, such that (�; V ) is a positive energy

representation of ( ; �).

REMARK. The generator of V can thus be approximated by elements of �( ). In

this sense it can be identified with the observable ’energy’. This justifies a posteriori

the name ’positive energy representation’.

SKETCH OF PROOF(cf. Bratteli-Robinson I 3.2.46). Let M = �( )

00, with A also

U(t)AU(t)

�1

2 M. Also let A0 2 M0

= �( )

0. Then for B 2 holds

[U(t)

�1

A

0

U(t); �(B)] = U(t)

�1

[A

0

; ��

t

(B)]U(t) = 0 ;

thus U(t)�1A0U(t) 2 M0. Hence U(t)AU(t)�1 commutes with all elements ofM0.

We define �
t

(A) = U(t)AU(t)

�1 for A 2 M. (�

t

)

t2R

is a 1-parameter group of

automorphisms ofM. For test functions f 2 S(R)we set

�

f

(A) =

Z

dtf(t)�

t

(A) :

Here the integral on the right side is defined in the following way: Let �; 2 H. Then

t! (�; �

t

(A) ) = A

(�; )

(t)

is a continuous function with jA
(�; )

(t)j � k�k k k kAk. By

�; 7!

Z

dtf(t)A

(�; )

(t)

a sesquilinear form is defined onH, which is bounded in both entries and hence defines

a bounded operator,

(�; �

f

(A) ) =

Z

dtf(t)(�; �

t

(A) ) :
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For A0 2 M0 holds

(A

0

�

�; �

f

(A) ) = (�; �

f

(A)A

0

 )

and therefore �
f

(A) 2 M.

We now define the �-spectrum sp
�

(A) of A 2 M in the following way:

sp
�

(A) =

n

E 2 R

�

�

�8 neighborhoods U of E there is a

test function f 2 S(R) with supp ~

f � U and �
f

(A) 6= 0

o

:

Let I � R be an open interval. An A 2 M with sp
�

(A) � I can be provided in the

following way. Let g 2 S(R) with supp~g � I , and let A
0

2 M. We set A = �

g

(A

0

).

We want to show that sp
�

(A) � I . Let E 62 I . We must show that there is a

neighborhood U of E, such that for all test functions f 2 S(R) with supp ~

f � U the

operator �
f

(A) = 0. We choose U in a way that U \ suppg 2 ;. Now let f 2 S(R)

with supp ~

f � U . Then for �; 2 H:

(�; �

f

(A) ) =

Z

dtf(t)(�; �

t

(A) )

=

Z

dtf(t)(U(T )

�1

�; �

t

(A

0

)U(T )

�1

 )

=

Z

dtf(t)

n

Z

dsg(s)(�; �

t+s

(A

0

) )

o

=

Z

dtdsf(t � s)g(s)(�; �

t

(A

0

) ) :

However,
Z

dsf(t � s)g(s) =

Z

ds

1

p

2�

Z

dE

~

f(E)e

i(t�s)E

g(s)

=

Z

dE

~

f (E)~g(E)e

itE

= 0 ;

for supp ~

f \ supp~g = 0, thus �
f

(A) = 0.

We now define the subspacesM
E

ofM with energy transfer� E:

M

E

=

n

A 2 M; sp
�

(A) � [E;1]

o

:

We haveM
E

H � f� 2 H; sp
U

(H) � [E;1]g because of sp
U

2 [0;1]. Now let

H

E

=

\

E

0

<E

M

E

H

and P
E

be the projection onH
E

. Obviously,

P

E

! 0 ; for E !1 ; since H is positive

P

E

0

! P

E

; for E0

% E

P

E

= ; for E � 0 ; since 2 M

E

for E < 0

Thus one can define a selfadjoint positive operator H
0

by

H

0

=

Z

EdP

E
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and a unitary group by

V (t) =

Z

e

iEt

dP

E

:

For A0 2 M0 holds

A

0

M

E

H �M

E

H :

M

E

H and therefore also H
E

are invarant subspaces underM0, thus

A

0

P

E

= P

E

A

0

P

E

; 8A

0

2 M

0

:

SinceM0 is a �-algebra and P
E

= P

�

E

, it also follows that

P

E

A

0

= P

E

A

0

P

E

;

thus [P
E

; A

0

] = 0, i.e. P
E

2 M

00

=M and also V (t) 2 M.

It remains to show that V (t)AV (�t) = �

t

(A); A 2 M. Let 
t

(A) = V (t)AV (�t).

One first shows

sp
�

(A) � sp


(A) ; A 2 M :

However, in this case for f; g 2 S(R)with supp ~

f \ supp~g = ; holds



f

�

g

(A) = 0 ; A 2 M :

The bounded continuous function

R

2

7! (�; 

s

�

t

(A) ) = f(s; t)

thus has a Fourier transform with the property

~

f(E;E

0

) = 0 ; for E 6= E

0

;

thus ~

f(E;E

0

) =

~

F (E)�(E � E

0

). Thus f depends only on the sum s+ t. Hence, we

have



�t

�

t

(A) = 

+0

�

0

(A) = A :�

The multidimensional generalization holds, too: IfU is a strongly continuous unitary

representation of the translation group of Minkowski space with

U(x)�(A)U(x)

�1

= ��

x

(A)

U(x) = e

ixP

; spP � V
+

;

then one can choose U(x) 2 �( )

00.

Now let (O) be a local net with translation symmetry and a translation covariant

positive energy representation. Let  2 D(eaP ); a 2 V

+

and let G be a region in

Minkowski space with the following property: 9G
0

� G and a neighborhood V of zero

in the translation group, such that:

(i) G � G
0

+ V

(ii)
W

x

(G

0

+ x) =

00.
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Then (G) =  (Reeh-Schlieder theorem).

PROOF. Let � ? (G) . Then for A
1

; : : : ; A

n

2 G

0

; x

1

: : : ; x

n

2 V

0 = (�; �

x

1

(A

1

) � � ��

x

n

(A

n

) )

= (�;U(x

1

)A

1

U(x

2

� x

1

) � � �U(x

n

� x

n�1

)A

n

U(�x

n

) )

= lim

z

i

! x

i

Imz
j+1

� z

j

(j = 1; : : : ; n� 1);

Imz
1

; a� Imz
n

2 V

+

(�; e

iz

1

P

A

1

e

i(z

2

�z

1

)P

A

2

� � � e

i(z

n

�z

n�1

)P

A

n

e

(�iz

n

�a)P

e

aP

 )

| {z }

f(z

1

;:::;z

n

)

:

The function f is analytic in the region

T

(n)

a

=

n

(z

1

; : : : ; z

n

) 2 C

n

; Imz
1

; Imz
j+1

� z

j

(j = 1; : : : ; n� 1); a� Imz
n

2 V

+

and possesses continuous limits for z
1

; : : : ; z

n

2 R

4vanishing on the open setV � � � � V
| {z }

n

.

Thus f is identically zero, and with it also the boundary values for all x
1

; : : : ; x

n

2 R

4.

It follows � ?  , i.e. (G) is dense in  .

Examples for regions G:

(i) wedge regions of the form fjx0j < x

1

g,

(ii) forward light cones,

(iii) spacelike cones S = a+

S

�>0

�O, O � f0g0 double cone,

(iv) double cone O, if weak additivity holds:
W

(O

1

+ x) =

00 for a smaller

double cone O
1

withO
1

� O. Additivity implies weak additivity.

From the Reeh-Schlieder theorem follows together with locality that  is separating

for all algebras (R) with R � G0 if  = H:

A = 0; A 2 (R) ) A = 0 :

For from A = 0; A 2 (R) follows AB = 08B 2 (G). A thus vanishes on a

dense set and hence everywhere.

The last of the general theorems we want to consider is the so-called Borchers

property of projection operators in local algebras. We consider a pair of regions

G

0

� G with G
0

+ V � G for a neighborhood V of zero in the translation group. Let

E 2 (G

0

) be a projection.

THEOREM (BORCHERS PROPERTY, ’PROPERTY B’). There exists an isometry V 2

(G) with V �

V = E.

PROOF. Let O � G \ G 0
0

and let � 2 D(eaP ) for an a 2 V
+

. Then � is cyclic for

(O)

0. We will show later that E� is separating for (G)

0.

To E� separating there exists a  which is cyclic for (G)

0 and induces the same

state

(E�;AE�) = ( ;A ) ; A 2 (G)

0 (Sakai, theorem 2.7.9) :

We now define

V A = AE� ; A 2 (G)

0

:

V is an isometry. Furthermore for B 2 (G)

0 holds

V BA = BAE� = BV A ;
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i.e. V 2 (G)

00

= (G).

The fact that E� is separating follows from the next lemma.

LEMMA. Let � 2 D(eaH); a > 0, and let E 2 (G

0

) be a projection. Then E� is

separating for (G)

0. (G
0

;G as in the theorem)

PROOF. Let A 2 (G)

0 with AE� = 0. � is by definition cyclic on G
0

;G for

(G)

00

\ (G)

0, thus AE = 0 follows. Furthermore for an � > 0 holds

[A;�

t

(E)] = 0 ; for jtj < � :(3)

We consider the analytic functions ( 2 H)

F

(n)

t

1

;:::;t

n

(z) = (e

�aH

 ;Ae

izH

�

t

1

(E) � � ��

t

n

e

�izH

�) ; 0 < Imz < a

G

(n)

t

1

;:::;t

n

(z) = (e

�aH

 ; e

izH

�

t

1

(E) � � ��

t

n

e

�izH

A�) ; �a < Imz < 0

for t
1

; : : : ; t

n

2 (�; �); 0 < � <

�

2

. Because of E2

= E,

F

(n)

0;:::;0

(z) = F

(1)

0

(z) ; G

(n)

0;:::;0

(z) = G

(1)

0

(z) :

The functionsF
(n)

t

1

;:::;t

n

andG
(n)

t

1

;:::;t

n

possess continuous boundary values on the real axis,

which because of (3) coincide on the interval [�(� � �); � � �]. Hence, they can be

continued to a functionH
(n)

t

1

;:::;t

n

(z) analytic in the region

n

z

�

�

� 0 < jImzj < a or Imz = 0; jRezj < �� �

o

:

This function vanishes because of AE = 0 and (3) at the points z = �t
i

; i = 1; : : : ; n.

Inside the circles jzj < � it thus possesses n zeros for values of t
i

pairwise different.

Yet, the number of zeros does not change in the limit t
i

! 0, since from the estimate

(for t
i

6= t

j

; i 6= j)

�

�

�

H

(n)

t

1

;:::;t

n

(z)

Q

n

i=1

(z + t

i

)

�

�

� � k k ke

aH

�k kAk(�� 2�)

�n

(maximum principle), thus

�

�

�H

(n)

t

1

;:::;t

n

(z)

�

�

� � const.
�

jzj+ �

�� 2�

�

n

and the continuity of H
(n)

t

1

;:::;t

n

(z) in t
1

; : : : ; t

n

follows (withH
(n)

0;:::;0

(z) = H

(1)

0

(z))

�

�

�H

(1)

0

(z)

�

�

� � const. jzjn ;

i.e. H
(1)

0

possesses a zero of the n-th order at z = 0. Since this is true for all n, H
(1)

0

vanishes identically. Thus,

Ae

�aH

Ee

aH

� = 0 :

Since the vector Ae�aHEeaH� is analytic for the energy, it is cyclic for (G

0

) and

hence separating for (G)

0, thus A = 0 holds.

An application of the Borchers property is the following
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THEOREM. Let ( (O)) be a net of von Neumann algebras satisfying the Borchers

property, i.e. forO
1

� O

2

and projectionsE 2 (O

1

); E 6= 0 there exists an isometry

V 2 (O

2

) with V �

V = E. Then =

S

(O) is a simple algebra (i.e. does not

contain any closed ideals apart from f g and ).

PROOF. Let J be a closed ideal of , J 6= f g. Then J \ (O) 6= f g for some

O (compare 1). Let B 2 J \ (O); B > 0, and let E be the spectral projection of

B to the interval [�; kBk]; 0 < � < kBk. Then E 6= 0 and B � �E. According to

the Borchers property, in (O

1

) withO
1

� O there is an isometry V with V V �

= E.

Thus,

V

�

BV � �V

�

EV = �V

�

V V

�

V = � ;

i.e. V �

BV is invertible. Since with B also V �

BV belongs to J , J = follows.



CHAPTER III

Global Gauge Symmetries

1. Field Algebra and Algebra of Observables

We want to take a look at the typical features of a theory with inner symmetries.

Starting point is a net of operator algebras, whose elements cannot necessarily be

interpreted as observables, as e.g. Fermi fields.

Let (F(O)) be a net of von Neumann algebras in a Hilbert space H indexed by

the double cones O of Minkowski space. We call the algebras F(O) the local field

algebras and F =

S

F(O) the field algebra. We make the following assumptions:

(i)
T

O

F (O)

0

= C (irreducibility).

(ii) 9 a strongly continuous unitary representation U of the covering group of the

Poincaré group P
"

+

inH with

U(L)F(O)U(L)

�1

= F(LO) :

The generators P
�

of the translations satisfy the spectrum condition

sp � V

+

;

and there exists a unit vector 
 2 H with U(L)
 = 
 unique up to a phase

factor. We call 
 the vacuum vector and denote by �
L

the automorphism of

F implemented by U(L),

�

L

(F ) = U(L)FU(L)

�1

:

(iii) 9 a compact group G (the gauge group) and a strongly continuous faithful

representation U of G inH with the properties

U(g)F(O)U(g)

�1

= F(O)

U(g)
 = 


U(g)U(L) = U(L)U(g) :

The automorphism ofF implemented byU(g) is denoted by�
g

. (The use of the

same symbols U and � for Poincaré transformations and gauge transformations

follows conventions and should not lead to confusion.)

(iv) 9� 2 G with �2 = 1, such that for spacelike separated regions O
1

and O
2

and

even (odd) elements F
(i)

�

2 F(O

i

); i = 1; 2; �

�

(F

(i)

�

) = �F

(i)

�

graded locality

43
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holds:

[F

(1)

+

; F

(2)

+

] = 0 = [F

(1)

+

; F

(2)

�

] = fF

(1)

�

; F

(2)

�

g :

(v) The net (F(O)) is additive,

F(O) =

_

�

F(O

�

) ; O =

[

O

�

:

(vi) The net (F(O)) satisfies G-invariant Haag duality, i.e.

_

O

1

�O

0

�

F(O

1

) \ U(G)

0

�

= F(O)

0

\ U(G)

0

:

The properties (i)-(vi) are abstracted from examples, as e.g. the free Fermi field with

inner degrees of freedom. The duality property (vi) is violated for the free massive

Dirac field in 2 dimensions. Since the fields are not necessarily observable, other

assumptions e.g. about the spacelike commutation relations can be made. However,

we will see (this is the content of the Doplicher-Roberts theorem) that a net of algebras

of observables (under assumptions still to be specified) uniquely determines a net of

field algebras with the stated properties. From a physical point of view these properties

do not mean a restriction to generality. We now define observables as gauge invariant

elements of the field algebra,

(O) =

n

A 2 F(O); �

g

(A) = A8g 2 G

o

= F(O) \ U(G)

0

;

and obtain a net of operator algebras inH with the following properties:

(ii)’ �
L

( (O)) = (LO) (Poincaré covariance),

(iv)’ O
1

� O

0

2

) (O

1

) � (O

2

)

0 (Locality).

If U(G) is nontrivial then the Hilbert space H decomposes into subspaces that are

invariant under , every projection in U(G)00 projects on such an invariant subspace.

Since G is compact, U(G)00 is isomorphic to a direct sum of finite dimensional matrix

algebras

U(G)

00

'

M

�

M

d

�

(C ) ;

where � runs through all the equivalence classes of irreducible representations of G

occuring in U and d
�

is the dimension of a representation of the class �. We have:

PROPOSITION.

(i) The irreducible invariant subspaces of H correspond exactly to the minimal

projections of U(G)00.

(ii) Two such representations are equivalent if and only if these projections inU(G)00

are equivalent, i.e. if they belong to the same full matrix algebra.

PROOF. The proof of the proposition follows from the fact that U(G)00 = 0. In

order to see this identity, we again consider the conditional expectation m : F ! A

defined by taking the mean over G:

m(F ) =

Z

G

dg�

g

(F ) :
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Here dg is the normalized Haar measure on G, and the integral is defined in the sense

of matrix elements. We have:

(i) m�
g

= �

g

m = m,

(ii) m is �-continuous,

(iii) m(F(O)) = (O).

Because of (ii) m can be continued on B(H). From this follows

00

= m(F

00

) ; because of �-continuity

F

00

= B(H) ; because of irreducibility of F

and thus 00

= m(B(H)) = U(G)

0, thus 0

= U(G)

00.

The Hilbert space H hence decomposes in the following way:

H =

M

�

H

�

�H

0

�

withH
�

as the irreducible representation space of G with representation U
�

,H0
�

as the

irreducible representation space of with representation �
�

and

A

�

�

�

H

�

�H

0

�

=

H

�

� �

�

(A) ; A 2

U(g)

�

�

�

H

�

�H

0

�

= U

�

(g) �

H

0

�

; g 2 G

The trivial representation corresponds to the subspace H = 
, and �
0

with �
0

(A) =

Aj

H

0

is called the vacuum representation. Since Poincaré transformations and

gauge transformations commute, every one of the representations �
�

is invariant under

Poincaré transformations.

We now want to compare the different representations. LetE be a minimal projection

in U(G)00 and �
E

(A) = Aj

EH

; A 2 . E has the form

E =

Z

dgU(g)(�;U

�

(g)�) ; � 2 H

�

; k�k = 1 :

We choose F 2 F(O) with EF
 6= 0. Such an operator exists, since 
 is cyclic for

F(O) (Reeh-Schlieder theorem). We consider the operator G : H

0

! EH,

G� = EF� ; � 2 H

0

:

G is not zero and possesses the partial intertwining property

G�

0

(A) = �

E

(A)G ; A 2 (O

0

) :

On (O

0

) the vectors G
 2 H
E

and jGj
 2 H
0

induce the same states. Because of

the cyclicity of 
 for F(O) there exists a normdense set of states ! 2 S
�

E

( ) that

coincide on (O

0

) with states from S
�

0

( ). Thus, since the states in a folium are

norm-closed,

S

�

0

( (O

0

)) � S

�

E

( (O

0

)) :

However, sinceH
E

also contains vectors cyclic forF(O) (e.g. � 2 EH\D(eaP ); � 6=

0), vice versa

S

�

E

( (O

0

)) �)S

�

0

( (O

0

)) :
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The state sets of the two representations are thus equal after the restriction to (O

0

),

the restrictions are thus quasiequivalent. � and 
 are cyclic and separating for (O

0

),

thus from quasiequivalence follows unitary equivalence. We obtain the following

PROPOSITION. All irreducible subrepresentations �
�

satisfy the condition

�

�

�

�

�

(O

0

)

= �

0

�

�

�

(O

0

)

for all double conesO.

REMARK. This property of representations provides the starting point of the DHR

theory of superselection sectors.

2. Simple Sectors, Haag Duality, Localized Endomorphisms

Among the sectors �
�

a particular role is played by the ones belonging to one-

dimensional representations � of G. Let E
�

be the projection on H
�

� H

0

�

(E
�

2

Z(U(G)

00

) = Z(

00

)). � is one-dimensional if and only if

U(g)E

�

= E

�

U(g) = �

�

(g)E ; � character of � :

DEFINITION. A representation � of satisfies Haag duality if

�( (O

0

))

00

= �( (O))

0

\ �( )

00

:

REMARK. From locality follows �( (O

0

))

00

� �( (O))

0

\ �( )

00, thus only the

converse inclusion has to be shown.

PROPOSITION. �
�

satisfies Haag duality if � is one-dimensional.

PROOF. Let � be one-dimensional. Then �

�

(A) = Aj

E

�

H

; A 2 . Let A0 2

�

�

( (O))

0. Then E
�

A

0

E

�

2 (O)

0. We have

(O)

0

= (F(O) \ U(G)

0

)

0

= F(O)

0

_ U(G)

00

:

The von Neumann algebra F(O)0 _ U(G)00 contains as a weakly dense subalgebra the

algebra

M =

n

X

g2G

F

g

U(g); F

g

2 F(O)

0

; F

g

= 0 apart from finitely many g 2 G
o

:

We have E
�

ME

�

= E

�

F(O)E

�

, and since m! E

�

mE

�

is weakly dense

E

�

F(O)

0

_ U(G)

00

E

�

= E

�

F(O)

0

E

�

:

Thus,

E

�

A

0

E

�

2 E

�

F(O)

0

E

�

= E

�

(F(O)

0

\ U(G)

0

)E

�

= E

�

(O

0

)

00

E

�

;

i.e. A0 2 �
�

( (O

0

))

00.

REMARK. The converse also holds: �
�

violates Haag duality ) �multidimensional.

Sectors satisfying Haag duality are called simple sectors. In particular, the vacuum

sector is simple.
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Now we come to the basic construction of DHR theory: Let � be a representation of

satisfying the DHR criterion. Let O be a double cone, and let � on (O

0

) be unitary

equivalent to �
0

with unitary operator V : H

0

!H

�

,

V �

0

(A) = �(A)V ; A 2 (O

0

) :

We now define a representation ~� inH
0

equivalent to � by

~�(A) = V

�1

�(A)V ; A 2 :

Obviously, ~�(A) = �

0

(A) if A 2 (O

0

).

PROPOSITION. Let O
1

� O. Then ~�( (O

1

)) � �

0

( (O

1

)). In particular ~�( ) �

�

0

( ).

PROOF. Let A 2 (O

1

) and A0 2 (O

0

1

). Then because of (O

0

1

) � (O

0

) and

~� = �

0

on (O

0

)

[�

0

(A

0

); ~�(A)] = ~�([A

0

; A]) = 0 ;

i.e. ~�(A) 2 �
0

( (O

0

1

))

0

= �

0

( (O

1

)) because of Haag duality.

Since �
0

is faithful ( is simple), there exists an endomorphism � : ! with

� = �

�1

0

� ~�. � possesses the following properties:

(i) � is localized inO, i.e. �(A) = A; A 2 (O

0

).

(ii) � is transportable, i.e. 8O
1

;O

2

withO
2

� O

1

[ O 9U 2 (O

2

) with

AdU � �(A) = A ; A 2 (O

0

1

) :

(iii) �( (O

1

)) � (O

1

); 8O

1

� O.

The first property is an immediate consequence of the definition. In order to see the

second property we use a unitary operator V
1

: H

0

! H

�

with the property

V

1

�

0

(A) = �(A)V

1

; A 2 (O

0

1

) :

Then V �

1

V 2 �

0

( (O

0

1

))

0

= �

0

( (O

2

)), and U = �

�1

0

(V

�

1

V ) satisfies the mentioned

condition. The third property is an immediate consequence of the proposition.

DEFINITION.

�(O) =

n

� 2 End( )

�

�

� �(A) = A; A 2 (O

0

) ^

8O

1

9U

1

2 with AdU
1

� �(A) = A; A 2 (O

0

1

)

o

� =

[

O

�(O) :

PROPOSITION. �( ) = , i.e. � automorphism , �

0

� � satisfies Haag duality.

PROOF. Let � 2 �(O). Then �( (O

0

)) = (O

0

). First, assume �( ) = . Then �

is invertible. Since ��1 acts trivially on (O

0

), according to (iii)

�

�1

( (O)) � (O) ;

thus (O) � �( (O)). It follows that

�

0

� �( (O)) � �

0

( (O)) = �

0

( (O

0

))

0

= �

0

� �( (O

0

))

0

:
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Together with locality, Haag duality follows for O. Now let O
1

be arbitrary. Then

there exists a unitary operator U
1

2 with � = AdU
1

� � 2 �(O

1

). We have

�

1

( ) = U

1

�( )U

�1

1

= U

1

U

�1

1

= and therefore � � �
1

satisfies Haag duality for

O

1

. Since �
0

� � and �
0

� �

1

are unitarily equivalent, �
0

� � satisfies Haag duality for

O

1

, too.

We now conversely assume that �
0

� � satisfies Haag duality. Then for O
1

� O

holds

�

0

� �( (O

1

)) = �

0

� �( (O

0

1

))

0

= �

0

( (O

0

1

))

0

= �

0

( (O

0

1

)) ;

i.e. �( (O

1

)) = (O

1

). Since
S

O

1

�O

(O

1

) is dense in and � is continuous,

�( ) = follows.

As a first example we consider a free Majorana field with gauge group Z
2

,

�

�

(B(f)) = �B(f) :

The vacuum state is invariant under �
�

. Hence, in Fock space H there is a unitary

operator U(�) with

U(�)B(f

1

) � � �B(f

n

)
 = (�1)

n

B(f

1

) � � �B(f

n

)
 :

H decomposes into a direct sum

H = H

0

�H

1

;

the summands corresponding to the irreducible representation of Z
2

.

As a field operator, which possesses partial intertwining properties between �
0

and

�

1

, one can take the Majorana field itself smeared with a test function f with compact

support. We have

B(f)�

0

(A) = �

1

(A)B(f) ; suppf � O; A 2 (O

0

) :

We choose f invariant under �
0

with kfk2 = 1. Then B(f) is unitary, and we obtain

for the endomorphism � the formula

�(b(g; h)) = B(f)b(g; h)B(f) = b(f; g)b(h; f) :

� is invertible, � = �

�1, it acts trivially on (O

0

),

suppg; supph � O0 ) �(b(g; h)) = b(f; g)b(h; f)

= b(g; f)b(f; h)

= b(g; h) ;

and it is transportable,

f

1

2 D(O

1

); �

0

f

1

= f

1

; kf

1

k = 1 ) �

1

(b(g; h)) = b(f

1

; g)b(h; f

1

)

= b(f

1

; f)b(f; g)b(h; f)b(f; f

1

)

= AdU � �(b(g; h))

with U = b(f

1

; f).

As a second example we consider the free scalar charged Bose field

' = '

1

+ i'

2

;
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where '
1

and '
2

are two commuting free hermitian scalar Bose fields. This model

possesses the gauge symmetry

U(1) 3 e

i�

7! (' 7! e

i�

') :

The vacuum is again invariant and the Fock space decomposes into the direct sum

H =

M

n2Z

H

n

;

corresponding to the irreducible representations ei� 7! e

in�

; n 2 Zof U(1). An

operator interpolating between the sectors is e.g.

'(f) = '

1

(f) + i'

2

(f) ; with suppf � O; f real :

'(f) is a normal operator. Its polar decomposition

'(f) = V

f

j'(f)j

yields a unitary operator V
f

possessing the intertwining properties

V

n

f

�

0

(A) = �

n

(A)V

n

f

:

The corresponding endomorphism is

�

(n)

(A) = V

n

f

AV

�n

f

:

The unitary operator U = V

n

f

1

V

�n

f

; suppf
1

� O

1

; f

1

real, transports the charge to O
1

,

such that

�

(n)

1

= AdU � �(n)

is localized inO
1

.

3. Field Multiplets and Cuntz Algebra

We now want to examine the sectors �
�

belonging to non-Abelian representations

� of G. Let � be an endomorphism of with �
0

� � ' �

�

; � 2 �(O). Since �
�

is

irreducible, ! = !

0

� � is a pure state. Let

H

!

=

n

� 2 H

�

�

� (�;A�) = !(A)k�k

2

; A 2

o

be the set of vectors inducing !.

At first we convince ourselves of the fact thatH
!

is a subspace ofH. Let�
1

; �

2

2 H

!

.

If �
1

+ �

2

= 0 then nothing has to be shown. Now let �
1

+ �

2

6= 0. Then,

(�

1

; A�

1

) + (�

2

; A�

2

) = !(A)(k�

1

k

2

+ k�

2

k

2

)

=

1

2

(�

1

+ �

2

; A(�

1

+ �

2

)) +

1

2

(�

1

� �

2

; A(�

1

� �

2

)) :

Since ! is pure, the state incuced by �
1

+�

2

has to coincide with !, thus �
1

+�

2

2 H

!

.

H

!

is invariant under gauge transformations. Its dimension is d
�

.

THEOREM. For every � 2 H
!

there exists a uniquely determined  2 F(O) with the

properties

(i)  �
 = �,

(ii)  A = �(A) ; A 2 .
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PROOF. Because of � 2 �(O), for A 2 (O

0

)

(�;A�) = !(A)k�k

2

= !

0

� �(A)k�k

2

= !

0

(A)k�k

2

= (
; A
)k�k

2

:

Let F 0

2 F(O

0

). Then with E
!

as the projection onto H
!

because of m(F

0

�

F

0

) 2

(O

0

)

00

E

!

m(F

0

�

F

0

)E

!

= (
;m(F

0

�

F

0

)
)E

!

= kF

0


k

2

E

!

;

thus

kF

0


k

2

� k�k

2TrE
!

F

0

�

F

0

E

!

= k�k

2TrE
!

m(F

0

�

F

0

)E

!

= d

�

k�k

2

kF

0


k

2

:

We now define an operator  by

 

�

F

0


 = F

0

� ; F

0

2 F(O

0

) :

 

� is defined densely, since 
 is cyclic for F(O)0. According to the calculation before

 

� (and therefore  = ( 

�

)

�) is bounded,

k 

�

k �

q

d

�

:

Furthermore,  � 2 F(O)00 = F(O). We compare  � to the unitary operator between

the GNS Hilbert spaces to 
 and � (for � 6= 0)

U�(A)
 = A�k�k

�1

; A 2 :

For A 2 (O

0

) holds A 2 F(O)0, thus (with �(A) = A)

 

�

�(A)
 =  

�

A
 = A� = k�kU�(A)
 :

Since 
 is cyclic for (O

0

) in H
0

,

 

�

�

�

�

H

0

= k�kU ; in particular  ��(A)
 = A� :

Now let O
1

� O and A 2 (O

1

). Then for all F 0

1

2 F(O

1

)

0,

 

�

�(A)F

0

1


 =  

�

F

0

1

�(A)
 = F

0

1

 

�

�(A)
 (because of  � 2 F(O
1

) � F(O))

= F

0

1

A� = AF

0

1

� = A 

�

F

0

1


 ;

hence

 A = �(A) ; 8A 2 
 :

The uniqueness follows from the fact that 2 F(O) is uniquely fixed by �
 = �.

We now consider the set

H

�

=

n

 2 F ;  A = �(A) ; A 2

o

:

H

�

is by definition a linear norm-closed subspace of F . Let  
1

;  

2

2 H

�

. Then,

 

�

1

 

2

2

0

\ F = U(G)

00

\ F :

The latter intersection is trivial. Namely, letF
0

2 U(G)

00

\F withF j
H

0

= c

H

0

; c 2 C .

Then for F = F

0

� c

m(F

�

F )

�

�

�

H

0

= 0 = �

0

(m(F

�

F ))



3. FIELD MULTIPLETS AND CUNTZ ALGEBRA 51

and thus m(F

�

F ) = 0, since �
0

is faithful. Now let � 2 H. Then

0 = (�;m(F

�

F )�) =

Z

dg(�; �

g

(F

�

F )�) ;

but the integral of a continuous positive function can vanish only if the function vanishes

identically, hence (�;F �

F�) = 0, thusF
0

= c . Hence, we can define a scalar product

on H
�

by

h 

1

;  

2

i =  

�

1

 

2

:

Actually, H
�

is a Hilbert space, thus complete with respect to the topology defined by

the scalar product, for

h 

1

�  

2

;  

1

�  

2

i = k( 

1

�  

2

)

�

( 

1

�  

2

)k = k 

1

�  

2

k

2

;

and the operator norm coincides on H
�

with the Hilbert space norm. The elements

of H
�

are multiples of isometries. One therefore also calls H
�

a Hilbert space of

isometries.

Such Hilbert spaces of isometries always exist on infinitely dimensional Hilbert

spaces. Let e.g.H = l

2

(Z). We consider the operators of the form (e
n

(k) = �

nk

; k 2 Z)

 

�;�

e

n

= �e

2n

+ �e

2n+1

; �; � 2 C :

We have

(e

m

;  

�

�;�

 

�

0

;�

0

e

n

) = (��

0

+ ��

0

)�

mn

;

thus  �
�;�

 

�

0

;�

0

= (��

0

+ ��

0

) .

Furthermore, we have H�

�


 = H

!

0

��

, for if  2 H
�

, then for A 2 holds

( 

�


; A 

�


) = (
;  A 

�


) = (
; �(A)  

�


) = (
; �(A)m(  

�

)
) :

However,

m(  

�

)�(A) = m(  

�

�(A)) = m(�(A)  

�

) = �(A)m(  

�

) ;

i.e. m(  

�

) = C because of the irreducibility of �
0

� �. We have (
;m(  

�

)
) =

k 

�

!k

2, thus ( 

�

!;A 

�

!) = !

0

� �(A)k 

�

!k

2, thus  �! 2 H
!

0

��

. The converse

inclusion has already been shown.

The following proposition shows that the elements of H
�

are the typical elements of

the field algebra.

PROPOSITION. Let (F
i

); i = 1; : : : d

�

be a family of operators in F(O) transforming

like an irreducible tensor according to the unitary representation U
�

of G. Then there

exists a � 2 �(O), a B 2 (O) and  
1

; : : : ;  

d

�

2 H

�

with F
i

= B 

i

; i = 1; : : : ; d

�

.

PROOF. F �

i


 2 H

0

i

� H

�

, H0
i

irreducible representation space of , � conjugate

representation to �. Let � 2 �(O) with �
0

� �( � ) ' � j

H

0

i

8i. Then there exists a

�

0

2 H

0

with

(�

0

; �(A)�

0

) = (F

�

i


; AF

�

i


) ;

where �
0

can be chosen independent of i. We now define a operator T on H
0

by

T�

0

(A)
 = �

0

(A)�

0

; A 2 (O

0

) :
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T possesses the property

T�

0

(A) = �

0

(A)T ; on H
0

; A 2 (O

0

) ;

thus T 2 �
0

( (O

0

))

0

= �

0

( (O)), i.e. T = �

0

(B

�

) for a B 2 (O). H0
i

contains a

vector �0
i

inducing the state ! � �. Hence, according to the previous proposition there

exists a  0
i

2 H

�

with  0
i


 = �

0

i

. With it holds

( 

0

i

�

B

�


; A 

0

i

�

B

�


) = (B

�


; �(A) 

0

i

 

0

i

�

B

�


)

= (B

�


; �(A)m( 

0

i

 

0

i

�

)B

�


)

= (B

�


; �(A)B

�


)m( 

0

i

 

0

i

�

)

= (�

0

; �(A)�

0

)m( 

0

i

 

0

i

�

)

= (F

�

i


; AF

�

i


) ;

i.e.  0
i

�

B

�


 = �F

�

i


, (H0
i

irreducible). By redefinition of  0
i

one obtains the proposi-

tion.

H

�

with �
0

� � = �

�

is an irreducible representation space of G,

�

g

�

�

�

H

�

' U

�

:

Let f 
i

; i = 1; : : : ; d

�

g be an orthonormal basis of H
�

. Then
P

 

i

 

�

i

2 U(G)

0

\

F(O) = (O). However,
X

 

i

 

�

i

= m(

X

 

i

 

�

i

) =

X

m( 

i

 

�

i

) 2 C :

since  
i

 

�

i

are mutually orthogonal projections,
X

 

i

 

�

i

= 1 :

The endomorphism � is implemented by f 
1

; : : : ;  

n

g in the following way

�(F ) =

d

X

i=1

 

i

F 

�

i

;

and a left inverse � of � is defined by

�(F ) =

1

d

d

X

i=1

 

i

F 

�

i

:

We now consider the �-algebra 0

O

d

generated by  
1

; : : : ;  

d

(the Cuntz algebra).

THEOREM. The algebra 0

O

d

is simple (for d � 2).

PROOF. Let I � 0

O

d

be a (two-sided) ideal, and let A 2 I; A 6= 0. Every A 2 0

O

d

can be written in the form

A =

X

�;�

finite

�

��

 

�

 

�

�

with �; � finite sequences of numbers �
i

; �

j

2 f1; : : : ; dg, where the length of the

sequence � is denoted by l(�).  
�

is defined as the product

 

�

=  

�

1

� � � 

�

n

; n = l(�) :
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Because of the relation
d

P

i=1

 

i

 

�

i

= 1 the representation above is not unique. One can

always choose it in a way that the multiindices � have the same length.

We use the following notation:

� � � , l(�) � l(�) and �
i

= �

i

; i = 1; : : : ; l(�)

and for � � � let � � � be defined by

(� � �)

i

= �

l(�)+i

; i = 1; : : : ; l(�)� l(�) :

Let n be the smallest length of an index � occurring in the representation of A, and let

�

�

0

�

0

6= 0 for �
0

; �

0

; l(�

0

) = n. We have

A

0

=  

�

�

0

A 

�

0

=

X

�>�

0

�

��

0

 

���

0

+ �

��

0

:

Let r = maxfl(�� �
0

); �

��

0

6= 0g. Then,

A

00

=  

�

1

r

A 

r

1

= �

(1; : : : ; 1)

| {z }

r

;�

0

 

r

1

+ �

��

0

:

With A, also A0 and A00 are in I . However, then

= �

�1

�

0

�

0

 

�

2

A

00

 

2

;

too and hence I = 0

O

d

.

Now we want to show that 0

O

d

possesses a unique C�-norm. We already know that
0

O

d

possesses non-vanishing representations in Hilbert space, whose operator norm

induce C�-seminorms on 0

O

d

; since 0

O

d

is simple, these are always C�-norms. We

now make use of the existence of a 1-parameter automorphism group in 0

O

d

,

t 7! �

t

; �

t

 

j

= e

it

 

j

; j = 1; : : : ; d :

0

O

d

decomposes into a direct sum of subspaces, which correspond to the different

representations of U(1),

0

O

d

=

M

k2Z

0

O

k

d

;

and thus becomes a graded algebra

0

O

k

d

0

O

l

d

�

0

O

k+l

d

:

An element A 2 0

O

k

d

possesses a representation

A =

X

�

��

 

�

 

�

�

with l(�) = r sufficiently large and l(�) = r + k. A defines an operator from

H


r

! H


r+k , for

H


r

! H

r

u 7!  (u) ;  (e

1


 � � � 
 e

r

) =  

1

� � � 

r
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defines an isomorphism between H
r and Hr, and with u;w 2 H
r

; v 2 H


r+k we

have

 (v) (u)

�

 (w) = hu;wi (v) =  (hu;wiv) :

Let us at first consider 0

O

0

d

. 0

O

0

d

is a subalgebra of 0

O

d

. It has the structure of an

inductive limit of the algebra B(H
r

) (

�

=

M

�

r

(C )) with the embedding

B(H


r

) ,! B(H


r+1

)

A 7!

H


A :

Hence it possesses a unique C�-norm. A C

�-norm on 0

O

d

fixes a unique C�-norm on
0

O

k

d

. Namely, let A 2 0

O

k

d

. Then A�A 2 0

O

0

d

and kAk = kA�Ak
1

2 .

Now let k � k be aC�-norm on 0

O

d

. EveryA 2 0

O

d

possesses a unique decomposition

A =

P

A

k

with A
k

2

0

O

k

d

. Then

kAk �

X

k

kA

k

k :

Since the right hand side is independent of the choice of theC�-norm, there is a maximal

C

�-norm k � kmax.

LEMMA. For every C�-norm holds kAk � kA
k

k.

PROOF. Let A
k

, taken as an operator of H
r

! H


r+k , possess the representation

A

k

=

X

a

i

ju

i

ihv

i

j

with orthonormal systems (u

i

) and (v

i

), a
i

2 C and ja
1

j = kA

k

k. As an element of
0

O

k

d

, A
k

can be written in the form

A

k

=

X

a

i

 (u

i

) (v

i

)

�

:

We think of r chosen large enough, such that A possesses a representation, in which

all terms have r factors  �
i

. Then we have

 (u

1

)

�

A (v

1

) = a

1

+

X

k 6=0

A

0

k

; A

0

k

2 H

k

; k > 0; A

0

k

2 (H

�

)

jkj

; k < 0 :

Now on H jkj (and also on (H

�

)

jkj) for the left inverse holds

k�(A)k = �

�1

kAk

because of

�( 

i

1

� � � 

i

k

) = d

�1

X

i

 

�

i

 

i

1

� � � 

i

k

 

i

= d

�1

 

i

2

� � � 

i

k

 

i

1

:

Hence for every C�-norm on 0

O

d

and all l 2 N holds

kAk � k (u

1

)

�

A (v

1

)k � ka

1

+

X

k 6=0

�

l

(A

0

k

)k � ja

1

j �

X

k 6=0

k(A

0

k

)kd

�l

;

thus kAk � ja
1

j = kA

k

k.

PROPOSITION. 0

O

d

possesses a unique C�-norm.
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PROOF. Let max be the C�-algebra formed with the help of the maximal C�-norm

of 0

O

d

, and let I = fA 2 max; kAk = 0g be the ideal in max, on which a given

C

�-norm k � k vanishes. We want to show that I is a null ideal.

Let A = I . Then kAk = 0 = kA

�

Ak. Let A
n

2

0

O

d

be a sequence with

kA

n

�Akmax! 0. Then

k(A

�

n

A

n

)

0

k � kA

�

n

A

n

k ! 0 :

Since on 0

O

d

, k � k coincides with the maximal C�-norm, we have

k(A

�

n

A

n

)

0

kmax ! 0 :

Now the maximal C�-norm is invariant under �
t

. We have

(A

�

n

A

n

)

0

= m(A

�

n

A

n

)! m(A

�

A) :

It follows

km(A

�

A)kmax = 0 = k

1

2�

2�

Z

0

dt�

t

(A

�

A)k :

However, 1

2�

R

2�

0

dt�

t

(A

�

A) = 0 is possible only for A�A = 0 ) A = 0, i.e. I

contains only the null element.

DEFINITION. O
d

is the unique C�-algebra generated by  
i

; i = 1; : : : ; d.

We now take a look at the action of a groupG � U(d) onO
d

. We have already seen

that the automorphisms

�

g

( 

i

) =  

j

g

ji

act as unitary operators on the Hilbert space H . Since

H

k

�

=

H 
 � � � 
H

| {z }

k

;

all the tensor products of the defining unitary representation are also contained in the

algebra as subrepresentations.

We now consider the invariant subalgebra

O

G

=

n

A 2 O

d

; �

g

(A) = A8g 2 G

o

:

Let A 2 O
G

be taken as an operator fromH


r to H
s. Then

U


s

(g)A = AU


r

(g) ; g 2 G ;

i.e. A is an intertwiner between the representations U
r and U
s. The elements ofO
G

with this property can also be characterized with the help of the endomorphisms �. For

we have (for l(�) = s; l(�) = r)

 

�

 

�

�

�

r

(A) =  

�

 

�

�

X



e() = r

 



A 

�



=  

�

A 

�

�

�

s

(A) 

�

 

�

�

=

X



e() = s

 



A 

�



 

�

 

�

�

=  

�

A 

�

�

;
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thus the intertwiners T from U


r to U
s in O
G

are characterized by the property that

they satisfy the relation

T�

r

(A) = �

s

(A)T ; A 2 O

G

:

The idea of the Doplicher-Roberts reconstruction is to take the relation between

O

d

and O
G

as a model for the relation between F and . The group G acts as an

automorphism group on O
d

. The properties of its representations can be described

with the help of the intertwiners. These are elements of O
G

and can be identified if

the endomorphism � is known. The Tanaka-Krein theorem characterizes a compact

group by the following data:

(i) the representation spaces H
�

,

(ii) the intertwiners T : H

�

! H

�

; TU

�

(g) = U

�

(g)T .

If these data are given, then the group is defined by the set of maps

g : � ! g(�) 2 U(H

�

)

with Tg(�) = g(� )T 8T 2 (�; � ) and g(� 
 � ) = g(�)
 g(� ).

The problem with the application of this theorem is, that the Hilbert spaces are not

given at first. We will see, however, that O
G

contains sufficient information about the

Hilbert spaces inO
d

.

A second problem is easy to solve. In our construction we have obtained all the

tensor products of the defining representation and its subrepresentations as Hilbert

space representations in the algebra O
d

and hence all the corresponding intertwiners

in O
G

. If G = U(d), then the conjugate representation is not contained in the tensor

products of the defining representation. In general the following proposition holds:

PROPOSITION. Let G be a compact group, and let � be a faithful self-conjugate

finite dimensional representation of G. Then every irreducible representation of G is

contained as a subrepresentation in the multiple tensor product of � with itself.

PROOF. Let � be the character of � and �
�

the character of any irreducible represen-

tation � of G. � is equivalent to a subrepresentation of �
n if and only if
Z

G

dg�(g)

n

�

�

(g) 6= 0 ; (�(g) = �(g) because of � ' �) :

i.e. we must show that
Z

dge

��(g)

�

�

(g) 6= 0

for some �. We now make use of the fact that �
�

(e) = d

�

and that for g 6= e because

of the faithfulness of �

0 < Tr(U
�

(g)� 1)

�

(U

�

(g)� 1) = 2(�(e)� �(g)) :

We show
Z

dge

��(g)

�

�

(g)

Z

dge

��(g)

�!

�!1

d

�

:
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For that purpose it is obviously sufficient to show
Z

dge

��(g)

f(g)

Z

dge

��(g)

�!

�!1

0

if f is continuous with f(e) = 0.

We choose for � > 0 a neighborhood U of e with jf(g)j < � for g 2 U . On G n U

then

0 < �(e)� sup

g2GnU

�(g) = � :

Now let V � U be a neighborhood of e with �(g) � �(e)�

�

2

. Then it follows

�

�

�

�

Z

dge

��(g)

f(g)

Z

dge

��(g)

�

�

�

�

�

�

Z

dge

��(g)

�

�1

�

�

�

�

Z

U

dge

��(g)

f(g)

�

�

� +

�

�

�

Z

GnU

dge

��(g)

f(g)

�

�

�

�

:

The first term on the right side is obviously bounded by �. The second term is estimated

in the following way
�

�

�

Z

GnU

dge

��(g)

f(g)

�

�

�

Z

dge

��(g)

�

�

�

�

Z

GnU

dge

��(g)

f(g)

�

�

�

Z

V

dge

��(g)

f(g)

� sup jf j

vol(G n U)

vol(V )

e

���(e)

�

2

;

it thus converges to zero for � ! 1. Since � > 0 was arbitrary, the proposition

follows.

We confine ourselves in the following to the case G � SU(d). Then the totally

antisymmetric subspace of H��1 carries the conjugate representation of G. For

^

 

i

=

1

q

(d� 1)!

X

p 2 S

d

p(1) = i

sign(p) 
p(2)

� � � 

p(d)

forms a basis of this subspace and

S =

1

p

d!

X

p2S

d

sign(p) 
p(1)

� � � 

p(d)

is invariant under G � SU(d). With ^

 

i

=

p

d 

�

i

S the proposition follows.

We thus know that in this case every representation of G 2 O
d

and correspondingly

every intertwiner is contained in O
G

. However, we need a criterion, when a given

algebra is isomorphic toO
G

. Here we use that the algebraOSU(d) is easy to characterize.

All intertwiners between tensor products of the defining representation of SU(d) are

generated by permutations of the factors in the tensor product and by the determinant.

In the Cuntz algebra the determinant corresponds to the element S. The permutations

are represented by

"(p) =

X

�

 

�

 

�

�

p

; p 2 S

n
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with � = (�

1

; : : : ; �

n

) and �
p

= (�

p(1)

; : : : ; �

p(n)

). This representation respects the

natural embedding S
n

,! S

n+1

. Furthermore holds

�("(p)) = "(p

0

)

with p0 2 S
n+1

; p

0

(1) = 1; p

0

(i) = p(i� 1); i = 1; : : : ; n, as well as

�("(p)) =

8

<

:

"(p) p(1) = 1

d

�1

"(p

0

) p(1) 6= 1

with p0(i) = ((1p(1))p)(i + 1). The algebra generated by "(p); p 2 S
1

is isomorphic

to the group algebra CS
1

modulo the ideal generated by

E

�+1

=

1

(d + 1)!

X

p2S

d+1

sign(p)"(p) :

Futhermore holds

SS

�

= E

d

S

�

�(S) = (�1)

d�1

d

�1

;

for

SS

�

=

1

d!

X

p;p

0

2S

d

sign(pp0) 
p

 

�

p

0

;  

p

=  

p(1)

� � � 

p(d)

=

1

d!

X

p;p

0

2S

d

sign(p) 
p

0

 

�

p

0

p

=

1

d!

X

p2S

d

sign(p)
X

�

 

�

 

�

�p

= E

d

and

S

�

�(S) =

1

d!

X

p;p

0

2S

d

;i

 

�

p

 

i

 

p

0

 

�

i

sign(pp0)

=

1

d!

X

i; p

p(1) = i

 

i

 

�

i

(�1)

d�1

= (�1)

d�1

d

�1

:

The following proposition holds (DR Inv. Math. 98, 157-218 (1989) Thm 4.17).

PROPOSITION. Let ^

O be a simple C�-algebra with an endomorphism �̂ and a unitary

representation "̂ of S
1

with the following properties:

(i) "̂(p) 2 (�̂

n

; �̂

n

); p 2 S

n

,

(ii) "̂((1 2 � � � n+ 1))

^

T = �̂(

^

T )"̂((1 2 � � � m+ 1));

^

T 2 (�̂

n

; �̂

m

),

(iii) 9 ^S 2 (id; �̂d) with ^

S

�

^

S = ;

^

S

�

�̂(

^

S) = (�1)

d�1

d

�1 and ^

S

^

S

�

=

^

E

d

,

(iv) ^

O is generated by the intertwiners ^

T 2 (�̂

n

; �̂

m

); n;m 2 N.

Then there is an up to conjugation unique closed subgroup G � SU(d) and an embed-

ding of ^

O inO
d

with ^

O = O

G

, such that �j
O

G

; " = "̂ and ^

S = S hold.
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PROOF. We are using thatOSU(d) can be taken as a subalgebra of eitherO
d

or ^

O. We

consider the algebra B
0

generated by ^

O and 0

O

d

with the following relations:

(i)  
i

A = �̂(A) 

i

; A 2

^

O; i = 1; : : : ; d,

(ii) "̂(p) = "(p),

(iii) ^

S = S.

On this algebra the SU(d) acts by

�

g

( 

i

) =

X

i

 

j

g

ji

; g 2 SU(d)

�

g

(A) = A ; A 2

^

O :

B

0

possesses a unique C�-norm, which is invariant under �
g

. Let the corresponding

C

�-algebra be denoted by B. Because of the uniqueness of the C�-norm on 0

O

d

, O
d

is

a subalgebra of B.

If ^

O is generated by "̂(p) and ^

S, then obviously ^

O = OSU(d) � Od = B, and we

obtain G = SU(d). In general, however, there exist intertwiners ^

T 2 (�̂

n

; �̂

m

) with
^

T 62 OSU(d). We consider the operators of the form

t

��

=  

�

�

^

T 

�

; l(�) = n; l(�) = m :

Obviously in B holds

t

��

A =  

�

�

^

T�

n

(A) 

�

=  

�

�

�

m

(A)

^

T 

�

= At

��

;

thus t
��

2

^

O

0

\ B. The following lemma holds:

LEMMA. ^

O

0

\ B = Z(B).

PROOF. ^

O

0

\ B is invariant under SU(d). Hence, this algebra is generated by

irreducible tensors under SU(d). LetF
i

; i = 1; : : : ; n be such a tensor. Then there exists

a m 2 N and a subspace ~

H � H

m transforming according to the same representation,

with corresponding orthonormal basis ~

 

i

; i = 1; : : : ; n. Thus,

B =

X

i

F

i

~

 

�

i

is invariant under SU(d) and hence in ^

O. Because of the orthonormality of the ~

 

i

,

B

~

 

i

= F

i

:

Since B 2 (�̂

n

; id) and ~

 

i

2 (id; �n), with condition (ii) from the theorem and the

corresponding property inO
d

�̂(B) = B"̂(n+ 1 � � � 1)

�(

~

 

i

) = "(1 � � � n+ 1)

^

 

i

;

thus

 

j

F

i

=  

j

B

~

 

i

= �̂(B)�(

~

 

i

) 

j

= B"̂(n+ 1 � � � 1)"(1 � � � n+ 1) 

i

 

j

= F

i

 

j

because of " = "̂, i.e. F
i

2

^

O

0

\ O

0

d

\B = Z(B).
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We thus see, that the operators t
��

lie in the center of the algebra B. We now

diagonalize the center and choose a point in the spectrum. This is a one-dimensional

representation ' of Z(B). We define the groupG we are looking for by

G =

n

g 2 SU(d); ' � �

g

= '

o

:

The embedding of ^

O inO
d

is now given by the following formula:

(�̂

n

; �̂

m

) 3

^

T 7!

X

�; �

l(�) = m

l(�) = n

'( 

�

�

^

T 

�

) 

�

 

�

�

:

This map is obviously a homomorphism with "̂(p) 7! "(p) and ^

S 7! S. Since ^

O is by

definition simple, the map is also injective.

In order to see that the group G is unique up to conjugation, we make use of the

fact that BSU(d)
=

^

O. Hence, B0 \ BSU(d)
= Z(

^

O) = C . With Z(B) ' C(spZ(B))

follows that the spectrum of Z(B) only consists of one orbit under SU(d). All stability

subgroups defined by points of the spectrum are thus conjugate.

For later application we want to see how the statistics operators "(p) can be expressed

with the help of the observables. For that purpose we consider an irreducible tensor

 

0

i

= U 

i

2 F(O

1

) withO
1

� O

0

; U =

P

 

0

j

�

 

j

unitary. We have

"((1 2)) =

X

i;j

 

i

 

j

 

�

i

 

�

j

=

X

i;j

 

i

U

�

 

0

j

 

�

i

 

�

j

=

X

i;j

�(U

�

) 

i

 

0

j

 

�

i

 

�

j

�

X

i;j

�(U

�

) 

0

j

 

i

 

�

i

 

�

j

�

X

i;j

�(U

�

)U  

j

 

i

 

�

i

 

�

j

| {z }

=1

:

U 2 is here characterized by AdU � � 2 �(O

1

). The operator " = �(U

�

)U is called

the statistics operator of �. " coincides with "((1 2)) up to a sign originating from the

graded locality in F .



CHAPTER IV

DHR theory and the DR Reconstruction Theorem

1. Localized Sectors and Statistics

We start in this chapter from a net of von Neumann algebras (O) 2 B(H

�

) which

is local, Haag dual, Poincaré covariant and possesses a unique vacuum state. We study

the sectors satisfying the DHR criterion

�

�

�

�

(O

0

)

' �

0

�

�

�

(O

0

)

; for everyO

and are Poincaré covariant. We have already seen that these representations possess

the property that

� ' �

0

� �

holds with a localized transportable endomorphism � 2 �. The representation � in

general violates Haag duality; we make the following assumption (finite statistics):

There exists in

�

=

[

O

�( (O

0

))

0

a positive conditional expectation E
�

:

�

! �( ) with

E

�

(A) � d

�2

�

A ; A � 0

with d
�

<1.

We are now able to define the product of two representations:

[�

1

� �

2

] = [�

0

� �

1

�

2

] ; with �
i

= �

0

� �

i

:

PROPOSITION. Let �
0

� �

i

' �

0

� �

0

i

; i = 1; 2. Then �
0

� �

1

�

2

' �

0

� �

0

1

�

0

2

.

PROOF. �
0

� �

i

' �

0

� �

0

i

) 9U

i

2 with �0
i

= AdU
i

� �

i

. Thus we have

�

0

� �

0

1

�

0

2

= �

0

� AdU
1

� �

1

AdU
2

� �

2

= �

0

� AdU
1

�

1

(U

2

) � �

1

�

2

= Ad�
0

(U

1

�

1

(U

2

))�

0

� �

1

�

2

:�

This proposition shows that the DHR product of two representations is well-defined.

It satisfies the DHR criterion, too.
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We now show that �
0

� �

1

�

2

is Poincaré covariant if �
0

� �

1

and �
0

� �

2

are. Let U
�

i

be the unitary representation of the covering group P of the Poincaré group with the

property

AdU
�

i

(L) � �

i

= �

i

� �

L

:

We are looking for a representation U
�

1

�

2

with the property

AdU
�

1

�

2

(L) � �

1

�

2

= �

1

�

2

� �

L

:

We have

�

1

�

2

� �

L

= �

1

�AdU
�

2

(L) � �

2

= AdU
�

1

(L) � �

1

� �

�1

L

� AdU
�

2

(L) � �

2

= AdU
�

1

(L) � �

1

� AdU
0

(L)

�1

U

�

2

(L) � �

2

:

We consider the operators (� 2 �(O))

V

�

(L) = U

0

(L)

�1

U

�

(L) ; L 2 P :

Let ^

O � O [ L

�1

O. Then for A 2 (

^

O

0

) holds �(A) = A; ��

L

(A) = �

L

(A) and

hence

V

�

(L)A = V

�

(L)�(A) = U

0

(L)

�1

��

L

(A)U

�

(L)

= U

0

(L)

�1

�

L

(A)U

�

(L) = AU

0

(L)U

�

(L) = AV

�

(L) ;

thus we have V
�

(L) 2 (

^

O

0

)

0

= (

^

O) � . Hence follows

�

1

�

2

� �

L

= AdU
�

1

�

2

(L) � �

1

�

2

with

U

�

1

�

2

(L) = U

�

1

(L)�

1

(V

�

2

(L)) :

It remains to show that U
�

1

�

2

is a representation. However, this follows from

V

�

(L

1

L

2

) = U

0

(L

2

)

�1

U

0

(L

1

)

�1

U

�

(L

1

)U

�

(L

2

)

= �

L

�1

2

(V

�

(L

1

))V

�

(L

2

)

U

�

1

�

2

(L

1

L

2

) = U

�

1

(L

1

)U

�

1

(L

2

)�

1

(�

L

�1

2

(V

�

2

(L

1

))V

�

2

(L

2

))

= U

�

1

(L

1

)�

1

(V

�

2

(L

1

))U

�

1

(L

2

)�

1

(V

�

2

(L

2

))

= U

�

1

�

2

(L

1

)U

�

1

�

2

(L

2

) :

Not so easy to see is that the spectrum condition is satisfied.

The locality of the net (O) leads to the local commutativity of endomorphisms.

PROPOSITION. Let O
1

� O

0

2

and �
i

2 �(O

i

). Then �
1

�

2

= �

2

�

1

.

PROOF. Let A 2 (O) for an arbitrary double cone O. We choose double cones
^

O

1

, ^

O

2

, ~

O

1

, ~

O

2

with the properties:

^

O

1

;

^

O

2

� O

0

;

^

O

1

[ O

1

�

~

O

1

;

^

O

2

[ O

2

�

~

O

2

;

~

O

1

�

~

O

0

2

:
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Because of the transportability of �
1

and �
2

there are unitary operators U
1

2 (

~

O

1

),

O

~

O

2

^

O

1

O

1

O

2

^

O

2

~

O

1

FIGURE IV.6. Double Cones

U

2

2 (

~

O

2

) with

AdU
1

� �

1

2 �(

^

O

1

) ; AdU
2

� �

2

2 �(

^

O

2

) :

Thus we have �
1

(A) = AdU�

1

(A); �

2

(A) = AdU�

2

(A) and therefore

�

1

�

2

(A) = �

1

� AdU�

2

(A) = Ad�
1

(U

�

2

)AdU�

1

(A)

= AdU�

2

U

�

1

(A) = AdU�

1

U

�

2

(A)

= �

2

�

1

(A) ;

where have used �
1

(U

�

2

) = U

�

2

because of �
1

2 �(O

1

) and U�

2

2 (

~

O

2

) � (O

0

1

) and

U

�

1

U

�

2

= U

�

2

U

�

1

. �

We can now easily show that apart from unitary equivalence the product of rep-

resentations does not depend on the order of the factors. Let �
1

; �

2

2 �(O),

let O
1

;O

2

be spacelike separated double cones and U

1

; U

2

unitary operators with

�̂

i

= AdU
i

� �

i

2 �(O

i

); i = 1; 2. Then we have �̂
1

�̂

2

= �̂

2

�̂

1

and hence

�

2

�

1

= �

2

� AdU�

1

� �̂

1

= Ad�
2

(U

�

1

) � �

2

�̂

1

= Ad�
2

(U

�

1

)U

�

2

� �̂

2

�̂

1

= Ad�
2

(U

�

1

)U

�

2

� �̂

1

�̂

2

= Ad�
2

(U

�

1

)U

�

2

U

1

�

1

(U

2

) � �

1

�

2

:

The operator "(�
1

; �

2

) = �

2

(U

�

1

)U

�

2

U

1

�

1

(U

2

) is called statistics operator. It has

remarkable properties:

(i) "(�
1

; �

2

) does not depend on the choice of U
1

and U
2

(for fixedO
1

andO
2

), for

if U 0

2

is unitary with AdU 0

2

2 �(O

2

), then V
2

= U

0

2

U

�

2

2 (O

0

2

)

0

= (O

2

), and

we obtain (with �̂
1

(V

2

) = V

2

)

�

2

(U

�

1

)U

0

2

�

U

1

�

1

(U

0

2

) = �

2

(U

�

1

)U

�

2

V

�

2

U

1

�

1

(V

2

)�

1

(U

2

)

= �

2

(U

�

1

)U

�

2

V

�

2

�̂

1

(V

2

)U

1

�

1

(U

2

)

= �

2

(U

�

1

)U

�

2

V

�

2

V

2

U

1

�

1

(U

2

)

= �

2

(U

�

1

)U

�

2

U

1

�

1

(U

2

) :

A corresponding calculation holds for U
1

.
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(ii) "(�
1

; �

2

) does not change if O
1

is replaced by ^

O

1

� O

1

and O
2

by ^

O

2

� O

2

with ^

O

1

�

^

O

0

2

.

We now consider the set

K

2

=

n

(O

1

;O

2

)

�

�

�O

1

� O

0

2

o

:

A path inK
2

is a finite sequence (O
(i)

1

;O

(i)

2

) 2 K

2

withO
(i)

j

� O

(i+1)

j

orO
(i)

j

� O

(i+1)

j

.

"(�

1

; �

2

) then obviously depends on the connected component of (O
1

;O

2

). Two pairs

(O

1

;O

2

) and (

^

O

1

;

^

O

2

) 2 K

2

are connected by a path if their centers (x

1

; x

2

) and

(x̂

1

; x̂

2

) are connected by a path in

n

(x; y)

�

�

� (x� y)

2

< 0

o

:

This set possesses in d � 3 dimensions exactly one connected component, in d = 2

dimensions exactly two connected components.

For further discussion it is useful to use the intertwiner calculus of DHR. The space

(�; �) =

n

T 2

�

�

�T�(A) = �(A)T; A 2

o

has already been introduced for �; � 2 �, also composition and adjunction

(�; �)� (�; � )! (�; � ) (�; �)! (�; �)

(T; S) 7! S � T = ST T 7! T

�

:

This composition structure leads to another composition. For if T
i

2 (�

i

; �

i

); i = 1; 2

then for A 2 holds

T

1

�

1

(T

2

)�

1

�

2

(A) = T

1

�

1

(T

2

�

2

(A)) = T

1

�

1

(�

2

(A)T

2

)

= T

1

�

1

�

2

(A)�

1

(T

2

) = �

1

�

2

(A)T

1

�

1

(T

2

)

and T
1

�

1

(T

2

) = �

1

(T

2

)T

1

. Thus by

(�

1

; �

1

)� (�

2

; �

2

)! (�

1

�

2

; �

1

�

2

)

(T

1

; T

2

) 7! T

1

� T

2

= T

1

�

1

(T

2

) = �

1

(T

2

)T

1

a product between the intertwiner spaces is introduced. We have (T
i

2 (�

i

; �

i

); S

i

2

(�

i

; �

i

))

(S

1

� S

2

) � (T

1

� T

2

) = S

1

�

1

(S

2

)T

1

�

1

(T

2

)

= S

1

T

1

�

1

(S

2

T

2

)

= (S

1

� T

1

)� (S

2

� T

2

) :

If is understood as an element of (�; �), then we write
�

. There are embeddings of

(�; � ) into (��; �� )

T !

�

� T = �(T )

and into (��; ��)

T ! T �

�

= T :
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One easily verifies that the�-product is associative. We can write the statistics operator

"(�

1

; �

2

) (as element of (�
1

�

2

; �

2

�

1

))

"(�

1

; �

2

) = (U

�

2

� U

�

1

) � (U

1

� U

2

)

with U
i

2 (�

i

; �̂

i

) unitary, �̂
i

2 �(

^

O

i

);

^

O

1

�

^

O

0

2

(r)

(right spacelike complement).

Furthermore holds: If S
i

2 (�

i

; �

i

); i = 1; 2 and �

i

; �

i

2 �(O

i

); O

1

� O

0

2

then

S

i

2 (O

i

) and �
1

(S

2

) = S

2

; �

2

(S

1

) = S

1

and thus

S

1

� S

2

= S

2

� S

1

:

From this one easily sees the invariance of the statistics operator for continuous defor-

mations of the regions ^

O

1

and ^

O

2

.

We now show that the statistics operator also describes the commutation relations

between intertwiners.

PROPOSITION. Let �
1

; �

2

; �

1

; �

2

2 � and T
i

2 (�

i

; �

i

); i = 1; 2. Then,

"(�

1

; �

2

) � (T

1

� T

2

) = (T

2

� T

1

) � "(�

1

; �

2

) :

PROOF. Let ^

O

1

2

^

O

0

2

(r)

and U
i

2 (�

i

; �̂

i

); V

i

2 (�

i

; �̂

i

) unitary with �̂
i

; �̂

i

2

^

O

i

.

Then

"(�

1

; �

2

) = (U

�

2

� U

�

1

) � (U

1

� U

2

)

"(�

1

; �

2

) = (V

�

2

� V

�

1

) � (V

1

� V

2

) :

We have ^

T

i

= U

i

T

i

V

�

i

2 (�̂

i

; �̂

i

) and hence (because of ^

O

1

�

^

O

0

2

(r)

)

^

T

2

�

^

T

1

=

^

T

1

�

^

T

2

:

With this, it follows

"(�

1

; �

2

)T

1

� T

2

= (U

�

2

� U

�

1

) � (U

1

� U

2

)(T

1

� T

2

)

= (U

�

2

� U

�

1

) � (

^

T

1

�

^

T

2

) � (V

1

� V

2

)

= (U

�

2

� U

�

1

) � (

^

T

2

�

^

T

1

) � (V

1

� V

2

)

= (U

�

2

� U

�

1

) � (U

2

� U

1

) � (T

2

� T

1

) � (V

�

1

� V

�

2

) � (V

1

� V

2

)

= T

1

� T

2

"(�

1

; �

2

) :�(4)

Furthermore

"(�

1

�

2

; �

3

) = (U

�

3

� U

�

1

� U

�

2

) � (U

1

� U

2

� U

3

)

= (U

�

3

� U

�

1

� U

�

2

)(U

1

� U

3

� U

2

)(U

�

1

� U

�

3

� U

�

2

)(U

1

� U

2

� U

3

)

= "(�

1

; �

3

) � (

�

1

� "(�

2

; �

3

)) = "(�

1

; �

3

)�

1

("(�

2

; �

3

))(5)

and correspondingly

"(�

1

; �

2

�

3

) = (

�

2

� "(�

1

; �

3

)) � "(�

1

; �

2

) = �

2

("(�

1

; �

3

))"(�

1

; �

2

) :

Furthermore "(�; id) = "(id; �) = and

"(�; �) = 1 ; if � 2 �(O

1

); � 2 �(O

2

); O

2

2

^

O

0

1

(r)

:
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We call "(�; �) = "

�

. "
�

possesses the properties

(i) "
�

2 �

2

( )

0,

(ii) "
�

�("

�

)"

�

= �("

�

)"

�

�("

�

).

(i) follows from the intertwiner property of "
�

. (ii) follows from (5) and (4):

"

�

�("

�

) = "(�

2

; �)

"(�

2

; �)"

�

= "(�

2

; �)("

�

�

�

) = (

�

� "

�

)"(�

2

; �) = �("

�

)"(�

2

; �) :

In d > 2 dimensions furthermore holds

"

2

�

= 1 :

The pair ("
�

; �) hence defines a representation of the braid group. The braid group

B

n

is defined as the group with the n � 1 generators �
1

; : : : ; �

n�1

and the following

relations

�

i

�

j

= �

j

�

i

; if ji� jj > 2

�

i

�

i+1

�

i

= �

i+1

�

i

�

i+1

:

By

�

2

�

3

�

3

�

2

�

2

�

3

�

2

n1 2 � � �3 33 n1 2 � � � n1 2 � � �

FIGURE IV.7. Braid Group

"

�

(�

i

) = �

i�1

("

�

)

a representation of the braid group is defined. If further "2
�

= 1 holds, then one obtains

a representation of the permutation group S
n

:

THEOREM. If in addition to the braid relations �2
i

= 1; i = 1; : : : ; n� 1 holds, then

the generators �
i

generate the permutation group with �
i

= (i i+ 1).

PROOF. In the permutation group S
n

the following relations hold:

(i i+ 1)(j j + 1) = (j j + 1)(i i+ 1) if fj; j + 1g \ fi; i+ 1g = ;

(i i+ 1)(i+ 1 i + 2)(i i+ 1) = (i i+ 2)

(i+ 1 i+ 2)(i i+ 1)(i+ 1 i + 2) = (i i+ 2)

(i i+ 1)(i i+ 1) = :

The group ~

S

n

generated by �
i

; i = 1; : : : ; n � 1 is mapped homomorphically into S
n

by �
i

7! (i i + 1). Since S
n

is generated by the transpositions (i i + 1), the map is

onto. In order to show that it is also one to one we show that ~

S

n

possesses at most n!

elements.
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~

S

1

is generated by zero generators and thus contains only the . We want to show

that every element of ~

S

n+1

can be written in either of the following form:

g =

n

Y

k=l

�

k

h ; h 2

~

S

n

; l = 1; : : : ; n+ 1(6)

Since l can take on n+ 1 values, it would follow

j

~

S

n+1

j � (n+ 1)j

~

S

n

j

and hence by induction j ~S
n+1

j � n!.

In order to show (6) it suffices to prove that products of g with the generators

�

1

; : : : ; �

n

can again be written in the form (6). A product from the right with�
k

; k < n

obviously changes onlyh. A product from the left with�
k

; k < l�1, can be commuted

past the factors �
k

; k < l; : : : ; n and also changes only h. A product from the left with

�

l�1

changes l to l� 1. If we multiply from the left with �
l

, then l changes to l+ 1. If

one multiplies from the left with �
k

; k > l, then

�

k

�

l

�

l+1

� � � �

n

= �

l

� � � �

k�2

�

k

�

k�1

�

k

�

k+1

� � ��

n

= �

l

� � � �

k�2

�

k�1

�

k

�

k�1

�

k+1

� � ��

n

= �

l

� � � �

k�2

�

k�1

�

k

�

k+1

� � ��

n

�

k�1

:

Thus, h is changed to�
k�1

h. There remains to consider the case that it is multiplied from

the right with �
n

. For that purpose we assume that h 2 ~

S

n

possesses a representation

analogous to (6),

h =

n�1

Y

k

0

=l

0

�

k

0

h

0

; h

0

2

~

S

n�1

:

Since �
n

commutes with ~

S

n�1

, one obtains

g�

n

=

n

Y

k=l

�

k

n

Y

k

0

=l

0

�

k

0

h

0

:

We have

n

Y

k=l

�

k

n

Y

k

0

=l

0

�

k

0

=

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

n

Y

k

0

=l

0

+1

�

k

0

n�1

Y

k=l

�

k

l � l

0

n

Y

k

0

=l

0

�

k

0

n�1

Y

k=l�1

�

k

l > l

0

:

In both cases g has the representation we wanted. �

We now want to see also geometrically why the braid and permutation groups occur

here. We think of the double cones substituted by points in spacelike hyperplaneRd�1.

To a charge transporter U
k

we associate a path 
k

from x

0

(the localization region of

�) to another point x
k

, where the points x
k

are mutually distinct (corresponding to

mutually relatively spacelike double cones, in which the endomorphisms AdU
k

� � are

localized). The n factors in U
1

� � � � � U

n

define n paths in Rd�1�R�R



k

� fkg � f0g ; k = 1; : : : ; n :
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We now connect the end points (x

k

; k; 0) of 
k

� fkg � f0g in Rd�1 � R� R with

(x

k

; p

�1

(k); 1) and compose these paths with the paths



k

� fp

�1

(k)g � f0g ; k = 1; : : : ; n :

In this way we obtain a family of paths connecting inRd�1�R�Rthe points (x
k

; k; 0)

with (x

k

; p

�1

(k); 1).

The operator

"(p) = (U

�

p

�1

(1)

� � � � � U

�

p

�1

(n)

) � (U

1

� � � � � U

n

)

is constant under continuous changes of the points x
k

. It hence depends only on the

braid defined by this prescription, in d > 2 dimensions thus only on the permutation p.

2 3

1 2 3

1

1

0
x

0

x

1

x

2

x

3

x

2

x

0

x

1

x

3

FIGURE IV.8. Geometric Understanding

2. Left Inverse and Conjugate Sector

For a further analysis one needs the existence of a left inverse. If � is an auto-

morphism, then ��1 is the uniquely defined inverse. This case is characterized by the

following equivalent conditions:

PROPOSITION. The following conditions are equivalent for � 2 �:

(i) � is an automorphism.

(ii) �
0

� � satisfies Haag duality.

(iii) �
0

� �

2 is irreducible.

(iv) "(�; �) is a multiple of .

PROOF. The equivalence of (i) and (ii) has already been shown in section 2. (i))

(ii) holds, since for an automorphism �, �( ) coincides with , thus

�

0

� �

2

( )

0

= �

0

( )

0

= C

because of the irreducibility of the vacuum representation. (iii)) (iv), since "(�; �)

lies in the commutant of �2( ). However, this is trivial for �
0

� �

2 irreducible.

There remains to show (iv) ) (i). Let O be a double cone and A 2 (O). We

want to show that A 2 �( ) holds if "(�; �) 2 C . Let O
1

� O

0 and U unitary with

AdU � � 2 �(O

1

). Then AU = U�(A), thus

A = AUU

�

= U�(A)U

�

= �(U)�(U

�

)U�(A)U

�

�(U)�(U

�

) = �(U)"

�

�(A)"

�

�

�(U

�

) :
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If "
�

2 C holds, then follows

A = �(UAU

�

) 2 �( ) :�

We now consider the general case. We are looking for a map � : ! with the

properties

�(�(A)B�(C)) = A�(B)C

�(AA

�

) � 0

�(1) = 1 :

� is given on �( ) by ��1. A continuation can be found in the following way. Let !

be defined by

! = !

0

� �

�1

as a state on �( ). According to the Hahn-Banach theorem every linear functional on

�( ) can be continued to a linear functional on , such that the norm is preserved. Let

!

i

be such a continuation. Then

k!

i

k = k!k = 1 = !

i

(1) ;

thus !
i

is itself again a state. We suppress the index i but keep in mind that ! is not

uniquely determined.

We now consider the GNS construction to !; (�;H;	). The map

V A
 = � � �(A)	 ; A 2

defines an isometry V : H

0

!H,

kV A
k

2

= !(�(A

�

A)) = !

0

(A

�

A) = kA
k

2

:

V satisfies the intertwiner relation

V A = ��(A)V ; i.e. V 2 (�

0

; �

�

) :

We now set

�(A) = V

�

�(A)V ; A 2

and show that � is a left inverse of �. We have:

(i) �(�(A)B�(C)) = V

�

�(�(A)B�(C))V = AV

�

�(B)V C = A�(B)C ,

(ii) �(A�A) = (�(A)V )

�

(�(A)V ) � 0,

(iii) �(1) = 1.

Now we want to use the left inverse to examine the representation of the permutation

group (we thus restrict ourselves to the case "2
�

= 1, the general case will be covered in

the next semester). We obviously have

�("

�

)�(A) = �("

�

�

2

(A)) = �(�

2

(A)"

�

) = �(A)�("

�

) ;

thus �("
�

) 2 �( )

0. For � irreducible this implies

�("

�

) = �

�
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with the statistics parameter �
�

. In order to apply � to a general permutation operator

"(p), we use the same factorization as in section 3,

"(p) =

8

>

>

<

>

>

:

�("(p

0

)) p(1) = 1

"

�

�("(p

0

)) p(1) = 2

�("(1 p(1) � 1)"

�

�("(p

00

)) p(1) > 2

with p0 as before and p00 = (1 p(1) � 1)(p

0

). With it follows

�("(p)) =

8

<

:

"(p

0

) p(1) = 1

�"(p

0

) p(1) 6= 1

:

For the projections onto the totally symmetric, respectively antisymmetric part

E

a
n

=

1

n!

X

p2S

n

"(p)sign(p)

E

s
n

=

1

n!

X

p2S

n

"(p)

we can compute recursively

�(E

a
n+1

) =

1

(n + 1)!

�

X

p 2 S

n+1

p(1) = 1

"(p

0

)sign(p0)�
n+1

X

i=2

X

p 2 S

n+1

p(1) = i

"(p

0

)�sign(p0)

�

=

1 � �n

n+ 1

E

a
n

�(E

s
n+1

) =

1 + �n

n+ 1

E

s
n

:

Since � maps positive operators to positive operators, only the following values for �

are possible

� = 0;�

1

d

; d 2 N :

In the case� =

1

d

the projectionsEa
n

; n > d have to vanish, for elseEa
n+1

is mapped onto

a negative operator. The corresponding holds in the case � = �

1

d

for the projections

E

s
n

; n > d. One calls the case � =

1

d

para Bose statistics of the order d, the case

� = �

1

d

para Fermi statistics of the order d and � = 0 infinite statistics. These terms

are motivated by the following observation: Let K be a d-dimensional vector space,

and let U
n

be the representation of S
n

defined by

U

n

(p)	

1


 � � � 
	

n

= 	

p(1)


 � � � 
	

p(n)

:

Then in the case � =

1

d

�

n

("(p)) = d

�nTrU
n

(p) :

In the case of para Fermi statistics, U
n

(p) is substituted by U
n

(p)sign(p). In the case of

para Bose statistics of the order d, �n�"j
S

n

coincides with the corresponding expression

in the Cuntz algebraO
d

. In the case of para Fermi statistics, "(p) has to be substituted

by its bosonized form "̂(p) = "(p)sign(p).
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Now we make use of the assumption of finite statistics, i.e. there exists a conditional

expectation E
�

: �( (O

0

))

0

! (O) with E
�

(A) � d

�2

�

; A � 0 for some d
�

< 1.

From the formulae �(Ea
d

) =

1

d

2

E

a
d�1

and the fact that �
�1

E

�

is a left inverse, it follows

for irreducible � that d � d

�

. We will see later that even d
�

= d. We now want to

construct the conjugate sector. There are different possibilities to do this. One is to

show that every sector [�] generated by ! satisfies the DHR criterion. Then there exists

a � 2 �(O) with � �
=

�

0

� � and an isometry R 2 (O) with

��(A)R = RA :

This possibility has been used in the proof of the finiteness of the statistics for par-

ticle representations in massive theories. In this proof the spectral properties of the

translations must be used explicitly.

A more modern possibility has been found by Longo. There one uses a PCT

symmetry j and defines � = j�j. In this construction (which keeps on making sense in

the case of infinite statistics and then serves for the definition of the conjugate sector)

one makes use of the modular theory. We will enter into these points in the next

semester.

In this lecture I would like to introduce the construction developed by Doplicher,

Haag, Roberts. It uses only the statistics operators and the Borchers property. The

construction corresponds to the construction of a conjugate representation of a compact

group. We have already seen that (in the case of para Bose statistics of the order d)

the projections Ea
n

for n > d vanish. We now consider the subrepresentation of �d

determined by Ea
d

. Let V be an isometry in (

^

O);

^

O � O with V V �

= E

a
d

, and let

(A) = V

�

�

d

(A)V . Then  2 �(

^

O).

PROPOSITION.  is an automorphism.

PROOF. We show that "


is a multiple of . This is equivalent to the fact that there

exists a left inverse �


of  with �


= � ; j�j = 1. Because of V 2 (; �

d

) holds

(V � V ) � "



= "(�

d

; �

d

) � (V � V ) ;

thus with V V �

= 1

"



= (V

�

� V

�

) � "(�

d

; �

d

) � (V � V )

= V

�

�

d

(V

�

)"(�

d

; �

d

)�

d

(V )V :

A left inverse of  is

�



(A) = �

d

(V AV

�

)�

d

(E

a
d

)

�1

�

�

d

(E

a
d

) =

d

Y

k=1

1�

d�k

d

d� k + 1

= d

�d

�

:

Thus,

�



("



) = d

�d

�

d

(V "



V

�

) :
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We have

V "



V

�

= (V �



) � "(; ) � (V

�

�



)

= "(; �

d

) � (



� V ) � (V

�

�



)

= "(; �

d

) � (V � V

�

)

= "(; �

d

) � (V

�

�

�

d) � (

�

d � V )

= (

�

d � V

�

) � "(�

d

; �

d

) � (

�

d � V )

= �

d

(V

�

)"(�

d

; �

d

)�

d

(V )

and hence

�



("



) = d

�d

V

�

�

d

("(�

d

; �

d

))V :

Now, "(�d; �d) = "(p) with

p =

d

Y

k=1

(k d+ k) :

Hence, �d("(p)) = d

�d , thus �


("



) = 1. �

Let nowW 2 (

^

O) be an isometry withWW

�

= E

a
d�1

. Then we define a conjugate

endomorphism by

�( � ) = 

�1

(W

�

�

d�1

( � )W ) :

One calculates with the left inverse

�( � ) = �

d�1

(W( � )W

�

)(�

d�1

(E

a
d�1

)

�1

; �

d�1

(E

a
d�1

) = d

2�d

the statistical dimension of � to d (calculation as above). Now we have found an

isometric intertwiner R 2 (id; ��):

R = 

�1

(W

�

V ) :

For:

RA = 

�1

(W

�

V )A = 

�1

(W

�

V (A)) = 

�1

(W

�

�

d

(A)V )

= 

�1

(W

�

�

d

(A)W )

�1

(W

�

V )

= ��(A)R :

(Here we have used that WW

�

= E

a
d�1

; V V

�

= E

a
d

and Ea
d�1

E

a
d

= E

a
d

holds.) A left

inverse is now defined by

�(A) = R

�

�(A)R :

We have (also for reducible �)

�("

�

) = R

�

�("

�

)R = 

�1

(V

�

WW

�

�

d�1

("

�

)E

a
d

V )

= 

�1

(V

�

�

d�1

("

�

)V ) = 

�1

(V

�

E

a
d

�

d�1

("

�

)E

a
d

V )

Using Ea
d+1

= 0 one obtains

E

a
d

�

d�1

("

�

)E

a
d

=

1

d

E

a
d
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and hence

�("

�

) =

1

d

:

FurthermoreR = "(�; �)R is an isometric intertwiner in (id; ��). We have

PROPOSITION. R
�

�(R) = �(R)

�

R = �

�

.

PROOF. We take R
�

�(R) as an intertwiner in (�; �). Then

R

�

�(R) = (R

�

�

�

) � (

�

�R) ;

�

�

� � "(id; �) = 1

= (R

�

�

�

) � "(��; �) � (R�

�

)

= (R

�

�

�

) � ("(�; �)�

�

) � (

�

� "(�; �)) � (R �

�

)

= (R

�

�

�

) � (

�

� "(�; �)) � (R �

�

)

= R

�

�("(�; �))R = �("

�

) = �

�

:

Furthermore,

�

�

= �(�

�

) = R

�

�(R

�

�(R))R = R

�

(�(R

�

)R)R = �

�

:

(In the case of braid group statistics we have R 6= R and hence R��(R) = �

�

.) �

Now we can describe the inclusion of �( ) in explicitly, for we have

A = �

�1

�(R)

�

RA = �

�1

�(R)

�

��(A)R

= j�j

�2

�(R)

�

��(A)RR

�

�(R)

= d

2

�(R

�

�(A))F�(R) ; F = RR

�

:

is thus generated by F and �(A) (as a bimodule over �( )). Because of �( ) = 1

holds (for � irreducible)

�(F ) = d

�2

and �(A) = R

�

�(A)R is the unique left inverse of �. We obtain for positive A the

estimate for the conditional expectation E
�

= � � �

E

�

(A) = ��(A) = �(R

�

)��(A

1

2

) ��(A

1

2

)�(R)

� �(R

�

)��(A

1

2

)F��(A

1

2

)�(R)

= d

�2

A ;

thus we have d = d

�

. As a left module over �( ), possesses the Pimsner-Popo basis

fdRg. The formula above can be understood as an expansion in this basis:

A = d

2

E

�

(AR

�

)R :

We have presupposed that � is irreducible. Up to now we actually have only used that

�("

�

) = �

�

. For the DR reconstruction one needs endomorphisms �with �("
�

) = �

1

d

and the simple sector  is the vacuum sector. This is achieved by substituting � with

� � � and d with 2d. In the general case, where not all sectors are generated by an

irreducible and its conjugate sector, one even needs arbitrarily large finite direct sums.

We hence want to concern ourselves now with the case of reducible endomorphisms.
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LEMMA. Let �
1

; � 2 �; S; T 2 (�

1

; �) and�; �
1

be left inverses of �; �
1

, respectively.

Then

(i) �(SAS�) = �

1

(A)�(SS

�

),

(ii) �(S"
�

1

T

�

) = T

�

�("

�

)S.

(iii) If �
1

is irreducible and �("
�

1

) = �

1

; S

�

S = 1; SS

�

= E, then

�(E"

�

E) = E�("

�

)E = �

1

�(E)E :

PROOF.

(i) X,

(ii) (S �

�

1

) � "

�

1

� (T

�

�

�

1

) = (

�

� T

�

) � "

�

1

� (

�

1

� S),

(iii) S��("
�

)S = �(S"

�

1

S

�

) = �

1

("

�

1

)�(E) = �

1

�(E)

� =

X

V

j

�

j

( � )V

�

j

� =

X

c

j

�

j

(V

�

j

� V

j

) ;

X

c

j

= 1; c

j

� 0

�("

�

) =

m

X

j=1

c

j

V

j

�

j

("

�

j

)V

�

j

:�

3. Doplicher-Roberts Reconstruction

We now have provided all the ingredients to carry through the Doplicher-Roberts

reconstruction. We confine ourselves here to the case that there exists an endomorphism

� 2 �(O) with statistical dimension d such that �d contains the vacuum representation

(this can always be achieved by adding to a sector the conjugate), and such that all

sectors are contained in powers of � as subrepresentations.

We want to apply the theorem about the construction of the group from a subalgebra

of the Cuntz algebra with a distinguished endomorphism. We consider the inductive

limit of the intertwiner spaces

0

O

(k)

�

=

[

n � 0

n+ k � 0

(�

n

; �

n+k

)

with the embedding

(�

n

; �

n+k

)! (�

n+1

; �

n+1+k

)

T 7! T �

�

:

A product beween T 2

0

O

(k)

�

and S 2

0

O

(l)

�

is defined by choosing representers

T 2 (�

n

; �

n+k

); S 2 (�

n+k

; �

n+k+l

), n sufficiently large, and setting

ST = S � T :

This composition is obviously independent of n.

In this way one obtains a C�-algebra 0

O

�

. This contains the statistics operators

(in bosonized form) "(p) as well as an isometry S 2 (id; �d) with SS� = E

a
d

. The

endomorphism � 2 �(O) act in a natural way on the intertwiner spaces

(�

n

; �

n+k

)! (�

n+1

; �

n+k+1

)

T 7!

�

� T = �(T ) :
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Furthermore, S��d�1( � )S defines a left inverse of �. On has to show now that �("
�

) =

1

d

. Then

S

�

�(S) = S

�

"(�; �

d�1

)�(S) = (�1)

d�1

S

�

�(S) = d

�1

(�1)

d�1

:

The C�-algebra generated by "(p) and �n(S) is isomorphic toOSU(d).
0

O

�

has a unique

C

�-norm and is simple. We are now able to use the theorem of Doplicher and Roberts

and to identify O
�

, which is the normal closure of 0

O

�

with a subalgebra O
G

� O

d

,

where G is an up to conjugation unique closed subgroup of SU(d).

One now considers the �-algebra generated by and O
d

with the relations

O

�

$ O

G

 

i

A = �(A) 

i

:

It possesses a unique C�-norm, and one obtains a unique net of field algebras F(O)

with F(O)G = (O).


