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CHAPTER

Introduction

Quantum mechanics is a consistent theory which describes well a
large part of physics, in particular atomic and molecular physics. It
neglects, however, the effects of special relativity and ignores the quan-
tum nature of force fields, especially that of the electromagnetic field.
Moreover, particle number plays a distinguished role in quantum me-
chanics, such that multiparticle processes and processes with creation
and annihilation of particles are not easily described. Each of these
points of view leads to an extension of the frame of quantum mechan-
ics which is named quantum field theory. A common, but somewhat
misleading equivalent name is “second quantization”.

The concept of quantum field theory was developed immediately
after the invention of quantum mechanics during the years 1925-1929
by Heisenberg, Jordan, Pauli and Dirac. By first order perturbation
theory they were able to explain spontaneous emission of electromag-
netic radiation and the Compton effect. For a long time, however, all
attempts failed to improve the results by using higher orders of pertur-
bation theory since the computed corrections turned out to be infinite.

The definition of a perturbation series was finally achieved by Tomon-
aga, Schwinger, Feynman and Dyson in 1947-49 by the method of
renormalization. The basic idea was that the observed masses and
charges do not coincide with the parameters used in the formulation of
the theory (the so-called bare masses, charges etc.). These parameters
have to be fixed afterwards (“renormalized”) such that the observed
parameters obtain the measured values. In the case of electrodynamics
the accordingly computed corrections agreed with remarkable precision
with the measured values. An impressive example is the magnetic mo-
ment of the electron. If µ0 denotes Bohr’s magneton, then one finds
for the magnetic moment of the electron the theoretical value

(
µ

µ0

)theor = 1, 001159652460(127)(75) (0.1)

which has to be compared with the experimental value

(
µ

µ0

)exper = 1, 001159652200(40). (0.2)

where the error of the theoretical value consists in the uncertainty of the
finestructure constant (127) and the numerical error of the calculation
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6 INTRODUCTION

of coefficients of the perturbation series (cf. Nachtmann, Elementary
Particles Theory.)

In spite of these great successes it is still unknown whether a con-
sistent theory of quantum electrodynamics exists. Actually, there are
plausible arguments which suggest that the formulation of quantum
electrodynamics on which the pertubative calculations are based does
not correspond to a consistent theory.

After the (partial) success of quantum electrodynamics one tried
to describe also the other interactions between elementary particles by
quantum field theories. The quanta of the corresponding fields should,
analogously to photons, be visible as particles. This consideration led
Yukawa to the prediction of mesons as the quanta of nuclear forces, a
prediction partially fulfilled by the discovery of the pion. More recently,
in a similar way the discovery of W- and Z-bosons as transmitter of
weak forces was an impressive justification of this concept.

Presently we have a generally accepted model for the theory of el-
ementary particles, the standard model. It is a combination of the
theory of strong interaction called Quantum Chromodynamics (QCD)
with the Weinberg-Salam model as the theory of electroweak interac-
tions. There are at present only few facts known which are not in
agreement with the standard model: the nonzero mass of neutrinos
visible in neutrino oscillations and the presence of large amounts of
dark matter in the universe. One hopes that the new accelerator at
CERN, the large hadron collider LHC will find other effects so that one
may distinguish between the many possible extensions of the standard
model.

In spite of its tremendous successes quantum field theory still does
not have the status of a consistent theory. The comparison with ex-
periments typically relies on heuristic considerations whose reliability
is difficult to judge. An exception are some structural results like the
connection between spin and statisics and the PCT theorem which can
be derived solely from fundamental properties of the theory.

The plan of these lectures is the following: We will first discuss the
multiparticle formalism of quantum mechanics (“2nd quantization”).
We will see that this formalism can be interpreted as the quantization
of a field theory with the Schrödinger equation as field equation.

We will then treat relativistic single particle systems. This amounts
to analyze the unitary representations of the Poincaré group. As a
byproduct we will find the relativistic wave equations.

In the 3rd chapter noninteracting relativistic multiparticle systems
will be constructed, and it will be shown that they correspond to quan-
tum field theories. Alternatively, we will start from a classical field
theory (electrodynamics) and associate to it a quantum field theory,
and we will show that this theory describes particles (the photons).
Formally, interactions can be introduced and the calculation of cross
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sections can be combinatorially described via Feynman diagrams. But
only the so called tree graphs give rise to immediately meaningful ex-
pressions.

In the 4th chapter interactions will be analyzed in more detail.
Scattering theory in terms of LSZ relations and the Haag Ruelle theory
will be treated. We will give a thorough definition of the S-matrix,
discuss the path integral and define important combinatorial concepts
as for instance connected functions and vertex functions.

In the 5th chapter we will treat renormalization. We will discuss
several methods, in particular the causal perturbation theory of Epstein
and Glaser and the method of flow equations of Polchinsky in the spirit
of Wilson, and we will introduce the so-called renormalization group.

The 6th chapter finally is devoted to nonabelian gauge theories.





CHAPTER I

Multiparticle systems in quantum mechanics

1. The n-particle space

According to quantum mechanics a single particle system is de-
scribed by a wave function Φ(x,m) with x ∈ R3 and m = −s,−s +
1, ...s, where s = 0, 1

2
, 1 . . . is the spin of the particle. The wave function

has to be square integrable, i.e. the normalization integral

||Φ||2 :=
s∑

m=−s

∫
d3x|Φ(x,m)|2 (1.1)

has to be finite. These wave functions constitute the single particle
Hilbert space H1. In order to describe states with 2 particles, one
has to couple the single particle systems in an appropriate way. The
simplest, but by no means only possibility is the tensor product of the
single particle spaces,

H2 := H1 ⊗ H1 3 Φ,Φ = Φ(x1,m1,x2,m2). (1.2)

The wave functions of a 2-particle system can no longer be interpreted
as waves in position space. The n-particle wave functions are square
integrable functions Φ of n variables (xi,mi), i = 1, ...n,

Φ ∈ Hn = H1 ⊗ . . .⊗ H1 . (1.3)

Observable of the n-particle system are e.g.

• the position operator of the i-th particle

(XiΦn)(x1,m1, . . . ,xn,mn) = xiΦ(x1,m1, . . . ,xn,mn)

• the momentum operator of the i-th particle

(PiΦn)(x1,m1, . . . ,xn,mn) =
1

i
∂iΦ(x1,m1, . . . ,xn,mn)

• the kinetic energy of the i-th particle (with mass Mi)

(TiΦn)(x1,m1, . . . ,xn,mn) = − 1

2Mi

∆iΦn(x1,m1, . . . ,xn,mn)

• the 3-component of the spin of the i-th particle

S
(3)
i Φn(x1,m1, . . . ,xn,mn) = miΦn(x1,m1, . . . ,xn,mn)

• the total kinetical energy T =
∑

i Ti,
• the total momentum P =

∑
iPi,

9



10 I. MULTIPARTICLE SYSTEMS IN QUANTUM MECHANICS

• and the translation operator U(x) = eiP·x,

(U(x)Φn)(x1,m1, . . . ,xn,mn) = Φn(x1 − x,m1, . . . ,xn − x,mn).

Interactions are in typical cases functions V (X1, . . . ,Xn) of the
position operators. If e.g. Vij(xi − xj) is the interaction potential
between the particle i and j, one obtains

V =
∑
i<j

Vij(Xi −Xj). (1.4)

The Hamiltonian is then given by

H = T + V . (1.5)

Up to now we assumed that the particles are distinguishable. When
the particles are indistinguishable, their numbering is arbitrary. Hence
the wave function Φσ

n,

Φσ
n(x1,m1, . . . ,xn,mn) = Φn(xσ(1),mσ(1), . . . ,xσ(n),mσ(1)) (1.6)

describes for any permutation σ the same state as Φn. One finds of-
ten the argument that therefore Φσ

n = λ(σ)Φn must hold, for a 1-
dimensional representation λ of the permutation group Sn. The 1-
dimensional representations of the Sn are λ(σ) = 1 (totally symmetric
representation) and λ(σ) = sign(σ) (totally antisymmetric representa-
tion). In the first case the wave function is symmetric (Bose statistics),
in the second case antisymmetric (Fermi statistics) under permutation
of 2 arguments.

Indeed, all known particle have either Bose- or Fermi statistics.
But one often considers models where the wave functions have a more
complicated behaviour under permutations. In atomic physics, e.g.,
one often neglects the spin; the position space wave functions then are
not necessarily antisymmetric.

Where is the error in the argument? The statement, that Φn and
Φσ
n represent only then the same state, if they differ by a factor with

absolut value 1, would be correct, if all operators in Hn would be phys-
ical observables. But exactly this is not true, when the particles are
indistinguishable. The position of the i-th particle, e.g., is no longer an
observable. Only those quantities are measurable which do not depend
on the numbering of the particles.

We define now a unitary representation of the permutation group
on Hn by

U(σ)Φ = Φσ. (1.7)

It holds
A observable ⇒ [A,U(σ)] = 0 ∀σ ∈ Sn. (1.8)

We now can decompose the Hilbert space Hn in permutation invari-
ant subspaces. Minimal invariant subspaces correspond to irreducible
representations of the permutation group. We have the important the-
orem:
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Theorem I.1. States which belong to inequivalent irreducible repre-
sentations of the permutation group cannot coherently be superimposed.

Proof. For the proof we consider two minimal invariant subspaces
Ha and Hb with corresponding orthogonal projections Ea, Eb, respec-
tively. According to our assumption these projections as well as all
observables A commute with the permutation operators U(σ). Thus
also EaAEb commutes with U(σ). When the representations of the per-
mutation group on the 2 spaces are inequivalent, EaAEb has to vanish
according to Schur’s Lemma. Let now Φ = Φa + Φb with Φi ∈ Hi,
i = a, b and ‖Φ‖ = 1. The expectation value of an observable A is〈

Φ, AΦ
〉

=
〈
Φa, AΦa

〉
+
〈
Φb, AΦb

〉
, (1.9)

since the mixed terms vanish,〈
Φa, AΦb

〉
=
〈
Φa, EaAEbΦb

〉
= 0. (1.10)

The state described by the wave function Φ is thus a mixture of the
states Φa and Φb, i.e. the phase between the components cannot be
observed. �

The fact, that states can not always be coherently superimposed,
was first observed by Wick, Wightman and Wigner; they named this
phenomenon a superselection rule. Sets of states, in which the super-
position principle holds without restrictions, are called superselection
sectors. Whereas in quantum mechanics with finitely many particles
the superselection rules play no important role, they will be important
within quantum field theory.

The known elementary particles are either bosons or fermions, ac-
cording to whether their spin is integer or half-integer. This can be
derived within the formalism of relativistic quantum field theory, if the
possibility of unobservable inner degrees of freedom is taken into ac-
count. But the argument is only valid for theories in a d-dimensional
spacetime with d ≥ 4. In 2- and 3-dimensional theories other cases
are possible (anyons, plektons); this possibility may be of importance
for the understanding of quasi-1 and 2-dimensional systems (quantum
Hall effect, high temperature superconductivity).

2. The bosonic Fock space

If one wants to describe processes, in which the particle number
changes, one has to combine the different n-particle spaces. For the
case, that the particles are indistinguishable and have Bose statistics,
the n-particle space H+

n is the space of symmetric wave functions. One
defines now the so-called bosonic Fock space H+ over the single particle
space H1 by forming the direct sum of Hilbert spaces

H+ =
∞⊕
n=0

H+
n (2.1)
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with H+
0 = C and H+

1 = H1. Elements Φ ∈ H+ are sequences

Φ = (Φ0,Φ1, . . .) ≡ (Φn)n∈N0 (2.2)

with Φn ∈ H+
n and

||Φ||2 =
∞∑
n=0

||Φn||2 <∞. (2.3)

Their scalar product is given by〈
(Φn), (Ψn)

〉
=

∞∑
n=0

〈
Φn,Ψn

〉
. (2.4)

The vector

Ω = (1, 0, . . .) (2.5)

describes a state with no particle and is called the vacuum vector (often
denoted by |0〉). A unit vector Φ describes a state with not necessarily
sharp particle number; ||Φn||2 is the probability, to find precisely n
particles in this state. Typical observables in H+ are

• the particle number operator

(NΦ)n = nΦn (2.6)

with expectation value

〈N〉 = (Φ, NΦ) =
∞∑
n=0

n||Φn||2 (2.7)

(〈N〉 = ∞ is possible) and variance

∆(N)2 = (Φ, (N − 〈N〉)2Φ) =
∞∑
n=0

(n− 〈N〉)2||Φn||2. (2.8)

Operators, which map each n-particle space into itself, commute with
the particle number operator. Examples are

• the momentum:(PΦ)n = P(n)Φn

• the kinetic energy:(TΦ)n = T (n)Φn

• the potential energy:(V Φ)n = V (n)Φn.

The great advantage of the Fock space is that it admits a simple de-
scription of the transition between different particle numbers. The pro-
cedure may be illustrated by the following example. We may imagine a
particle without any degree of freedom, i.e. H1 = C. Then H+

n = C∀n
and H+ is the space of complex valued square summable sequences l2.
An operator which changes the particle number may be defined by

(aΦ)n =
√
n+ 1Φn+1 . (2.9)

It holds

[a,N ] = a, (2.10)
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i.e. a lowers the particle number by 1. One calls a the annihilation
operator. The adjoint operator a∗, called the creation operator, is
characterized by the equation〈

Ψ, a∗Φ
〉

=
〈
aΨ,Φ

〉
. (2.11)

One calculates
∞∑
n=0

Ψn(a
∗Φ)n =

∞∑
n=0

(aΨ)n Φn

=
∞∑
n=0

√
n+ 1 Ψn+1Φn =

∞∑
n=1

√
n ΨnΦn−1,

(2.12)

i.e. (a∗Φ)0 = 0 and (a∗Φ)n =
√
nΦn−1, n > 0. It follows

a∗a = N, aa∗ = N + 1 and [a, a∗] = 1. (2.13)

These relations are known from the treatment of the harmonic oscillator
in quantum mechanics. Let

H = −1

2

d2

dx2
+
ω2

2
x2 (2.14)

be the Hamiltonian of the harmonic oscillator as an operator on L2(R).
One sets

a =

√
ω

2
x+

√
1

2ω

d

dx
, a∗ =

√
ω

2
x−

√
1

2ω

d

dx
, (2.15)

thus [a, a∗] = 1 and

a∗a =
ω

2
x2 − 1

2ω

d2

dx2
− 1

2
. (2.16)

Hence H = ω(a∗a + 1
2
). The n-th energy eigenfunction is, in the Fock

space interpretation, the n-particle state. The ground state (the vac-
uum) can be characterized by

aΩ = 0 . (2.17)

The corresponding differential equation is

(

√
ω

2
x+

√
1

2ω

d

dx
)Ω(x) = 0 (2.18)

⇒ d

dx
ln Ω(x) =

d
dx

Ω(x)

Ω(x)
= −ωx (2.19)

with the solution

Ω(x) = e−
1
2
ωx2

const. (2.20)

In order to obtain a corresponding definition in the Fock space
over an infinite dimensional single particle space, we take into account,
that every single particle wave function f ∈ H1 represents one degree
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of freedom of the particle. We define the annihilation operator for a
particle with wave function f by

(a(f)Φ)n(x1, . . . ,xn) =
√
n+ 1

∫
d3xf(x)Φn+1(x,x1, . . . ,xn) (2.21)

(for the sake of a simpler notation we restrict ourselves to particles
with spin 0). The adjoint operator is given by

(a(f)∗Φ)0 = 0 , (2.22)

(a(f)∗Φ)n(x1, . . . ,xn) =
1√
n

n∑
i=1

f(xi)Φn−1(x1, . . . ,xi−1,xi+1, . . . ,xn).

(2.23)
The operators a(f), a(g)∗ possess the following commutation relations

[a(f), a(g)∗] =
〈
f, g
〉

=

∫
d3xf(x)g(x). (2.24)

Moreover, we have [a(f), a(g)] = 0 = [a(f)∗, a(g)∗]. a(f) annihilates a
particle, a(f)∗ creates a particle,

a(f)N = (N + 1)a(f) , a(f)∗N = (N − 1)a(f)∗ . (2.25)

The vacuum can be characterized by the equation

a(f)Ω = 0 ∀f ∈ H1. (2.26)

For ||f || = 1 the operator a(f)∗a(f) has the eigenvalues 0,1,2... and
the interpretation “number of particles with wave function f”. If one
chooses an orthonormal basis (fi)i∈N in H1, then ai := a(fi), i ∈ N
defines a system of independent harmonic oscillators with the commu-
tation relations

[ai, aj] = 0 = [a∗i , a
∗
j ] (2.27)

[ai, a
∗
j ] = δij. (2.28)

We now want to investigate the time evolution of the operator a(f).
According to Heisenberg’s equation we have

d

dt
A(t) = i[H,A(t)] (2.29)

for every operator A in H, if H is the Hamiltonian. Let us first consider
the case, in which there are no forces between the particles, but where
all particles are subject to an external potential v. The Hamiltonian
is then H = T + V with (V Φ)n = VnΦn, Vn(X1, . . .Xn) =

∑n
i=1 v(Xi).

One calculates

[H, a(f)] = a(−H1f) (2.30)

with the single particle Hamiltonian H1 = T1 + V1. The solution of
the Heisenberg equation (under taking into account, that a depends
antilinearly on f) is

a(f)(t) = a(eiH1tf) . (2.31)
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For each t, f 7→ a(f)(t) is an antilinear operator valued functional
on H1. We interpret it as an operator valued distribution and use the
symbolic notation

a(f)(t) =

∫
d3xf(x)a(x, t). (2.32)

The simultaneous commutation relations are

[a(x, t), a∗(y, t)] = δ(x− y) , (2.33)

[a(x, t), a(y, t)] = 0 = [a∗(x, t), a∗(y, t)] (2.34)

in the sense of operator valued distributions. With the usual definition
of derivatives of distributions one obtains the “quantized Schrödinger
equation”

i
∂

∂t
a(x, t) = (− 1

2M
∆ + v(x))a(x, t). (2.35)

The equation of motion of a multiparticle system without internal
forces thus can be brought into the same form as the equation of motion
of a single particle system, the only difference being that the complex
valued wave function has to be replaced by an operator valued distri-
bution. The fact that the Schrödinger equation (“1st quantization”) is
now interpreted as an operator equation, is the reason for the somewhat
misleading name “2nd quantization” for the multiparticle formalism. A
better interpretation of the quantized Schrödinger equation is the fol-
lowing one. The Schrödinger equation may be considered as a classical
field equation for the matter field (this was the original interpretation
of Schrödinger). The transition from a complex valued to an opera-
tor valued wave function is then the quantization of this classical field
theory. We have thus obtained a first example for the coincidence of
multiparticle theory and quantum field theory.

The operator valued distribution a(x) ≡ a(x, 0) can be defined as
an operator on vectors Φ with finite particle number (i.e. Φn 6= 0 only
for finitely many n) and wave functions from Schwartz’ test function
space S(R3n) (the set of these vectors is a dense subspace D ⊂ H) by

(a(x)Φ)n(x1, . . . ,xn) =
√
n+ 1Φn+1(x,x1, . . . ,xn) . (2.36)

a(x) has, however no densely defined adjoint and is therefore not clos-
able. So-called normal ordered products,

a∗(x1) . . . a
∗(xn)a(yk) . . . a(y1), (2.37)

where the creation operators are always on the left side from the anni-
hilation operators, can be defined as sesquilinear forms on D:〈

Φ, a∗(x1) . . . a
∗(xn)a(yk) . . . a(y1)Ψ

〉
(2.38)

:=
〈
a(xn) . . . a(x1)Φ, a(yk) . . . a(y1)Ψ

〉
.
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In this way one finds〈
Φ, HΨ

〉
=

∫
d3x
〈
Φ, h(x)Ψ

〉
(2.39)

with the energy density

h(x) =
1

2M
∂a∗(x) · ∂a(x) + a∗(x)v(x)a(x). (2.40)

Analogously one obtains for the particle number〈
Φ, NΨ

〉
=

∫
d3x
〈
Φ, n(x)Ψ

〉
(2.41)

with the particle number density

n(x) = a∗(x)a(x). (2.42)

In the case of 2-particle forces with a potential V the interaction part
of the Hamiltonian has the form

(HIΦ)n = H
(n)
I Φn, H

(n)
I =

∑
i<j

V (xi − xj). (2.43)

In terms of creation and annihilation operators it may be written as

HI =
1

2

∫
d3xd3ya∗(x)a∗(y)V (x− y)a(y)a(x). (2.44)

For the field a(x, t) one obtains the nonlinear Schrödinger equation

i
∂

∂t
a(x, t) = − 1

2M
∆a(x, t) +

∫
d3yV (x− y)a∗(y, t)a(y, t)a(x, t).

(2.45)
As a simple model for a source which emits and absorbs particles, we
consider the interaction operator

HI = a(f) + a(f)∗ , f ∈ H1. (2.46)

To simulate the effort for the creation of a particle, we add a multiple
of the particle number operator to the Hamiltonian

H = T + µN +HI (2.47)

with the “chemical potential” µ > 0.
In order to get an idea for the treatment of this Hamiltonian, we

first look at an analogous problem for the harmonic oscillator under
the action of a constant force,

H = ωa∗a+ λ(a+ a∗) =
ω2

2
x2 − 1

2

d2

dx2
− 1

2
ω + λ

√
2ωx (2.48)

As it is well known, this force leads to a shift of the oscillating system
by a constant length c with c = λ

√
2ω−

3
2 . It follows that

H = eipc(
ω2

2
x2 − 1

2

d2

dx2
− 1

2
ω)e−ipc − λ2

ω
(2.49)
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with p = 1
i

d
dx

= 1
i

√
ω
2
(a − a∗). Up to the additive constant −λ2

ω
the

perturbed Hamiltonian H can be transformed into the unperturbed

Hamiltonian by the unitary operator eipc = e
λ
ω

(a−a∗).
In an analogous way we search for the Hamiltonian

H = T + µN +HI , HI = a(f) + a(f)∗ , f ∈ H1 (2.50)

some g ∈ H1 with the property

ea(g)−a(g)
∗
(T + µN)e−a(g)+a(g)

∗
= H + const. (2.51)

It holds

eABe−A =
∞∑
n=0

1

n!
[A, . . . , [A,B] . . . ]. (2.52)

With [a(g), T+µN ] = a((T1+µ)g) and [a(g)∗, T+µN ] = −a((T1+µ)g)∗

and

[a(g), a((T1 + µ)g)∗] =
〈
g, (T1 + µ)g

〉
(2.53)

one obtains

ea(g)−a(g)
∗
(T + µN)e−a(g)+a(g)

∗
(2.54)

= T + µN + a((T1 + µ)g) + a((T1 + µ)g)∗ +
〈
g, (T1 + µ)g

〉
(2.55)

Thus g = (T1 + µ)−1f solves the problem. In Fourier space we find

g̃(p) = (
|p|2

2M
+ µ)−1f̃(p) (2.56)

which may be transported to position space and yields

g(x) =
M

2π

∫
d3y

e−
√

2Mµ|x−y|

|x− y|
f(y). (2.57)

The ground state of H is thus

Ωg = ea(g)−a(g)
∗
Ω (2.58)

with the ground state energy

E0 = −
〈
f, T1+µ)−1f

〉
= −

∫
d3p

|f̃(p)|2
|p|2
2M

+ µ
= −M

2π

∫
d3xd3yf(x)

e−
√

2Mµ|x−y|

|x− y|
f(y).

(2.59)
Ωg is a so-called coherent state. It has nonvanishing components for
all particle numbers.

According to the Baker-Campbell-Hausdorff formula, for two (n×
n)-matrices A, B with [[A,B], A] = 0 = [[A,B], B] the formula

eAeB = eA+B+ 1
2
[A,B] (2.60)

holds. If we apply the same formula to ea(g)−a(g)
∗

where questions of
convergence are, for the time being, ignored, one obtains

ea(g)−a(g)
∗

= e−a(g)
∗
ea(g)e−

1
2
||g||2 (2.61)
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and hence (because of a(g)Ω = 0)

Ωg = e−
1
2
||g||2e−a(g)

∗
Ω (2.62)

i.e.

(Ωg)n(x1, . . . ,xn) =
e−

1
2
||g||2

n!
((−a(g)∗)nΩ)n(x1, . . . ,xn)

=
e−

1
2
||g||2

√
n!

(−1)ng(x1) . . . g(xn).

(2.63)

The probability that Ωg contains exactly n particles is

||(Ωg)n||2 =
e−||g||

2

n!
||g||2n. (2.64)

The particle number is therefore distributed according to the Poisson
distribution with mean particle number

〈N〉 = ||g||2 =

∫
d3p

|f̃(p)|2

( |p|
2

2M
+ µ)2

(2.65)

and with mean deviation ∆(N)2 = 〈N〉. In particular, the mean parti-

cle number tends for µ→ 0 to ∞, if f̃ is continuous at 0 and does not
vanish there. The ground state energy, however, remains finite in this
limit.

A further remarkable property of coherent states is that they are
eigenvectors of the annihilation operators,

a(x)ea(g)
∗
Ω = g(x)ea(g)

∗
Ω. (2.66)

Hence the expectation value of a Hamiltonian in a coherent state is
simply obtained by replacing a(x) by g(x) and a(x)∗ by g(x).

We now consider the limit f(x) → cδ(x − y), where the particle
can be created or annihilated only at the point y. For HI one finds in
this limit

HI = c̄a(y) + ca∗(y) . (2.67)

A formal calculation of the ground state energy yields a divergent ex-
pression;

E0 = −|c|2
∫
d3xδ(x− y)

M

2π

e−
√

2Mµ|x−y|

|x− y|
. (2.68)

But g(x) = cM
2π

e−
√

2Mµ|x−y|

|x−y| is a normalizable single particle wave func-

tion. Thus

Hren := ea(g)−a(g)
∗
(T + µN)e−a(g)+a(g)

∗
(2.69)

is a well defined selfadjoint operator with ground state Ωg and with
mean particle number

〈N〉 <∞ (2.70)



2. THE BOSONIC FOCK SPACE 19

(see exercise 6). In the Heisenberg equation we replace H by Hren,
since both term differ only by a (divergent) constant. The prize to pay
is an arbitrary fixing of the ground state energy to 0.

The model described above delivers a simple description of nuclear
forces by exchange of mesons (Nelson model). We consider a system of
n nucleons, realized by wave functions

Φ(x1, . . . ,xn) , (2.71)

coupled to a system of spinless mesons. The Hilbert space of the cou-
pled system is the tensor product of the nucleon space with the Fock
space of the mesons. The Hamiltonian is the sum of the kinetic en-
ergy of the nucleons, the kinetic energy of the mesons including the
term with the chemical potential µ = M/2 (this choice of the chemi-
cal potential simulates the behaviour in the corresponding relativistic
situation) and of the interaction term

HI = c
n∑
i=1

(a(Xi) + a∗(Xi)), c ∈ R, (2.72)

where Xi is the position operator of the i-th nucleon. In the Born-
Oppenheimer approximation one neglects in the first step the kinetic
energy of the nucleons and obtains for every position space configura-
tion of the nucleons a Hamiltonian of the previously considered form
with g =

∑
gi. We now study the dependence of the ground state

energy on the distribution of nucleons. We find

Hren = ea(g)−a(g)
∗
(T +

1

2
MN)e−a(g)+a(g)

∗
+ E0(x1, . . . ,xn) (2.73)

with

E0(x1, . . . ,xn) = −
∑
i<j

|c|2M
π

e−M |xi−xj |

|xi − xj|
(2.74)

Here the divergent diagonal terms were omitted.
The ground state energy of the meson system now yields the Yukawa

potential for the nucleon interaction.
Let us now investigate the corresponding problem for a time depen-

dent source,

H(t) = T + µN +HI,t , HI,t = a(ft) + a(ft)
∗ (2.75)

with ft(x) = f(x, t), f ∈ S(R4). The Schrödinger equation with time
dependent Hamiltonian is solved by the time evolution operator U(t, s)
which is characterized by the following equations:

U(t, t) = 1 (2.76)

i
d

dt
U(t, s) = H(t)U(t, s) (2.77)

U(t, s)U(s, r) = U(t, r) (2.78)
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Time dependent interactions can most easily be discussed in the inter-
action picture. Let U0(t) = eit(T+µN) and

V (t, s) = U0(t)U(t, s)U0(−s). (2.79)

Then V satisfies the equations

V (t, t) = 1 (2.80)

i
∂

∂t
V (t, s) = HI(t)V (t, s) (2.81)

V (t, s)V (s, r) = V (t, r) (2.82)

with HI(t) = U0(t)HI,tU0(−t). V satisfies the integral equation

V (t, s) = 1− i

∫ t

s

dt′HI(t
′)V (t′, s). (2.83)

A solution in the sense of formal power series in HI is obtained by
iteration:

V (t, s) = 1 +
∞∑
n=1

(−i)n
∫ t

s

dt1

∫ t1

s

dt2 . . .

∫ tn−1

s

dtnHI(t1) . . . HI(tn) .

(2.84)
This formula can be written in an elegant way by the introduction of
time ordered products. Let A : R 3 t 7→ A(t) be an operator valued
function. Then one defines operator valued functions

TA(t1, . . . , tn) (2.85)

(the time ordered product of A(t1),...,A(tn)) by the following equations

TA(t1, . . . , tn)) = A(t1) . . . A(tn) for t1 ≥ t2 ≥ · · · ≥ tn

TA(t1, . . . , tn)) = TA(tσ(1), . . . , tσ(n)) ∀σ ∈ Sn (2.86)

It is common to write

TA(t1, . . . , tn) = TA(t1) · · ·A(tn) . (2.87)

But one has to keep in mind that TA(t1, . . . , tn)) depends on the func-
tion t 7→ A(t) and not only on the operators A(t1),...,A(tn).

For the time evolution operator in the interaction picture we get
the expression

V (t, s) = 1 +
∞∑
n=1

(−i)n

n!

∫ t

s

dt1 . . .

∫ t

s

dtnTHI(t1) . . . HI(tn)

=: Te−i
R t

s dt
′HI(t′) .

(2.88)

The last line is called the time ordered exponential.
In the example above we have

[[HI(t1), HI(t2)], HI(t3)] = 0. (2.89)
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Therefore the exponential series can be summed. We study first the
case that HI(t) is piecewise constant. Then

V (t, s) = V (t, t1)V (t1, t2) . . . V (tn, s)

= e
−i

R t
t1

dt′HI(t′)
. . . e−i

R tn
s dt′HI(t′)

= e
−i

R t
s dt′HI(t′)− 1

2

P
i>j

R ti+1
ti

dt′
R tj+1

tj
dt′′[HI(t′),HI(t′′)]

= e−i
R t

s dt′HI(t′)− 1
2

R t
s dt′

R t′
s dt′′[HI(t′),HI(t′′)]

(2.90)

One now easily verifies that the term in the last line solves the equation
for V (t, s) also in the general case.

When the interaction vanishes for sufficiently large times, it makes
sense to consider the operator which describes the total influence of the
source on the system. We define the S-matrix

S = lim
t→∞,s→−∞

V (t, s). (2.91)

Let

ϕ(f) =

∫
dtd3x

(
a(t,x)f(t,x) + a∗(t,x)f(t,x)

)
= a(F ) + a(F )∗

(2.92)
with F =

∫
dtei(T1+µ)tft, i.e.

F̂ (p) =
√

2πf̂(−(
|p|2

2M
+ µ),p) . (2.93)

Then one has

S = e−iϕ(f)−iα (2.94)

and α = 1
2i

∫
t>s

dtds[HI(t), HI(s)]. It remains to calculate α. We have

α = Im

∫
t>s

dtds(ft, e
−i(t−s)(T1+µ)fs) (2.95)

= Im (2π)−1

∫
t>s

dtds

∫
dEdE ′

∫
d3pf̂(−E,p)f̂(−E ′,p)ei(E−E(p))te−i(E

′−E(p))s

(2.96)

(E(p) = |p|2
2M

+ µ). To be able to perform first the integration over s,

we multiply the integrand with e−ε(t−s), ε > 0. In the limit ε → 0 we
get the original integral back. For ε > 0 the order of integrations can
be interchanged. It holds∫

s<t

dse−ε(t−s)e−i(E
′−E(p))s = i(E ′ − E(p) + iε)−1e−i(E

′−E(p))t (2.97)

and hence

α =
1

2π
lim
ε↓0

Re

∫
dt

∫
d3p

∫
dEdE ′ f̂(−E,p)f̂(−E ′,p)ei(E−E

′)t

E ′ − E(p) + iε
.

(2.98)
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For performimg the t-integration, we use the formula∫
dtei(E−E

′)t = 2πδ(E − E ′) . (2.99)

This formula holds in the sense of distributions, i.e. for all test function
h ∈ S(R) one has∫

dt

∫
dEei(E−E

′)th(E) = 2π

∫
dEδ(E − E ′)h(E) = 2πh(E ′) .

(2.100)
(Inversion of the Fourier transformation.) We obtain

α = lim
ε↓0

∫
d3p

∫
dE|f̂(−E,p)|2 E − E(p)

(E − E(p))2 + ε2
(2.101)

=

∫
d3p

∫
dE|f̂(−E,p)|2P 1

E − E(p)
(2.102)

where the symbol P denotes Cauchy’s principal value,∫
dxP

1

x
h(x) = lim

ε↓0

∫
|x|>ε

dx
h(x)

x
. (2.103)

In case the initial state is the vacuum, the source generates the
coherent state

SΩ = e−iαΩ−iF . (2.104)

In case the initial state is already a coherent state Ω−iG, possibly gen-
erated by another source which was earlier switched on, one finds

SΩ−iG = cΩ−i(F+G), |c| = 1. (2.105)

For the expected number of created particles δN one obtains

δN = ||F +G||2 − ||G||2 = ||F ||2 + 2Re (F,G). (2.106)

The interference term 2Re (F,G) describes, depending on the sign, ab-
sorption or induced emission.

3. The fermionic Fock space

The fermionic Fock space is defined as

H− =
∞⊕
n=0

H−
n , (3.1)

where H−
n is formed by the totally antisymmetric n-particle wave func-

tions. The annihilation operators are defined as in the bosonic Fock
space:

(a(f)Φ)n(x1, . . . ,xn) =
√
n+ 1

∫
d3xf(x)Φn+1(x,x1, . . . ,xn). (3.2)

The creation operator is again defined as the adjoint operator and turns
out to be given by

(a(f)∗Φ)0 = 0 , (3.3)
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(a(f)∗Φ)n(x1, . . . ,xn) =
1√
n

n∑
i=1

(−1)i+1f(xi)Φn−1(x1, . . . ,xi−1,xi+1, . . . ,xn).

(3.4)
One easily verifies the anticommutation relations

[a(f), a(g)∗]+ =
〈
f, g
〉

(3.5)

[a(f), a(g)]+ = 0 = [a(f)∗, a(g)∗]+ (3.6)

(canonical anticommutation relations (CAR)). As in the Bose case one
introduces operator valued distributions a(x, t) and a∗(x, t) by∫

d3xf(x)a(x, t) = a(f)(t) (3.7)∫
d3xf(x)a∗(x, t) = a(f)∗(t) (3.8)

with the simultaneous anticommutation relations

[a(x, t), a∗(y, t)]+ = δ(x− y) , (3.9)

[a(x, t), a(y, t)]+ = 0 = [a∗(x, t), a∗(y, t)]+ . (3.10)

The operator a(f)∗a(f) has, for ||f || = 1, as in the Bose case the
interpretation “number of particles with wave function f”. Because of
Fermi statistics a(f)∗a(f) has only the eigenvalues 0 and 1:

(a(f)∗a(f))2 = a(f)∗a(f)a(f)∗a(f)

= a(f)∗[a(f), a(f)∗]+a(f)− a(f)∗a(f)∗a(f)a(f) = a(f)∗a(f)
(3.11)

since [a(f), a(f)∗]+ = ||f ||2 = 1 and a(f)2 = 1
2
[a(f), a(f)]+ = 0. Thus

a(f)∗a(f) is a projection. In particular a(f) is a bounded operator
with norm

||a(f)|| = ||f ||. (3.12)

In the Bose case, however, we have only〈
Φ, a(f)∗a(f)Φ

〉
≤ ||f ||2

〈
Φ, NΦ

〉
(3.13)

and therefore, on the orthogonal complement of the vacuum,

||a(f)N− 1
2 || ≤ ||f ||. (3.14)

An important speciality of fermion systems is their ability to fill
states. Let E be the projection on some finite dimensional subspace
of H1, and let {f1, . . . , fn} be an orthonormal basis of this space. We
consider the vector

ΦE = a(f1)
∗ . . . a(fn)

∗Ω. (3.15)

(ΦE is known as the Slater determinant of the single particle wave
functions f1, . . . , fn.) ΦE is annihilated by all operators of the form
a(Ef)∗ and a((1 − E)f), f ∈ H1. This property characterizes ΦE

uniquely up to a phase.
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The operator

b(f) = a(Ef)∗ + a((1− E)f) (3.16)

can be interpreted as an annihilation operator for a quasi-particle. If
f ∈ EH1, then the quasi-particle is a “hole”, if f ∈ (1 − E)H1, it is a
particle of the original sort. The operators b(f) and b(g)∗ satisfy the
following commutation relations

[b(f), b(g)∗]+ =
〈
f, (1− E)g

〉
+
〈
g, Ef

〉
, (3.17)

[b(f), b(g)]+ = 0 = [b(f)∗, b(g)∗]+ . (3.18)

The vector ΦE describes the vacuum state for the quasi-particles.
Operators b and b∗ are also meaningful for projections E on infinite

dimensional subspace. But then the Fock space does not contain the
vacuum for the quasi-particles. It holds the following theorem:

Theorem I.2. Let Φ ∈ H− with a(f)∗Φ = 0∀f ∈ K, where K is an
infinite dimensional subspace of H1. Then Φ = 0.

Proof. Let f ∈ K with ||f || = 1. Then

Φ = [a(f), a(f)∗]+Φ = a(f)∗a(f)Φ. (3.19)

If g ⊥ f , then a(g) commutes with a(f)∗a(f). Let (fi)i∈N be an or-
thonormal basis of K. Then for all k ∈ N

Φ = a(f1)
∗ . . . a(fk)

∗a(fk) . . . a(f1)Φ. (3.20)

Let now Ψ ∈ H− be a state with bounded particle number, i.e. ∃n0 ∈ N
with Ψn = 0 for n > n0. Then

a(fk) . . . a(f1)Ψ = 0 (3.21)

for k > n0. Hence for k > n0〈
Ψ,Φ

〉
=
〈
Ψ, a(f1)

∗ . . . a(fk)
∗a(fk) . . . a(f1)Φ

〉
=
〈
a(fk) . . . a(f1)Ψ, a(fk) . . . a(f1)Φ

〉
= 0.

(3.22)

Φ is thus orthogonal to all vectors with bounded particle number, i.e.
Φn = 0∀n, thus Φ = 0. �

One may now introduce a Fock space for quasi-particles,

HE,− =
∞⊕
n=0

HE,−
n (3.23)

with the n-quasi particle spaces

HE,−
n = {Φ ∈ HE

1 ⊗ · · · ⊗ HE
1︸ ︷︷ ︸

n

, U(σ)Φ = signσΦ, σ ∈ Sn} (3.24)

and the single quasi particle space

HE
1 = (1− E)H1 ⊕ EH1 . (3.25)
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HE
1 coincides with H1 as a real Hilbert space. The difference consists

in the fact that the operator of multiplication with i is replaced by
i(1− E)− iE and thus the scalar product is now defined by〈

f, g
〉
E

=
〈
f, (1− E)g

〉
+
〈
g, Ef

〉
. (3.26)

On the new Fock space, the new creation and annihilation operators
act in an analogous way. Since the new n-particle spaces are not im-
mediately given as spaces of functions, it is convenient to characterize
the operators b and b∗ abstractly:

b(f)
∑
(i)

c(i)Φi1 ⊗ · · · ⊗ Φin =
√
n
∑
(i)

c(i)(f,Φi1)Φi2 ⊗ · · · ⊗ Φin (3.27)

b(f)∗
∑
(i)

Φi1⊗· · ·⊗Φin =
1√
n+ 1

n∑
k=0

(−1)nΦi1⊗· · ·⊗Φik⊗f⊗Φik+1
· · ·Φin

(3.28)
ΦE is the vacuum vector in the quasi particle Fock space HE,−.

An important example for such a projection is the projection on
energies below the Fermi energy µ > 0,

Êf(p) =

{
f̂(p) , |p|2

2M
< µ

0 , |p|2
2M

≥ µ
. (3.29)

Then ΦE describes the state, in which all single particle states with
energy below µ are occupied. Another important example is the so-
called Dirac sea where all states with negative energies are occupied.





CHAPTER II

Relativistic single particle systems

1. The Poincaré group

According to the principles of special relativiy, physical systems
which differ only by a uniform relative motion have identical properties.
Furthermore there is a limiting velocity for the propagation of signals,
the velocity of light c which is equal in all uniformly moving systems.
It is customary in relativistic physics to use a system of units where
c = 1 holds.

Points x in spacetime are described by elements of R× R3 = R4,

x = (t,x) = (x0, x1, x2, x3) (1.1)

with x0 = t and (x1, x2, x3) = x. A uniform motion with velocity v is
represented in this space by a straight line,

x(τ) = (1,v)τ + a , τ ∈ R, a ∈ R4 . (1.2)

For any motion which is connected with the transmission of a signal
one has |v| ≤ 1. Spacetime points x which can be reached in finite time
from the point 0 by a signal with |v| < 1, form the forward lightcone

V+ = {x ∈ R4, x0 > |x|} , (1.3)

those from which the point 0 can be reached form the backward light-
cone

V− = {x ∈ R4,−x0 > |x|} = −V+ . (1.4)

V+ ∪ V− = {x ∈ R4, (x0)2 > |x|2} is called the set of timelike points.
The boundary of the forward lightcone,

∂V+ = {x ∈ R4, x0 = |x|} (1.5)

is the set of points which can be reached from the origin by a light
signal. Points with |x0| = |x| are called lightlike, those with |x0| < |x|
spacelike.

The structure of spacetime can be described by an (indefinite) scalar
product

〈x|y〉 ≡ xy := x0y0 − x · y . (1.6)

Other notations are

xy = xµyµ = xµgµνy
ν . (1.7)

27
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Here always the summation convention is used that all indices which
occur as an upper and a lower index have to be summed over, from 0
to 3. gµν is the metric tensor with components

(gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.8)

and yµ = gµνy
ν . R4 endowed with this scalar product is called Minkowski

space M.
The group of motions of Minkowski space is the set of all maps L

with the property

(Lx− Ly)2 = (x− y)2 , x, y ∈ M , (1.9)

and is called the Poincaré group (notation P). The maps Λ ∈ P which
leave the origin fixed are called Lorentz transformations. They form a
subgroup L, the Lorentz group.

Every Poincaré transformation can be written as a product of a
Lorentz transformation Λ and a translation a,

Lx = a+ Λx , L = (a,Λ) . (1.10)

The Lorentz transformations of Minkowski space are analogous to the
rotations of euclidean space and are likewise linear maps,

(Λx)ν = Λµ
νx

ν (1.11)

with Λµ
ν ∈ R.

The group law in P is

(a1,Λ1)(a2,Λ2) = (a1 + Λ1a2,Λ1Λ2) . (1.12)

Lorentz transformations are volume preserving (i.e. |det Λ| = 1),
but may change the orientation. E.g., the parity

IS(x
0,x) = (x0,−x) (1.13)

is a Lorentz transformation with det Λ = −1.
A further property of Lorentz transformations is that they either

leave the forward lightcone invariant or map it into the backward light-
cone.

Proof. Let x, y ∈ V+. Then x0 > |x|, y0 > |y| and thus

xy = x0y0 − x · y > |x||y| − x · y ≥ 0 . (1.14)

Λx and Λy are timelike, hence belong to V+∪V−. If one of these points
would be in V+ and the other in V−, we would have

ΛxΛy < 0 < xy (1.15)

in contradiction to the fact that the Lorentz transformations preserve
the scalar product of Minkowski space. �
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For the matrix entries of Λ the property above means that |Λ0
0| ≥ 1,

1 = Λ(1,0)2 = (Λ0
0)

2 −
3∑
i=1

(Λi
0)

2 . (1.16)

The Lorentz group decomposes into the following connected com-
ponents:

L↑+ (proper orthochronous Lorentz group): det Λ = 1, Λ0
0 ≥ 1.

These Lorentz transformations preserve space and time orientation (left
and right, past and future are not exchanged). The identical transfor-
mation 1 belongs to this component.

L↓+: det Λ = 1, Λ0
0 ≤ −1, e.g. −1.

L↑−: det Λ = −1, Λ0
0 ≥ 1, e.g. parity IS.

L↓−: det Λ = −1, Λ0
0 ≤ −1, e.g. time reflection IT .

The Poincaré -group P decomposes accordingly into the connected
components P↑

+,P
↓
+,P

↑
−,P

↓
−. Only the elements of the connected com-

ponent of the unit correspond to physically realizable transformations.
Therefore P↑

+ is considered as the relativistic invariance group. Indeed
parity and time reflection are not symmetries of nature.

The group P↑
+ is two-fold connected, i.e. the set of closed curves

in P↑
+ decomposes into two different classes which cannot be contin-

uously transformed into each other. The reason is that P↑
+ contains

the likewise twofold connected rotation group. The simply connected
covering group of P↑

+ is the so-called inhomogeneous SL(2,C) which
is denoted by Pc in what follows. This group consists of pairs (a,A)
with translations a and complex (2× 2)-matrices A with determinant
1. SL(2,C) is the covering group of the proper orthochronous Lorentz

group L↑+. The covering homomorphism

Λ :

{
SL(2,C) → L↑+

A 7→ Λ(A)
(1.17)

is defined in the following way: By

x 7→ x
∼

= x01 + x · ~σ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
(1.18)

a bijective linear map from Minkowski space into the space of hermitean
2× 2-matrices is introduced. It holds

detx
∼

= x2 . (1.19)

One now sets

Λ(A)x
∼

= Ax
∼
A∗ . (1.20)
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One easily verifies that Λ(A) is a Lorentz transformation. We have

Λ(A) = Λ(B) =⇒ A = ±B und Λ(SL(2,C)) = L↑+.

Example: (i) Let

A = eiθ/2
1

2
(1 + n · ~σ) + e−iθ/2

1

2
(1− n · ~σ) , (1.21)

|n| = 1, θ ∈ R. Then Λ(A) is a rotation with rotation axis n and
rotation angle −θ.

(ii) Let

A = eθ/2
1

2
(1 + n · ~σ) + e−θ/2

1

2
(1− n · ~σ) . (1.22)

|n| = 1, θ ∈ R. Then Λ(A) is a Lorentz boost with velocity v =
n tanh θ.

The group multiplication in Pc is given by

(a1, A1)(a2, A2) = (a1 + Λ(A1)a2, A1A2) . (1.23)

Besides of the map x 7→ x
∼

we will use a further map from Minkowski

space into the set of hermitean 2× 2-matrices,

x 7→ ∼
x = x01− x · ~σ =

(
x0 − x3 −x1 + ix2

−x1 − ix2 x0 + x3

)
. (1.24)

It holds

x
∼

∼
x = x21 (1.25)

and thus
∼

Λ(A)x = (A∗)−1∼xA−1 . (1.26)

2. Poincaré symmetry in quantum mechanics

We assume that the states of a relativistic particle can be described
by the rays (one dimensional subspaces) Φ̂ of some Hilbert space H,

Φ̂ = {λΦ, λ ∈ C} , Φ ∈ H , Φ 6= 0 . (2.1)

A Poincaré transformation L ∈ P↑
+ transforms single particle states

into single particle states,

Φ̂ 7→ T̂LΦ̂ = Ψ̂ , Ψ ∈ H , Ψ 6= 0 . (2.2)

The transformed system shall have the same physical properties as the
original system. In particular the transition probabilities (ray prod-
ucts) 〈

Φ̂, Ψ̂
〉

:=
|
〈
Φ,Ψ

〉
|2

‖Φ‖2‖Ψ‖2
(2.3)

shall not change, 〈
T̂LΦ̂, T̂LΨ̂

〉
=
〈
Φ̂, Ψ̂

〉
. (2.4)
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For transformations which leave the ray product invariant, one has the
following theorem of Wigner (for a proof see Weinberg):

Theorem II.1. Let T̂ be an invertible and ray product preserving
map of the rays of a Hilbert space into itself. Then there is an invertible,
R-linear and isometric map T : H → H with the property

T̂Φ = T̂ Φ̂ . (2.5)

T is unique up to a factor of modulus 1 and is either unitary or antiu-
nitary.

If T̂ can be written as the square of another ray transformation,

T̂ = Ŝ2 , (2.6)

then T = λS2 is necessarily unitary, since the square of an antiunitary
operator is unitary. In the connected component of 1 in the Poincaré
group each element can be written as a product of squares, hence TL
is unitary for all L ∈ P↑

+.
If one performs two Poincaré transformations L1 und L2 one after

another, the transformed state shall coincide with that which one would
obtain by the transformation L = L1L2, i.e.

T̂L1T̂L2 = T̂L1L2 (2.7)

(ray representation or projective representation). For the operators TL
it follows

TL1TL2 = eiω(L1,L2)TL1L2 (2.8)

with ω(L1, L2) ∈ R. If one modifies the definition of TL,

T ′L = eiα(L)TL , (2.9)

one obtains

T ′L1
T ′L2

= eiω
′(L1,L2)T ′L1L2

(2.10)

with

ω′(L1, L2) = ω(L1, L2) + α(L1) + α(L2)− α(L1L2) . (2.11)

This suggests the question whether one can find a choice of α such
that ω′ vanishes. This question leads to the investigation of the group
cohomology of P↑

+.
Let us assume that the ray representation is continuous in the fol-

lowing sense, 〈
T̂LΦ̂, Ψ̂

〉
→
〈
Φ̂, Ψ̂

〉
(2.12)

for L → 1. For these ray representations the problem is solved by the
following theorem of Wigner and Bargmann (see Weinberg for a proof).
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Theorem II.2. For every continuous ray representation L→ T̂L of
the proper orthochronous Poincaré group P↑

+ there is a strongly contin-
uous unitary representation U of the twofold covering group Pc, such
that

̂U(a,A)Φ = T̂a,Λ(A)Φ̂ (2.13)

with the covering map Λ.

For the description of a relativistic single particle system we there-
fore use the following ansatz which goes back to Wigner: The Hilbert
space of the states of a particle is the representation space of an irre-
ducible, continuous, unitary representation of Pc. Our next task is to
find these representations.

3. The representations of the Poincaré group

Let U be a strongly continuous, unitary, irreducible representation
of Pc in some Hilbert space H. We consider first the restriction of U
to the subgroup of translations,

R4 3 a 7→ U(a) . (3.1)

This representation can be characterized by 4 selfadjoint, mutually
commuting operators Pµ, µ = 0, . . . , 3,

U(a) = eiPa , Pa = Pµa
µ . (3.2)

The joint spectrum of these 4 operators is a closed subset of R4,

spP = {(p0, p1, p2, p3) ∈ R4|pµ ∈ spPµ, µ = 0, . . . , 3} . (3.3)

where R4 is interpreted as momentum space, i.e. the dual M∗ of the
translation group of Minkowski space (which by choice of an origin
is itself identified with the Minkowski space M). In our notation we
characterize components of elements of M∗ by lower indices. Lorentz
transformations act on M∗ by transposition,

(pΛ)ν = pµΛ
µ
ν . (3.4)

The relation

U(A)U(a)U(A)−1 = U(Λ(A)a) , A ∈ SL(2,C) (3.5)

follows from the condition that U is a representation and implies

U(A)PaU(A)−1 = PΛ(A)a . (3.6)

Thus spP is Lorentz invariant. Let us first look at the point spectrum.
If Φ is a joint eigenvector of Pa, a ∈ M with eigenvalues pa, then
U(A)Φ is an eigenvector PΛ(A)a with eigenvalues pa, or, equivalently,
an eigenvector of Pa with eigenvalues pΛ(A−1)a. But eigenvectors of
selfadjoint operators with different eigenvalues are orthogonal. Hence
only the eigenvalue p = 0 is compatible with the assumed continuity of
the representation U .
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We obtain a class of irreducible representations by

U(a,A) = U(A) (3.7)

with a unitary irreducible representation U of SL(2,C). These rep-
resentations, however, do not describe particles, since the transition
probabilities Φ → U(a)Ψ are independent of a. The case U(A) = 1
characterizes the transformation properties of the vacuum.

We now investigate the continuous spectrum. We consider for each
point p ∈ M∗ its orbit Op under Lorentz transformations,

Op = {q ∈ M∗,∃Λ ∈ L↑+ with pΛ = q} . (3.8)

In an irreducible representation, spP is the closure of a single orbit.
The orbits can be classified as follows

H+
m = {p ∈ M∗|p2 = m2, p0 > 0}

H−
m = {p ∈ M∗|p2 = m2, p0 < 0}

∂V+ = {p ∈ M∗|p2 = 0, p0 > 0}
∂V− = {p ∈ M∗|p2 = 0, p0 < 0}
H+
im = {p ∈ M∗|p2 = −m2}
{0}

(3.9)

with m > 0, and by abuse of notation, p2 := pµp
µ with pµ = gµνp

ν . In
an irreducible representation, P 2 is a multiple of the unit. If P 2 = m21,
m2 > 0, then spP = H+

m or spP = H−
m. If P 2 = 0, then spP = {0},

spP = ∂V+ or spP = ∂V−; in the latter cases the spectrum contains
not only a single orbit, but (being a closed set) in addition the origin. 0
is, however, not an eigenvalue, but belongs to the continuous spectrum.

In analogy to nonrelativistic quantum mechanics we interpret P0 =
P 0 ≡ H as energy and P = (P 1, P 2, P 3) as the spatial momentum
of the particle. We will justify this interpretation later on. For the
moment it leads us to accept only the orbits with p0 > 0 as spectra of
physical particles.

Let us turn to the case spP = H+
m. We choose a representation in

which the momenta are diagonal. Because of Poincaré invariance this
representation can be determined very explicitly.

We first convince ourselves that our Hilbert space contains a dense
subspace D on which the expectation values of spatial translations
vanish fast at infinity,

lim
|x|→∞

|x|n
〈
Φ, U(x)Ψ

〉
= 0 ∀n ∈ N . (3.10)

We set

D = {Φ ∈ H, SL(2,C) 3 A 7→ U(A)Φ infinitely often differentiable} .
(3.11)
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Proof. Let x 6= 0 and let (Aθ)θ be the one-parameter group in
SL(2,C) which describes Lorentz boosts in the direction of x. Then

d

dθ
Λ(Aθ)(0,x)|θ=0 = (|x|, 0) . (3.12)

Thus we find for Φ,Ψ ∈ D

d

dθ

〈
U(Aθ)Φ, U(x)U(Aθ)Ψ

〉
|θ=0 = −i|x|(Φ, P0U(x)Ψ) (3.13)

But because of the condition on spP , with Φ also P−1
0 Φ ∈ D. We

therefore can replace Φ by P−1
0 Φ in this equation. On the left hand

side we can perform the differentiation of vector valued functions inside
the scalar product and obtain finitely many vectors Φi,Ψi ∈ D with

|x|
〈
Φ, U(x)Ψ

〉
=
∑
i

〈
Φi, U(x)Ψi

〉
. (3.14)

We know that the matrix elements of translations are bounded. But
then it follows from this equation that they have to decay faster than
any power. (Theorem of Hepp and Jost, see R.Jost: General Theory
of Quantum Fields.) �

We therefore can define the Fourier transform of these matrix ele-
ments 〈

Φ,Ψ
〉
p

:= (2π)−3

∫
d3x
〈
Φ, U(x)Ψ

〉
eip·x . (3.15)

From the formula for the inverse Fourier transform we get〈
Φ, U(x)Ψ

〉
=

∫
d3p
〈
Φ,Ψ

〉
p
e−ip·x . (3.16)

We now convince ourselves that
〈
·, ·
〉
p

is a positive semidefinite sesquilin-

earform on D.

Proof. Let f be a continuous function on R3 with compact sup-
port. Then the integral

Φf :=

∫
d3xf(x)eip·x)U(x)Φ , Φ ∈ D (3.17)

is a well defined element of H as a limit of Riemann sums. Thus we
have the inequality

0 ≤
〈
Φf ,Φf

〉
=

∫
d3x

∫
d2yf(x)f(y)

〈
Φ, U(y−x)Φ

〉
eip·(y−x)) (3.18)

We now substitute y by z = y − x, replace f by fλ,

fλ(x) = λ−
3
2f(λx) (3.19)

substitute x by λx and obtain

0 ≤
∫
d3x

∫
d3zf(x)f(x + λz)

〈
Φ, U(z)

〉
eipz (3.20)
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The integrand is bounded by an integrable function uniformly in λ
and converges pointwise to |f(x)|2

〈
Φ, U(z)

〉
eipz for λ → 0. Hence,

according to Lebesgues’ theorem of dominated convergence, limit and
integration can be interchanged, and we obtain〈

Φ,Φ
〉
p

= (2π)−3

∫
d3x
〈
Φ, U(x)Φ

〉
eip·x ≥ 0 . (3.21)

�

As usual we take the quotient with respect to the subspace of vectors
with length 0,

Np = {Φ ∈ D|
〈
Φ,Φ

〉
p

= 0} , (3.22)

and complete the arising pre-Hilbert space. We obtain a Hilbert space
Hp. In this way every Φ ∈ D yields a family of vectors Φ(p) := Φ+Np ∈
Hp with

‖Φ(p)‖2 = ‖Φ‖2
p . (3.23)

The vectors of the original Hilbert space become thus sections of a
vector bundle over the mass shell H+

m. The elements of the bundle
might be interpreted as (improper) momentum eigenstates. A smooth
structure on the bundle could be implicitly introduced by identifying
the elements of D with the smooth sections. Actually, the bundle will
turn out to be trivial, so that the sections can be replaced by functions
on the mass shell with values in some fixed Hilbert space.

The construction described above distinguishes a Lorentz frame.
It is, however, possible to modify it a little bit such that it becomes
explicitly Lorentz covariant. For this purpose we set〈

Φ,Ψ
〉
p

= c

∫
d4xδ(px)

〈
Φ, U(x)Ψ

〉
(3.24)

with a factor c > 0 to be determined. For p = (m, 0) the new scalar
product coincides with the scalar product defined above up to a factor.
In the general case we find (with ω(p) =

√
|p|2 +m2)〈

Φ, U(x)Ψ
〉

=

∫
d3qeiω(q)x0−iq·x〈Φ,Ψ〉

q
(3.25)

and thus ∫
d4xδ(px)

〈
Φ, U(x)Ψ

〉
=

∫
d3xd3q ω(p)−1e−ix·(q−pω(q)/ω(p))

〈
Φ,Ψ

〉
q

(3.26)

We introduce as a new momentum variable k = q− pω(q)/ω(p) with
the Jacobian

|det
∂k

∂q
| = 1− p · q

ω(p)ω(q)
. (3.27)

Integration over x yields the delta function in k, multiplied by (2π)3.
The evaluation at k = 0 corresponds to q = p, hence we obtain the
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following relation between the covariant and the non-covariant scalar
product〈

Φ,Ψ
〉
p

= c(2π)3ω(p)

m2

〈
Φ,Ψ

〉
p
, p0 = ω(p), (p1, p2, p3) = p . (3.28)

In particular, the null spaces Np and Np of both scalar products co-
incide. We set c = (2π)−32m2 and arrive at the Lorentz covariant
momentum space decomposition of the scalar product in H,〈

Φ,Ψ
〉

=

∫
d3p

2ω(p)

〈
Φ,Ψ

〉
p
. (3.29)

Here we exploit the fact that d3p
2ω(p)

is a Lorentz invariant measure. This

may be understood from the somewhat formal relation∫
d3p

2ω(p)
f(ω(p),p) =

∫
d4pδ(p2 −m2)Θ(p0)f(p) (3.30)

with the Heavyside function

Θ(x) =

{
1 , x > 0
0 , x ≤ 0

The scalar products with different momenta p are related by Lorentz
transformations. We have〈

U(A)Φ, U(A)Φ
〉
p

=c

∫
d4xδ(px)

〈
U(A)Φ, U(x)U(A)Φ

〉
=c

∫
d4xδ(px)

〈
Φ, U(Λ(A)−1x)Φ

〉 (3.31)

hence substituting y = Λ(A)−1x and using the fact that Lorentz trans-
formations are volume preserving we find〈

U(A)Φ, U(A)Φ
〉
p

=
〈
Φ,Φ

〉
pΛ(A)

. (3.32)

In particular, U(A)Φ ∈ Np iff Φ ∈ NpΛ(A). Thus the unitaries U(A)
induce unitary maps between the spaces with sharp momentum,

U(A) : HpΛ(A) → Hp (3.33)

by

U(A)(Φ +NpΛ(A)) = U(A)Φ +Np . (3.34)

For each momentum p ∈ H+
m there is a subgroup Gp of SL(2,C),

the so-called little group, whose elements do not change p,

Gp = {A ∈ SL(2,C), pΛ(A) = p} . (3.35)

Then U �Gp is an irreducible representation of the little group on Hp.
The little groups on the same orbit are conjugated within SL(2,C),

q = pΛ(A) =⇒ Gp = AGqA
−1 , (3.36)
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and the representations of the little groups on the respective Hilbert
spaces with sharp momentum satisfy the equation

U(ARA−1) = U(A)U(R)U(A)−1 . (3.37)

with R ∈ Gq and q = pΛ(A).
The representation U is thus fixed if the representation of some

little group is known. In the case of the mass shell H+
m we consider the

little group for the momentum (m, 0). Since (m, 0)
∼

= m1, the little

group at this point is

G(m,0) = {R ∈ SL(2,C)|R∗R = 1} = SU(2) . (3.38)

In the rest system of the particle the little group is thus the covering
group of the rotation group.

The irreducible representations of SU(2) can be parametrized by
the spin quantum number s = 0, 1

2
, 1, . . .. The spin, relative to the rest

system, characterizes thus the unitary irreducible representations of Pc

with sp(P ) = H+
m.

The existence of the unitary maps U(A) allows us to identify the
Hilbert spaces Hp with a reference space. In the present case one can
choose the space H(m,0) with vanishing spatial momentum. We then
search a family of Lorentz transformations Ap with

(m, 0)Λ(Ap) = p . (3.39)

As for spacetime vectors x we set for momenta p
∼
p = p01− p · ~σ = p01 +

∑
piσi . (3.40)

Then

px ≡ pµx
µ =

1

2
tr
∼
px
∼

(3.41)

Thus

pΛ(A)x =
1

2
tr
∼
pAx

∼
A∗ =

1

2
trA∗

∼
pAx

∼
, (3.42)

i.e.
∼

(pΛ(A)) = A∗
∼
pA . (3.43)

We choose Ap positive definite, i.e. as a pure boost. Then

Ap =

√
∼
p

m
. (3.44)

We now can identify the Hilbert space H with a space K of wave func-
tions with values in the space H(m,0),

K = L2(H+
m,H(m,0),

d3p

2ω(p)
) .

For this purpose we introduce the unitary operator V : H → K,

(V Φ)(p) = U(Ap)Φ(p) . (3.45)
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The representation U of Pc on H then is equivalent to the representation

U ′(L) = V U(L)V −1 , L ∈ Pc (3.46)

on the space K. The representation U ′ is explicitly given by

(U ′(a,A)Φ)(p) = eipaU(R(p,A))Φ(pΛ(A)) . (3.47)

Here R(p,A) = ApAA
−1
pΛ(A) is an element of the little group G(m,0) =

SU(2), the so-called Wigner rotation. Each irreducible representation
of SU(2) thus induces an irreducible representation of the Pc, and all
representations of Pc with spP = H+

m are of this form.
For what follows it is useful to describe the irreducible representa-

tions of SU(2) in the following way. Let H(s), s ∈ N0/2, be the 2s-fold
symmetrical tensor product of C2. H(s) is the linear span of the vectors

ξ ⊗ · · · ⊗ ξ︸ ︷︷ ︸
2s

, ξ ∈ C2 . (3.48)

H(s) has the dimension 2s+ 1. A representation Vs of SU(2) on H(s) is
defined by

Vs(R)ξ ⊗ · · · ⊗ ξ = Rξ ⊗ · · · ⊗Rξ . (3.49)

One easily verifies that this is the representation with spin s. We now
use the fact that this representation has a natural extension to SL(2,C),

Vs0(A)ξ ⊗ · · · ⊗ ξ = Aξ ⊗ · · · ⊗ Aξ . (3.50)

Using this extension, the Wigner rotation can be factorized in the rep-
resentation Vs0,

Vs0(R(p,A)) = Vs0(Ap)Vs0(A)Vs0(A
−1
pΛ(A)) . (3.51)

We now set
Ψ(p) = Vs0(A

−1
p )Φ(p) . (3.52)

Ψ transforms under (a,A) ∈ Pc according to

(U ′′(a,A)Ψ)(p) = eipaVs0(A)Ψ(pΛ(A)) . (3.53)

For U ′′ to become unitary, the norm of Ψ has to be chosen in such a
way that it coincides with the norm of Φ. One obtains

‖Ψ‖2 = ‖Φ‖2 =

∫
d3p

2ω(p)

〈
Ψ(p), Vs0

( ∼
p

m

)
Ψ(p)

〉
. (3.54)

We interpret Ψ as momentum space wavefunction of a particle with
mass m and spin s. By Fourier transformation, the corresponding
position space wavefunction turns out to be

Ψ(x) = (2π)−3/2

∫
d3p

2ω(p)
e−ipxΨ(p) . (3.55)

It transforms under Poincaré transformations according to

(U(a,A)Ψ)(x) = Vs0(A)Ψ(Λ(A)−1(x− a)) . (3.56)
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In the case of mass zero the analysis has to be modified. We first
choose some momentum q ∈ ∂V+, e.g. q = (1

2
, 0, 0, 1

2
). Then

∼
q =

(
1 0
0 0

)
. (3.57)

The little group is

Gq = {R ∈ SL(2,C), R∗
(

1 0
0 0

)
R =

(
1 0
0 0

)
} . (3.58)

We find

R =

(
eiϕ 0
a e−iϕ

)
, ϕ ∈ R, a ∈ C . (3.59)

Gq is the two-fold covering group Ẽ(2) of the group of motions E(2)
of the euclidean plane. Thereby, the case a = 0 corresponds to the
rotation by 2ϕ and the case ϕ = 0 to the translation by (Re a, Im a).

In the first step we have to determine representations of the Ẽ(2).
Here one can proceed in the same way as for the Poincaré group. The

representations of the subgroup of translations in Ẽ(2) is determined
by the spectrum of their generators K1, K2,

U

(
1 0

a1 + ia2 1

)
= ei(K1a1+K2a2) . (3.60)

In an irreducible representation of Ẽ(2) the spectrum has to be a circle
in R2 with the origin as center.

If the radius of the circle vanishes, the translations are trivial, and

the corresponding representations of the Ẽ(2) are given by

U

(
eiϕ 0
a e−iϕ

)
= eiϕn , n ∈ Z . (3.61)

n/2 is called helicity, the associated representation of Pc is named
helicity representation.

In case the radius of the circle does not vanish, the little groups for
each spectral value of (K1, K2) is {±1} = Z2. This group has the two
irreducible representations

±1 → 1 , ±1 → ±1 . (3.62)

Hq can be identified with L2(0, 2π). The representation is(
U

(
eiϕ 0
0 e−iϕ

)
Φ

)
(α) = Φ(α− 2ϕ) (3.63)

with Φ(α + 2nπ) = (±1)nΦ(α). The associated representations of the
Pc could not yet be used for the description of particles.

In order to present an explicit description of the helicity represen-
tations we look for a family Bp ∈ SL(2,C), p ∈ ∂V+ with the property

B∗
p

∼
qBp =

∼
p . (3.64)
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A possible choice is

Bp = (p0 + p3)
− 1

2

(
p0 + p3 p1 − ip2

0 1

)
. (3.65)

Then we may identify H with the space of wave functions on ∂V+ with
the scalar product 〈

Φ,Ψ
〉

=

∫
d3p

2|p|
Φ(p)Ψ(p) . (3.66)

The representation of the Pc on this space is given by

(U(a,A)Φ)(p) = eipah(p,A)nΦ(pΛ(A)) (3.67)

with the helicity phase

h(p,A) = (BpAB
−1
pΛ(A))11 . (3.68)

One can obtain the helicity representations with helicity s ∈ N0/2
as limit of representations with mass m and spin s in the limit m→ 0.
For this purpose we consider the one dimensional space Hq as that
subspace of the (2s + 1)-dimensional representation of the SU(2) in
which the 3-component of the spin has the eigenvalue s,

Hq = Vs0(
∼
q)H(s) (3.69)

with

Vs0(A)ξ ⊗ · · · ⊗ ξ = Aξ ⊗ · · · ⊗ Aξ (3.70)

for all 2× 2-matrices A. Because of
∼
qBpAB

−1
pΛ(A) =

∼
qh(p,A) , A ∈ SL(2,C) (3.71)

the representation of the SL(2,C) has the form

(U(A)Vs0(
∼
q)Φ)(p) = Vs0(

∼
qBpAB

−1
pΛ(A))Φ(pΛ(A)) . (3.72)

We now set, similar to our proceeding in the case of representations
with positive mass

Ψ(p) = Vs0(B
−1
p )Φ(p) . (3.73)

Ψ transforms as in the massive case

(U ′′(A)Ψ)(p) = Vs0(A)Ψ(pΛ(A)) . (3.74)

The scalar product is

‖Ψ‖2 =

∫
d3p

2|p|
〈
Ψ(p), Vs0(

∼
p)Ψ(p)

〉
(3.75)

We thus obtain essentially the same description as in the massive case,
with the difference that before the limit m→ 0 the scalar product was
multiplied by m2s. Thereby only the component with s3 = s survives
in the limit. Similar constructions are possible for the case of negative
helicities.
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There remain the representations with imaginary mass (“tachyons”)
and those with negative energy and positive mass. They can be treated
by the same method but do not correspond to physical particles.

We now want to justify the interpretation of the operators P µ as
energy-momentum operators. For this purpose we consider the transi-
tion probabilities

|
〈
Φ, U(t,vt)Φ

〉
|2 . (3.76)

In the limit t → ∞ only the component of Φ which moves with the
velocity v, will contribute to the transition probability.

Let Φ be smooth with compact support. The integrand in〈
Φ, U(t,vt)Φ

〉
=

∫
d3p

2ω(p)
ei(ω(p)−p·v)t‖Φ(p)‖2 (3.77)

oscillates strongly for large t with the exception of the stationary points
of the exponent

0 = ∇p(ω(p)− p · v) =
p

ω(p)
− v . (3.78)

Thus
d3p

2ω(p)
‖Φ(p)‖2 (3.79)

can be viewed as the probability that the velocity v is concentrated in
the region m2

2(1−|v|2)2
d3v around the point v = p

ω(p)
. This is precisely

the relativistic connection between momentum and velocity. In the
case of imaginary mass one finds superluminal velocities |v| > 1, in
the case p0 < 0 velocity and momentum point into opposite directions,
corresponding to negative energy.

4. Relativistic wave equations

The position space wave function Ψ, obtained by Fourier transfor-
mation from the momentum space wave function in irreducible rep-
resentations of Pc, transforms under Poincaré transformations as ex-
pected. Ψ is uniquely determined by its initial values at time t = 0,

Ψ(t,x) = 2i

∫
d3y

∂

∂t
∆+(t,x− y)Ψ(0,y) . (4.1)

with

∆+(t,x) = (2π)−3

∫
d3p

2ω(p)
e−i(ω(p)t−p·x) . (4.2)

But surprisingly it is not possible to localize the wave function strictly.
If the wave function is localized at a given instant of time t in a compact
region G,

Ψ(t,x) = 0 ∀x 6∈ G , (4.3)

then it expands in an arbitrary short time over the whole space. This
behaviour seems to contradict the principle of Einstein causality which
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says that signals can propagate at most with the velocity of light. We
have the following theorem:

Theorem II.3. Let Ψ 6= 0 be the position space wave function of a
relativistic particle. Then Ψ cannot vanish on an open nonempty subset
of Minkowski space.

Proof. The momentum space wave function Φ has support in V+.
Thus its Laplace transform

Ψ(x− iy) = (π)−3/2

∫
d3p

2ω(p)
Φ(p)e−ip(x−iy) (4.4)

with y ∈ V+ is analytic in the so-called tube T = M−iV+. The position
space wave functions result as boundary values for y → 0. According
to the “Edge of the Wedge”-Theorem (a multidimensional version of
Schwarz’ reflection principle) Ψ is identical zero if its boundary values
vanish on a nonempty open set. �

The normalization integral in position space turns out to be

‖Ψ‖2 = 2i(2s+1)

∫
d3x
〈
Ψ(t,x),

∂

∂t
Vs0(m

−1
∼
∂)Ψ(t,x)

〉
H(s) (4.5)

independent of t. Here ∂ = ( ∂
∂t
,∇x).

In the case s = 1/2 the normalization integral can be simplified. It
holds

1
∂

∂t
=

1

2
(
∼
∂ + ∂

∼
) ,

∼
∂∂
∼
Ψ = −m2Ψ . (4.6)

We set χ = i
m

∼
∂Ψ, define a 4-component wave function

ψ =

(
Ψ
χ

)
(4.7)

and find

‖Ψ‖2 = m

∫
d3x‖ψ(t,x)‖2 (4.8)

with the standard scalar product on C4.
The relativistic energy-momentum relation

P0 =
√
|P|2 +m2 (4.9)

is non-polynomial. Therefore it does not yield a differential equation
in position space; this is the origin of the nonlocal behaviour of its
solutions. It is suggestive to use instead the squared equation

P 2
0 = |P|2 +m2 . (4.10)

This equation has in addition solutions with negative energy. In posi-
tion space it becomes the Klein-Gordon equation

(� +m2)Ψ = 0 , � = ∂µ∂µ . (4.11)
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The general solution of the Klein-Gordon equation is a superpo-
sition of a solution with positive energy and a solution with negative
energy,

ϕ(x) = (2π)−3/2

∫
d3p

2ω(p)

(
a+(p)e−ipx + a−(p)eipx

)
. (4.12)

For the determination of ϕ(t,x) one needs in addition to ϕ(0,x) also
∂
∂t
ϕ(0,x) as initial conditions (Cauchy data). With

∆(x) := 2Im∆+(x) (4.13)

we obtain

ϕ(t,x) = −
∫

d3y
( ∂
∂t

∆(t,x− y)ϕ(0,y) + ∆(t,x− y)
∂

∂t
ϕ(0,y)

)
.

(4.14)
∆ is antisymmetric

∆(−x) = −∆(x) (4.15)

and invariant under proper orthochronous Lorentz transformations

∆(Λx) = ∆(x) , Λ ∈ L↑+ . (4.16)

This implies that ∆(x) vanishes for spacelike x (x2 < 0). Namely, for

purely spatial x = (0,x) there is a Lorentz transformation Λ ∈ L↑+
with Λx = −x, e.g. the rotation by π around an axis orthogonal to x.
Since each spacelike point can be brought into the t = 0 hyperplane by
a suitable Lorentz transformation this property holds for all spacelike
points x. Thus for x2 < 0 and a suitable Λ ∈ L↑+

∆(x) = ∆(Λx) = ∆(−x) = −∆(x) , (4.17)

i.e. ∆(x) = 0.
This property implies that solutions of the Klein-Gordon-Gleichung

propagate in a causal way. Namely, if the Cauchy data at time t =
0 are concentrated within a ball of radius r, then, at time t, they
are concentrated within a ball of radius r + |t|. But because of the
nonvanishing component with negative energy the localized solutions
cannot be considered as physical particles.

∆ itself is a distributional solution of the Klein-Gordon equation
with the Cauchy data

∆(0,x) = 0 ,
∂

∂t
∆(0,x) = −δ(x) . (4.18)

For particles with spin 1
2

one usually uses instead of the Klein-
Gordon equation the Dirac equation. Thereby one defines in the mas-
sive case a second 2-component wave function

χ =
i

m

∼
∂ϕ (4.19)
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and combines the two spinors ϕ und χ to a 4-component bispinor ψ,

ψ =

(
ϕ
χ

)
. (4.20)

ψ satisfies the equation(
0 ∂

∼∼
∂ 0

)
ψ = −imψ . (4.21)

This is the Dirac equation

(iγ∂ −m)ψ = 0 (4.22)

with the γ-matrices

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi

+σi 0

)
. (4.23)

The equation remains meaningful in the massless case. In this case ψ
decomposes into the two chiral components ϕ and χ which satisfy the
Weyl equations

∼
∂ϕ = 0 , ∂

∼
χ = 0 . (4.24)

While ϕ transforms under Lorentz transformations according to the
defining representation A 7→ A of SL(2,C), for χ one gets

(U(A)χ)(x) = (A∗)−1χ(Λ(A)−1x) . (4.25)

The Dirac spinor ψ transforms therefore according to the reducible
representation

A 7→
(
A 0
0 (A∗)−1

)
. (4.26)



CHAPTER III

Free fields and Feynman diagrams

1. The scalar field

Let

H1 = {Φ : H+
m → C|‖Φ‖2 =

∫
d3p

2ω(p)
|Φ(p)|2 <∞} (1.1)

be the single particle space of a relativistic particle with spin 0 and
mass m > 0. As in the nonrelativistic case, we define the bosonic Fock
space

H+ =
∞⊕
n=0

H+
n (1.2)

with the n-particle spaces

H+
n ={Φ : H+

m × · · · ×H+
m → C symmetric |

‖Φ‖2 =

∫
d3p1

2ω(p1)
· · ·
∫

d3pn
2ω(pn)

|Φ(p1, . . . , pn)|2 <∞} .
(1.3)

The representation of the Poincaré group Pc is fixed by the represen-
tation on the single particle space,

(U(x,A)Φ)n(p1, . . . , pn) = ei
P
pkxΦn(p1Λ(A), . . . , pnΛ(A)) . (1.4)

Creation and annihilation operators are declared as in the nonrelativis-
tic case,

(a(f)Φ)n(p1. . . . , pn) =
√
n+ 1

∫
d3p

2ω(p)
f(p)Φn+1(p, p1, . . . , pn) ,

(a(f)∗Φ)n(p, p1, . . . , pn) =

{
0 , n = 0

1√
n

∑
f(pk)Φn−1(p1 . . . , pk−1, pk+1 . . . , pn) , n > 0

(1.5)

with f ∈ H1. Accordingly we obtain the commutation relations

[a(f), a(g)∗] =
〈
f, g
〉

=

∫
d3p

2ω(p)
f(p)g(p) , (1.6)

[a(f), a(g)] = 0 = [a(f)∗, a(g)∗] . (1.7)

Creation and annihilation operators with sharp momentum are intro-
duced as operator valued distributions by

a(f) =

∫
d3p

2ω(p)
f(p)a(p) , (1.8)

45
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a(f)∗ =

∫
d3p

2ω(p)
a∗(p)f(p) . (1.9)

They obey the commutation relations

[a(p), a∗(q)] = 2ω(p)δ(p−q) , [a(p), a(q)] = 0 = [a∗(p), a∗(q)] . (1.10)

In the sense of operator valued distributions we can also introduce
creation and annihilation operators in position space,

a(x) = (2π)−3/2

∫
d3p

2ω(p)
e−ipxa(p) , (1.11)

a∗(x) = (2π)−3/2

∫
d3p

2ω(p)
a∗(p)eipx . (1.12)

These operator valued distributions are solutions of the Klein-Gordon
equation. They have the commutation relations

[a(x), a∗(y)] = ∆+(x− y) , [a(x), a(y)] = 0 = [a∗(x), a∗(y)] . (1.13)

We search now for operators which can be interpreted as local
measurements (local observables). When A(x) describes a measurable
quantity at the point x, the translated observable

A(y) = U(y − x)A(x)U(x− y) (1.14)

should describe the corresponding quantity at the point y. Einstein’s
causality principle requires that signals cannot be transmitted with
superluminal velocity, thus measurements at spacelike separated points
must be mutually compatible, i.e. the corresponding operators have to
commute,

[A(x), A(y)] = 0 if (x− y)2 < 0 . (1.15)

An example for such a quantity is the scalar field

ϕ(x) = a(x) + a∗(x) . (1.16)

It is a solution of the Klein-Gordon equation, transforms under Poincaré
transformations according to

U(x,Λ)ϕ(y)U(x,Λ)−1 = ϕ(Λy + x) (1.17)

and fulfils the commutation relation

[ϕ(x), ϕ(y)] = i∆(x− y) . (1.18)

Since ∆ vanishes for spacelike points, ϕ(x) can be interpreted as a
measurement at the point x. From the Cauchy data for ∆ we obtain
the following commutation relations for ϕ at coinciding times,

[ϕ(t,x), ϕ(t,y)] = 0 = [ϕ̇(t,x), ϕ̇(t,y)] , (1.19)

[ϕ(t,x), ϕ̇(t,y)] = iδ(x− y) . (1.20)

These relations are the continuous analog of the canonical commutation
relations of quantum mechanics,

[qk, ql] = 0 = [pk, pl] , [qk, pl] = iδkl , (1.21)
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where the position x plays the role of the component k and ϕ̇ is the
canonical conjugated momentum to ϕ.

The fact that measurements at spacelike separated points have to
be compatible does not at all mean that they have to be uncorrelated.
Correlations are present, in contrast to the non-relativistic case, already
in the vacuum,〈

Ω, ϕ(x)ϕ(y)Ω
〉

=
〈
Ω, (a(x) + a∗(x))(a(y) + a∗(y))Ω

〉
= [a(x), a∗(y)] = ∆+(x− y) .

(1.22)

The vacuum expectation values of products of fields are called Wight-
man functions,

Wn(x1, . . . , xn) =
〈
Ω, ϕ(x1) · · ·ϕ(xn)Ω

〉
. (1.23)

Wightman functions are tempered distributions. They can be easily
computed by using the commutation relations. We split the field into
its annihilation and creation part,〈

Ω, ϕ(x1) · · ·ϕ(xn)Ω
〉

=
〈
Ω, (a(x1) + a∗(x1))ϕ(x2) · · ·ϕ(xn)Ω

〉
.

(1.24)

The creation operator is brought to the left hand side of the scalar
product. There it acts as an annihilation operator and annihilates
the vacuum. The annihilation part of the field is permuted with the
product of the other fields and annihilates the vacuum on the right
hand side. It remains the expectation value of the commutator,

[a(x1), ϕ(x2) · · ·ϕ(xn)]

=
n∑
k=2

∆+(x1 − xk)ϕ(x2) · · ·ϕ(xk−1)ϕ(xk+1) · · ·ϕ(xn) .
(1.25)

This implies the recursion relation

Wn(x1, . . . , xn) =
n∑
k=2

∆+(x1 − xk)Wn−2(x2, . . . , x̂k, . . . , xn) , (1.26)

where the symbol ŷ means that the argument y is cancelled. Together
with the initial conditions W0 = 1 and W1 = 0, this relation determines
all Wightman functions.

It has turned out to be very efficient to formulate the resulting
combinatorial formulas in terms of graphs. Let G+(n) denote the set
of all directed graphs with n vertices {1, . . . , n} such that every vertex
is connected with exactly one other vertex by a line where the initial
point (“source”) s(l) of a line l has always a smaller index than the
final point r(l) (“range”). For odd n this set is obviously empty. It
holds

Wn(x1, . . . , xn) =
∑

G∈G+(n)

∏
l

∆+(xs(l) − xr(l)) . (1.27)
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It is often useful to describe combinatorial formulas in terms of gener-
ating functions. Let f be a real valued test function. According to the
Baker-Campbell-Hausdorff formula we have

ei
R

d4xϕ(x)f(x) = ei
R

d4xa∗(x)f(x)ei
R

d4xa(x)f(x)e−
1
2

R
d4x

R
d4yf(x)∆+(x−y)f(y) .

(1.28)
Hence 〈

Ω, ei
R

d4xϕ(x)f(x)Ω
〉

= e−
1
2

R
d4x

R
d4yf(x)∆+(x−y)f(y) . (1.29)

Thus the symmetrized Wightman functions can be obtained as func-
tional derivatives of the generating function

inWn(x1, . . . , xn)symm

=
δn

δf(x1) · · · δf(xn)
e−

1
2

R
d4x

R
d4yf(x)∆+(x−y)f(y) �f=0 .

(1.30)

Because of the singularities of the 2-point function ∆+, powers of the
field are not well-defined. If one try to compute, e.g., the vacuum
expectation value of ϕ(x)2, then one would obtain〈

Ω, ϕ(x)2Ω
〉

= ∆+(0) = (2π)−3

∫
d3p

2ω(p)
= ∞ . (1.31)

Instead we define normal ordered products (Wick products) by split-
ting the field into creation and annihilation operators and putting the
annihilation operators on the right hand side of the creation operators,

:ϕ(x1) · · ·ϕ(xn) :=
∑

I⊂{1,...,n}

∏
i∈I

a∗(xi)
∏
j 6∈I

a(xj) . (1.32)

In terms of generating functions we find for the normal ordered prod-
ucts

in :ϕ(x1) · · ·ϕ(xn) :=
δn

δf(x1) · · · δf(xn)
:ei

R
d4xϕ(x)f(x) :�f=0 (1.33)

with

:ei
R

d4xϕ(x)f(x) := ei
R

d4xϕ(x)f(x)e
1
2

R
d4x

R
d4yf(x)∆+(x−y)f(y) . (1.34)

The normal ordered products can be restricted to coinciding points,
and one obtains the so-called Wick powers : ϕ(x)n :. They are them-
selves quantum fields; their Wightman functions are obtained from the
Wightman functions of ϕ by setting all arguments belonging to the
same Wick power to the same value and canceling all graphs which
contain lines which connect coinciding points (“tadpoles”),〈

Ω, :ϕ(x1)
n1 : · · · :ϕ(xk)

nk : Ω
〉

=
∑

G∈G+(n1,...,nk)

cG
∏
l

∆+(xs(l) − xr(l)) .

(1.35)
Here G+(n1, . . . , nk) denotes the set of all directed graphs with k ver-
tices 1, . . . , k with ni lines at the i-th vertex. The lines always connect
two different vertices and are directed to the vertex with the larger
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index. The factor cG counts the number of graphs G0 ∈ G+(
∑
ni)

which by contraction of the first n1 vertices to the vertex 1, the next
n2 vertices to a vertex 2, etc. yield the graph G.

For calculating the combinatorial factor cG we replace the vertices
i ∈ {1, . . . , k} of the graph G by sets of ni points such that the ni lines
attached to i are attached to different points. Let lij be the number
of lines between the vertices i and j. There are ni!Q

j lij !
possibilities to

decompose the set of points associated to the vertex i into subsets Vij
of points with lij elements. For all vertices we get∏

ni!∏
i6=j(lij!)

(1.36)

possibilities. Moreover, there are lij! different possibilities to choose
the lines which connect the subsets Vij and Vji. Altogether we obtain

cG =

∏
i ni!∏
i<j lij!

. (1.37)

The formula above for Wightman functions of Wick powers can also
be written in the form〈

Ω,
∏
i

:ϕ(xi)
ni :

ni!
Ω
〉

=
∑
G

∏
i<j

∆+(xi − xj)
lij

lij!
. (1.38)

It is crucial that the products of ∆+ occuring in the formula are well-
defined distributions (see the exercises).

As an example for a more general Wick polynomial we consider the
energy density

h(x) =
m2

2
:ϕ(x)2 : +

1

2
: ϕ̇(x)2 : +

1

2
:∇ϕ(x)2 : . (1.39)

In terms of creation and annihilation operators at sharp momenta we
get

h(x) =

1

2
(2π)−3

∫
d3p

2ω(p)

∫
d3q

2ω(q)

(
2(m2+ω(p)ω(q) + p · q)a∗(p)a(q)ei(p−q)x

+(m2 − ω(p)ω(q)− p · q)(a(p)a(q)e−i(p+q)x + a∗(p)a∗(q)ei(p+q)x)
)
.

(1.40)

We see that the energy density has a term which preserves the number
of particles, a term which creates and another term which annihilates
a pair of particles. After integration over x at fixed time the terms
which change the particle number get a factor (2π)3δ(p + q) and the
term which preserves the particle number get a factor (2π)3δ(p − q).
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The term m2 − ω(p)ω(q) − p · q vanishes at p = −q, hence only the
particle number preserving term contributes to the integral. We find∫

d3xh(t,x) =

∫
d3p

2ω(p)
ω(p)a∗(p)a(p) = H . (1.41)

This justifies the interpretation of h as energy density.
The classical energy density of the Klein-Gordon field has the same

form, up to the disappearance of normal ordering. Contrary to the
classical energy density the energy density of the quantum field is not
always positive. This follows from the fact that the expected energy
density in the vacuum vanishes, but not its fluctuations. Formally we
have 〈

Ω, h(x)2Ω
〉

= ∞ . (1.42)

Thus the vacuum is not an eigenstate of the energy density, and in a de-
composition into eigenstates the contributions of negative and positive
eigenvalues have to cancel.

The existence of states with negative energy density has conse-
quences for General Relativity. Many results of this theory rely on
the assumption that the energy density satisfies some positivity condi-
tion. If this assumption is violated, exotic spacetimes with worm holes
etc. are possible. In the science fiction literature this possibility is
often exploited. A careful analysis, however, shows that negative en-
ergy densities are possible only under very restrictive conditions. For
instance the integral of the energy density over time at a given spatial
point must be nonnegative, thus a negative energy density at some time
has to be compensated at other times, actually with some additional
amount of positive energy (“quantum interest”).

As in the nonrelativistic case, we want now to investigate the effect
of a time dependent source on our system. Let the time dependent
Hamiltonian be

H(t) = H0 −
∫

d3xϕ(0,x)f(t,x) (1.43)

with a real valued test function f ∈ D(M). The calculations are com-
pletely analogous to those in chapter I. The time evolution operator in
the interaction picture is

V (t, s) = Tei
R

s<x0<t d4xϕ(x)f(x) , (1.44)

and for the S-matrix we find

S(f) = Tei
R

d4xϕ(x)f(x) = ei
R

d4xϕ(x)f(x)e−iα (1.45)

with α = 1
2

∫
x0>y0

d8(x, y)f(x)f(y)Θ(x0 − y0)∆(x − y). In terms of

normal ordered products this yields

S(f) =:ei
R

d4xϕ(x)f(x) :
〈
Ω, S(f)Ω

〉
(1.46)
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with 〈
Ω, S(f)Ω

〉
= e−

1
2

R
d8(x,y)f(x)f(y)(∆+(x−y)+iΘ(x0−y0)∆(x−y)) (1.47)

Here Θ is the Heaviside function

Θ(x0) =

{
1 , x0 > 0
0 , x0 ≤ 0

. (1.48)

The symmetrized part of the coefficient of f(x)f(y) in the integrand of
the exponent is the Feynman propagator

i∆F (x− y) = Θ(x0 − y0)∆+(x− y)) + Θ(y0 − x0)∆+(y − x))

=
〈
Ω, Tϕ(x)ϕ(y)Ω

〉
.

(1.49)

One calculates

∆F (x) = lim
ε↓0

(2π)−4

∫
d4p

e−ipx

p2 −m2 + iε
. (1.50)

The Feynman propagator is invariant under the full Lorentz group
(including the time inversion) and is a Green’s function of the Klein-
Gordon equation,

(� +m2)∆F (x) = −δ(x) . (1.51)

The formulas above yield a definition of the time ordered products of
the field ϕ via functional derivatives

inTϕ(x1) · · ·ϕ(xn)

=
δn

δf(x1) · · · δf(xn)
:ei

R
d4xϕ(x)f(x) : e−

i
2

R
d8(x,y)f(x)f(y)∆F (x−y) �f=0

(1.52)

The resulting combinatorial formula can be visualized in terms of graphs.
Let G(n) be the set of graphs with vertices 1, . . . , n and undirected lines
which either connect two vertices (inner lines l ∈ K1) or go from a ver-
tex to the exterior (external lines l ∈ K2). Each vertex v is a boundary
point v ∈ ∂l of precisely one line l. Then

Tϕ(x1) · · ·ϕ(xn) =
∑

G∈G(n)

:
∏
K2

ϕ(x∂l) :
∏
K1

〈
Ω, T

∏
v∈∂l

ϕ(xv)Ω
〉
. (1.53)

Formally one obtains analogous formulas if one inserts higher Wick
powers as interactions. Again the S-matrix can be computed in terms
of time ordered products which, as in the case of Wightman functions,
arise from the graphs G ∈ G(n1, . . . , nk), which originate by merging
the appropriate vertices in graphs from G(

∑
ni). One finds

T
∏
i

:ϕ(xi)
ni :

ni
=

∑
G∈G(n1,...,nk)

:
∏
j

ϕ(xj)
li

li!
:
∏
j<m

(i∆F (xj − xm))ljm

ljm!
.

(1.54)
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Unfortunately, the products of Feynman propagators occuring in this
formula are, in general, ill defined. This is in remarkable contrast to
the corresponding formulas in the graphical presentation of Wightman
functions and is the origin of ultraviolet divergences in quantum field
theory.

The arising graphs can be classified according to the number of
independent loops. Graphs without loops are called trees. The cor-
responding terms in the expansion of time ordered products are well
defined, since the arguments of the Feynman propagators are indepen-
dent differences yjm = xj − xm, and no higher powers of propagators
occur, ljm = 0, 1.

As an example we consider the S matrix

S = Tei
R

d4xf(x):ϕ(x)3: . (1.55)

up to second order. We find

S = 1 + i

∫
d4xf(x) : ϕ(x)3 : −1

2

∫
d8(x, y)f(x)f(y)T :ϕ(x)3 ::ϕ(y)3 :

(1.56)
with

T
:ϕ(x)3 ::ϕ(y)3 :

3! · 3!
=

:ϕ(x)3ϕ(y)3 :

3! · 3!
+

:ϕ(x)2ϕ(y)2 :

2! · 2!
i∆F (x− y)

+ :ϕ(x)ϕ(y) :
(i∆F (x− y))2

2!
+

(i∆F (x− y))3

3!
.

(1.57)

We now expand the Wick polynomials into sums of products of creation
and annihilation operators. For the part which maps 2-particle states
into 2-particle states we obtain, e.g.

S2→2 = 1−

9i

∫
d8(x, y)f(x)f(y)(a∗(x)2a(y)2+2a∗(x)a∗(y)a(x)a(y))∆F (x− y) .

(1.58)

The first term can be interpreted as describing the annihilation of a
pair and the creation of a “virtual” particle at the point y, followed
by a decay of the virtual particle into 2 particles at the point x. The
second term may be interpreted as the exchange of a virtual particle
between a particle at x and another particle at y.

2. Fields with spin; the connection between spin and
statistics

Let H1 be the state space of a particle with spin s and mass m > 0.
For the sake of a simpler notation we set m ≡ 1 in this section. This
means that momenta and energies are measured in units of m.

According to chapter II, H1 is the representation space of Pc for
the irreducible representation labeled by the pair (m, s). We realize it
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in the form

H1 = {Φ : H+
1 → H(s)|

∫
d3p

2ω(p)

〈
Φ(p), Vs0(

∼
p)Φ(p)

〉
<∞} . (2.1)

with the notations from chapter II. The representation of SL(2,C) on
H1 is given by

(U(A)Φ)(p) = Vs0(A)Φ(pΛ(A)) . (2.2)

For the following it is important that H(s) has a natural complex con-
jugation such that

Vs0(A)Φ = Vs0(A)Φ , Φ ∈ H(s) . (2.3)

We choose a real orthonormal basis in H(s). The elements of H1 can
then be represented as functions with (2s+ 1) components .

The symmetrical and anti-symmetrical n-particle spaces H±
n con-

sist of functions of n momenta with (2s + 1)n components with the
respective symmetry. The scalar product is

‖Φ‖2 =

∫
d3p1

2ω(p1)
· · · d3pn

2ω(pn)

∑
k1,...,kn,j1,...,jn

Φk1,...,kn(p1, . . . , pn)Vs0(
∼
p)k1j1 · · ·Vs0(

∼
p)knjnΦj1,...,jn(p1, . . . , pn)

(2.4)

Bosonic and fermionic Fock spaces H± can be constructed as before.
Annihilation operators are defined in terms of the scalar product on
H1,

(a(f)Φ)n;k1,...,kn(p1, . . . , pn) =

√
n+ 1

∫
d3p

2ω(p)

∑
kj

fk(p)Vs0(
∼
p)kjΦn+1;j,k1,...,kn(p, p1, . . . , pn) .

(2.5)

The representation U of the Poincaré group on H± arises naturally from
the single particle representation. In particular we have

U(x,A)a(f)U(x,A)∗ = a(U(x,A)f) . (2.6)

The commutation relations are

a(f)a(g) = εa(g)a(f) , a(f)a(g)∗ = εa(g)∗a(f) +
〈
f, g
〉
, (2.7)

with ε = 1 for Bose and ε = −1 for Fermi statistics.
As in the case s = 0, we now look for fields with local commutation

relations,
ϕi(x)ϕj(y) = εϕj(y)ϕi(x) , (x− y)2 < 0 . (2.8)

These fields should transform covariantly under Poincaré transforma-
tions,

U(y, A)ϕi(x)U(y, A)−1 =
∑
j

ϕj(Λ(A)x+ y)S(A)ji , (2.9)

with a finite dimensional representation S of SL(2,C) with S(A)ji =
S(A)ji.
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The fields are operator valued distributions. Therefore we consider
the smeared fields

ϕ(f) =

∫
d4x

∑
ϕi(x)fi(x) (2.10)

where f is test function with values in the representation space of S.
On the space D of these test functions, SL(2,C) acts by

(V (A)f)(x) = S(A)f(Λ(A)−1x) . (2.11)

The covariance condition on ϕ is

U(A)ϕ(f)U(A)−1 = ϕ(V (A)f) . (2.12)

We first search for a linear combination of creation and annihilation
operators which transforms covariantly,

ϕ(f) = a(Q(f)) + a(R(f))∗ , (2.13)

with maps R and Q from the test function space D into the single par-
ticle space. R is linear and Q is antilinear. Q and R should intertwine
the representations V and U ,

QV (A) = U(A)Q ,RV (A) = U(A)R . (2.14)

The condition on R can be easily satisfied. We choose S = Vs0 and set

R(f)(p) = (2π)−
3
2

∫
d4xeipxf(x) . (2.15)

But in the case of Q antilinearity creates problems. We therefore
search for an operator C (“charge conjugation”) in H1 with U(A)CΦ =

CU(A)Φ. An operator with this property is

(CΦ)(p) = Vs0(p
∼
ζ)Φ(p) (2.16)

with ζ = iσ2. Namely, with (Λ = Λ(A))

(pΛ)
∼

= A−1p
∼
(A∗)−1 , (A∗)−1ζ = ζA (2.17)

and

(U(A)CΦ)(p) = Vs0(A(pΛ)
∼
ζ)Φ(pΛ) ,

(CU(A)Φ)(p) = Vs0(p
∼
ζA)Φ(pΛ) .

the assertion follows from the equation

p
∼
ζA = A(pΛ)

∼
ζ . (2.18)

We now choose
Q(f) = CR(f) . (2.19)

We check whether the field defined in this way has local commutation
relations. We have

ϕ(f)ϕ(g)− εϕ(g)ϕ(f) =
〈
Q(f), R(g)

〉
− ε
〈
Q(g), R(f)

〉
. (2.20)
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A direct calculation yields〈
Q(f), R(g)

〉
=

∫
d3p

2ω(p)

〈
Vs0(ζ)R(f)(p), R(g)(p)

〉
=∫

d8(x, y)∆+(x− y)
∑
jk

Vs0(ζ)kjfj(x)gk(y) .
(2.21)

Since Vs0(ζ)kj = (−1)2sVs0(ζ)jk we finally obtain

ϕ(f)ϕ(g)− εϕ(g)ϕ(f) =∫
d8(x, y)

∑
jk

Vs0(ζ)kjfj(x)gk(y)
(
∆+(x− y)− ε(−1)2s∆+(y − x)

)
.

(2.22)

If ε = (−1)2s, i.e. if the spin statistics connection holds, then we
find in the last bracket the scalar commutator function i∆ which we
know from the scalar theory. In this case the covariant fields satisfy
local commutation relations

[ϕj(x), ϕk(y)]± = i∆(x− y)Vs0(ζ)kj . (2.23)

In case of a wrong connection of spin and statistics local commutation
relations are not valid since ∆+ does not vanish for spacelike arguments.

The fields constructed above are non hermitean, for s > 0. The
hermitean conjugated fields can be represented as linear combinations
of the fields ϕi. We consider the operator

ϕ(f)∗ = a(Q(f))∗ + a(R(f)) . (2.24)

We find
Q(f) = CR(f) = R(Vs0(−i∂∼ζ)f) = R(Cf) . (2.25)

with C = Vs0(i∂∼
ζ). as well as

Q(Cf) = CR(Cf) = R(CCf) . (2.26)

with C = Vs0(−iζ
∼
∂). Since ζ2 = −1, ∂

∼

∼
∂ = �, R ◦�2s = (−m2)2sR and

m = 1 it follows R ◦ CC = R, hence

Q(Cf) = R(f) . (2.27)

We thus obtain the Majorana condition

ϕ(f)∗ = ϕ(Cf) . (2.28)

The hermitean conjugated fields, implicitly defined by

ϕ(f)∗ =

∫
d4x

∑
j

ϕ∗j(x)fj(x) (2.29)

are given by

ϕ∗k(x) = Vs0(i
∼
∂ζ)kjϕj(x) (2.30)
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The physical content of the Majorana condition is that the particle is
its own antiparticle. In case particle and antiparticle are different, the
single particle space is the direct sum of two irreducible representation
spaces with the same mass and spin. Let a denote the annihilation
operator for the first particle and b that for the second particle. The
local fields can be defined by

ϕ(f) = a(Q(f)) + b(R(f))∗ . (2.31)

In this case the fields ϕi commute with each other. For the
(anti-)commutator of ϕ and ϕ∗ we find as in the Majorana case (with
the right spin and statistics connection)

[ϕ(f)∗, ϕ(g)]± = i2s+1

∫
d8(x, y)fk(x)gj(y)Vs0(

∼
∂)kj∆(x− y) . (2.32)

hence

[ϕ∗k(x), ϕj(y)]± = i2s+1Vs0(
∼
∂)kj∆(x− y) . (2.33)

3. The free Dirac field

We specialize now to the case s = 1
2
. The commutation relations

at coinciding times assume the simple form

{ϕ∗k(t,x), ϕl(t,y)} =
1

m
δ(x− y)δkl , k, l = 1, 2. (3.1)

Here we used the facts that ∆(0,x) = 0 and ∂t∆(0,x) = −δ(x).
ϕ fulfils the Klein-Gordon equation and transforms under Poincaré-

Transformationen according to

U(x,A)ϕk(y)U(x,A)−1 =
2∑
j=1

ϕj(Λ(A)y + x)Ajk . (3.2)

We now introduce a second field χ by

χk(x) =
i

m

∑
j

(
∼
∂ζ)kjϕj(x) . (3.3)

χ also fulfils the Klein-Gordon equation. In the Majorana case we have
χ = ϕ∗. χ transforms under Poincaré transformations according to the
conjugated representation of SL(2,C),

U(x,A)χk(y)U(x,A)−1 =
2∑
j=1

χj(Λ(A)y + x)Ajk . (3.4)

We combine the fields ϕ and χ to a 4-component field ψ,

ψ =
√
m

(
ϕ
χ

)
. (3.5)
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ψ transforms under Poincaré transformations according to

U(x,A)ψα(y)U(x,A)−1 =
4∑

β=1

ψβ(Λ(A)y + x)S(A)βα (3.6)

with S(A) =

(
A 0
0 A

)
and fulfils the Dirac equation

(i∂/−m)ψ = 0 (3.7)

with

∂/ =

(
0 −ζ∂

∼∼
∂ζ 0

)
= ∂µγ

µ . (3.8)

Here the γ matrices were chosen in the form

γµ =

(
0 −ζσµ
σµζ 0

)
. (3.9)

with σ0 = 1 and σµ = gµνσν . This form arises by the similarity trans-

formation with the unitary matrix

(
ζ 0
0 1

)
from the form given in

Chapter II. They fulfil also the anti commutation relations

{γµ, γν} = 2gµν , (3.10)

and transform under Lorentz transformations according to

S(A)TγµS(A−1)T = Λ(A)µνγ
ν . (3.11)

Moreover, the representation S satisfies the pseudo unitarity condition

S(A)∗γ0S(A) = γ0 . (3.12)

The arising commutation relations of the Dirac field are

{ψα(x), ψ∗β(y)} = i(S(x− y)γ0)αβ (3.13)

with the 4× 4-matrix valued anticommutator function

S(x− y) = (i∂/+m)∆(x− y) . (3.14)

In particular one finds for the simultaneous anticommutation relations

{ψα(t,x), ψ∗β(t,y)} = δαβδ(x− y) . (3.15)

The 2-point Wightman function is〈
Ω, ψα(x)ψ

∗
β(y)Ω

〉
= (S+(x− y)γ0)αβ (3.16)

with

S+(x− y) = (i∂/+m)∆+(x− y) . (3.17)

For the definition of time ordered products one has to take into account
the Fermi statistics. One sets

Tψα(x)ψ
∗
β(y) = Θ(x0−y0)ψα(x)ψ

∗
β(y)−Θ(y0−x0)ψ∗β(y)ψα(x) . (3.18)
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This yields the Feynman propagator of the Dirac field〈
Ω, Tψα(x)ψ

∗
β(y)Ω

〉
= i(SF (x− y)γ0)αβ (3.19)

with

SF (x) = (i∂/+m)∆F (x) = (2π)−4

∫
d4p e−ipx(p/−m+ iε)−1 . (3.20)

Normal ordered products are defined similar as in the Bose case. The
difference is that each term is multiplied with the sign of a permuta-
tion which brings the creation operators to the left hand side of the
annihilation operators (different permutations with this property have
the same sign). Again, normal ordered products can be defined on co-
inciding points; one obtains as in the case of the Bose field the Wick
polynomials as new local fields.

An example for such a field is the current

jµ(x) =:ψ(x)γµψ(x) : . (3.21)

The notation here should be understood in the following way: ψ is a
column vector, ψ∗ the adjoint row vector. ψ is the row vector defined
by ψ∗γ0 . Because of the pseudo-unitarity of the representation of
SL(2,C), :ψψ : is a scalar field, and j transforms as a Lorentz vector,

U(A)jµ(x)U(A)−1 = Λ(A−1)µνj
ν(Λ(A)x) . (3.22)

j is a conserved current, ∂µj
µ = 0. Hence the integral

Q =

∫
d3xj0(t,x) . (3.23)

(the charge operator) is a conserved quantity (i.e. independent of t).
The integral above exists in the sense of expectation values on a dense
domain and coincides with the difference of the number of particles and
the number of antiparticles. The spectrum of Q therefore is the set of
integers.

The Dirac equation is a first order differential equation Therefore
we expect that its solutions are determined by their initial values at a
given time. Indeed, one finds

ψ(t,x) =

∫
d3y S(t,x− y)ψ(0,y) . (3.24)

As an example for an interaction we consider the coupling of the
Dirac field to an external electromagnetic field with vector potential
Aµ. The interacting Dirac field satisfies the equation

(i∂/− eA/−m)ψ = 0 . (3.25)

We identify the interacting field at time t = 0 with the free Dirac field
and obtain the time dependent Hamiltonian

H(t) = H0 − e

∫
d3x jµ(0,x)Aµ(t,x) . (3.26)
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This yields the S-matrix

S = Tei
R

d4x jµ(x)eAµ(x) . (3.27)

Again, as in the case of the scalar field, the time ordered products can
be visualized in terms of Feynman graphs. The arising graphs have
directed lines, and every vertex is source and range of a line. The
internal lines l ∈ K2 correspond to Feynman propagators iSF , the
incomimg external lines l ∈ K+ correspond to a factor ψ, the outgoing
external lines l ∈ K− correspond to a factor ψ in the normal ordered
product. One finds

Tjµ1(x1) · · · jµn(xn) =
∑
G

ε
∑

α1,...,αn,β1,...,βn

:
∏
l∈K+

ψβ∂l
(x∂l)

∏
l∈K−

ψα∂l
(x∂l) :

∏
l∈K2

iSF (xs(l) − xr(l))αs(l)βr(l)

n∏
i=1

γµi

βiαi

(3.28)

with the sign ε of the permutation of Fermi fields.
Let us consider first the connected graphs. There are two types,

the linear graphs and the loop graphs. For the linear graphs with n
vertices there are n! possible orderings in which the path composed of
the lines of the graph meets the vertices. Let the order be labeled by a
permutation σ ∈ Sn. The corresponding graph yields the contribution

:ψ(xσ(1))γ
µσ(1)iSF (xσ(1)−xσ(2)) · · · iSF (xσ(n−1)−xσ(n))γ

µσ(n)ψ(xσ(n)) : .
(3.29)

We now set

Γ(x, y) = ieA/(x)iSF (x− y) (3.30)

and consider Γ as an integral operator,

(Γf)(x) =

∫
d4y Γ(x, y)f(y) , f ∈ S(R4,C4) . (3.31)

This is justified, if A ∈ S(R4,R4). Then the sum over all linear graphs
with n vertices yields after integration

n! :

∫
d8(x, y)ψ(x)Γn−1(x, y)ieA/(y)ψ(y) :≡ n! :

∫
ψΓn−1ieA/ψ : .

(3.32)
For the loop graphs with n vertices there are only (n− 1)! different

possibilities since the choice of the initial vertex is arbitrary. Again
we denote the order of vertices in the graph by a permutation σ and
obtain (taking into account the sign arising from the permutation of
Fermi fields) the contribution

− tr γµσ(1)iSF (xσ(1) − xσ(2) · · · γµσ(n)iSF (xσ(n) − xσ(1)) , (3.33)
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where tr denotes the trace of a 4× 4-matrix. Integration finally yields

−(n− 1)! Tr Γn := (n− 1)!

∫
d4x tr Γn(x, x) . (3.34)

Since every graph can be decomposed into connected components,
we now can compute the contributions of all graphs. Let G be a graph
with n vertices and connected components L1, . . . Lk, S1, . . . Sl, where
the linear graphs Li have ni vertices and the loop graphs Sj have mj

vertices. The corresponding contribution is

:
k∏
i=1

∫
ψΓni−1ieA/ψ :

l∏
j=1

Tr Γmj . (3.35)

There are
n!∏

ni!
∏
mj!

(3.36)

different possibilities to decompose a set of n vertices into subsets with
n1, . . . , nk,m1, . . . ,ml vertices. But the numbering of the components
is arbitrary, hence we have to divide by k!l!. The contribution of all
these graphs is

n! :
1

k!

k∏
i=1

∫
ψΓni−1ieA/ψ :

1

l!

l∏
j=1

(
−Tr

Γmj

mj

)
(3.37)

After summation over n in the exponential series for S the summation
over ni and mj is only resticted by the conditions ni > 0 and mj > 1.
We use

∞∑
n=0

Γn = (1− Γ)−1 (3.38)

(geometric series) and
∞∑
n=2

1

n
Γn = − ln(1− Γ)− Γ (3.39)

(Taylor series of ln(1 + x)), sum over k and l and obtain finally for the
S-matrix the closed formula

S =:e
R
ψ(1−Γ)−1ieA/ψ : eTr ln(1−Γ)+Γ . (3.40)

By using the formula
eTrB = det eB , (3.41)

valid for square matrices B, we can write the vacuum expectation value
of S as 〈

Ω, SΩ
〉

= det(1− Γ)eΓ . (3.42)

The considerations above solve the combinatorial problem associated
to the expansion into graphs. It remains to show that the derived ex-
pressions are mathematically well defined. For the term in the normal
ordered product this can be done for A ∈ S(R4,R4) and e sufficiently
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small. The vacuum expectation value of the S-matrix, however, di-
verges and has to be renormalized.

By similar methods as in the construction of the S-matrix we can
construct also the interacting field. Let ψ be the operator valued dis-
tribution

ψ(f) =

∫
d4x

∑
α

ψα(x)fα(x) . (3.43)

If ψ satisfies the Dirac equation with the vector potential Aµ, then

0 =

∫
d4x

∑
αβ

(i∂/− eA/−m)αβψβ(x)fα(x)

=

∫
d4x

∑
αβ

ψβ(x)(−i∂/− eA/−m)αβfα(x) .

(3.44)

i.e. with D = i∂/−m we have

ψ((Dt − eA/t)f) = 0 , (3.45)

where the exponent t denotes the transposed operator. In the case of
an integral operator G in S(R4,C4) with integral kernel G(x, y) the
integral kernel of the transposed operator is

Gt(x, y) = G(y, x)T . (3.46)

Here T refers to the transposition of the 4× 4-matrix.
The free Dirac field ψ0 fulfils the equation

ψ0(D
tf) = 0 . (3.47)

We therefore look for a linear operator

W : S(R4,C4) → S(R4,C4) (3.48)

with

Dt = W (Dt − eA/t) . (3.49)

Then

ψ = ψ0 ◦W (3.50)

solves the Dirac equation with interaction.
Let G be a Green’s function of the operator D − eA/,

(D − eA/)G(x, y) = δ(x− y)1 . (3.51)

Then a solution is

W = DtGt . (3.52)

Let G0 be a Green’s function of the free operator D. Then one
obtains a series representation of G by

G =
∞∑
n=0

G0(eA/G0)
n (3.53)
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As Green’s function G0 we could choose the Feynman propagator SF .
It is more convenient to take the retarded Green’s function,

G0(x, y) = Sret(x− y) = Θ(x0 − y0)S(x− y) (3.54)

In this case the interacting field coincides with the free field ψ0 in the
limit t → −∞, ψin = ψ0. In the limit t → +∞ one obtains another
free field, the outgoing free field ψout. It is related to the incomimg free
field by

ψin(f)S = Sψout(f) . (3.55)

4. Electrodynamics

Up to now we considered relativistic multiparticle systems and
found that they give rise to quantized field theories, under the condi-
tion that the correct connection between spin and statistics was chosen.
We now want to start from a classical field theory and associate to it a
quantum theory. We will see that this delivers directly a particle inter-
pretation of electrodynamics which is known since the work of Planck
and Einstein.

The Maxwell equations for the magnetic field B and the electrical
field E in the absence of charges are

curlB =
∂

∂t
E , curlE = − ∂

∂t
B

div E , div B = 0

By introducing the electromagnetical field strength tensor Fµν the equa-
tions can be written in Lorentz covariant form: we set

E = (F01, F02, F03) , B = (F32, F13, F21) , Fµν = −Fνµ , (4.1)

and find

∂µFµν = 0 , ∂µFνρ + ∂νFρµ + ∂ρFµν = 0 . (4.2)

In particular, Fµν satisfies the wave equation,

�Fµν = ∂ρ∂ρFµν = −∂ρ(∂µFνρ + ∂νFρµ)

= ∂µ∂
ρFρν − ∂ν∂

ρFρµ = 0 .
(4.3)

We now want to realize the fields Fµν as hermitean (tempered) operator
valued distributions in some Hilbertraum H. The Maxwell equation
should hold; furthermore there should be a representation U of the
Poincaré group in H with the property

U(x,Λ)Fµν(y)U(x,Λ)−1 = Fρσ(Λy + x)Λρ
µΛ

σ
ν (4.4)

(covariance), such that the energy is positive, independent of the Lorentz
system

U(x) = eiPx , spP ⊂ V+ . (4.5)
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(spectrum condition). Measurements of field strengths at spacelike
separated points should be compatible,

[Fµν(x), Fρσ(y)] = 0 , (x− y)2 < 0 . (4.6)

(locality). Finally we require the existence of a unique (up to phase)
Poincaré invariant unit vector Ω (for the description of the vacuum),
and we assume that Ω is cyclic for the fields Fµν , i.e. the vectors∑∏

F (fi)Ω , (4.7)

F (f) = 1
2

∫
d4xFµν(x)f

µν(x), fµν ∈ S(R4), should span a dense sub-
space of H.

We first look at the 2-point function

Wµνστ (x, y) =
〈
Ω, Fµν(x)Fστ (y)Ω

〉
. (4.8)

Due to the translation invariance of Ω and the covariance of Fµν the
2-point function depends only on the difference x − y, hence can be
written in the form

Wµνστ (x, y) =

∫
d4pe−ip(x−y)ρµνστ (p) (4.9)

with tempered distributions ρµνστ . Because of the spectrum condition
the support of ρ is contained in V+. Since Fµν is a solution of the
Maxwell equations, we have

p2ρµνστ (p) = 0 . (4.10)

Thus ρ is of the form

ρµνστ (p) = Pµνστ (p)δ(p
2)Θ(p0) , (4.11)

where P is a function on ∂V+ which transforms covariantly under
Lorentz transformations. The only functions with this property are
linear combinations of pµpνpσpτ , gµνpσpτ , gµνgστ and the functions
arising by permuting the indices. Because of the antisymmetry of the
electromagnetic field tensor the 4-fold products of momenta cannot oc-
cur. The Maxwell equation ∂µFµν = 0 excludes also the momentum
independent terms. Hence we obtain

Pµνστ = −c
(
gµσpνpτ − gνσpµpτ − gµτpνpσ + gντpµpσ

)
(4.12)

with an up to now undetermined constant c > 0.
We conclude that the 2-point function is

Wµνστ (x, y) = c(2π)3
(
gµσ∂ν∂τ−gνσ∂µ∂τ−gµτ∂ν∂σ+gντ∂µ∂σ

)
D+(x−y)

(4.13)
with the 2-point function of a massless free scalar field

D+(x) = (2π)−3

∫
d3p

2|p|
e−ipx = ∆+(x,m = 0) . (4.14)
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D+ can be explicitly computed: Let f be a test function from the
Schwartz space S(R4). As a distribution, D+ is defined by∫

d4xD+(x)f(x) = (2π)−3

∫
d3p

2|p|

∫
d4xf(x)e−ipx . (4.15)

We can interchange the integration over the angular part of p with the
integration over x and obtain

(2π)−2

∫ ∞

0

dp

∫
d4xf(x)

e−ip(t−r) − e−ip(t+r)

2ir
(4.16)

with x = (t,x) and r = |x|. We replace t by t − iε with ε > 0. In
the limit ε → 0 we reobtain the previous integral. For ε > 0 we can
interchange the integration over p with the x integration and get

lim
ε↓0

∫
d4xf(x)

−1

4π2
(
(t− iε)2 − r2

) , (4.17)

hence

D+(x) = lim
ε↓0

−1

4π2
(
(t− iε)2 − r2

)
=

−1

4π2x2
for x2 6= 0 .

(4.18)

One sees explicitly that D+ is the boundary value of an analytical
function in the tube T+ = R4 − iV+.

We now consider the following subspace H1 of H,

H1 = {F (f)Ω, fµν ∈ S(R4), fµν = −f νµ} . (4.19)

On this space the scalar product is determined by the 2-point function,

‖F (f)Ω‖2 =
1

4

∫
d8(x, y)fµν(x)fστ (y)Wµνστ (x− y) =

c

∫
d3p

2|p|
gµτpνpσ(2π)4f̂µν(−p)f̂στ (−p) .

(4.20)

We set f̂µ(p) = (2π)2pν f̂
µν(−p) and find

‖F (f)Ω‖2 = −c
∫

d3p

2|p|
f̂µ(p)f̂µ(p) . (4.21)

Because of the antisymmetry of fµν , f̂µ satisfies the condition pµf̂
µ(p) =

0. On the space V of these functions, equation (4.21) defines a positive
semidefinite scalar product. The single particle space H1 is the com-
pletion of the quotient space of V modulo the null space of the scalar
product.

After forming the quotient, f̂µ has only two independent compo-
nents. Let e.g. p = (|p|, 0, 0, |p|). Then f̂ 0(p) = f̂ 3(p) and

f̂µ(p)f̂
µ(p) = −|f̂1(p)|2 − |f̂2(p)|2 . (4.22)
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Because of the covariance of Fµν and the invariance of Ω, H1 is
invariant under Poincaré transformations. We have

U(x,Λ)F (f)Ω = F (f(x,Λ))Ω (4.23)

mit

fµν(x,Λ)(y) = Λµ
σΛ

ν
τf

στ (Λ−1(y − x)) . (4.24)

On the vector space V one gets the representation

(D(x,Λ)f̂)µ(p) = eipxΛµ
ν f̂

ν(pΛ) . (4.25)

Since the scalar product (4.21) is invariant under Poincaré transfor-
mations, D induces a unitary representation on the quotient space. It
coincides with the representation U on H1.

We now convince ourselves that this representation is a direct sum
of representations with helicity ±1. For this purpose we consider the
representation d of the little group Gq of the momentum q = (1

2
, 0, 0, 1

2
)

on the space

V = {b ∈ C4, bµqµ = 0} . (4.26)

We find

(d(Λ)b)µ = Λµ
νb
ν , Λ ∈ Gq . (4.27)

V has the invariant positive semidefinite scalar product〈
b, b
〉

= −bµbµ (4.28)

with the null space

N = {λq̂, λ ∈ C} , (4.29)

where q̂ denotes the vector corresponding to the covector q, q̂µ = qµ. d
induces a unitary representation on the 2-dimensional space V/N .

According to chapter II, Gq is isomorphic to the euclidean group
in 2 dimensions. Its finite dimensional representations are trivial on
the translations of the euclidean space R2; the rotations correspond
to rotations of the 1-2 plane in the Lorentz group and act on V in a
natural way by rotating the 1- and 2-component of b. Eigenvectors of
these rotations are

e± =
1√
2
(0, 1,±i, 0) . (4.30)

The 1-dimensional subspaces {λe± + N, λ ∈ C} of V/N are invariant
under Gq. This follows from

d(a, R)(λq̂ + b) = (λ+
〈
a, Rb

〉
)q̂ +Rb (4.31)

with the column vectors a ∈ R2 und b =

(
b1
b2

)
∈ C2 and the natural

scalar product in C2.
Let Λp be a Lorentz transformation with the property

p = qΛp . (4.32)
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One may for instance choose Λp = Λ(Bp) with the notations from
chapter II. But there is no choice such that Λp becomes a smooth
function of p.

We now set e±(p) = Λ−1
p e±. Then

Λe±(p) = ΛΛ−1
p e± = h(p,Λ)±1e±(pΛ−1) + λp̂Λ−1 (4.33)

with some λ ∈ C. Here h(p,Λ) is the Wigner phase, i.e. the value of
ΛpΛ−1ΛΛ−1 in the 1-dimensional representation of Gq on the subspace
of V/N spanned by e+.

We now introduce creation and annihilation operators for momen-
tum p and helicity λ = ±1 with the commutation relations

[aλ(p), aλ′(p
′)] = 0 = [a∗λ(p), a

∗
λ′(p

′)] (4.34)

and
[aλ(p), a

∗
λ′(p

′)] = 2|p|δλλ′δ(p− p′) (4.35)

On the corresponding Fock space we define fields by

Fµν(x) = (2π)−
3
2

∫
d3p

2|p|
∑
λ

(
eµν(p, λ)aλ(p)e

−ipx + eµν(p, λ)a∗λ(p)e
ipx
)

(4.36)
with

eµν(p, λ) = −i(pµeλ,ν(p)− pνeλ,µ(p)) . (4.37)

One easily verifies that these fields satisfy the required covariance con-
ditions and have a 2-point function of the desired form, with c = (2π)−3.
We convince ourselves that this value of c is determined by the principle
of correspondence

Namely, the Hamiltonian for free photons is

H =

∫
d3p

2|p|
|p|
∑
λ

a∗λ(p)aλ(p) . (4.38)

For the value of c given above this coincides with the spatial integral
of the normal ordered energy density,

H =
1

2

∫
d3x
(
:E(0,x)2 : + :B(0,x)2 :

)
. (4.39)

We now have found a solution of the problem of defining a quantized
version of electrodynamics. It can be shown (Jost-Schroer-Pohlmeyer
Theorem) that this solution is unique. Here the locality axiom plays
an important role. For the 2-point function it is automatically fulfilled.

The field Fµν satisfies the commutation relations

[Fµν(x), Fστ (y)] = −
(
gµσ∂ν∂τ − gνσ∂µ∂τ − gµτ∂ν∂σ + gντ∂µ∂σ

)
iD(x− y)

(4.40)
with the commutator function D of the massless scalar field

D(x) = −i(D+(x)−D+(−x)) = − 1

2π
sign(x0)δ(x2) . (4.41)
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As a simple example for an interaction we treat the coupling to
an external conserved current jµ. For mathematical convenience we
assume that jµ is a smooth function with compact support. The field
equation for the interacting field is

∂µFµν = jν . (4.42)

Let F 0
µν denote the free Maxwell field. We consider the classical re-

tarded solution of the inhomogeneous Maxwell equations,

fµν(x) = −
∫

d4y
(
∂µDret(x− y)jν(y)− ∂νDret(x− y)jµ(y)

)
, (4.43)

with Dret(x) = Θ(x0)D(x). Then

Fµν(x) = F 0
µν(x) + fµν(x) (4.44)

is a solution of the field equation with the asymptotic behaviour

F in
µν = F 0

µν , F
out
µν = F 0

µν + f out
µν . (4.45)

Here f out
µν is the free electromagnetic wave generated by the classical

current,

f out
µν = −

∫
d4y
(
∂µD(x− y)jν(y)− ∂νD(x− y)jµ(y)

)
. (4.46)

The S-matrix results, up to a phase factor, from the relation

F in
µν(x)S = SF out

µν (x) (4.47)

and has the form

S = eiαe−ia(f̂)∗e−ia(f̂) (4.48)

with f̂µ(p) = ĵµ(p) and α ∈ C. α is given by

α =
1

2

∫
d4xd4yjµ(x)jν(y)D

µν
F (x− y) (4.49)

with the Feynman propagator Dµν
F = gµνDF , DF = ∆F (m = 0). The

massless scalar Feynman propagator is explicitly given by

DF (x) = Θ(x0)D+(x) + Θ(−x0)D+(−x) = lim
ε↓0

−1

4π2(x2 − iε)
. (4.50)

If our initial state is the vacuum, the state at late times will be a
coherent state, characterized by the classical solution (4.46) or, equiv-
alently, by the Fourier transform of the current, restricted to ∂V+. In
particular, the expected number of photons which are created is

〈N〉 =
〈
SΩ, NSΩ

〉
= −

∫
d3p

2|p|
ĵµ(p)ĵµ(p) . (4.51)

As an example for a classical conserved current we choose the cur-
rent which results from the movement of a classical point particle. Let
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x(τ) be the world line of the particle. It is a smooth timelike curve
(ẋ2 > 0) and is future directed (ẋ0 > 0). The associated current is

jµ(y) = e

∫
dτ ẋµδ(y − x(τ)) . (4.52)

This is, of course, not a test function, and we have to check whether
the formulas derived above remain meaningful.

First of all, it is no longer true that the interacting field coincides
with the free field at early times. This is forbidden by Gauss’ law
since a charge is present at all times. For the same reason, if we had
chosen the advanced solution in our definition of the interacting field
in (4.44), the field would not coincide with the free field at late times.
We may, however, ask whether the difference between the retarded and
the advanced interacting field can be described by an S-matrix in Fock
space. Using Dadv(x) = −Θ(x0)D(x) we see that formally the equation

F ret
µν (x)S = SF adv

µν (x) (4.53)

has the same solution as in the previous case. It is, however, not clear
whether the current defines an element of the single photon space.

The Fourier transform of the current is

ĵµ(p) = (2π)−2e

∫
dτ ẋµ(τ)e−ipx(τ) . (4.54)

Let τ denote the proper time of the particle and assume that ẍ = 0
holds outside of a finite interval [τ1, τ2]. Let u1 = ẋ(τ) for τ < τ1
and u2 = ẋ(τ) for τ > τ2. For momenta p 6= 0, p ∈ ∂V+ we have
pẋ > 0. We now interpret the current, restricted to the boundary of
the forward lightcone, as a distribution in the spatial momentum where
the zero momentum is excluded. Let f be a test function in D(R3) with
0 6∈ supp f . Then we have∫

d3pĵµ(p)f(p) :=

∫
dτ

∫
d3pe−ipx(τ)f(p) . (4.55)

According to the principle of stationary phase, the momentum space
integral is strongly decaying in τ . Physically this is connected with
the fact that a massless particle in 3 spatial dimensions moves exactly
with the velocity of light, hence the probability to find it in a timelike
direction decreases fast with time.

We now write

e−ipx(τ) =
i

pẋ(τ)

d

dτ
e−ipx(τ) , (4.56)

insert this identity into the formula (4.55) and perform a partial inte-
gration with respect to τ . The boundary terms vanish, and we obtain

ĵµ(p) = −i
∫
dτe−ipx(τ)

d

dτ

ẋµ

pẋ(τ)
. (4.57)
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By assumption the derivative of ẋµ vanishes for τ 6∈ [τ1, τ2]. Using again
the principle of the stationary phase, but now with respect to the τ -
integral we observe that ĵµ is strongly decaying for large momenta on
∂V+. In order to study the behavior for small momenta, we use the
fact that the τ -integral is restricted to the interval [τ1, τ2]. Using again
partial integration we obtain

ĵµ(p) = (2π)−2e

(
uµ1
ipu1

e−ipx(τ1) − uµ2
ipu2

e−ipx(τ2) +

∫ τ2

τ1

dτ ẋµ(τ)e−ipx(τ)
)

(4.58)

We observe that this function is in L2(R3, d
3p

2|p|) iff u1 = u2. The

mean photon number in the state SΩ is

〈N〉 =
〈
SΩ, NSΩ

〉
= −

∫
d3p

2|p|
ĵµ(p)ĵµ(p) . (4.59)

It holds
〈N〉 <∞⇐⇒ u1 = u2 . (4.60)

In the case 〈N〉 = ∞, S cannot be defined as an operator in Fock space,
and there is no vector Φ in Fock space which plays the role of SΩ, i.e.
satisfies the equation〈

Φ, eiF
ret(f)Φ

〉
=
〈
Ω, eiF

adv(f)Ω
〉
. (4.61)

The expectation values in this state, however, are well defined by the
right hand side. The number of photons with energy > ε, e.g., is given
by

〈Nε〉 = −
∫
|p|>ε

d3p

2|p|
ĵµ(p)ĵµ(p) <∞ . (4.62)

A surprising consequence of the vacuum fluctuations of the electro-
magnetic field is the so-called Casimir effect. Casimir started from the
assumption that also the fluctuating vacuum fields should vanish inside
an ideal conductor. This would result in a change of the mean field
energy and should become visible by additional forces on the conductor.

We consider the 2-point function of the electromagnetic field in
the presence of a conducting plane at x3 = 0. On this plane the
tangential components of the electric field and the normal component
of the magnetic field should vanish,

F01 = F02 = F12 = 0 for x3 = 0, . (4.63)

Due to the Maxwell equation ∂µFµν = 0 the normal derivatives of the
other components of the field have to vanish on the conducting planes,

∂3F03 = ∂3F13 = ∂3F23 = 0 for x3 = 0 . (4.64)

The associated 2-point function of the electromagnetic field can be
obtained by the use of mirror charges, as in classical electrodynamics.
Let S be the reflection on the plane,

(Sx)µ = Sµνx
ν with Sµν = (−1)δµ,3δµν . (4.65)
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Then we obtain a 2-point function of the electromagnetic field which
satisfies the boundary conditions in terms of the 2-point function with-
out boundary conditions by

〈Fµν(x)Fστ (y)〉 = Wµνστ (x− y)−Wµνλρ(x− Sy)SλσS
ρ
τ (4.66)

This is the 2-point function of the ground state of the electromagnetic
field in the presence of the conducting plane for x and y on the same
side. If x and y are separated by the plane, the 2-point function van-
ishes.

We may now compute the expectation values of the Wick squares of
the components of the electromagnetic field. Normal ordering amounts
to subtraction of the vacuum expectation values, i.e. to omitting the
first term on the right hand side in the formula above. We can then
set y = x and find for the expectation values of the normal ordered
squares of the components of the electromagnetic field at a point x
with distance d from the plane

〈:E2
i (x) :〉 = −〈:B2

i (x) :〉 =
1

16π2d4
(4.67)

We observe in particular that the energy density is not changed by the
presence of the conducting plane.

One may ask how the square of the electric field can be measured.
For this purpose we consider a neutral atom at the point x with vanish-
ing permanent dipole moment and polarizability α. Under the influence
of an external electric field a dipole moment

p = 4παE(x)

is induced which contributes

V = −2παE(x)2

to the potential energy. In first order perturbation theory, the expec-
tation value of V determines the change in the groundstate energy due
to the interaction of the electromagnetic field with the atom. The con-
tribution of the vacuum is translation invariant and therefore does not
contribute to the force acting on the atom. We subtract the vacuum
expectation value and remain with the normal ordered square of the
electric field. We conclude that a conducting plane attracts a neutral
atom with the potential

VCP(d) = − 3

8πd4
(4.68)

This is the so-called Casimir-Polder potential which was first derived
by Casimir and Polder in 1948. It is valid for large distances d where
the atom can be treated as pointlike. For short distances one finds a
behavior proportional to d−3 as one would expect from the electrostatic
interaction with the mirror image. The transition to the long distance
behavior may be understood by taking into account retardation effects.



4. ELECTRODYNAMICS 71

We now consider the case of two parallel conducting planes at
x3 = 0 and x3 = a. Outside of the planes only one plane is rele-
vant, and we obtain the results as before. But in the region between
the planes we have to take into account all transformations generated
by the reflections on the two planes.

Let G be the group which is generated by the reflections on both
planes, and let sign(S) = (−1)n if S ∈ G is the product of n reflections.
Then

〈F01(x)F01(y)〉 = (−∂2
0 + ∂2

1)
∑
S∈G

sign(S)D+(x− Sy)

〈F02(x)F02(y)〉 = (−∂2
0 + ∂2

2)
∑
S∈G

sign(S)D+(x− Sy)

〈F12(x)F12(y)〉 = (−∂2
1 − ∂2

2)
∑
S∈G

sign(S)D+(x− Sy)

〈F03(x)F03(y)〉 = (−∂2
0 + ∂2

3)
∑
S∈G

D+(x− Sy)

〈F13(x)F13(y)〉 = (−∂2
1 − ∂2

3)
∑
S∈G

D+(x− Sy)

〈F23(x)F23(y)〉 = (−∂2
2 − ∂2

3)
∑
S∈G

D+(x− Sy)

The derivatives with respect to the 3rd component can be eliminated by
exploiting the fact that D+ is a solution of the wave equation. Normal
ordering amounts to subtraction of the vacuum expectation value, i.e.
the contribution of the unit element of G to the sums above. In the
calculation of the expected value of the energy density the contributions
of the odd elements of G compensate each other. The even elements of
G are the translations by multiples of 2a in 3-direction. We obtain the
following expression for the expected value of the energy density h(x)

〈h(x)〉 = −4
∞∑
n=1

(∂2
0D+)(2nae3)

with the unit vector e3 in 3-direction. Inserting the expression for D+

and computing the derivative yields

(∂2
0D+)(2nae3) =

1

25π2a4n4
.

With the sum rule
∞∑
n=1

1

n4
=
π4

90
≡ ζ(4)

(this formula can, e.g., be derived by the use of the Fourier series of x4

on the interval [−π, π]) we finally obtain the result

〈h(x)〉 = − π2

720a4
.
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for a point between the two conducting planes. The force per area
acting on the planes is

f = − π2

240a4
.

Thus the two planes attract each other. This remarkable effect was
predicted by Casimir in 1948 and is nowadays measured with increasing
precision. It precise theoretical computation in less idealized situations
is still a challenge for theoretical physics.



CHAPTER IV

Interacting fields: general aspects and methods

In the first 3 chapters of these lecture notes we introduced the Fock
space as the space of states for a multiparticle system, the relativistic
wave equations as a consequence of Poincaré symmetry and the free
quantum fields. We also discussed the way interactions can be incor-
porated, defined the S-matrix and found the combinatorial description
in terms of Feynman graphs. We did, however, not yet discuss how the
various inconsistencies in this formal approach to quantum field theory
can be avoided.

In the present chapter we want to analyse interacting fields from an
axiomatic point of view. We first discuss the concept of the S-matrix
and derive its relation to cross sections. We then discuss the so-called
LSZ relations which allow to express the S-matrix directly in terms
of interacting fields. The LSZ relations, however, rely on an assump-
tion on the relation between the interacting field and asymptotic free
fields. We then show that this assumption can be derived from the ex-
istence of single particle states (Haag-Ruelle scattering theory). After
the clarification of these conceptual issues we describe several meth-
ods for the construction of field theories (canonical quantization, path
integral) as well as basic combinatorial concepts (connected functions,
vertex functions).

1. S-matrix and cross sections

In the case of a scalar field the formal expression for the S-matrix
is obtained in the following way. The free scalar field is an operator
valued distribution on the bosonic Fock space, given by

ϕ(x) = (2π)−3/2

∫
d3p

2ω(p)

(
a(p)e−ipx + a∗(p)eipx

)
|p0=ω(p) (1.1)

with the creation operators a∗(p) and the annihilations operators a(p)
for a spinless particle with 4-momentum p = (p0 = ω(p),p). The
annihilation and creation operators satisfy the commutation relations

[a(p), a∗(q)] = 2ω(p)δ(3)(p−q) , [a(p), a(q)] = 0 = [a∗(p), a∗(q)] . (1.2)

Polynomials of the field are the constituents of interaction Lagrangeans.
In order to be well defined they have to be normal ordered which means
that in the expression obtained by taking powers of the free field as

73
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defined above the annihilation operators have to be put on the right
hand side of the creation operators,

:ϕ(x)n :=(2π)−
3n
2

∫
d3p1

2ω(p1)
. . .

d3pn
2ω(pn)

×∑
I⊂{1,...,n}

∏
i∈I

a∗(pi)
∏
j∈Ic

a(pj)e
i(

P
I pi−

P
Ic pj)x . (1.3)

The interaction Lagrangean is of the form

Lint(x) =:V (ϕ(x)) : (1.4)

with a polynomial V . The Dyson formula for the S-matrix is then

S = Tei
R
d4xLint(x) ≡

∞∑
n=0

in

n!

∫
d4x1 . . . d

4xnTLint(x1) . . .Lint(xn) .

(1.5)
This fundamental formula poses, unfortunately, three hard problems:

(i) the ultraviolet (UV) problem: since the interaction Lagrangean
is not an operator valued function, but an operator valued
distribution, the time ordered products are, in general, ill de-
fined.

(ii) the infrared (IR) problem: in general, the integral over x will
diverge.

(iii) the sum over n may not converge.

Only the UV problem is nowadays well understood by the theory of per-
turbative renormalization; after the first breakthrough by Tomonaga,
Schwinger, Feynman and Dyson it was finally solved by Bogoliubov,
Parasiuk and Hepp and further clarified by Zimmermann, Epstein and
Glaser, Steinmann and others. We will discuss the solution in chapter
5 of this lecture.

The IR problem is less well understood. It amounts to the question
whether the asymptotic behaviour of states can be interpreted in terms
of multiparticle configurations.

Almost nothing is known about the convergence of the sum. One
expects that typically the sum only describes an asymptotic expansion
of the theory.

The calculation of the time ordered products occuring in the Dyson
formula can be organized by an expansion into Feynman graphs,

T :V (ϕ(x1)) : · · · :V (ϕ(xn)) :

=
∑
G∈Gn

∏
1≤j<k≤n

(i∆F (xi − xj))
ljk

ljk!
:
n∏
j=1

V (lj)(ϕ(xj)) : . (1.6)

Here Gn is the set of undirected, tadpole free graphs with vertices
{1, . . . , n}. ljk is the number of lines connecting the vertices j and
k. lj =

∑n
k=1 ljk is the number of lines incident on the vertex j. V (lj)
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is the lj-th derivative of V . Note, that in contrast to standard con-
ventions, the set of graphs is independent of the interaction, and the
graphs have no external lines. For an interaction V (ϕ) = ϕn, one
could instead represent the derivatives V (lj)(ϕ) = n!

(n−lj)!ϕ
n−lj by n− lj

external lines and take into account the arising combinatorial factor.
The formula for the S-matrix was originally derived from the inter-

action picture. There the interacting field ϕ is obtained from the free
field ϕ0 by the time evolution operators in the interaction picture

U(t, s) = Tei
R

s≤x0≤t d
4xLint(x) (1.7)

as

ϕ(t,x) = U(t, 0)ϕ0(t,x)U(0, t) . (1.8)

The S-matrix is then given by

S = lim
t→∞,s→−∞

U(t, s) . (1.9)

In the interaction picture the free and the interacting field act on the
same Hilbert space and coincide at time t = 0. Unfortunately, it can
be shown, that this is not possible for a nontrivial translation invariant
local interaction (Haag’s Theorem). The basic reason is that the spa-
tial translations are not changed by the interaction. But the vacuum
is already fixed by the requirement that it is invariant under spatial
translations, hence the interacting theory has the same vacuum as the
free theory. On the other hand, local interactions as described before
always contain terms which act nontrivially on the vacuum.

A way out is to assume that the interacting field behaves as a free
field for very late and very early times. This may be described by the
following assumption. Let H0 be the Fock space where the free field
acts, and let H be a Hilbert space on which the interacting field acts.
There exist unitary operators

W± : H0 → H (1.10)

which intertwine the representations of the Poincaré group on both
Hilbert spaces. In terms of these unitaries we can define two free fields
on H,

ϕout,in(x) = W±ϕ0(x)W
∗
± (1.11)

(the outgoing and the incoming free field, respectively). These fields
are supposed to satisfy the LSZ asymptotic condition

ϕ(t,x)− ϕout,in(t,x) → 0 as t→ ±∞ . (1.12)

where convergence is understood in terms of matrix elements between
suitable state vectors.

The S-matrix can then be defined by

S = W ∗
+W− (1.13)
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as an operator on the Fock space. Since S commutes with transla-
tions we can define the scattering amplitude T for the process p, q →
p1, . . . , pn, {p, q} 6= {p1, . . . , pn} by

〈
a∗(p1) . . . a

∗(pn)Ω, Sa
∗(p)a∗(q)Ω

〉
= δ(

n∑
i=1

pi− p− q)T (p1, . . . , pn; p, q)

(1.14)
In scattering experiments, one usually measures cross sections. They
are related to the scattering amplitudes by the formula

dσpq→p1...pn =

(2π)2

4
√

(pq)2 −m4
δ(
∑
i

pi − p− q)|T (p1, . . . , pn; p, q)|2
d3p1

2ω(p1)
. . .

d3pn
2ω(pn

.

(1.15)

The derivation of this important formula is usually done in a somewhat
handwaving way. Here we want to give a more rigorous derivation
which also shows why cross sections do not give a complete information
on the scattering process.

The reason for the loss of information in scattering experiments
is the fact that typically the impact parameter in a two particle sys-
tem cannot be prepared with sufficiently high precision. Hence the
incoming state is a mixture over a whole range of impact parameters.
Let Φ = a(f)∗a(g)∗Ω be an incomimg 2-particle state with normalized
single particle wave functions f and g which have disjoint support in
momentum space and are concentrated around momenta p and q, re-
spectively. Let β be the spacelike plane orthogonal to p and q. We are
interested in translationally invariant positive observables A, e.g.

A = |a∗(p1) . . . a
∗(pn)Ω〉〈a∗(p1) . . . a

∗(pn)Ω| . (1.16)

In order to describe the uncertainty in the impact parameter we replace
the pure state Φ by a mixture

ρµ =

∫
β

d2bµ(b)|Φb〉〈Φb| (1.17)

with Φb = a(U(b)f)∗a(g)Ω and a probability measure µ(b)d2b. For
large values of b we expect that the particles do not influence each
other. We assume that A vanishes on the initial state for all possible
impact parameters 〈

Φb, AΦb

〉
= 0 . (1.18)

Instead of trying to construct an initial state where the probability
measure on the impact parameter plane is concentrated at a point we
replace it by a distribution µ(b) which is constant in the region where
scattering takes place, Let us assume that scattering can be neglected
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for impact parameters b 6∈ B ⊂ β, and let area(B) denote the area of
B. Then

µB(b) =

{
1

area(B)
, b ∈ B

0 , else
(1.19)

In order to become independent of the size of B, and under the as-
sumption that scattering outside of a sufficiently large chosen region B
is arbitrarily small it is now convenient to replace the normalized mea-
sure µB(b)d2b by the measure d2b on B and to define the cross section
as the limit as B tends to the full plane β,

σf,g,β(A) =

∫
β

d2b
〈
SΦb, ASΦb

〉
= lim

B→β
area(B) TrSρµB

S∗A . (1.20)

The cross section might diverge if the interaction does not decay suf-
ficiently fast. This is known to happen for the total cross section for
Coulomb scattering. For short range interactions, however, the scat-
tering cross sections are finite. From the definition it is clear that cross
sections have the dimension of an area (times the dimension of the
observable).

We now define the T-matrix by S = 1 + iT . Due to (1.18) and the
assumed positivity of A we have AΦb = 0 and hence

σf,g,β(A) =

∫
β

d2b
〈
Φb, T

∗ATΦb

〉
. (1.21)

By assumption, T and A are translation invariant. Hence the matrix
elements of T ∗AT in the 2-particle space have the form〈
a∗(p)a∗(q)Ω, T ∗ATa∗(p′)a∗(q′)Ω

〉
= δ(p+ q − p′ − q′)AT (p, q, p′, q′) .

(1.22)
In the calculation of the cross section the integral over the impact
parameter b yields an additional factor

(2π)2δ((p− p′)e1)δ((p− p′)e2)

with some orthonormal basis {e1, e2} of β. Together with the conser-
vation of the total momentum this implies that the cross sections are
diagonal in momenta,

σf,g,β(A) = (2π)2

∫
d3p

2ω(p)

d3q

2ω(q)
|f(p)|2|g(q)|2AT (p, q, p, q)|det

∂α

∂(p, q)
|−1 .

(1.23)
Here α is defined for given p, q ∈ H+

m by

α(p′, q′) = ((p′)2 −m2, (q′)2 −m2, p′ + q′ − p− q, (p′ − p)e1, (p
′ − p)e2)

(1.24)
The Jacobian of α at (p′, q′) = (p, q) is |det(2p, 2q, e1, e2)|. For β⊥p, q
it follows

|det(2p, 2q, e1, e2)| = 4
√

(pq)2 −m4 . (1.25)

This expression is called the flux factor.
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We now evaluate the formula (1.23) for the observable A from (1.16)
under the condition that the momenta p, q, p1, . . . , pn, p ∈ supp f, q ∈
supp g, are pairwise different. A measures the probability density for
n momenta, 〈

Ψ, AΨ
〉

= n!|Ψn(p1, . . . , pn|2 (1.26)

with respect to the measure d3p1

2ω(p1
. . . d

3pn

2ω(pn
. In the limit where f and g

have sharp momenta we obtain the formula (1.15) for the cross section.
Note that the loss of information appearing in this formula is due to
the lack of precision in the preparation of the incoming state and might
be overcome in future experiments.

As an example we consider the S-matrix for the interaction La-
grangean g

n!
:ϕn : in first order. One finds

T =
g

n!

∫
d4x :ϕn(x) : (1.27)

and thus for the scattering amplitude

δ(p+ q −
∑

pi)T (p1, . . . , pn−2; p, q) =

(2π)−
3n
2
g

n!

∫
d4x

(
n

2

)〈
a∗(p1) · · · a∗(pn−2)Ω, (a

∗(x))n−2a(x)2a∗(p)a∗(q)Ω
〉

=g(2π)−3n/2

∫
d4xe−i(p+q−

P
pi)x

(1.28)

hence

T (p1, . . . , pn−2; p, q) = (2π)4− 3n
2 g (1.29)

For the cross section we obtain

dσp,q→p1,...,pn−2 =

(2π)10−3ng2(4
√

(pq)2 −m4)−1δ(p+ q −
∑

pi)
d3p1

2ω(p1)
. . .

d3pn−2

2ω(pn−2)
.

The total cross section

σtot =
1

(n− 2)!

∫
d3p1

2ω(p1)
· · · d3pn−2

2ω(pn−2)
σp,q→p1,...,pn−2 . (1.30)

depends only on the center of mass energy
√
s, s = (p+ q)2. For

√
s�

(n− 2)m much above the threshold for particle creation it behaves as
sn−5.

Exercise 1: Compute the total cross section for elastic 2 particle
scattering in lowest nontrivial order for the interaction Lagrangean
L = g

4! :ϕ4 : .
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2. The LSZ-relations

Due to Haag’s Theorem, in a translation invariant theory the S-
matrix cannot be written in the form

S = lim
t→∞,s→−∞

U(t, s) (2.1)

with the time evolution operators U(t, s) of the interaction picture
(1.7). Instead one may multiply the interaction Lagrangean by a test
function g with compact support and introduce the local S-matrices

S(g) = Tei
R
Lintgd

4x . (2.2)

Finally one may study the so-called adiabatic limit

S = lim
g→1

S(g) . (2.3)

But even if this limit exists it is not a proiri clear in which sense the
S-matrix is related to the interacting field theory.

Lehmann, Symanzik and Zimmermann (LSZ) succeeded in 1954 to
derive an elegant formula for the S-matrix which is completely defined
in terms of the interacting field.

Starting point is (in the simplest case) a scalar field ϕ which is
defined as an operator valued distribution in some Hilbert space H,
together with a unitary, strongly continuous representation U of the
Poincaré group satisfying the spectrum condition. Furthermore, there
exists a unique (up to a phase) Poincaré invariant unit vector (the
vacuum vector Ω). The scalar field transforms covariantly under the
Poincaré group,

U(x,Λ)ϕ(y)U(x,Λ)−1 = ϕ(Λy + x) . (2.4)

We now assume that there exists a Poincaré invariant subspace H1 ⊂ H
which carries the irreducible representation with mass m > 0 and spin
s = 0, and that there are no other states in H whose mass spectrum
contains m. Under these assumptions one can show (see next section)
by means of the Haag-Ruelle scattering theory that there exist iso-
metric mappings W± from Fock space H0 to H which intertwine the
representations of the Poincaré group.

In addition we require that the interacting field ϕ has nonvanishing
matrix elements between vacuum and H1. Due to Poincaré covariance
they are of the form

〈p|ϕ(x)Ω〉 = (2π)−3/2
√
Zeipx (2.5)

with a constant Z 6= 0. Here the improper single particle states with
sharp momentum are normalized by

〈p|q〉 = 2ω(p)δ(p− q) . (2.6)

such that for the free field |p〉 = a∗(p)Ω. Z is called the wave function
renormalization. It may be absorbed by a redefinition of the field.
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As in the preceding section one now defines free fields in the Hilbert
space of the interacting theory by

W±ϕ0(x) = ϕout
in

(x)W± , (2.7)

the only difference being that there is no general argument why the
operators W± should be invertible (problem of asymptotic complete-
ness). The interacting field converges in the following sense towards
the outgoing (t→∞) and the incoming (t→ −∞) field, respectively:
We have the LSZ asymptotic condition

lim
t→±∞

〈
W+Φ,

(
ϕ(t,x)− ϕout

in

(t,x)

)
W−Ψ

〉
= 0 . (2.8)

Here Φ and Ψ are vectors from the dense subspace with finite par-
ticle number, smooth momentum space wave functions with compact
supports and non overlapping velocities. Let now f be a solution of
the Klein-Gordon equation whose Cauchy data have compact support.
Then

ϕout
in

(f) =

∫
d3x
(
ϕ̇out

in

(t,x)f(t,x)− ϕout
in

(t,x)ḟ(t,x)
)

(2.9)

is independent of t. If one replaces the free fields by the interacting field
one obtains a time dependent expression which for t→ ±∞ converges
towards ϕout

in

. A slight technical complication is that we assumed that

the interacting field is a distribution on Minkowski space, but did not
make any assumption about the possibility to restrict it to spatial hy-
persurfaces. This complication can be avoided by taking a mean with
a test function h ∈ D(R) with

∫
dth(t) = 1 over time,

ϕt(f, h) =

∫
dτh(τ)

∫
d3x
(
ϕ̇(t+τ,x)f(t+τ,x)−ϕ(t+τ,x)ḟ(t+τ,x)

)
(2.10)

and find 〈
W+Φ,

(
ϕout(f)− ϕin(f)

)
W−Ψ

〉
=

∫
dt

d

dt

〈
W+Φ, ϕt(f, h)W−Ψ

〉
.

(2.11)

We exploit the fact that f is a solution of the Klein-Gordon equation,
and obtain

d

dt
ϕt(f, h) =

∫
dτh(τ)

∫
d3x
(
ϕ̈(t+ τ,x)f(t+ τ,x)− ϕ(t+ τ,x)f̈(t+ τ,x)

)
=

∫
dτh(τ)

∫
d3x
(
ϕ̈(t+ τ,x)f(t+ τ,x)− ϕ(t+ τ,x)(∆−m2)f(t+ τ,x)

)
=

∫
dτh(τ)

∫
d3x
(
(� +m2)ϕ(t+ τ,x)

)
f(t+ τ,x)

(2.12)
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and thus 〈
W+Φ,

(
ϕout(f)− ϕin(f)

)
W−Ψ

〉
=

∫
d4xf(x)(� +m2)

〈
W+Φ, ϕ(x)W−Ψ

〉
.

(2.13)

We now introduce time ordered products of the field ϕ. They are
symmetric operator valued distributions in several arguments which
coincide for time ordered arguments with the operator product. They
are, in general, not uniquely determined if the arguments can coincide;
but this ambiguity plays no role for the following discussion. We use
the following notation for two functions f, g

f
↔
∂tg = (∂tf)g − f∂tg . (2.14)

Let now f1, . . . , fn be solutions of the Klein-Gordon equation with com-
pactly supported Cauchy data. We set

T (t1, . . . , tn)

=

∫
d4nxT (ϕ(x0

1 + t1,x1) · · ·ϕ(x0
n + tn,xn)

↔
∂t1 · · ·

↔
∂tn

× f1(x
0
1 + t1,x1)h(x

0
1) · · · fn(x0

n + tn,xn)h(x
0
n) .

(2.15)

We have

∂n

∂t1 · · · ∂tn
T (t1, . . . , tn)

=

∫
d4nxh(x0

1)f1(x
0
1 + t1,x1) · · ·h(x0

n)fn(x
0
n + tn,xn)

× (�1 +m2) · · · (�n +m2)Tϕ(x0
1 + t1,x1) · · ·ϕ(x0

n + tn,xn) ,
(2.16)

and for tπ(1) +supph > · · · > tπ(n) +supph with a permutation π ∈ Sn
we obtain

T (t1, . . . , tn) = ϕtπ(1)
(fπ(1), h) · · ·ϕtπ(n)

(fπ(n), h) . (2.17)

From the Haag-Ruelle theory it follows for wave functions fi with non
overlapping velocities

lim
t1,...,tk→∞

tk+1,...,tn→−∞

〈
Ω, T (t1, . . . , tn)Ω

〉
=
〈 k∏
i=1

ϕout(fi)
∗Ω,

n∏
j=k+1

ϕin(fj)Ω
〉
.

(2.18)
Let f1, . . . , fk be solutions of the Klein-Gordon equation with negative
energy, and let fk+1, . . . , fn be solutions with positive energy. Then we
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obtain the LSZ relations∫
d4nxf1(x1) · · · fn(xn)(�1 +m2) · · · (�n +m2)

〈
Ω, Tϕ(x1) · · ·ϕ(xn)Ω

〉
=
〈 k∏
i=1

ϕout(fi)
∗Ω,

n∏
j=k+1

ϕin(fj)Ω
〉
.

(2.19)

Fourier transformation yields

n∏
i=1

(p2
i −m2)t̂n(−p1, . . . ,−pk, pk+1, . . . , pn) �(H+

m)n

= N
〈 k∏
i=1

a∗out(pi)Ω,
n∏

j=k+1

a∗in(pj)Ω
〉
.

(2.20)

with N = in(2π)−
n
2 and

t̂n(p1, . . . , pn) = (2π)−2n

∫
d4nxe−i

P
pjxj
〈
Ω, Tϕ(x1) · · ·ϕ(xn)Ω

〉
.

(2.21)
We observe that the Fourier transforms of the expectation values of
time ordered products have for each momentum on the mass shell H+

m

a pole of the form (p2 −m2)−1, and that the coefficients are given by
the S-matrix elements. These are the famous LSZ relations.

Exercise 2:Compute the vacuum expectation value of the time ordered
product of 4 interacting fields in lowest nontrivial order of perturbation
theory for the interaction Lagrangean L = − g

4! :ϕ4 : by using the
interaction picture.

3. Haag-Ruelle scattering theory

The LSZ relations deliver a connection between the time ordered
products of interacting fields and the S-matrix. Their derivation is
based on the LSZ asymptotic conditon which says that the interacting
field converges towards a free field at asymptotic times. This assump-
tion can be derived (in a somewhat weaker form) from a few structural
assumptions. This is the result of the Haag-Ruelle scattering theory.

We consider the theory of a scalar field. We are given an operator
valued distribution ϕ(f) with values in the operators of some Hilbert
space H. On the Hilbert space there exists a unitary strongly continu-
ous representation U of the Poincaré group. We require that the field
is covariant,

U(x,Λ)ϕ(y)U(x,Λ)−1 = ϕ(Λy + x) ,

satisfies local commutativity for spacelike separated arguments,

[ϕ(x), ϕ(y)] = 0 if (x− y)2 < 0 ,



3. HAAG-RUELLE SCATTERING THEORY 83

furthermore, we assume existence and uniqueness of the vacuum, i.e.
the existence of a U -invariant unit vector Ω ∈ H which is unique up to
a phase. The vector Ω is required to be cyclic, i.e. the application of
smeared fields ϕ(f) on Ω generates a dense subspace D of H. In addi-
tion the energy should be positive independent of the Lorentz frame,
i.e. spP ⊂ V + = {p ∈ M∗|p2 ≥ 0, p0 ≥ 0}.

The crucial assumption which implies the multiparticle structure of
the theory is now the existence of single particle states whose momen-
tum spectrum is separated by a gap from the rest of the momentum
spectrum,

spP = {p ∈ R4, p0 ≥ 0, p = 0 or p2 = m2 or p2 > (m+ δ)2}

with the upper mass gap δ > 0.
The first step for the creation of multiparticle states is the con-

struction of almost local 1-particle generators. Let Φ0 be a unit vector
with compact momentum support on the mass shell Hm. Due to the
assumed cyclicity of the vacuum there exists for every ε > 0 a polyno-
mial A0 in the smeared field operators such that ||A0Ω−Φ0|| < ε. Let
f be a Schwartz function whose Fourier transform is equal to 1 on the
momentum spectrum of Φ0, has compact support and intersects the
momentum spectrum only on the mass shell. We set

A =

∫
d4x eiPxA0e

−iPxf(x)

and find

AΩ = f̃(P )A0Ω ≡ Φ

with the Fourier transform

f̃(p) =

∫
d4x eipxf(x) .

Φ is a vector in the single particle space which differs from Φ0 by
a vector with length less than ε sup |f̃ |. A is a so-called almost local
operator, i.e. an operator which can be fast approximated by operators
An which are localized in double cones On = {(t,x), |t|+ |x| < n}, i.e.
we have for all vectors Ψ ∈ D

lim
n→∞

nN(A− An)Ψ = 0 ∀N ∈ N .

We interpret A as an operation which takes place near to the origin
and generates there a single particle state.

We now exploit the fact that the vector valued function eiPxΦ is a
positive-frequency solution of the Klein-Gordon equation. We choose
a numerical negative-frequency solution of the form

h(t,x) = (2π)−3

∫
d3p e−i(ω(p)t−p·x))h0(p)
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where h0 is a test function with compact support which is equal to 1
on the spectrum of the spatial momentum of the vector Φ. We set

A(t) =

∫
d3xh(t,x)eitP0−iP·xAe−itP0+iP·x

and observe that for all t

A(t)Ω = Φ .

The localization of the operator A(t) is determined by the behaviour
of the solution h at time t. The propagation of a solution of the Klein-
Gordon equation of the above form depends essentially on the velocities
which correspond to the momenta in the support of h0 (the assumption
that h0 ≡ 1 on a certain domain plays no significant role). Let

V (h0) = { p

ω(p)
,p ∈ supph0} .

Then we have the following theorem:

Theorem IV.1. Let ε > 0 and N ∈ N. Then there are constants
c, cN > 0 such that

(i) |h(t, tv)| < cN |t|−N dist(v, V (h0))
−N for t 6= 0 and

dist(v, V (h0)) > ε.
(ii)

∫
d3x |h(t,x)| < c(1 + |t|3)

A proof may be found in the book of Reed and Simon.
The Theorem says that the solution is essentially localized in the

kinematically allowed region {(t,x), x
t
∈ V (h0)}.

We now want to show that our Hilbert space contains state vectors
which can be interpreted at late or early times as outgoing or incom-
ing multiparticle states, respectively. For the sake of transparency we
restrict ourselves to the case of 2 particles.

We construct as described above 2 single particle vectors Φ1,Φ2

with the corresponding almost local operators Ai, i = 1, 2. We assume
that the velocity supports of the single particle states do not overlap
and choose the numerical solutions h1, h2 of the Klein-Gordon equation
correspondingly. Using the localization properties of the wave functions
h1, h2 as they follow from the Theorem we conclude that the operators
A1(t) and A2(t) are for large |t| localized far from each other, up to
small corrections. We now define the Haag-Ruelle approximants

Ψ(t) = A1(t)A2(t)Ω

as candidates for approximative 2-particle states. We have the follow-
ing theorem:

Theorem IV.2. (i) Ψ(t) converges for t→∞ and
for t→ −∞.
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(ii) The limits depend only on the single particle vectors Ψ1 and
Ψ2. We use the following notation:

lim
t→±∞

Ψ(t) =: (Φ1 × Φ2)out,in

(iii) The scalar product of 2 asymptotic 2-particle states is〈
(Φ1 × Φ2)out, (Φ

′
1 × Φ′

2)out
〉

=
〈
Φ1,Φ

′
1

〉〈
Φ2,Φ

′
2

〉
+
〈
Φ1,Φ

′
2

〉〈
Φ2,Φ

′
1

〉
hence coincides with the scalar product in the bosonic 2-particle
space (an analogous statement holds for the incoming 2-particle
states).

(iv) The Poincaré group acts by

U(L)(Φ1 × Φ2)out,in = (U(L)Φ1 × U(L)Φ2)out,in

The proof relies on the mentioned localization properties of the
almost local operators Ai(t) and on the t-independence of the single
particle vectors Ai(t)Ω. The convergence of the Haag-Ruelle approxi-
mants, e.g., follows from the fact that the time derivative vanishes fast.
We have Ai(t)Ω = const and hence

d

dt
A1(t)A2(t)Ω = [(

d

dt
A1(t)), A2(t)]Ω .

Due to the localization properties of the operators the commutator
vanishes faster than every power of t. For a complete proof we refer to
the literature.

The generalization of the above construction to asymptotic multi-
particle states yields two isometric mappingsW± from the bosonic Fock
space F built over the single particle space into the Hilbert space H.
The ranges of these maps are the subspaces of outgoing and incoming
scattering states Hout,in The matrix elements of the S-matrix are now
defined by 〈

Φ, SΨ
〉

=
〈
W+Φ,W−Ψ

〉
, Φ,Ψ ∈ F .

In case the operators W± are unitary (this does not follow from the
Haag-Ruelle theory), also the S-matrix is unitary. In this case the
theory is called asymptotically complete. The corresponding problem
in nonrelativistic quantum mechanics was solved in the eighties of the
last century for quite general interactions. Within quantum field the-
ory, not much is known about this problem.

The derivation described above yields exclusively bosons as a conse-
quence of the assumed commutativity of observable fields at spacelike
separations. Fermions would arise if one assumes anticommutativity
for the fields which connect the vacuum with the single particle state.
But the assumption of anticommutativity for spacelike separation has
no direct physical motivation. Actually, as shown by Doplicher, Haag
and Roberts in the early seventies of the last century, it suffices to start
with an algebra of observables where operators which are spacelike sep-
arated commute with each other. One then can extend the algebra in
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a unique way to an algebra containing also fermionic fields. Remark-
ably, the proof requires at least 3 spatial dimensions. If one applies
quantum field theory to lower dimensional spacetimes one indeed can
find particles which obey more general statistics (anyons, plektons).

4. Canonical Quantization

A standard procedure for the definition of quantum field theories
is the canonical quantization of classical field theories. Here one starts
from the Lagrangean formulation of classical field theory. In the same
way as in classical mechanics one derives the field equations from the
principle of stationary action.

Let L be a function which depends on the fields and their first
derivatives. LetG be an open region of spacetime with compact closure,
and let g be a test function with compact support which is equal to 1
on G. Then the functional

Sg(ϕ) =

∫
d4xL(ϕ(x), ∂µϕ(x))g(x) (4.1)

is required to be stationary (in typical cases minimal) for all variations
of ϕ with support within G. For evaluating this condition we choose
an arbitrary test function ψ with support within G and find

0 =
d

dε
Sg(ϕ+ εψ)|ε=0 . (4.2)

Computing the derivative yields, independently of the choice of g,

0 =

∫
d4x
(∂L
∂ϕ

(x)ψ(x) +
∑
µ

∂L
∂(∂µϕ)

(x)∂µψ(x)
)
. (4.3)

Since ψ has compact support, we can, in the second term, move the
differential operator from ψ to the other factor and obtain

0 =

∫
d4x
(∂L
∂ϕ

(x)−
∑
µ

∂µ
∂L

∂(∂µϕ)
(x)
)
ψ(x) . (4.4)

If this integral has to vanish for an arbitrary choice of ψ with suppψ ⊂
G, ϕ has to satisfy within G the differential equation

∂L
∂ϕ

=
∑
µ

∂µ
∂L

∂(∂µϕ)
. (4.5)

We now require stationarity of the action for every open region G with
compact closure and conclude that the field has to fulfill the field equa-
tion (Euler-Lagrange equation) (4.5) everywhere.

Let e.g. L = 1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 − g

4!
ϕ4, then we find

∂L
∂ϕ

= −m2ϕ− g

3!
ϕ3 ,

∂L
∂(∂µϕ)

= ∂µϕ (4.6)
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hence the field equation

(� +m2)ϕ = − g

3!
ϕ3 . (4.7)

Quantization is usually done in the Hamiltonian formulation. Here
one distinguishes the time coordinate and chooses some initial time
(say, t = 0). One defines the Lagrange function as the spatial inte-
gral of the Lagrangean and the canonical momenta as the variational
derivatives of the Lagrange function with respect to the time deriva-
tives of the field. Disregarding for the moment convergence problems of
the spatial integrals, we obtain for the canonical conjugated momenta

π(x) =
δL

δϕ̇(x)
=
∂L
∂ϕ̇

(x) . (4.8)

If ϕ̇ can be written as a function of ϕ, ~∂ϕ und π, we obtain the Hamil-
tonian as

H(ϕ, π) =

∫
d3xh(ϕ(x), ~∂ϕ(x), π(x)) (4.9)

with the Hamiltonian density

h(ϕ, ~∂ϕ, π) = πϕ̇(ϕ, ~∂ϕ, π)− L(ϕ, ~∂ϕ, ϕ̇(ϕ, ~∂ϕ, π)) . (4.10)

The quantization prescription now consists in the replacement of ϕ
and π by operator valued distributions in x, such that the canonical
commutation relations hold,

[ϕ(x), ϕ(y)] = 0 = [π(x), π(y)]

[ϕ(x), π(y)] = iδ(x− y)
(4.11)

The time evolution is then determined by the Heisenberg equation,

ϕ̇(x) = i

∫
d3y[h(y), ϕ(x)] . (4.12)

This prescription suffers from some defects. Let us discuss them on
the example of the ϕ4-theory. In this case

π = ϕ̇ , (4.13)

and the Hamiltonian density is

h =
1

2
π2 +

1

2
|~∂ϕ|2 +

m2

2
ϕ2 +

g

4!
ϕ4 . (4.14)

The canonical commutation relations are realized by the free scalar
field with mass m at time zero. We may also define the Hamiltonian
density by replacing the products of fields by normal ordered products.
Unfortunately, these products are in most cases no longer distributions
on space alone but only on spacetime. But even if they would be well
defined (this would be the case in a two dimensional Minkowski space),
it turns out that it is not possible to define the Hamiltonian of the
interacting theory as the spatial integral of the Hamiltonian density.
This is the content of Haag’s Theorem:
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Theorem IV.3. Let H be the Fock space of a free field ϕ0, and let
U(x) be the spatial translation operator. Let ϕ be an operator valued
distribution with the properties

(i) ϕ(0,x) = ϕ0(0,x) , ϕ̇(0,x) = ϕ̇0(0,x) .
(ii) U(x)ϕ(t,y)U(x)−1 = ϕ(t,y + x) .
(iii) It exists a selfadjoint operator H which commutes with the

spatial translation operators and has the property

eitHϕ(0,x)e−itH = ϕ(t,x) . (4.15)

Then H coincides up to an additive constant with the Hamiltonian H0

of the free theory, and ϕ = ϕ0 .

Proof. The proof relies on the fact that the vacuum vector Ω
is, up to a phase, the only vector in H which is invariant under spatial
translations. Thus Ω is an eigenvector ofH. Let λ be the corresponding
eigenvalue. The fields smeared with spatial test functions ϕ0(0, f) =∫

d3xf(x)ϕ0(x) generate from Ω a dense subspace D. On D we have:

(H − λ)ϕ0(0, f1) · · ·ϕ0(0, fn)Ω = (H − λ)ϕ(0, f1) · · ·ϕ(0, fn)Ω

=
∑
k

ϕ(0, f1) · · · ϕ̇(0, fk) · · ·ϕ(0, fn)Ω

=
∑
k

ϕ0(0, f1) · · · ϕ̇0(0, fk) · · ·ϕ0(0, fn)Ω

= H0ϕ0(0, f1) · · ·ϕ0(0, fn)Ω .

(4.16)

Hence H = H0 + λ on D. The proof is completed by showing that H0

is essentially selfadjoint on D. �

In order to avoid the consequences of Haag’s Theorem one can try
to define Hamiltonians with a spatial cutoff

H(g) = H0 +

∫
d3xg(x)h(x) (4.17)

with a test function g. One expects in view of the finite propagation
speed of local perturbations that

ϕ(t,x) = eitH(g)ϕ(0,x)e−itH(g) (4.18)

is independent of g, provided g ≡ 1 within the region {y, |x−y| < |t|}.
In this way one obtains the algebra of local observables of the inter-
acting theory, but not yet the unitary representation of the Poincaré
group, under which the interacting field transforms covariantly.

In the next steps one looks for the ground state vectors Ω(g) of
the locally perturbed Hamiltonians (provided they exist). The vacuum
expectation values (the Wightman functions) of products of interacting
fields are then obtained as the limit g → 1 of〈

Ω(g), ϕ(x1) · · ·ϕ(xn)Ω(g)
〉
. (4.19)
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Finally one applies the reconstruction theorem and constructs the vac-
uum Hilbert space, the interacting field and the representation of the
Poincaré group. This idea was successfully used by Glimm and Jaffe
for the construction of the ϕ4-theory in 2 spacetime dimensions.

We now want to treat the canonical quantization of electrodynam-
ics. The Maxwell equations can be derived from the Lagrangean

L = −1

4
FµνF

µν − jµA
µ (4.20)

with Fµν = ∂µAν − ∂νAµ. Here jµ is a conserved current, which does
not depend on Aµ. Namely, we have

∂L
∂Aµ

= −jµ , ∂L
∂(∂µAν)

= −F µν , (4.21)

and thus

jν = ∂µF
µν = �Aν − ∂ν∂µA

µ . (4.22)

The initial value problem for the vector potential is not well posed.
Namely, if Aµ is a solution then also Aµ + ∂µΛ with an arbitrary func-
tion Λ (gauge freedom). Therefore the transition to the Hamiltonian
formalism is not possible. Formally this may be seen from the fact that
the canonically conjugated momenta are not independent and that the
elimination of the the time derivatives of he vector potential is not
possible. The canonically conjugated momenta are

πµ =
∂L
∂(Ȧµ)

=

{
0 , µ = 0

−F 0µ = Eµ , µ = 1, 2, 3
. (4.23)

One chooses the following way out. One adds to the Lagrangean an
additional term (gauge fixing) such that the modified field equation has
a well posed initial value problem. Such a choice is −λ

2
(∂µAµ)

2 with
λ 6= 0. The field equations then are

�Aµ + (λ− 1)∂µ(∂νA
ν) = jµ . (4.24)

It follows from current conservation

�(∂µA
µ) = 0 . (4.25)

Hence B := ∂µA
µ is a free massless scalar field. For B = 0 the modified

field equations are equal to the Maxwell equations. But we cannot set
B to zero since it has nontrivial commutation relations.

Exercise 3: Show that the gauge fixed field equation (4.24) has a well
posed initial value problem for λ 6= 0.

The canonical conjugated momenta are

π0 = −λ∂µAµ , πk = ∂0Ak − ∂kA0 . (4.26)

For the time derivatives of Aµ we find

Ȧ0 = ~∂ ·A− λ−1π0 , Ȧk = πk + ∂kA0 . (4.27)
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The equal time commutation relations between Aµ and Ȧµ are

[Aµ(0,x), Ȧν(0,y)] = −i(gµν + (λ−1 − 1)gµ0gν0)δ(x− y) , (4.28)

and those between Ȧ0 and Ȧk

[Ȧ0(0,x), Ȧk(0,y)] = [(~∂ ·A− λ−1π0)(0,x), (πk + ∂kA0)(0,y)

= i(1− λ−1)∂kδ(x− y) .
(4.29)

For λ = 1 (Feynman gauge) the commutation relations are especially
simple. Another often considered special case is λ = ∞ (Landau
gauge).

In what follows we want to use the Feynman gauge. The field equa-
tion coincides in this case with the inhomogeneous wave equation. If jµ
commutes with Aµ, then the commutator between different components
of Aµ is a solution of the homogeneous wave equation. Since the initial
conditions are determined by the canonical commutation relations, we
obtain

[Aµ(x), Aν(y)] = −igµνD(x− y) (4.30)

with the Pauli-Jordan function D. For the field B one finds

[B(x), Aµ(y)] = −i∂µD(x− y) , (4.31)

hence
∫

d3xB(t,x)
↔
∂tΛ(t,x), with a solution Λ of the wave equation,

implements an infinitesimal gauge transformation which is compatible
with the gauge fixing ∂µA

µ = B. This demonstrates that we cannot
put B to zero.

We now consider the algebra A0 of smeared fields which commute
with B. This algebra is generated by Fµν and B. In this algebra B
generates a nontrivial ideal I. The quotient algebra A = A0/I then is
the algebra of observables of quantum electrodynamics. It is generated
by the fields Fµν . Their commutation relations and field equations
coincide with those of Chapter 3.

We now want to find a representation of the fields on a Hilbert
space. In a first step we try to represent the fields Aµ by hermitean
operators on a Hilbert space K. K should contain a vector Ω which
represents the vacuum, and shall be generated by apllying the smeared
fields to Ω. Furthermore there shall be a positive energy representation
of the Poincaré group which leaves Ω invariant and under which Aµ
transforms covariantly,

U(x,Λ)Aµ(y)U(xΛ)−1 = Aν(Λy + x)Λν
µ . (4.32)

From these conditions we obtain the 2-point function〈
Ω, Aµ(x)Aν(y)Ω

〉
= −gµνD+(x− y) . (4.33)

In the single particle space

K1 = {A(f)Ω, f = (fµ), fµ ∈ S(R4)} (4.34)
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one gets the scalar product〈
A(f)Ω, A(f)Ω

〉
= −

∫
d3p

2|p|
f̂µ(p)f̂µ(p) . (4.35)

One immediately sees that the scalar product in K is not positive definit
if A0 is hermitean.

The 4 components in K1 can be interpreted as timelike, longitudinal
and two transversal photons (related to the direction of the momen-
tum). Only the transversal photons correspond to physical particles.
To eliminate the unphysical degrees of freedom we use the field B. Let

H0 = {Φ ∈ K, B(f)Φ = 0 falls supp f̂ ∩ V+ = ∅} . (4.36)

(Gupta-Bleuler condition). We have the following

Theorem IV.4.
〈
Φ,Φ

〉
≥ 0 for Φ ∈ H0.

Proof. The n-particle component Φn of Φ is a symmetrical func-
tion Φµ1...µn

n (p1, . . . , pn) with pi ∈ ∂V+. The Gupta-Bleuler condition
says ∫

d3p

2|p|
pµf̂(−p)gµµ1Φ

µ1...µn
n (p, p2, . . . , pn) = 0 . (4.37)

for all f with supp f̂ ∩ V+ = ∅. Hence

pµ1Φ
µ1...µn
n (p, p2, . . . , pn) = 0 . (4.38)

for p, . . . , pn ∈ ∂V+. Since −gµν is positive semidefinite on the orthog-
onal complement of a lightlike vector p 6= 0,

p2 = 0 , qp = 0 ⇐⇒ p0 = ±|p| , q0p0 = q · p , (4.39)

thus due to the Cauchy-Schwarz inequality

|q|2 ≥ (q · p)2

|p|2
= (q0)

2 , (4.40)

we have

(−1)nΦnµ1...µn(p1, . . . , pn)Φ
µ1...µn
n (p1, p2, . . . , pn) ≥ 0 . (4.41)

But this is the integrand which occurs in the computation of the scalar
product

〈
Φn,Φn

〉
. Hence

〈
Φn,Φn

〉
≥ 0 for all n and thus

〈
Φ,Φ

〉
≥

0. �

Let N be the null space of the positive semidefinite scalar product
on H0,

N = {Φ ∈ H0,
〈
Φ,Φ

〉
= 0} . (4.42)

Then the quotient space H0/N has a positive definite scalar product.
The completion of this space is called the physical Hilbert space H. We
now want to show that the algebra of observables A can be represented
by operators on H. According to the definition, the algebra A0 consists
of operators which commute with B. Therefore it leaves the space
H0 invariant. Also the null space is invariant under A0. Namely, let
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Φ ∈ N and C ∈ A0. Then in view of the hermiticity of B also the
adjoint operator C∗ ∈ A0. The Cauchy-Schwarz inequality implies〈

CΦ, CΦ
〉

=
〈
C∗CΦ,Φ

〉
≤ ‖C∗CΦ‖‖Φ‖ = 0 . (4.43)

Hence A0 acts on the physical Hilbert space H. Elements of the ideal
generated by B are thereby mapped to the null operator, since

B(f)Φ ∈ N (4.44)

for all Φ ∈ H0 and all test functions f . We thus obtained a represen-
tation of the algebra of observables on a Hilbert space. It coincides
with the representation which was constructed in Chapter 3. The ad-
vantage of the Gupta-Bleuler method is that it can be used also in the
interacting case, since the field B is also in the presence of interactions
a solution of the wave equation. This is no longer true in nonabelian
gauge theories. For these models a generalization of this method was
developed by Becchi, Rouet and Stora (BRS), and, independently, by
Tsygan. It is based on a new symmetry, the BRST- symmetry. We
will come back to this method in Chapter 6.

5. Path integral

Another method for the definition of quantum field theories is the
method of path integrals. Based on ideas of Dirac it was developed by
Feynman in his Ph.D. thesis as an alternative formulation of quantum
theory.

We describe the method first on the example of a quantum mechan-
ical particle of mass m which moves in 1-dimensional space under the
influence of a potential V (x). The Hamiltonian of the system is

H = H0 + V with H0 = − 1

2m

d2

dx2
. (5.1)

If H0 +V is essentially selfadjoint (this is the case, if, e.g., V is contin-
uous and bounded), then according to the Trotter product formula

e−itHΦ = lim
n→∞

(
e−i

t
n
H0e−i

t
n
V
)n

Φ , Φ ∈ L2(R) . (5.2)

For test functions Φ ∈ S(R) the action of the free time evolution oper-
ator e−itH0 can by Fourier transformation be described by the following
integral (

e−itH0Φ)(x) =
1

2π

∫
dp

∫
dyeip(x−y)e−it

p2

2m Φ(y)

=

√
m

2πit

∫
dyei

m
2

(x−y)2

t Φ(y)

(5.3)

with √
m

2πit
=

√
m

2π|t|
e−i

π
4

sign(t) . (5.4)
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If V is infinitely often differentiable with polynomially bounded deriva-
tives, one finds for the solution of the Schrödinger equation

i
∂

∂t
ψ(t, x) = (Hψ)(t, x) (5.5)

with initial value ψ(0, x) = Φ(x) the formula

ψ(t, y0) = (e−itHΦ)(y0)

= lim
n→∞

(√ mn

2πit

)n ∫
dy1 · · · dyne

i t
n

Pn
k=1

(
m
2

(yk−1−yk)2

(t/n)2
−V (yk)

)
Φ(yn)

(5.6)

(Convergence in the sense of L2(R)). The exponent in the second line
is a Riemann sum which approximates the integral

i

∫ t

0

dt′(
m

2
ẏ2 − V (y)) = iI (5.7)

where y(t) is a path with y(k t
n
) = yk. I is the classical action of the

path.
This formula for the time evolution operator suggests the following

interpretation: The quantum mechanical transition amplitude

〈y|e−itH |x〉 := e−itH(y, x) (5.8)

arises as a superposition of the amplitudes for all possible paths γ :
[0, t] → R with γ(0) = x and γ(1) = y. Each of these paths contributes
the complex number eiI(γ). The leading contributions come from the
paths in the neighborhood of a stationary point of the action, i.e. from
paths near to a classical solution.

Let now Wx,y,t be the set of continuous paths γ : [0, t] → R with
γ(0) = x and γ(1) = y. We write

〈y|e−itH |x〉 =

∫
Wx,y,t

Dγ eiI(γ) . (5.9)

Here

Dγ = lim
n→∞

(√ mn

2πit

)n
dγ(

t

n
) · · · dγ(n− 1

n
t) (5.10)

means the suitably normalized integral over all paths.
Provided one succeeds in turning this heuristic idea into a mathe-

matical precise definition one would obtain the integrand for arbitrary
potentials V by multiplication with the factor

e−i
R t
0 dt′V (γ(t′)) (5.11)

(Feynman-Kac-Formula). If this factor is ”integrable” in the sense of
path integrals one has obtained an explicit integral representation of
the transition amplitude.

In the attempt to make these ideas mathematically precise, the
oscillatory character of the integrals causes problems. Better treatable
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are the integral kernels of the positive operators e−tH , t > 0 (under the
condition that H is bounded below). For t > 0 we have

e−tH0(x, y) =

√
m

2πt
e−

m
2

(x−y)2

t . (5.12)

The integral kernel of e−tH0 has the following properties

e−tH0(x, y) > 0 ,∫
dxe−tH0(x, y) = 1 ,∫

dye−tH0(x, y)e−sH0(y, z) = e−(t+s)H0(x, z) .

(5.13)

These properties can be interpreted as a probabilistic description of
diffusion. The integral kernel e−tH0(x, y) can be seen as the probability
density for a particle driven by diffusion (with the diffusion constant
D = 1

2m
) to arrive after the time t at the point x when it has been at

the point y. The second equation is the normalization condition, saying
that the particle is surely somewhere. The third property characterizes
a so-called Markov process. Physically it says that the probability
depends only on the starting point, but not on the previous history.
In particular the initial velocity does not enter. This is a somewhat
surprising aspect of diffusion and can be seen in Brownian motion.

In the theory of Brownian motion one endows the space of paths
Wx,y,t with the structure of a measurable space. This means that one
has to distinguish a system of measurable sets. Among them are in
particular the so-called cylinder sets:

Definition IV.5. A cylinder set Z(t1, . . . , tn;B) is the set of all
paths γ with (γ(t1), . . . , γ(tn)) ∈ B where B is a measurable set in Rn

and 0 < t1 < . . . < tn < t.

The so-called Wiener integral over cylinder sets is defined by∫
Z(t1,...,tn;B)

dW t
xy =

∫
B

dy1 · · · dyn e−H0(t−tn)(y − yn) · · · e−H0t1(y1 − x) .

(5.14)
There holds the following theorem:

Theorem IV.6. Let V be continuous and bounded from below,
and let H = H0 + V be essentially selfadjoint. Then the function

e−
R t
0 dt′V (γ(t′)) on Wx,y,t is integrable with respect to the Wiener mea-

sure, and there holds the Feynman-Kac-Formula

(e−tH)(y, x) =

∫
dW t

xy e
−

R t
0 dt′V (γ(t′)) . (5.15)
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Proof. From the Trotter product formula we have

(e−tH)(y, x) = lim
n→∞

(√mn

2πt

)n ∫
dy1 · · · dyne

− t
n

Pn
k=1

(
m
2

(yk−1−yk)2

(t/n)2
+V (yk)

)
.

(5.16)
According to the definition of the Wiener measure the right hand side
is the limit n→∞ of the Wiener integrals∫

dW t
xy e

−
Pn−1

k=1
t
n
V (γ( kt

n
)) (5.17)

over the cylinder functions

γ → e−
Pn−1

k=1
t
n
.V (γ( kt

n
)) (5.18)

These functions converge pointwise towards e−
R t
0 dt′V (γ(t′). Because of

the lower bound on V they are uniformly bounded by a constant. Ap-
plying the theorem on dominated convergence the limit function is
integrable, and the integral coincides with the limit of the integrals
over the approximating cylinder functions. �

This theorem says in particular that the integral kernel of e−tH is
positive. This implies that also the wave function of the ground state
Ω (provided it exists) must be positive valued (up to a global phase).
It can be obtained in the following way:

Theorem IV.7. Let Ω0 ∈ L2(R) be positive. Then

Ω = lim
t→∞

e−tHΩ0‖e−tHΩ0‖−1 , (5.19)

(provided the limit exists) is the unique ground state of H. If the limit
does not exist, H does not have a ground state.

Exercise 4: Prove the Theorem.
The Theorem yields the following formula for the expectation value of a
product of functions fi of the position operator at different (imaginary)
times〈
Ω, et1Hf1(x)e

−t1H · · · etnHfn(x)e−tnHΩ
〉

=

∫
dµ(γ)f1(γ(t1)) · · · fn(γ(tn)) .

(5.20)
Here µ is a probability measure on the space of all paths γ : R → R.
It is obtained as the limit t→∞ of the measures

Z(t)−1dxΩ0(x)dyΩ0(y)dW
−t,t
yx e−

R t
−t dt′V (γ(t′) (5.21)

with a normalization factor Z(t). A remarkable property of this formula
is that the expectation values can be computed without knowing the
wave function of the ground state.

We now want to find analogous formulae for field theory. For this
purpose we first construct the Schrödinger representation of the free
scalar field. Here the position operators are replaced by the time zero
fields ϕ(0,x). We assume that they take values in the space of tempered
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distributions S ′(R3). We search for a measure on this space such that
the Fock space can be identified with the space L2(S ′(R3), dµ). A Fock
space vector Φ is then given by a function on S ′(R3) with∫

|Φ(T )|2dµ(T ) = ‖Φ‖2 . (5.22)

The time zero fields smeared with test functions f ∈ S(R3),

(ϕ(0, f)Φ)(T ) = T (f)Φ(T ) . (5.23)

act as multiplication operators on this space. An obvious difficulty
consists in the fact that there is no Lebesgue measure on an infinite
dimensional vector space.

We proceed in the following way. We consider the algebra generated
by the operators eiϕ(0,f)

A = {
∑

f∈S(R3)

cfe
iϕ(0,f), cf ∈ C, cf 6= 0 for finitely many f} (5.24)

Each element C of this algebra defines via

C(T ) =
∑
f

cfe
iT (f) (5.25)

a continuous bounded function on S ′(R3), and the pointwise product
of these functions corresponds to the product of operators,

(C1C2)(T ) = C1(T )C2(T ) . (5.26)

A measure on S ′(R3) can now be characterized in terms of a linear
functional on this algebra of functions∫

dµ(T )C(T ) = µ(C) . (5.27)

(Radon measure). In our case we can use the vacuum expectation value
as the linear functional,

µ(C) =
〈
Ω, CΩ

〉
. (5.28)

The corresponding measure describes the probability distribution of
the configurations T of the time zero field in the vacuum.

The measure is hereby characterized by its Fourier transform,

χ(f) := µ̂(f) = µ(eiϕ(0,f)) =

∫
dµ(T )eiT (f) . (5.29)

Due to the positivity of the scalar product on Fock space (equivalent to
the positivity of the measure) χ (the so-called characteristic function
of the measure) satisfies the condition∑

f,g

χ(f − g)cfcg ≥ 0 , (5.30)
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i.e., χ is a function of positive type. Conversely, any continuous function
on S(R3) which satifies the positivity property above is the Fourie
transform of a measure on S ′(R3) (Minlos’ Theorem).

In our case

χ(f) = e−
1
2

〈
f, 1

2ω
f
〉

(5.31)

with (
1

2ω
f

)
(x) =

∫
d3y∆+(0,x− y)f(y) . (5.32)

Measures whose Fourier tranforms are exponentials of a positive defi-
nite quadratic form are called Gaussian measures. The quadratic form
is the covariance of the measure,∫

dµ(T )T (x)T (y) =
〈
Ω, ϕ(0,x)ϕ(0,y)Ω

〉
= ∆+(0,x− y) . (5.33)

On Rn, Gaussian measures are characterized by a positive semidefinite
n× n-matrix K, ∫

dµK(x)xixj = Kij (5.34)∫
dµKe

i(x,y) = e−
1
2

〈
y,Ky

〉
. (5.35)

In case K is invertible, one obtains by an inverse Fourier transform

dµK(x) = (2π)−
n
2 det(K)−

1
2 e−

1
2

〈
x,K−1x

〉
dnx . (5.36)

In the infinite dimensional case there is no Lebesgue measure, the above
factorization of the Gaussian measure thus looses its meaning. The
Gaussian measure itself, however, remains well defined in the infinitely
dimensional case.

Exercise 5: Let V be an infinite dimensional real vector space. A
cylinder set Z is given by a finite family of linearly independent linear
functionals l1, . . . , ln on V and a measurable set B ⊂ Rn,

Z(l1, . . . ln;B) = {v ∈ V |(l1(v), . . . , ln(v)) ∈ B}

Let µ be a map from the set of cylinder sets to [0,∞] such that

(i) For any countable union of pairwise disjoint cylinder sets Zi

µ(
∞⋃
i=1

Z) =
∞∑
i=1

µ(Zi)

(ii) µ is translation invariant, i.e.

µ(Z + v) = µ(Z)

for all v ∈ V .

Prove, that there is no cylinder set Z such that 0 < µ(Z) < ∞.
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Gaussian measures can easily be defined on infinite dimensional
spaces in terms of their characteristic functions. They possess, how-
ever, some somewhat surprising properties which cannot occur in finite
dimensional spaces.

Let us consider a real separable infinite dimensional pre-Hilbert
space D. The function

χ(f) = e−
1
2

〈
f,f
〉
. (5.37)

is of positive type, i.e. satisfies (5.30). Let D′ be the space of (not
necessarily continuous) linear functionals on D. We define a measure µ
on D′ as a linear functional on the algebra of functions l →

∑
cfe

il(f)

in terms of the characteristic function χ. We ask now on which type of
functionals the measure is concentrated. The surprising statement is:

Theorem IV.8. The set of continuous linear functionals has the
measure zero.

Proof. Let ‖l‖ := sup‖f‖=1|l(f)|. We define the function

F (l) =

{
e−

λ
2
‖l‖2 , ‖l‖ <∞

0 , ‖l‖ = ∞ (5.38)

(λ > 0). We want to show that∫
dµ(l)F (l) = 0 . (5.39)

Since for c > 0∫
dµ(l)F (l) ≥ µ({l ∈ D′, ||l|| < c})e−

λ
2
c2 (5.40)

this would imply that µ({l ∈ D′, ||l|| < c}) = 0∀c > 0. But the set of
bounded functionals can be written as as a disjoint union

{l ∈ D′, ||l|| <∞} =
∞⋃
n=0

{l ∈ D′, n < ||l|| ≤ n+ 1} . (5.41)

Due to the σ-additivity of the measure then also the set of all bounded
functionals (which coincides on a pre-Hilbert space with the space of
continuous functionals) has measure zero.

In order to prove (5.39), we choose an orthonormal basis (fk)k∈N of
D and set

Fn(l) = e−
λ
2

Pn
k=1 l(fk)2 . (5.42)

We have
F (l) = lim

n→∞
Fn(l) , Fn(l) ≤ 1 . (5.43)

Hence F is the point wise limit of a uniformly bounded sequence of
cylinder functions and thus integrable, and we have∫

dµ(l)F (l) = lim
n→∞

∫
dµ(l)Fn(l) . (5.44)
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But the integral of Fn is the integral of the Gaussian measure

(2π)−n/2
∫

dnxe−
1+λ

2

Pn
k=1 x

2
k = (1 + λ)−n/2 (5.45)

on Rn, thus
∫

dµ(l)Fn(l) → 0 as n → ∞. This implies the assertion
(5.39). �

A consequence of this Theorem is that in the Wiener integral the
set of differentiable paths has measure zero. By a modification of the
argument used in the proof above one can show that for any Hilbert-
Schmidt operator A on D the set of linear functionals l for which l ◦A
is not continuous is a set of measure zero. In this way one can show
that the Wiener integral is concentrated on the continuous paths.

In the case of D = S(R3) and a continuous scalar product (in the
sense of the topology of Schwartz space) one can show that the Gauss-
ian measure is concentrated on the space of tempered distributions.

We realized the Fock space as the L2 space of a Gaussian measure
with covariance 1

2ω
over S ′(R3). The time zero fields act as multipli-

cation operators, and the vacuum vector corresponds to the function
Ω(T ) = 1. It remains to determine the canonical conjugated momenta.
They act as functional derivatives plus a term which is caused by the
missing translation invariance of the Gaussian measure. One obtains
for C ∈ A(
π(0, f)C

)
(T ) =

(
π(0, f)CΩ

)
(T ) =

(
[π(0, f), C]Ω

)
(T )+C

(
π(0, f)Ω

)
(T ) .

(5.46)
The term with the commutator follows from the canonical commutation
relations,

[π(0, f), C] =
1

i

∫
d3x

δC

δϕ(0,x)
f(x) . (5.47)

The action on the vacuum results from

π(0, f)Ω = ϕ̇(0, f)Ω = iH0ϕ(0, f)Ω = iϕ(0, ωf)Ω . (5.48)

After these preparations we can compute the integral kernel of
e−tH0 . We consider it as a distribution in two variables,∫ (

e−tH0
)
(T, T ′)dµ(T )dµ(T ′)Φ(T )Ψ(T ′) :=

〈
Φ, e−tH0Ψ

〉
. (5.49)

Its Fourier transform is〈
Ω, eiϕ(0,f)e−tH0eiϕ(0,g)Ω

〉
= e−

1
2

〈
f, 1

2ω
f
〉
e−

1
2

〈
g, 1

2ω
g
〉
e−
〈
f, e

−tω

2ω
g
〉
. (5.50)

This is a function of positive type and thus the characteristic function
of a measure. In analogy to the theory of Brownian motion we con-
sider this measure as the probability distribution of a diffusion process
described by the operator H0. It gives the probability for an orbit of
field configurations(Tt′)t′ to have at time t the value T ′ provided it had
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at time 0 the value T . Correspondingly we define also the probabil-
ity distributions for field configurations at times t1 > · · · > tn with
characteristic function

exp

(
−1

2

∑
j

〈
fj,

1

2ω
fj
〉
−
∑
j<k

〈
fj,

e−(tj−tk)ω

2ω
fk
〉)

. (5.51)

The transition to continuous times is done as usual. Let f(x0,x) =∑
k fk(x)δ(x0 − tk). Then the quadratic form occuring in the charac-

teristic function of a Gaussian measure is〈
f, S2f

〉
=

∫
d4xf(x)S2(x− y)f(y) (5.52)

with the 2-point Schwinger function

S2(x) = (2π)−4

∫
d4p

eipx

|p|2 +m2
. (5.53)

The 2-point Schwinger function arises from the Feynman propagator
by replacing p0 by ip0 and x0 by ix0 (”‘Wick rotation”’). For x0 = 0 it
coincides with ∆+. The Schwinger function is analytic for x 6= 0 with
an analytic extension into some region of C4. We already know that
∆+ is the boundary value of an analytic function H+ on the forward
tube R4 − iV+; ∆− is the boundary value of an analytic function H−
on the backward tube R4 + iV+. ∆+ and ∆− coincide for spacelike
arguments, hence, by the Edge of the Wedge Theorem there is an
analytic function H with domain including a complex neighborhood of
the set of spacelike points together with the forward and the backward
tube which extends both H+ and H−. The restriction of H to the so-
called euclidean points (ix0,x), (x0,x) ∈ R4 is the 2-point Schwinger
function

H(ix0,x) = S2(x
0,x) . (5.54)

The Gaussian measure with the 2-point Schwinger function as co-
variance defines a probability distribution µ0 on S ′(R4). We associate
to each test function f ∈ S(R4) a random variable ϕ(f) by

ϕ(f)(T ) = T (f) , T ∈ S ′(R4) . (5.55)

ϕ is called the euclidean free massive scalar field. Its correlation func-
tions are called the Schwinger functions. S2 is the Green’s function of
the differential operator −∆ +m2. We interpret µ0 as giving a precise
meaning to the formal expression

dµ0 = Z−1e−IE(ϕ)Dϕ (5.56)

with the euclidean action

IE(ϕ) =

∫
d4x

1

2

(
(∂ϕ)2 +m2ϕ2

)
(5.57)

and the integral over all field configurations Dϕ =
∏

x dϕ(x). In a
lattice approximation of the euclidean field this formula can be used
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directly. In the case of a continuous spacetime the formula is only
heuristic, since the Lebesgue integral Dϕ does not exist and, moreover,
the integrand with probability 1 is equal to zero.

Exercise 6: Prove that the Schwinger functions of the free massive scalar
euclidean field satisfy the Schwinger-Dyson euqations

(−∆x + m2)Sn(x, x2, . . . , xn) =
n∑
i=2

δ(x− xi)Sn−2((xj)j 6=i) . (5.58)

Interacting euclidean field theories are formally obtained by the
Feynman-Kac formula. For the associated probability measure one
sets

dµ(ϕ) = Z−1e−
R

d4xV (ϕ(x))dµ0(ϕ) . (5.59)

Unfortunately, contrary to quantum mechanics, the function e−
R
V is

not integrable, in most cases of interest. In the case of a translation
invariant interaction this is a euclidean version of Haag’s theorem. If
one multiples V with a test function g with compact support, then
in 2 dimensions, for polynomials V which are bounded from below,
the function e−

R
gV is integrable. In this way one obtains a family of

probability measures µg on S ′(R2). The limit points for g → 1 can
be considered as interacting euclidean field theories. By analytic con-
tinuation of the correlation functions one then obtains the Wightman
functions of an interacting quantum field.

The euclidean action on d dimensional euclidean space is the static
part of the energy of a classical scalar field in d spatial dimensions.
The measure defined above can therefore be considered as the canoni-
cal ensemble for a classical statistical system with temperature ~. This
surprising relation between statistical mechanics and euclidean quan-
tum field theory allows to transfer results from one field to the other.
An example is the concept of a phase transition which is known from
statistical mechanics and can now be applied in quantum field theory
to describe sudden changes as the parameters of the model vary.

In the attempt to define interacting euclidean theories one meets
similar problems as in Minkowski space. One of these problems is the
definition of powers of the fields. Since ϕ takes values in the space of
tempered distributions, terms of the form ϕ(x)n are not well defined.
In analogy to Minkowski space we try to define euclidean Wick powers
: ϕ(x)n :. For this purpose we consider the structure of Schwinger
functions. We have

Sn(x1, . . . , xn) : =

∫
dµ0ϕ(x1) · · ·ϕ(xn)

=

{
0 , n odd ,∑

pairings

∏
pairs S2(xi, xj) , n even .

(5.60)
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This formula is completely analogous to the formulas for the time or-
dered functions of the free field, with S2 replacing the Feynman prop-
agator. It differs from the formula for the Wightman functions of the
free field in the way that there the pairs have to be ordered according
to the indices, since the Wightman 2- point function ∆+(x− y) of the
free field is not symmetric under permutation of x and y.

We thus can use the same combinatorial formulas as for the time
ordered functions. Let G(n) be the set of graphs G with vertices v ∈
{1, . . . , n} and undirected lines l ∈ E(G) which connect two different
vertices (external lines are not admitted), such that every vertex v is
incident at exactly one line l, denoted as v ∈ ∂l. Then∫

dµ0ϕ(x1) · · ·ϕ(xn) =
∑
G∈G

∏
l∈E(G)

S2({xv, v ∈ ∂l}) . (5.61)

The correlation functions for Wick polynomials arise by identification of
certain vertices and by omitting all lines between them (so no tadpoles
occur). Let G(n1, . . . , nk) be the set of graphsG with vertices {1, . . . , k}
and undirected lines l such that the vertex i is incident at exactly ni
lines. We define the Wick polynomials first as linear forms on the space
of polynomials by∫

dµ0
:ϕ(x)n :

n!
ϕ(x1) · · ·ϕ(xk) =

∑
G∈G(n,1, . . . , 1︸ ︷︷ ︸

k

)

∏
l∈E(G)

S2({xv, v ∈ ∂l}) .

(5.62)
For noncoinciding points x1, . . . , xk also the correlation functions of
Wick polynomials can be defined,∫

dµ0

∏
i

: ϕ(xi)
ni :

ni!
=

∑
G∈G(n1,...,nk)

∏
i<j

S2(xi − xj)
lij

lij!
, (5.63)

where lij is the number of lines between the vertices i and j. In the
perturbative renormalization of euclidean field theories one constructs
extensions of these functions to everywhere defined distributions. It
should, however, be noticed that these extensions cannot, in general, be
considered as the correlation function of a euclidean field, in particular
:ϕn : (f) is, in general, not a random variable.

As an example we consider the euclidean free field in 3 dimensions.
In this case the Schwinger function is given by

S2(x) =
e−m|x|

4π|x|
. (5.64)

The 2-point correlation function of the nth Wick power is not integrable
for n > 2 . But for n = 2 we find∫

dµ0|:ϕ2 : (f)|2 =

∫
d6(x, y)f(x)f(y)S2(x− y)2 <∞ , (5.65)
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:ϕ2 : (f) is thus square integrable. In the case n > 2 the corresponding
integral diverges, and for the renormalized 2-point function the result
is not necessarily positive, hence cannot occur as the expectation value
of a positive random variable.

Exercise 7: The path integral for Fermi fields is the so-called Berezin
integral. Let A denote the unital associative algebra which is generated by
the elements a1, . . . , an with the relations

aiaj + ajai = 0 , i, j = 1, . . . , n

(Grassmann algebra). The Berezin integral is a linear functional∫
da1 . . . dan on A with the properties∫

da1 . . . dan a1 . . . an = 1,∫
da1 . . . dan

∏
j∈I

aj = 0 for I
6=
⊂ {1, . . . , n}.

Compute the Gaussian integral∫
da1 . . . dan e

P
i<j aiajAij , Aij ∈ C .

6. Connected functions (truncated functions)

In the graphical expansion of the terms of perturbation theory it is
convenient to decompose the graphs into connected components. The
distribution corresponding to the graph is the tensor product of the
distributions corresponding to its connected components of the graph,
hence it is sufficient to construct the distributions for connected graphs.
Actually, the decomposition of correlation functions into connected
pieces can be defined independent of perturbation theory and can in
particular also performed for interacting theories.

Let ω be a linear functional on a (not necessarily commutative)
unital algebra A with the normalization condition ω(1) = 1. We think
hereby, e.g., on the Wightman functional on the tensor algebra of test
functions,

ω(f1 ⊗ · · · ⊗ fn) =
〈
Ω, ϕ(f1) · · ·ϕ(fn)Ω

〉
, (6.1)

or on the system of time ordered functions as a functional on the sym-
metrical tensor algebra of test functions,

ω(f1 ⊗ · · · ⊗ fn) =
〈
Ω, Tϕ(f1) · · ·ϕ(fn)Ω

〉
. (6.2)

A further possibility are probability measures, considered as linear
functionals on the algebra of random variables which associate to each
random variable its expected value.

Let us first assume that ω has an expansion labeled by graphs,

ω(A1 · · ·An) =
∑
G∈G

ωG(A1, . . . , An) . (6.3)
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Here ωG is for each graph G a multilinear functional on A which factor-
izes if the graphs can be decomposed into disconnected subgraphs. We
decompose every graph into its connected components. Thereby the
set of vertices is decomposed into pairwise disjoint nonempty subsets,

{1, . . . , n} = I1 ∪ . . . ∪ Ik , Ij ∩ Il = ∅ für j 6= l . (6.4)

Such a decomposition is called a partition, and we denote the set of
partitions of {1, . . . , n} by Part({1, . . . , n}). We now, in a first step,
fix some partition and sum only over those graphs whose decomposi-
tion into connected components induces the given partition, and sum
afterwards over the set of all partitions. Let

ωc(A1, . . . , An) =
∑
G∈Gc

ωG(A1, . . . , An) , (6.5)

where Gc ⊂ G denotes the subset of connected graphs. Then

ω(A1 . . . An) =
∑

P∈Part({1,...,n})

∏
I∈P

ωc(Ai, i ∈ I) . (6.6)

We now can use the same formula also in the case where no ex-
pansion labeled by graphs is given, and consider it as an implicit
definition of connected functions ωc as multilinear functionals on A.
Indeed it is possible to solve the equation above and to give an ex-
plicit formula for the connected functions, e.g., we have ωc(A) = ω(A),
ωc(A1, A2) = ω(A1A2)−ω(A1)ω(A2), and, more generally, the recursion
relation

ωc(A1, . . . , An) = ω(A1 · · ·An)−
∑
](P )>1

∏
I∈P

ωc(Ai, i ∈ I) , (6.7)

where ](P ) denotes the number of elements of the partition P . The
connected functions in this abstract meaning are often called truncated
functions.

There also exists a closed formula for the connected functions. Mul-
tilinear functionals on vector spaces can always be considered as linear
functional on the tensor product of the vector spaces. In our case we
consider the algebra A as a vector space, i.e., we ignore for the moment
the multiplicative structure. The connected functions form a system
of multilinear maps and can formally combined to a linear functional
on the tensor algebra

TA =
∞⊕
n=0

A⊗n (6.8)

(with ωc(1) = 0). On the set of linear functionals on TA we introduce
the following associative product,

(FG)(A1 ⊗ · · · ⊗ An) =
∑

I⊂{1,...,n}

F (
⊗
i∈I

Ai)G(
⊗
j∈Ic

Aj) , (6.9)
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where Ic denotes the complement of I in {1, . . . , n}. The unit for this
product is the linear functional

1(A1 ⊗ · · · ⊗ An) = δn0 . (6.10)

The defining equation (6.6) for the connected functions can be written
in terms of this product in the following form,

ω ◦m = eωc =
∞∑
n=0

ωnc
n!

. (6.11)

Here we used the multiplication in the algebra A for the definition of
a linear map

m :

{
TA → A

A1 ⊗ · · · ⊗ An 7→ A1 · · ·An
(6.12)

Namely, we have

ωkc (A1 ⊗ · · · ⊗ An) =
∑

I1,...,Ik⊂{1,...,n}

∏
j

ωc(
⊗
i∈Ij

Ai) (6.13)

where the index sets are pairwise disjoint with union {1, . . . , n}. The
contributions of the empty sets vanish because of ωc(1) = 0, hence
we can restrict the sum to the partitions P ∈ Part({1, . . . , n} with k
elements. Each partition occurs k! times, corresponding to the number
of possibilities to number the index sets. After division by k! and
summation over k we obtain equation (6.6).

From (6.11) we obtain, by inversion of the power series of the ex-
ponential function, the wanted formula for the connected functions,

ωc = logω ◦m =
∞∑
k=1

(−1)k

k
(ω ◦m− 1)k . (6.14)

The series above converges because of (ω ◦m−1)(1) = 0. In n-th order
we find

ωc(A1, . . . , An) =
∑

P∈Part({1,...,n})

(−1)](P )(](P )− 1)!
∏
I∈P

ω(
∏
i∈I

Ai) .

(6.15)
We want to apply the formula for elements of the form

exp⊗A =
∞∑
k=0

1

k!
A⊗k , A ∈ A . (6.16)

If one evaluates linear functionals on TA on these elements, then the
product of functionals yields the product of values,

(FG)(exp⊗A) =
∞∑
n=0

1

n!

n∑
k=0

(
n

k

)
F (A⊗k)G(A⊗(n−k)) = F (exp⊗A)G(exp⊗A) .

(6.17)
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Thus we find
ωc(exp⊗A) = log(ω(eA)) . (6.18)

(Here we used that m(exp⊗A) = eA.)
In these formulas nothing is assumed on the convergence of the

series. Instead they are interpreted in the sense of formal power series.
For the characteristic function of the probability measure of the

interacting theory we obtain

χ(f) =
µ0(e

iϕ(f)e−
R
V )

µ0(e−
R
V )

= exp (µ0)c((exp⊗ iϕ(f)− 1)⊗ exp⊗(−
∫
V )) .

(6.19)
In the case V = (g/4!) :ϕ4 : we get the following graphical expansion
for the connected correlation functions,

µc(ϕ(x1), . . . , ϕ(xn)) =
∞∑
k=0

(−g)k

k!

∫
d4k(xn+1, . . . , xn+k)

∑
G∈Gc(n×1,k×4)

∏
1≤i<j≤n+k

S2(xi − xj)
lij

lij!
.

(6.20)

In this expansion the first n vertices which are not integrated out are
called external vertices, and the other inner vertices.

A completely analogous formula holds for the connected time or-
dered functions of the ϕ4 theory. One only replaces −g by ig and S2

by i∆F . By the use of the LSZ relations one then can determine the
connected S-matrix elements.

There exists a further formula for the computation of the connected
n-point function. For the 2-point function we have

ωc(A1, A2) =
1

2
(ω ⊗ ω)(Ã1Ã2) (6.21)

with Ã = A⊗ 1− 1⊗A where A⊗A is considered as an algebra with
the product

(A1 ⊗ A2)(B1 ⊗B2) = A1B1 ⊗ A2B2 . (6.22)

A corresponding formula exists for the n-point function

ωc(A1, . . . , An) =
1

n
ω⊗n(Ã1 · · · Ãn) (6.23)

with

Ã =
n∑
k=1

e2πi(k−1)/n1⊗ · · · A
k-th position

⊗ · · · 1 . (6.24)

This formula is especially useful when one wants to exploit positivity
properties of ω (ωc is i.g. not a positive functional). If, e.g., ω is a
probability measure µ, then (ωc)n can be computed in terms of the
product measure µ× · · · × µ.

Exercise 8: Prove equation (6.23).
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7. One-particle-irreducible functions (vertex functions)

The correlation functions of a translation invariant theory depend
only on the relative coordinates. This leads to further factorization
property. Let G be some graph which consists of two subgraphs G1

and G2 which are connected by a line l0. Let SG1 and SG2 be the
associated contributions to the Schwinger function. Then

SG(xi, i ∈ V (G)) = SG1(xi, i ∈ V (G1))S2(xj, j ∈ ∂l0)SG2(xi, i ∈ V (G2)) .
(7.1)

This formula makes sense even in the case that the factors are distribu-
tions. Namely, let v1, v2 be the end points of the line l0 in the graphs G1

and G2, respectively. Because of translation invariance, SG1 depends
only on the relative coordinates yi = xi − xv1 , i ∈ V (G1) \ {v1} and
SG2 only on the relative coordinates yi = xi − xv2 , i ∈ V (G2) \ {v2}.
Together with yl0 = xv1 − xv2 one obtains a system of independent
relative coordinates, and the product above is a tensor product.

We may therefore decompose connected graphs into so-called one
particle irreducible (1PI) subgraphs (a better name would be one line
irreducible graphs). A connected graph is called 1PI if it remains con-
nected after removal of an arbitrary line.

For performing this decomposition we introduce an equivalence re-
lation on the set of vertices. Two vertices i and j of a graph are called
strongly connected if they are connected by a path in any graph which
arises from G by erasing one line. Equivalence classes of strongly con-
nected vertices form together with their internal lines maximal 1PI
subgraphs. The external lines which connect a 1PI subgraph with the
rest of the graph are called amputated legs. We associate to a 1PI
graph G with vertex set V (G), inner lines l ∈ Ei(G) and amputated
legs l ∈ Ea(G) (where ∂l denotes the vertex at which the leg is at-
tached) a function

ΓG(yl, l ∈ Ea(G)) =

∫ ∏
v∈V (G)

d4yv
∏

l∈Ei(G)

S2(yv, v ∈ ∂l)
∏

l∈Ea(G)

δ(yl−y∂l) .

(7.2)
After contractions of the 1PI subgraphs of a connected graph to a
single vertex there remains a tree graph (i.e. a graph without loops)
which characterizes the way the full graph is built from its 1PI sub-
graphs, together with the information to which amputated leg of the
1PI subgraph the lines of the tree graph are attached.

For a connected graph with two external vertices (these are the
graphs which contribute to the 2-point function), the arising tree graph
has no bifurcations, and on its vertices of order 2 there are 1PI sub-
graphs. We now sum the functions ΓG for all 1PI graphs with two
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amputated legs and obtain a function Σ(x, y). The perturbative for-
mula for the connected 2-point function now reads

G2(x, y) = S2(x− y)+
∞∑
n=1

∫
d4nzS2(x− z1)Σ(z1, z2)S2(z2 − z3) · · ·Σ(zn−1, zn)S2(zn − y) .

(7.3)

We interpret the functions G2, Σ and S2 as integral kernels of operators
in L2(R4). Then the expansion in equation (7.3) assumes the form

G2 =
∞∑
n=0

S2(ΣS2)
n . (7.4)

This is a geometric series with the sum

G2 = (−∆ +m2 − Σ)−1 . (7.5)

Σ is called the self energy (i.e. m2 is replaced by m2 − Σ).
In an analogous way we sum ΓG over all 1PI graphs with n ampu-

tated legs, n 6= 2, and obtain a function Γn(x1, . . . , xn). Γn is called
the n-point vertex function.

We now can write the connected n-point functions Gn (also called
Green’s functions) in terms of the vertex functions and the connected
2-point-function G2.

In the case of n = 1 we find

G1(x) =

∫
d4y G2(x, y)Γ1(y) (7.6)

Let Tn be the set of tree graphs T with n external vertices v ∈ Ve(T )
and an arbitrary finite number of inner vertices v ∈ Vi(T ) with nv > 2
incident lines. The number of lines l ∈ E(T ) of a tree graph is equal to
the number of vertices minus 1. Each line connects two vertices. Thus
we have

2](E(T )) = n+
∑

v∈Vi(T )

nv = 2(n+ ](Vi(T ))− 1) , (7.7)

hence ∑
v

(nv − 2) = n− 2 . (7.8)

We now associate to every pair (v, l) with v ∈ ∂l a variable yvl. We
obtain

Gn =
∑
T∈Tn

GT (7.9)

with

GT (yvl|v ∈ Ve(T )) =∫ ∏
(v,l),v∈Vi(T )

d4yvl
∏

v∈Vi(T )

Γnv(yvl, ∂l 3 v)
∏

l∈E(T )

G2(yv, v ∈ ∂l) . (7.10)
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Also the vertex functions can be introduced independently of a
graphical expansion. We set Γ2 = −G−1

2 (in the sense of operators),
Γ1 = 0 (we restrict ourselves to the case G1 = 0) and Γ0 = 0.

First we consider an apparently completely different problem. Let
φ(x; j) be the expected value of the field ϕ(x) under the influence of
an additional interaction term −ϕ(j) = −

∫
d4xϕ(x)j(x) with a test

function j,

φ(x; j) = µj(ϕ(x)) =
µ(ϕ(x)eϕ(j))

µ(eϕ(j))
=

δ

δj(x)
G(j) (7.11)

with the generating function of connected functions G(j) = log µ(eϕ(j)),

G(j) =
∞∑
n=0

1

n!
Gn(j

⊗n) . (7.12)

We look now for the so-called effective action, i.e. a functional Γ on
the space of classical field configurations with φ as stationary point.
We set

Γ(φ) = sup
j

(
φ(j)−G(j)

)
. (7.13)

If the supremum is reached for some j and if G is differentiable there,
j satisfies the equation φ = δG

δj
. Γ is the Legendre transform of G.

Inversely,
G(j) = sup

φ

(
φ(j)− Γ(φ)

)
. (7.14)

is the Legendre transform of Γ (provided G is convex). The supremum
is reached at j = δΓ

δφ
. We observe that δΓ

δφ
: φ 7→ j is the inverse of the

mapping δG
δj

: j 7→ φ.

The inverse of a power series in one variable is the so-called Bürmann-
Lagrange series. Here we have to find an infinite dimensional version
of this formula. We shall show that the vertex functions Γn are, up to
a sign, the coefficients of the power series expansion of Γ.

Let

Γ(n)(x1, . . . , xn;φ) =
δnΓ(φ)

δφ(x1) · · · δφ(xn)
(7.15)

and

Gn(x1, . . . , xn; j) =
δnG(j)

δj(x1) · · · δj(xn)
. (7.16)

φ(x) = G1(x, j) implies

δφ(x)

δj(y)
= G2(x, y; j) . (7.17)

Thus by the chain rule

δΓ(n)(x1, . . . , xn;φ(j))

δj(y)
=

∫
dxn+1Γ

(n+1)(x1, . . . , xn+1;φ(j))G2(xn+1, y; j) .

(7.18)
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Hence we find

δ(x− y) =
δj(x)

δj(y)
=

∫
dzΓ(2)(x, z;φ(j))G2(z, y; j) . (7.19)

As an integral kernel, Γ(2) is the inverse of G2.
We differentiate this equation with respect to j and obtain

0 =

∫
dz

∫
dz′
(
Γ(3)(x, z, z′;φ(j))G2(z, y; j)G2(z

′, y′; j)
)

+ Γ(2)(x, z;φ(j))G3(x, y, y
′; j) .

(7.20)

Solving for G3 yields

G3(y, y
′, y′′; j)

= −
∫

dzdz′dz′′G2(y, z; j)G2(y
′, z′; j)G2(y

′′, z′′, j)Γ(3)(z, z′, z′′;φ(j)) .

(7.21)

But this is identical to the formula for the expansion of G3 into 1PI
functions after insertion of Γ3 = −Γ(3).

We now assume that the formula (7.10) with Γn = −Γ(n) holds up
to order n, and differentiate with respect to j.

We obtain

Gn+1(x1, . . . , xn, x; j) =
∑
T

∫ ∏
(v,l),v∈Vi(T )

dyvl∫ (
dz
∑
v

Γnv+1(yvl, ∂l 3 v, z;φ(j))G2(z, x; j)

×
∏
v′ 6=v

Γnv′
(ynv′

;φ(j))
∏
l

G2(yvl, v ∈ ∂l; j)
)

+
∏
v

Γnv(yvl, ∂l 3 v;φ(j))
∑
l

G3(yvl, v ∈ ∂l, x; j)
∏
l′ 6=l

G2(yvl′ , v ∈ ∂l′; j)

(7.22)

We then insert equation (7.21). The claim follows from the fact that
every tree graph with boundary points 1, . . . , n + 1 and inner vertices
of order larger than 2 can be obtained from one with boundary points
1, . . . , n by either connecting the point n + 1 with a line (thereby a
new vertex of order 3 is generated, this corresponds to the first sum in
the formula above) or connecting with an inner vertex (2nd part of the
sum).

A byproduct of the derived relation is that one may also expand
the vertex functions in terms of connected functions One only has to
replace Gn by −Γn and Γn by −Gn.

The relations above hold independently of the nature of the con-
nected functions. In case they are the Green’s functions of a translation
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invariant theory and depend only on the relative coordinates it is use-
ful to go to momentum space. The Fourier transforms of the n-point
functions are of the form

Ĝn(p1, . . . , pn) = δ(
∑

pi)gn(p1, . . . , pn) (7.23)

and
Γ̂n(p1, . . . , pn) = δ(

∑
pi)γn(p1, . . . , pn) , (7.24)

where gn and γn are defined only on the hypersurface
∑
pi = 0. One

now inserts these expressions into equation (7.10). All integrals over
the internal vertices can be easily performed because of the δ-functions,
and there remain only the momenta at the boundary points with the
condition

∑
pi = 0. All momenta at the inner vertices are uniquely

determined by the external momenta. We obtain

gn(p1, . . . , pn) =
∑
T

∏
l

g2(p∂l)
∏
v

γnv(pv) . (7.25)

We may now use the LSZ relations for calculating the S-matrix. We
have to take into account that the self energy Σ̂(p, q) = δ(p+q)σ(p) will
shift the mass of the particle. In case the Green’s functions are Lorentz
invariant, σ is a function of p2. If p2 = M2 is a simple zero of the func-
tion p2 − m2 − σ(p), we interpret M as the mass of the interacting
particle. According to the LSZ relations we obtain the S-matrix ele-
ments by multiplying the Fourier transformed Green’s functions with
p2
i −M2 for every external vertex i and putting afterwards the external

momenta onto the mass shell p2
i = M2. On the mass shell we have

(p2 −M2)g2(p,−p) = const . (7.26)

The contribution of the connected function to the S-matrix thus arises
(up to a normalization factor) from the expansion (7.25) in terms of
vertex functions by omitting all external lines (”amputation of external
legs”).





CHAPTER V

Renormalization

1. Mass and wave function renormalization

The perturbative construction of interacting quantum field theories
yields expressions which are ill defined due to the singularities of the
Feynman propagator. As an example let us look at a scalar field theory
with interaction g

4!
ϕ4. The first contribution to the self energy is

Σ(x, y) =
g2

3!
(i∆F (x− y))3 .

∆F is singular for lightlike arguments. Nevertheless, the powers of
∆F (x) are well defined for x 6= 0. Namely, outside of the origin i∆F

coincides either with ∆+ (for x 6∈ V−) or with ∆− (for x 6∈ V+). Both
distributions have well defined powers, e.g. for f ∈ D(R4) we have

∫
d4x∆+(x)3f(x) = (2π)−7

∫
d3p1

2ω1

d3p2

2ω2

d3p3

2ω3

f̂(ω1+ω2+ω3,p1+p2+p3)

with the Fourier transform f̂ of f . Since f̂ decays fast at infinity, the
integral on the right hand side converges and defines a distribution.

There remains the singularity at x = 0. In a first attempt we try, as
for the powers of ∆+, a representation by the Fourier transforms and
obtain

∫
d4x(i∆F (x)3f(x) =

(2π)−10

∫
d4pf̂(p)

∫ ∫
d4kd4q

(k2 −m2 + iε)(q2 −m2 + iε)((p− k − q)2 −m2 + iε)
.

The problem is that the integral over k and q does not converge. We
now expand the integrand in a Taylor series up to 2nd order in p around

113
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p = 0,

1

(k2 −m2 + iε)(q2 −m2 + iε)((p− k − q)2 −m2 + iε)
=

1

(k2 −m2 + iε)(q2 −m2 + iε)((k + q)2 −m2 + iε)

+
2p(k + q)

(k2 −m2 + iε)(q2 −m2 + iε)((k + q)2 −m2 + iε)2

+
4(p(k + q))2 + p2((k + q)2 −m2)

(k2 −m2 + iε)(q2 −m2 + iε)((k + q)2 −m2 + iε)3

+R(p, k, q) .

The remainder R decays for large momenta with the 9th power and
should not raise problems for the integration. For the first term we
expect a quadratic divergence; this term does not depend on the ex-
ternal momentum p. The second term diverges linearly and is a linear
function of p. The 3rd term finally seems to diverge logarithmically
and depends quadratically on p.

For making these considerations precise, we regularize the integrand
by multiplying it with a test function which vanishes for large momenta.
Let w ∈ D(R8) with w(0) = 1. We multipy the integrand with w( k

Λ
, q

Λ
)

with the cutoff momentum Λ > 0. In the limit Λ → ∞ this factor
converges towards 1. From the terms of the Taylor expansion we obtain
after integration over k and q the terms

a(Λ) + bµ(Λ)pµ + cµν(Λ)pµpν +R(p,Λ) .

For large Λ, a(Λ) behaves as Λ2, bµ(Λ) as Λ and cµν(Λ) as ln(Λ). R(p,Λ)
converges for Λ →∞ against a distribution R(p). The question is how
to interpret the divergent quantities..

In a first step we exploit the freedom in the choice of w to achieve at
bµ = 0 and cµν = cgµν . For finite values of Λ one obtains as quadratic
term in the effective action

Γ(φ) =

∫
d4x
(1
2
(1+c)∂µφ∂

µφ−1

2
(m2+a)φ2

)
+

∫
d4x

∫
d4yφ(x)R̂(x−y; Λ)φ(y) .

We set Z = 1 + c (wave function renormalization) and m2
ren = (m2 +

a)Z−1 (mass renormalization). Then we redefine the field as φ̂ =
√
Zφ

and the effective action as a function of the redefined field, Γ̂(φ̂) = Γ(φ).

The local contributions to Γ̂ look like the classical action with the
renormalized mass. We now fix φ̂ and mren and calculate φ and m
(the ”bar” mass) as functions of Λ. In the limit Λ → ∞ the bar
quantities diverge, but all observables are expected to depend only
on the renormalized quanatities. This method is called multiplicative
renormalization.
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Another (equivalent) possibility for eliminating the divergences con-
sists in adding Λ-dependent counter to the Lagrangean which compen-
sate the divergent terms in the effective action. In our case suitable
counter terms are

− c
2
∂µφ∂

µφ+
a

2
ϕ2 .

This procedure is called additive renormalization.

2. Coupling constant renormalization

The 4-point vertex function in 2nd order is

Γ4(x1, x2, x3, x4) = gδ(x1 − x2)δ(x2 − x3)δ(x3 − x4)

+
g2

2

∫
d4yd4z(i∆F (y − z))2δ(x1 − y)

(
δ(x2 − y)δ(x3 − z)δ(x4 − z)

+ δ(x3 − y)δ(x2 − z)δ(x4 − z) + δ(x4 − y)δ(x2 − z)δ(x3 − z)
)
.

The calculation of ∆2
F leads to a logarithmically divergent integral in

momentum space,

(̂i∆F )2(p) = (2π)−6

∫
d4k

1

(k2 −m2 + iε)((p− k)2 −m2 + iε)
=

(2π)−6

∫
d4p

(
1

(k2 −m2 + iε)2
+

p2 − 2kp

(k2 −m2 + iε)2((p− k)2 −m2 + iε)

)
.

The second term is finite, the first term diverges logarithmically. We
regularize the integral as in the preceding section and obtain a contri-
bution of the form d(Λ). Therefore, the coefficient of φ4 in the effective
action is (up to nonlocal terms which remain finite in the limit Λ →∞)

g

4!
+

g2

2 · 4!
d(Λ) .

As before we have the two alternatives: we could introduce the renor-
malized coupling constant

gren = (g +
g2

2
d)Z−2

and express the bar coupling constant g as a function of Λ (multi-

plicative renormalization) or we add a counterterm − g2

2·4!dφ
4 to the

Lagrangean.
One can show that in the φ4-theory all divergent terms in the ef-

fective action are of the form a
2
(∂φ)2, c

2
φ2 and d

4!
φ4. Thus the additive

as well as the multiplicative renormalization can be performed in every
order of perturbation theory.

In the proof of this claim divergences of subdiagrams create prob-
lems which could be solved only around 20 years after the work of
Tomonaga, Schwinger, Feynman and Dyson. In the momentum repre-
sentation these problems already arise in the treatment of the so-called
”setting sun”-graph from Section 1, since it contains the ”fish”-graph
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from this section three times as divergent subgraph. Thus the inte-
gral over the remainder R does not converge absolutely, and the result
depends on the choice of the test function w.

Fortunately, in the position space representation the problem does
not occur in this order. This may be seen in the following way.

We already know that the powers of ∆+ are well defined distribu-
tions. We may write them in the following way

∆+(x)n =

∫ ∞

0

dM2ρn(M
2)∆+(x,M) .

with the so-called phase space density

ρn(M
2) = (2π)−3(n−1)

∫ ∏
j

d3pj
2ωj

δ(M −
∑

ωj)δ(
∑

pj) .

This expression is a special case of the Källan-Lehmann representation
of the 2-point function of a scalar field, applied to the 2-point function
of :ϕn :. One easily verifies that ρn(M

2) grows for M → ∞ as M2n−4

and vanishes forM < nm. For n = 2, e.g., we find after one momentum
space integration

ρ2(M
2) = (2π)−3

∫
d3p

4ω2
δ(M − 2ω) .

and arrive finally at

ρ2(M
2) =

1

16π2

√
1− 4m2

M2
.

A corresponding expression with the same function ρ holds for ∆−.
It is suggestive to use the same representation also for the powers of

the Feynman-propagators. But this would lead to a divergent intergral
over M2. But one can exploit the fact that ∆±(x;M) are solutions of
the Klein-Gordon equation for mass M . We set

(i∆F (x))nren = (−� + a)n
∫ ∞

n2m2

dM2 ρn(M
2)

(M2 + a)n−1
i∆F (x,M) .

This expression coincides for x 6= 0 with the unrenormalized expression.
It depends nontrivially on the choice of the constant a.

As an example we compute the difference of the renormalized squares
of the Feynman propagator with constants a and 0. We obtain

(i∆F (x)2
ren,a=0 − (i∆F (x)2

ren,a

= (−�)

∫
dM2ρ2(M

2)(
1

M2
− 1

M2 + a
)i∆F (x,M)

−a
∫

dM2 ρ2(M
2)

M2 + a
i∆F (x,M) .

(2.1)
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In the first term, the d’Alembertian � can be interchanged with the in-
tegration, because of the faster decay in M2. i∆F is a Green’s function
for the Klein-Gordon operator for mass M , thus

−�i∆F (x,M) = M2i∆F (x,M) + δ(x) .

The first term on the right hand side compensates precisely the second
integral in (2.1). We observe that the renormalized expressions differ
by a multiple of the δ-function.

3. Regularization and Renormalization Methods

3.1. Pauli-Villars Regularization. A simple method for regu-
larizing the Feynman propagator goes back to Pauli and Villars. In
this method one subtracts from the Feynman propagator suitable lin-
ear combinations of Feynman propagators to other masses,

∆reg
F (x) :=

n∑
i=1

ci∆F (x,Mi) (3.1)

with M1 = m, c1 = 1,
∑
ciM

2k
i = 0, k = 0, . . . , n − 2. In the limit

Mi →∞, i > 1 one gets back the original Feynman propagator. In the
simplest case (n = 2) one chooses

∆reg
F (x) = ∆F (x,m)−∆F (x,M) . (3.2)

The behavior of the Feynman propagator at high energies is in leading
order independent of M , hence the Fourier transform of the regularized
propagator behaves as

∆̂reg
F ∼ 1

(k2)2
, k2 →∞ (n = 2) .

In terms of the regularized propagator (3.2) the fish graph becomes
finite. For stronger divergent graphs one has to choose higher values
of n.

The Pauli-Villars regularization can be understood as follows: we
choose n independent free fields ϕMi

with masses Mi, i = 1, . . . , n, form
the tensor product of the associated Fock spaces and define a field

φ =
∑√

ciϕMi
. (3.3)

The Feynman propagator of φ is the regularized propagator (3.1). Since
not all of the coefficients ci can be positive, the field φ is not hermitean.
One may change the scalar product in the corresponding Fock spaces,
such that φ is again hermitean, but then the scalar product is no longer
positive definite.

A nice feature of the Pauli-Villars method is that it is Lorentz in-
variant. The Pauli-Villars method can, however, not directly be applied
to nonabelian gauge theories.
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Another version of Pauli-Villars regularization is to subtract the
contributions of higher masses for a given graph, e.g. for the setting-
sun graph

(∆F (x)3)reg =
3∑
i=1

ci∆F (x,Mi)
3

with c1 = 1, M1 = m and c2 =
M2

3−M2
1

M2
2−M2

3
, c3 =

M2
1−M2

2

M2
2−M2

3
.

3.2. Feynman Parameters. For the calculation of Feynman graphs
often the following method is useful. Namely, one can rewrite the mo-
mentum space integral over a product of n Feynman propagators as an
integral over the (−n)th power of a quadratic form in the momenta,
followed by an integral over the parameters determining the quadratic
form. Then the momentum space integration can be performed, and it
remains an integral over the parameters.

The method is based on the following lemma:

Lemma V.1. Let a1, . . . , an > 0. Then

1

a1 · · · an
= (n− 1)!

∫
x1,...,xn>0

dx1 · · · dxn
δ(
∑
xi − 1)

(
∑
xiai)n

.

Proof. For n = 1 the formula is obviously correct. We assume
that it is correct for some n ≥ 1. For n+ 1 the right hand side is

n!

∫
dx1 · · · dxn+1

δ(
∑n+1 xi − 1)

(
∑n+1 xiai)n+1

.

We may evaluate the δ-function over xn+1 and obtain the equivalent
expression

n!

∫
P
xi<1

dx1 · · · dxn
1(∑n xi(ai − an+1) + an+1

)n+1 .

We now can perform the xn-integration. The result is

(n− 1)!
1

an − an+1

∫
P
xi<1

dx1 · · · dxn−1

(n−1∑
xi(ai − b) + b)

)−n|b=an+1

b=an
.

According to our induction hypothesis this coincides with

1

an − an+1

(
1

a1 · · · an−1an+1

− 1

a1 · · · an−1an

)
=

1

a1 · · · an+1

.

�

We use this method for calculating the fish graph. In order to avoid
problems with varying signs we consider the corresponding problem for
the euclidean theory.

The square of the 2-point Schwinger function is formally given by

S2(x)
2 = (2π)−8

∫
d4p eipx

∫
d4k

1

(k2 +m2)((p− k)2 +m2)
.
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According to the lemma above we may replace the integrand of the
k-integral by∫ 1

0

dx
1(

x((p− k)2 +m2) + (1− x)(k2 +m2)
)2 .

The quadratic form in the denominator is

k2 +m2 + xp2 − 2xpk .

We set q = k−xp and a = m2 +x(1−x)p2. There remains the integral∫
d4q(q2 + a)−2 .

This integral diverges logarithmically. We cut it off at |q| = Λ and
obtain∫
|q|≤Λ

d4q(q2+a)−2 = 2π2

∫ Λ

0

dr r3(r2+a)−2 = −π2

∫ Λ

0

dr r2 d

dr

1

r2 + a
.

Here we used in the first step that the (3-dimensional) surface area of
a ball in R4 with radius r is 2π2r3. We now perform partial integration
and find

−π2 Λ2

Λ2 + a
+ π2

∫ Λ

0

dr
2r

r2 + a
.

The antiderivative of the remaining integrand is ln(r2 + a). Therefore
we obtain ∫

|q|<Λ

d4q(q2 + a)−2 = −π2 Λ2

Λ2 + a
+ π2 ln

Λ2 + a

a
.

The first term converges for Λ → ∞ towards −π2. The second term
diverges logarithmically. It holds for b > 0

ln
Λ2 + a

a
= ln

Λ2 + a

Λ2 + b
+ ln

Λ2 + b

b
+ ln

b

a
.

We observe that the divergent term can be chosen to be independent
of a. Thus the divergence does not depend on the external momentum.
We now subtract the value of the integral at p = 0 and get in the limit
Λ →∞∫

d4q
(
(q2 +m2 + x(1− x)p2)−2 − (q2 +m2)−2

)
= −π2 ln(1+x(1−x) p

2

m2
) .

It remains the integral over the Feynman parameter x. For this purpose
we factorize the argument of the logarithm

1 + x(1− x)
p2

m2
= − p2

m2
(x− 1

2
−

√
1

4
+
m2

p2
)(x− 1

2
+

√
1

4
+
m2

p2
) .
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The antiderivative of the logarithm is x(lnx− 1). Hence∫ 1

0

dx ln(1 + x(1− x)
p2

m2
) = ln

p2

m2
+ 2x(lnx− 1)|

1
2
+

r
1
4
+m2

p2

− 1
2
+

r
1
4
+m2

p2

.

After a few manipulations we obtain the result

2(θ coth θ − 1)

with sinh θ = p2

4m2 .
The contribution of the fish graph, subtracted at momentum p = 0,

is therefore

lim
Λ→∞

(
Ŝ2

2(p)Λ − Ŝ2
2(0)Λ

)
=

1

32π4

(
1−

√
1 +

4m2

p2
Arsinh

√
p2

4m2

)
=: f(p2) .

For the vertex function Γ4(p1, p2, p3, p4) = γ4(p1, p2, p3, p4)δ(
∑
pi) the

fish graph gives the contribution

γfish
4 (p1, p2, p3, p4) = f(s) + f(t) + f(u)

with the so-called Mandelstam variables s = (p1 + p2)
2, t = (p1 + p3)

2

und u = (p1 + p4)
2 (under the condition

∑
pi = 0).

3.3. α-Parameter or Schwinger’s Proper Time Formalism.
We use the integral representation

1

p2 +m2
=

∫ ∞

0

dα e−α(p2+m2)

of the propagator. The contribution of the fish graph is

I(p) :=

∫
d4q

(q2 +m2)((p− q)2 +m2)

=

∫ ∞

0

dα

∫ ∞

0

dβ

∫
d4q e−(α+β)m2−αq2−β(p−q)2 .

The integral over q is of the Gaussian form. We compute∫
d4q e−αq

2−β(p−q)2 =

∫
d4q e−(α+β)(q− β

α+β
p)2− αβ

α+β
p2 =

π2

(α+ β)2
e−

αβ
α+β

p2 .

We set α+ β = γ und α
α+β

= x. Then

I(p) = π2

∫ 1

0

dx

∫ ∞

0

dγ γ−1e−γ(m
2+x(1−x)p2) .

The integral over γ diverges at γ = 0 logarithmically.
We now proceed as in the preceding section and subtract the value

at p = 0 before integrating over γ. We obtain an expression of the form

F (a, b) =

∫ ∞

0

dγ

γ
(f(γa)− f(γb)) .
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For an integral of this form one finds

F (a, b) = lim
ε↓0

∫ ∞

ε

dγ

γ
(f(γa)− f(γb))

= lim
ε↓0

∫ εb

εa

dγ

γ
f(γ) = f(0) ln

b

a
.

This yields the renormalized contribution of the fish graph

I(p)ren = −π2

∫ 1

0

dx ln(1 + x(1− x)
p2

m2
) ,

in agreement with the calculation in terms of Feynman parameters.

3.4. Dimensional Regularization. The ultraviolet divergences
become weaker in lower spacetime dimensions. In the α-parameter-
representation the spacetime dimension occurs as an exponent in an
homogeneous polynomial of the α-parameter. In the example of the
preceding section we obtain for the unrenormalized integral as a func-
tion of the dimension d the expression

Id(p) = µ4−dπd/2
∫

dx

∫ ∞

0

dγ γ−
d−2
2 e−γ(m

2+x(1−x)p2) . (3.4)

Here µ is an arbitrarily chosen parameter with the dimension of a mass
such that the integral remains dimensionless for d 6= 4. The integrand
is well defined for complex d, and the integral is absolutely convergent
for Re d < 4 . For a > 0 we have∫

dγ γ−
d−2
2 e−γa = a

d−4
2

∫
dγ γ−

d−2
2 e−γ = a

d−4
2 Γ(

4− d

2
) .

The Γ-function is meromorphic with poles at the points 0,−1,−2, . . ..
It satisfies the functional equation

xΓ(x) = Γ(x+ 1) .

Thus

Γ(
4− d

2
) =

Γ(6−d
2

)
4−d
2

.

We observe that Id(p) has an analytic extension with a simple pole at
d = 4. The coefficient of the pole term is π2. After subtraction of the
pole term we obtain a function which is analytic in a neighborhood of
d = 4,

Id(p)ren = Id(p)−
π2

4−d
2

=
2

d− 4

(∫ 1

0

dxπd/2
(
m2 + x(1− x)p2

µ2

) d−4
2

Γ(
6− d

2
)− π2

)
Let ε = 4−d

2
. The limit d→ 4 is then the derivative of the function∫ 1

0

dxπ2−ε
(

µ2

m2 + x(1− x)p2

)ε
Γ(1 + ε)
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with respect to ε at ε = 0. The result is

I(p)ren = π2

∫ 1

0

dx

(
− ln π − ln

m2 + x(1− x)p2

µ2
+ Γ′(1)

)
.

It depends on the choice of the parameter µ. The obtained expression is
called minimally subtracted (MS-scheme). The constant γ = −Γ′(1) =
0.5772 is the so-called Euler-Mascheroni constant. Often one uses the
so-called modified minimal subtraction (MS, speak MS bar). Here in
addition the constant −π2(γ + ln 4π) is subtracted.

These conventions have no physical meaning. Physical meaningful
quantities are, e.g., the differences I(p)ren−I(0)ren. They coincide with
the previously derived expressions.

3.5. Extension of Distributions. The methods discussed up to
now rely essentially on the form of the Feynman propagator in momen-
tum space. But we already observed that in the case of graphs with
two vertices the arising powers of the Feynman propagators in position
space can be immediately given for x 6= 0. The remaining problem is
the extension of a distribution which is defined on test functions which
vanish in a neighborhood of the origin to a distribution which is defined
everywhere.

The mathematical question of existence and uniqueness of exten-
sions can be answered according to Steinmann in terms of the so-called
scaling degree of the distribution [?].

Definition V.2. Let T be a distribution on an open subset U ⊂ Rd

with λU ⊂ U for λ < 1. The scaling degree sd(T ) is the smallest
element of R ∪ {±∞} with the property

lim
λ↓0

λδT (λx) = 0 ∀δ > sd(T )

(convergence in the sense of distributions).

Examples 1. (i) Let f be a continuous function of one real
variable with f(0) 6= 0. Then

lim
λ↓0

λδ
∫

dx f(λx)ϕ(x) →

 0 , δ > 0
f(0)

∫
ϕ , δ = 0

∞
∫
ϕ , δ < 0

hence sd(f) = 0.
(ii) The δ-function on Rd satisfies

δ(λx) = λ−dδ(x) ,

hence sd(δ) = d.

(iii) The function f(x) = e
1
x defines a distribution on R \ {0}.

Since λδe
1

λx diverges for all δ ∈ R, we have sd(f) = ∞.
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(iv) The function f(x) = e−
1

x2 on R \ {0} has the property

λδf(λx) → 0 ∀δ ∈ R ,

thus the scaling degree of the corresponding distribution is
sd(f) = −∞.

(v) The Feynman propagator in 4 dimensios has the scaling be-
havior

∆F (λx,m) = λ−2∆F (x, λm) .

In the limit m → 0 the Feynman propagator converges to-
wards the Feynman propagator of the massless theory. There-
fore the scaling degree of the Feynman propagator is

sd(∆F ) = 2 . (3.5)

(vi) Let T be a tempered distribution on Rd. Its Fourier transform

is again a tempered distribution T̂ which formally satisfies

T (ϕ) =

∫
dnp T̂ (p)ϕ̂(−p)

Now assume that λsT̂ (λ−1p) → 0 for λ→ 0 for some s ∈ R.
Then∫

ddxT (λx)ϕ(x) = λ−d
∫

dnxT (x)ϕ(λ−1x) .

With

ϕ(λ−1x) = (2π)−d/2λd
∫

ddp eipxϕ̂(λp)

we find

λs+d
∫

ddxT (λx)ϕ(x) =

∫
ddp T̂ (p)ϕ̂(−λp)

= λs
∫

ddp T̂ (λ−1p)ϕ̂(−p)

→ 0 for λ→ 0 .

Thus the scaling degree of T satisfies sd(T ) ≤ d+ s.

The scaling degree has the following properties:

Lemma V.3. (i) sd(∂αT ) ≤ sd(T ) + |α| (Here and in what
follows α denotes a multi-Index α = (α1, . . . , αd) mit αj ∈ N0.
|α| =

∑
j αj is the length of the multi-Index.)

(ii) sd(xαT ) ≤ sd(T )− |α|
(iii) sd(S + T ) ≤ max(sd(S), sd(T ))
(iv) sd(fT ) ≤ sdT for f ∈ C∞(Rd).
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Proof. The last property needs a proof. Let δ > sd(T ). Then

λδ
∫

ddxT (λx)ϕ(x) → 0 , ∀ϕ ∈ D(U)

with U = Rd or Rd \ {0}. Thus the family of distributions Tλ(x) =
λδT (λx), λ ≤ 1 is weakly bounded. Due to the principle of uniform
boundedness (Banach-Steinhaus) it is then also uniformly bounded, i.e.
for every compact region K ⊂ U there is a polynomial P , such that for
ϕ ∈ D(K)

|Tλ(ϕ)| ≤ sup
x
|P (∂)ϕ(x)| .

For the scaling degree of fT follows

|λδ
∫

ddxf(λx)T (λx)ϕ(x)| ≤ sup
x
|P (∂x)f(λx)ϕ(x)| .

The right hand side of the inequality is bounded in λ, λ ≤ 1, hence
the scaling degree satisfies sd(fT ) ≤ δ. This inequality holds for all
δ > sd(T ). This proves the claim. �

We now arrive at the fundamental existence and uniqueness theo-
rem.

Theorem V.4. Let T0 ∈ D(Rn \ {0}). Then:

(i) If sd(T0) < n, then there exists a unique distribution T ∈
D(Rn) with the properties

T (ϕ) = T0(ϕ) , ϕ ∈ D(Rn \ {0})
and sd(T ) = sd(T0).

(ii) In the case n ≤ sd(T0) <∞ there are distributions T ∈ D(Rn)
with the properties

T (ϕ) = T0(ϕ) , ϕ ∈ D(Rn \ {0})
and sd(T ) = sd(T0). Two such distributions T1 und T2 differ
by a derivative of the δ-function,

T1 − T2 = P (∂)δ ,

with a polynomial P with degree deg(P ) ≤ sd(T )− n.
(iii) If sd(T0) = ∞, there is no distribution T ∈ D(Rn) with the

property

T (ϕ) = T0(ϕ) , ϕ ∈ D(Rn \ {0}) .
Proof. The proof of this theorem is somewhat lengthy. We start

with item (iii). Since every distribution T can be locally represented
as a (distributional) derivative of a continuous function, i.e., for every
compact set K ⊂ Rn there exists a polynomial P such that

T (ϕ) = P (∂)f(ϕ) for ϕ ∈ D(K) (3.6)

the scaling degree of T is finite. Since T0 is a restriction of T to a
smaller test function space, also the scaling degree of T0 must be finite.
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We now prove the uniqueness statement of item (i). Two exten-
sions T1 and T2 differ by a distribution R with suppR = {0}. Such
a distribution is a derivative of the δ-function and has scaling degree
≥ n if it does not vanish. Since sd(R) ≤ max{sd(T1), sd(T2) we have
R = 0, i.e. T1 = T2.

Next we prove the existence of an extension of T0 in the case
sd(T0) < n. For this purpose we choose a test function χ ∈ D(Rn)
with χ(x) = 1 in some neighborhood of the origin. For all µ > 0 and
all ϕ ∈ D(Rn), (1−χ(µx))ϕ(x) = 0 in some neighborhood of the origin,
hence

Tµ(x) := T0(x)(1− χ(µx)), µ > 0

is a family of distributions which are defined on all of Rn. For each
ϕ ∈ D(Rn \ {0}) there is some µ0 > 0 such that χ(µx)ϕ(x) = 0 for all
x and for all µ ≥ µ0, hence

lim
µ→∞

Tµ(ϕ) = T0(ϕ) , ϕ ∈ D(Rn \ {0}) .

We now prove that the limit (Tµ)µ→∞ exists for all test functions. The
space of distributions is sequentially complete, hence the limit defines
a distribution T .

We write

T = T1 +

∫ ∞

1

dµ
d

dµ
Tµ (3.7)

and compute

〈 d
dµ
Tµ, f〉 = −

∫
dnxT0(x)

n∑
i

xi(∂iχ)(µx)f(x)

= −
n∑
i

µ−(n+1)

∫
dnxf(µ−1x)T0(µ

−1x)xi∂iχ(x)

(3.8)

Now let sd(T0) < δ < n. We have sd(fT0) ≤ sd(T0) by Lemma V.3 ,
hence

µ−δ
∫
dnxf(µ−1x)T0(µ

−1x)xi∂iχ(x) → 0 for µ→∞ (3.9)

according to the definition of the scaling degree, and thus

|〈 d
dµ
Tµ, f〉| ≤ constµδ−n−1 (3.10)

We conclude that the integral in (3.7) exists.
In case sd(T0) ≥ n but finite we can draw the same conclusion if we

restrict the distribution to test functions f which vanish at the origin
at order sd(T0)− n. Let

Dω(Rn) = {f ∈ D(Rn), ∂αf(0) = 0, |α| ≤ ω} .
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We use the fact that every f ∈ Dω(Rn) can be represented in the form

f(x) =
∑

|α|=[ω]+1

xαgα(x)

with gα ∈ D(Rn). This follows from the Taylor expansion of f(λx) at
λ = 0; the terms up to order [ω] vanish, and the remainder

f(x) =

∫ 1

0

dλ
(1− λ)[ω]

[ω]!

d[ω]+1

dλ[ω]+1
f(λx)

is of the form above but with gα ∈ C∞(Rn). We then multiply the
equation by a test function which is equal to 1 on the support of f
and obtain the desired representation. We conclude that sd(fT0) ≤
sd(T0)− [ω].

We may now repeat the argument for the convergence of the integral
in (3.7) and get a unique distribution Tω on Dω(Rn).

In the last step we extend the distribution Tω to all of D(Rn). For
this purpose we choose within D(Rn) a complementary subspace W to
Dω(Rn) and set

T = Tω ⊕ l

with an arbitrary linear functional l on W . In this way we obtain all
possible extensions of Tω. The dual space of W can be identified with
the set of distributions which vanish on Dω(Rn),

l ∈ Dω(Rn)⊥ = {P (∂)δ, degP ≤ ω} .
The distributions {∂αδ, |α| ≤ ω} form a basis of Dω(Rn)⊥. The dual ba-
sis in W consists of functions wα with ∂αwβ(0) = (−1)|α|δαβ, |α|, |β| ≤
ω, and any family of test functions wα with this property generates
a complementary space of Dω(Rn). An example are the functions

wα = (−x)α

α!
w with a function w which is equal to 1 in some neigh-

borhood of the origin.
We may now construct a projection W from D(Rn) onto Dω(Rn),

W = 1−
∑
|α|≤ω

|wα〉〈∂αδ| .

W may be considered as a modified Taylor subtraction.
If W is fixed, the extensions of Tω are given by

T = Tω ◦W + l

with l ∈ Dω(Rn)⊥.
Actually one can absorb the linear functional l by modifying W .

Namely let g ∈ Dω(Rn) with Tω(g) = 1. Then also

W ′ = W + |g〉〈l|
is a projection onto Dω(Rn), and we have

Tω ◦W ′ = Tω ◦W + l .
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The corresponding dual basis is {w′α = wα − cαψ} for l =
∑
cα∂

αδ.
It remains to show that the obtained extensions have the correct

scaling degree. For this we refer to the literature. �

Examples 2. (i) Let T0(ϕ) =
∫

dx ϕ(x)
|x| for ϕ ∈ D(R \ {0}).

We have sdT0 = 1, hence T0 can be uniquely extended to
D0(R) = {ϕ ∈ D(R), ϕ(0) = 0}.

Let w ∈ D(R) with w(0) = 1. Then

D(R) = D0(R)⊕ {λw, λ ∈ C} .

This holds since for each ϕ ∈ D(R)

ϕ0(x) = ϕ(x)− w(x)ϕ(0) ∈ D0(R)

and thus

ϕ = ϕ0 + ϕ(0)w .

We define an extension of T0 by

T (ϕ) = T0(ϕ0) =

∫
dx
ϕ(x)− ϕ(0)w(x)

|x|

= lim
ε↓0

∫
|x|>ε

dx
ϕ(x)− ϕ(0)w(x)

|x|
= lim

ε↓0
(− signx ln|x|) (ϕ(x)− ϕ(0)w(x)) |ε−ε

−
∫

dx signx ln|x| d

dx
(ϕ(x)− ϕ(0)w(x))

=

∫
dx

(
d

dx
signx ln|x|

)
ϕ(x)− ϕ(0)

∫
dx

(
d

dx
signx ln|x|

)
w(x) ,

hence

T = (signx ln|x|)′ + cδ with c = −(signx ln|x|)′(w) .

(ii) Let T0(x) = (i∆F (x)n, x 6= 0. With the spectral function ρn
we have the representation

T0(x) =

∫
dM2ρn(M)i∆F (x,M)

The scaling degree of T0 is 2n. We choose test functions wα
with ∂βwα(0) = (−1)|α|δβα, |α|, |β| ≤ 2n− 4. Then

Wϕ = ϕ−
∑
α

wα∂
αϕ(0)(−1)|α| ∈ D2n−4(R4) .

Since the δ-function and its derivatives vanish up to order
2n− 4 on Wϕ, we find∫

d4x∆F (x,M)(Wϕ)(x) =
(−1)n−1

M2(n−1)

∫
d4x∆F (x,M)�n−1(Wϕ)(x)
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Thus Tω, ω = 2n− 4 is given by

Tω = (−1)n−1�n−1

∫
dM2 ρn(M)

M2(n−1)
i∆F (·,M) .

T = Tω ◦W is then

T = (−1)n−1�n−1

∫
dM2 ρn(M)

M2(n−1)
i∆F (·,M) +

∑
α

cα∂
αδ

with

cα = −(−1)n−1�n−1

∫
dM2 ρn(M)

M2(n−1)

∫
d4xi∆F (x,M)wα(x) .

In the extension procedure described above no divergences occur.
The connection with the previously discussed methods is the following.
Let (TΛ) be a sequence of (everywhere defined) distributions which
converges on Dω(Rn) towards Tω. Then

T = Tω ◦W = lim
Λ
TΛ ◦W

= lim
Λ
TΛ −

∑
α

〈TΛ, wα〉∂αδ .

The divergent counter terms are thus given by 〈TΛ, wα〉∂αδ. If, on the
other hand, CΛ =

∑
α c

Λ
α∂

αδ are counter terms such that TΛ − CΛ

converges, then the limits

lim cΛα − 〈TΛ, wα〉 =: cα (3.11)

exist, and one may modify the projection W such that the limit is of
the form Tω ◦W .

In case Tω is tempered (i.e. defined on Sω(Rn) = {ϕ ∈ S(Rn), ∂αϕ(0) =
0, |α| ≤ ω}), and the sequence TΛ ∈ S ′(Rn) converges on Sω(Rn) to-
wards Tω, the extension may also be discussed in momentum space.

The counter terms are

CΛ(p) =
∑
α

〈TΛ, wα〉i|α|pα. (3.12)

Since wα(x) = 1
α!
xαvα with vα(0) = 1 and ∂β−αvα(0) = 0 for α < β,

|β| ≤ ω we find

〈TΛ, wα〉 =
1

α!
〈xαTΛ, vα〉 (3.13)

Since the Fourier transform of xαTΛ is (−i)|α|∂αT̂Λ we conclude that
the counter term in momentum space is a modified Taylor expansion
around zero where the derivative at the origin is replaced by a mean

over the derivative. In case T̂Λ is, in the limit, sufficiently nicely be-
haved at p = 0, one can choose an extension with vβ ≡ 1. This
corresponds to the BPHZ (Bogoliubov-Parasiuk-Hepp-Zimmermann)
method of subtracting the Taylor series at p = 0 up to the order ω. In
the Epstein Glaser framework this case is called the central solution.
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The Taylor expansion at zero momentum works for Feynman in-
tegrals in massive theories. In theories with massless particles one
subtracts instead the Taylor expansion at some spacelike momentum
q. In the framework described above this would mean to choose as a
basis in Sω(Rn)⊥ the distributions (eiqx∂αδ). The dual base in W is
then characterized by the condition ∂β(e−iqxwα)x=0 = δβα. wβ is of the
form wβ = xβeiqxvβ where vβ satisfies the same condition as before. If
we again set vβ ≡ 1 we obtain the Taylor expansion at q.

We now want to treat the question whether symmetries of T0 can
be preserved during the extension.

This is not always the case as may be seen in the example of 1
|x| .

1
|x|

is a homogeneous distribution on D(R\{0}), but none of its extensions
d
dx

(
signx ln |x|

a

)
, a > 0 to D(R) is homogeneous. In field theory this

phenomenon occurs, e.g., in the renormalization of the fish graph in
the massless ϕ4-theory. The renormalized theory is no longer scale
invariant (”dimensional transmutation”).

Let V be a representation of a group G on D(Rn) such that Dω(Rn)
and Tω are invariant under V ,

〈Tω, V (g)ϕ〉 = 〈Tω, ϕ〉 , ϕ ∈ Dω(Rn) .

Let V t be the transposed representation of G on the space of distribu-
tions S ∈ D′(Rn),

〈V t(g)S, ϕ〉 = 〈S, V (g−1)ϕ〉 .

Then we have for the extensions T of Tω

V t(g)T = T + l(g) , l(g) ∈ Dω(Rn)⊥ .

V t(g), restricted to {λT, λ ∈ C}⊕Dω(Rn)⊥, is a finite dimensional rep-
resentation of G. It contains the restriction D(g) of V t(g) on Dω(Rn)⊥

as a subrepresentation.
We now search for an l0 ∈ Dω(Rn)⊥, such that T + l0 is invariant.

Then

V t(g)(T + l0) = T + l(g) + V t(g)l0 = T + l0 ,

i.e., l0 has to fulfill the equation

l(g) = l0 −D(g)l0 .

We know that l(g) satisfies the equation

l(gh) = V t(gh)T−T = V t(g)
(
V t(h)T − T

)
+V t(g)T−T = D(g)l(h)+l(g) .

The solution of such an equation is called a cocycle. If l(g) can be
expressed as above in terms of l0 the cocycle condition is automatically
fulfilled; such an l(g) is called a coboundary. The space of cocycles
modulo the space of coboundaries is called the cohomology of G with
respect to the representation D.
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In case the finite dimensional representations of the group are com-
pletely reducible the cohomology of a finite dimensional representation
is always trivial . Namely, we may look at the matrix representation(

1 0
l(g) D(g)

)
Due to the complete reducibility of the representation there exists a
1-dimensional invariant subspace which is complementary to the rep-
resentation space of D. Such a subspace is of the form

{λ
(

1
l0

)
, λ ∈ C} (3.14)

On this subspace the representation is trivial. This is equivalent to the
above condition on l0.

For the Lorentz group every finite dimensional representation is
completely reducible. Therefore Lorentz-invariant distributions always
possess Lorentz-invariant extensions. For the scaling transformations,
on the other hand, one has to study the representations of R+ as multi-
plicative group. But they are not always completely reducible, as may
be seen from the example

R+ 3 λ 7→
(

1 0
lnλ 1

)
.

The existence of these representations is responsible for the breaking
of scaling invariance in the massless ϕ4 theory, and probably also for
the occurence of a mass scale for light hadrons in QCD.

4. Renormalization in all orders

We discussed divergences and their removal in some examples. We
now want to address the problem of performing renormalization sys-
tematically in all orders of perturbation theory. A very transparent
method was developed by Epstein und Glaser on the basis of older
ideas of Stückelberg and Bogoliubov. It consists in an inductive con-
struction of time ordered products.

Time ordering does not commute with time derivatives. Therefore
it is preferable to perform time ordering before the fields are represented
as operator valued distributions on Fock space. We thus consider the
arguments of time ordered products as classical fields, as they occur in
the Lagrangean and in the path integral, and without imposing the field
equation (”off-shell”-formalism). The space of functionals on smooth
classical field configurations φ has the structure of a commutative as-
sociative algebra. The possible interactions are of the form

L(g) =

∫
d4x

n∑
i=1

gi(x)Ai(φ(x), ∂φ(x)) (4.1)
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with n-tuples of test functions g = (gi) and classical fields Ai =
Ai(φ, ∂φ) (local functionals). We endow the space of functionals of
classical field configurations with a noncommutative product ? which
takes after identification of polynomial functionals of φ with normal
ordered products of quantum fields ϕ the form of Wick’s theorem.

Let F,G be functionals of φ. Then

(F ? G)(φ) = exp 〈~∆+,
δ2

δφ1δφ2

〉F (φ1)G(φ2)|φ1=φ2=φ . (4.2)

The exponential function is here defined as a formal power series in
~. The terms of finite order are well defined provided the functional
derivatives of F and G are sufficiently well behaved. This is true for
iterated ? products of local functionals and relies as the operator prod-
uct of Wick polynomials on the positive energy property of ∆+. The
S-matrix for an interaction of the form (4.1) is the generating functional
of time ordered products of the fields Ai,

S(L(g)) =
∑
n

in

n!

∑
i1,...,in

〈T (Ai1 , . . . , Ain), gi1 ⊗ · · · ⊗ gin〉

The time ordered products are here considered as distributions with
values in the space of functionals of classical field configurations. We of-
ten use the somewhat sloppy notation TAi1(x1) · · ·Ain(xn). The prop-
erties of the time ordered products can be encoded in properties of the
S-matrix:

Unitarity:

S(L(g))∗ = S(L(g))−1 (4.3)

where the inverse refers to the ?-product.
Causality: If there is a Cauchy surface with supp g in its future

and supph in its past, the S-matrix factorizes

S(L(g + h)) = S(L(g)) ? S(L(h)) (4.4)

Covariance:

α(a,Λ)S(L(g)) = S(α(a,Λ)L(g)) (4.5)

where the Poincaré transform (a,Λ) acts on functionals F on
C∞(M) by

(α(a,Λ)F )(ϕ) = F (ϕ(a,Λ)) (4.6)

with ϕ(a,Λ)(x) = ϕ(Λx+ a).

For the time ordered products one obtains the following requirements

Symmetry: As expansion coefficients of a power series the time
ordered products are symmetrical in their indices.

Causality:

TA1(x1) · · ·An(xn) = TA1(x1) · · ·An(xk) ? TA1(xk+1) · · ·An(xn)
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if none of the points x1, . . . , xk lies in the past of some of
the points xk+1, . . . , xn. In case the two sets of points are
spacelike to each other it follows in particular that the time
ordered products on the right hand side commute with each
other.

Unitarity:

(TA1(x1) · · ·An(xn))∗ =
∑

I1+...+Ik={1,...,n}

(−1)kT (A∗i (xi), i ∈ I1)?· · ·?T (A∗i (xi), i ∈ Ik)

(4.7)
Covariance:

αa,ΛTA1(x1) · · ·An(xn) = TΛA1(Λx1 + a) · · ·ΛAn(Λx1 + a) (4.8)

These general rules are amended by the initial condition

TA(x) = A(x).

The initial condition together with the axioms of symmetry and
causality implies that for pairwise different arguments the the time or-
dered product can be written in form of an operator product. Namely,
let xi 6= xj for all i 6= j. Then there is a permutation π such that xπ(i)

is not contained in the past of xπ(j) for i < j. Therefore

TA1(x1) · · ·An(xn) = Aπ(1)(xπ(1)) ? · · · ? Aπ(n)(xπ(n)) . (4.9)

In case two arguments are spacelike separated the permutation is not
unique. Thus the definition of time ordered products is consistent only
for fields which ?-commute for spacelike separations.

The time ordered product of 2 fields is uniquely determined for
noncoinciding arguments. Renormalization amounts to extending this
distribution to all of R4 × R4. We proceed by induction and assume
that time ordered products with less than n factors are everywhere
defined and satisfy the conditions above. Here the causality condition
in the case of n factors reduces to the requirements that the ? product
on the right hand side is commutative for spacelike localization.

Now the time ordered product of n factors is uniquely determined
outside of the thin diagonal x1 = . . . = xn. Namely, assume that
not all points xi are equal. Then the set of points can be separated
by a spacelike hyperplane such that a nonempty subset lies in the
future and another nonempty subset in the past of the hypersurface
Due to the causality axiom the time ordered product of n factors can
be written as a ?-product of time ordered products with less than n
factors. The result is independent of the choice of the hyperplane
because of the commutativity of the ?-product of spacelike localized
time ordered products.
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The time ordered product is a formal series of functional differential
operators. It has the structure

Tn = mn ◦
∑
G∈Gn

〈tG, δG〉 (4.10)

with

δG =
δ2|E(G)|∏
v∈V (G) δϕ

αv
v

(4.11)

where αv is the number of lines incident at the vertex v and where tG
is an extension of

t0G(xv,e, v ∈ ∂e, e ∈ E(G)) =
∏

e∈E(G)

i∆F (xv,e, v ∈ ∂e) (4.12)

mn denotes the pointwise product of n functionals of ϕ,

mn(F1 ⊗ · · · ⊗ Fn)(ϕ) = F1(ϕ) . . . Fn(ϕ) (4.13)

After application of the functional differential δG to an n-tuple of local
functionals of ϕ one obtains, for every field configuration ϕ, a distribu-
tion with support on the partial diagonals xv,e = xv,e′ if v ∈ ∂e ∩ ∂e′.
We can write it as a test function of compact support in the center of
mass coordinates xv =

∑
e:v∈∂e

1
αv
xv,e with values in the space

Y G =
⊗

v∈V (G)

Y αv (4.14)

where Y αv is the space of distributions in the relative coordinates αv
independent coordinates xv,e − xv, v ∈ ∂e with support at the origin.
Application of a distribution from Y G to t0G yields the unrenormalized
Feynman amplitude. Its extension to all test functions proceeds as de-
scribed in the previous section. The ambiguity in the extension process
amounts to the addition of a local functional in nth order.

The result can be summarized in the Main Theorem of Renormal-
ization:

Theorem V.5. (i) There exist formal series of multilinear
maps

S(L(g)) =
∞∑
n=0

in

n!
〈Tn(L(g), . . . ,L(g))

which satisfy the axioms.
(ii) Two solutions S and Ŝ differ by an analytic map Z : L → L̂

with Z ′(0) = id in the space of admissible Lagrangeans such
that

S(L̂(g)) = Ŝ(L(g)) .
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The maps Z characterize the ambiguity of the construction of the
theory from a Lagrangean. They form a group which was called renor-
malization group by Stückelberg und Petermann.

One may impose additional constraints on the renormalization pro-
cedure. These constraints can be fulfilled if the associated cocycle in
the renormalization group is a coboundary.

Also in cases the constraint cannot be fulfilled the associated cocyle
is of interest. An important example is the behavior under scaling. Let
us start from a free theory which is scale invariant, as e.g. the free
massless scalar field. In order to fix a renormalization procedure we
have to introduce a scale µ with the dimension of a mass. Changing the
scale from µ to µ′ amounts to a renormalization group transformation
Z(µ, µ′) with the composition law

Z(µ, µ′) ◦ Z(µ′, µ′′) = Z(µ, µ′′) (4.15)

The parameter µ characterizes different renormalization procedures.
One may now, for a fixed value of µ, investigate the behavior of the
theory at scaled coordinates. But this is equivalent to keeping the coor-
dinates fixed and to scaling the renormalization parameter. Therefore
the renormalization group transformations Z(µ, µ′) characterize also,
for a given theory, the behavior at different scales. As a result one
obtains the so-called running coupling constants.



CHAPTER VI

Nonabelian Gauge Theories

1. Introduction

In chapter III we constructed fields which generate massive parti-
cles with given spin s. The associated Feynman propagator arises as
a 2s-fold derivative of the scalar Feynman propagators and thus has
the scaling degree 2 + 2s. For s ≥ 1 there is therefore no local field
in the Fock space of the theory which can be used as the interaction
Lagrangean of a (power counting) renormalizable theory. The W- and
Z-bosons as quanta of the weak interaction, however, have spin 1, their
interaction (provided it is power counting renormalizable) must there-
fore be of another type.

A similar problem already occurred in quantum electrodynamics.
The Feynman propagator for the electromagnetic field has scaling de-
gree 4, for the Dirac field scaling degree 3; also there is no suitable
interaction term in the Fock space of the free theory.

In QED the problem is solved by extending the theory such that
also the vector potential becomes a local field. The time ordered 2-
point function in Feynman gauge is

〈Ω, TAµ(x)Aν(y)Ω〉 = −gµνDF (x− y) . (1.1)

Formally one can construct a Fock space for the extended theory, but
with a scalar product which is not positive.

In the extended theory the Feynman propagator of the vector po-
tential has scaling degree 2, and the interaction term of QED

L = Aµj
µ , (1.2)

with the current jµ = ψγµψ of the Dirac field, has dimension 4. One
obtains thus a renormalizable theory. The renormalization ambiguity
can be used to fulfill the so-called Ward identity which allows to go
back to the original theory.

Crucial for this procedure is the fact that the Nakanishi-Lautrup
field B = ∂µA

µ is a free field also in the presence of interactions. It
implements the remaining gauge transformations after gauge fixing (see
(IV,4.31))

Q(Λ) =

∫
d3xB(t,x)

↔
∂tΛ(t,x)

135
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with solutions Λ of the wave equation, and can be used for the con-
struction of the algebra of observables and the physical Hilbert space
as described in Chapter IV.

In the presence of several vector fields Aaµ, a = 1, . . . , n which in-
teract with each other, the B-fields are no longer free, and one has to
use another method.

The best known method is the BRST method. In this method the
c-number function Λ is replaced by fields ca (called the ghost fields). ca

is a scalar Fermi field and fulfills a modified wave equation involving the
vector potential. In terms of c one now can form an operator Q which
implements the remaining gauge transformations, but with the gauge
parameters replaced by the ghost fields. A further family of fields, the
so-called anti ghost fields c̄a, satisfy canonical anticommutation rela-
tions with the ghost fields. Q is chosen to have vanishing square, and
the quotient of the kernel of Q by the range of Q (the cohomology of Q)
is identified with a dense subset of the physical Hilbert space (actually
the positivity of the scalar product on the quotient has to be checked
directly; it does not follow automatically from the construction).

The observables are constructed in a similar way. The algebra gen-
erated by the vector fields, the ghost fields and the anti ghost fields has
a natural grading (ghost number). The graded commutator with Q
defines a graded derivation on this algebra (the BRST transformation
s). Q2 = 0 implies s2 = 0, and the algebra of observables is defined
as the cohomology of s, and it is straightforward to show that it has a
natural representation on the physical Hilbert space.

The remarkable fact is now that this construction is possible only
under very special conditions on the interaction between the vector
fields. The most important class of interactions for which the method
works is that of nonabelian gauge theories with Lagrangean

L =
1

4
F a
µνF

µν,bκab

with the field strength tensor

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcA

b
µA

b
ν ,

the Killing form κab and the structure constants fabc of a Lie algebra.
The present theory of elementary particles, the so-called standard

model, is a gauge theory, based on the Lie group U(1)× SU(2)× SU(3).

2. Classical Gauge Theories

The idea (and the name) of gauge theory goes back to an attempt
of Hermann Weyl. He intended to extend Einstein’s theory of grav-
ity in order to include also classical electromagnetism. His ansatz was
that the theory should not only be generally covariant as general rel-
ativity, but should allow also the freedom to choose at every point
independently the unit of length (which is in Einstein’s theory fixed
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by the parallel transport in terms of the Levi Civita connection). This
additional freedom should correspond to the charge.

In the original form, the idea did not work, but after the invention
of quantum mechanics with its complex valued wave functions the idea
worked in a modified way. Namely, one can vary the phase of the wave
function independently at every point. Taking the derivative amounts
to

∂µe
iΛψ = eiΛ(∂µ + i∂µΛ)ψ

The additional term is nothing else as the gauge freedom of a vector
potential, hence the covariant derivative

Dµ = ∂µ − iAµ

satifies
Dµe

iΛψ = eiΛDµψ

if both, ψ and Aµ are transformed.
The arising structure was generalized to other groups. In particular

the concept of isospin suggested to look at SU(2) as a possible gauge
group, and, after the observation of higher symmetry groups, also to
SU(3).

In the mean time mathematicians had developed the theory of fiber
bundles by which general properties of gauge theories could be ana-
lyzed.

Let us first define the notion of a vector bundle. Let M be a smooth
manifold, and let V be a finite dimensional vector space. We associate
to each point x a copy Vx of V and define the disjoint union⋃

x∈M

Vx =: E

as the total space of the bundle. The map π : E → M with π(v) = x
if v ∈ Vx is assumed to be smooth. Maps s : M → E with π ◦ s = id
are called sections of the bundle.

The idea of gauge theory is that there is no a priori given identifi-
cation between different fibers. Instead the relation between different
fibers is given by an additional field, the gauge field. In the case of a
trivial bundle (actual all bundles over Minkowski space are trivial) sec-
tions can be identified with functions with values in V . The crucial fact
is that even then there is no distinguished identification. The gauge
field (in mathematics: a linear connection) now can be characterized
by associating to each path on M a linear isomorphism between the
fibers on the end points of the graph (the parallel transport), such that
this association is compatible with the concatenation of paths and such
that the reversed path leads to the inverse isomorphism. Given these
isomorphisms, one can introduce covariant directional derivatives along
curves in M . They have on trivial bundles the form

Dµ = ∂µ + Aµ (2.1)
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where Aµ(x) is a linear operator on V . If one transforms the fiber at x
with the automorphism g(x) (gauge transformation in physics, bundle
isomorphism in mathematics) one obtains the gauge transformed gauge
field

A′µ = g−1∂µg + g−1Aµg (2.2)

The gauge field is nontrivial if the field strength (the curvature in math-
ematics) is nontrivial,

Fµ,ν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ.Aν ] (2.3)

A gauge invariant Lagrangean can be be defined as

L(A, ∂A) =
1

4g2
TrFµνF

µν (2.4)

(Yang-Mills action). This interaction induces the Yang-Mills equations

[Dµ, Fµν ] = 0 (2.5)

A class of solutions is given by the so-called (anti-)self dual gauge fields
(instantons) which satisfy

F = ± ∗ F (2.6)

They exist only in the euclidean theory. They are thought to give
important contributions to the path integral.

3. Perturbative construction of nonabelian gauge theories;
BRST symmetry

The Yang-Mills equation does not possess a well posed initial value
problem. The reason is, as for the Maxwell eqaution for the vector
potential, the gauge freedom which allows gauge transformations at
different times. To fix the gauge one can introduce a condition

∂µAµ = B (3.1)

with an arbitrary function B with values in the Lie algebra of the gauge
group. Then the arising nonlinear hyperbolic equation

�Aν − ∂νB − [Aν , B] + [Aµ, ∂
µAν ] + [Aµ, Fµν ] = 0 (3.2)

has (at least locally) a well posed initial value problem provided the
initial values satisfy the gauge fixing condition (3.1).

We now follow the historical development and describe the heuristic
solution to the problem of quantizing Yang-Mills theories. We use the
path integral formulation.

Let S(A) the Yang-Mills action and F (A) a gauge invariant func-
tional of the gauge field A. We want to determine the expectation
value

〈F 〉 =
1

Z

∫
DAeiS(A)F (A) . (3.3)
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We consider the integral of the gauge fixing condition over the gauge
group∫

dg δ(∂µAgµ −B) ≡
∫ ∏

x

dg(x)δ(∂µAgµ(x)−B(x)) =: ∆(A,B)−1 .

(3.4)
and obtain

〈F 〉 =
1

Z

∫
DAeiS(A)F (A)∆(A,B)

∫
dg δ(∂µAgµ −B) . (3.5)

independently of B. We now interchange the order of integration over g
and A, use the facts that S, F , and the measure DA are gauge invariant
and arrive at

〈F 〉 =
1

Z

∫
DAeiS(A)F (A)∆(A,B)δ(∂µAµ −B) (3.6)

We now compute the functional ∆(A,B). Under the condition that
there is exactly one gauge transformation g0 such that ∂µAg0µ = B the
transformation law for the δ-function yields

∆(A,B)−1 =

∣∣∣∣det
δ∂µAgµ
δg

(g0)

∣∣∣∣−1

. (3.7)

Actually, the assumption is in general not fulfilled, there can be several
gauge equivalent gauge fields which satisfy the gauge fixing condition
(so-called Gribov copies). In perturbation theory, however, one can
restrict oneself to an infinitesimal neighborhood of a gauge field which
satisfies the gauge fixing condition. There the solution is unique.

The functional derivative in the determinant is for a gauge field A
which satisfies the gauge fixing condition the linear operator on the Lie
algebra of the gauge group

(M(A)ξ)a(x) = ((� + ∂µadAµ) ξ)a (x) (3.8)

where we use a gauge field which satisfies the gauge fixing condition.
We set ∆(A) = ∆(A, ∂µAµ) = detM(A) and find for a gauge invariant
functional F∫

DAeiS(A)F (A) =

∫
DAδ(∂A−B) detM(A)eiS(A)f(A) . (3.9)

In order to eliminate the δ-function we integrate over B with a Gaussian

measure, formally given by DB ei
λ
2

R
dx trB(x)2 and obtain the additional

term Sgf(A) = λ
2
(∂A)2 (gauge fixing term) in the Lagrangean.

The determinant can, according to an idea of Fadeev and Popov,
be considered as a fermionic Gaussian integral. We introduce fermionic
scalar fields (Fadeev-Popov ghosts ca and antighosts c̄a) and add to the
action the term

Sgh(A, c, c̄) =

∫
dx
〈
c̄,M(A)c

〉
=

∫
dx
〈
∂µc̄(x), ∂µc(x) + [Aµ, c(x)]

〉
(3.10)
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Here we assumed that the determinant has a constant phase such that
it can be absorbed in the normalization factor. Altogether we get an
action

S(A, c, c̄) = S(A) + Sgf(A) + Sgh(A, c, c̄) . (3.11)

It is convenient to add an auxiliary field (called B) by writing the
exponential of the gauge fixing term as the Fourier transform of a
Gaussian measure over B,

ei
R
dxλ

2
(∂A)2 =

∫
DB ei

R
dx trB∂A+ 2

λ
trB2

. (3.12)

B satisfies the field equation B = 1
λ
∂A and can therefore be eliminated.

It plays however an important role in the so-called BRST symmetry of
the action

S(A,B, c, c̄) = S(A) + Sgf(A,B) + Sgh(c, c̄) . (3.13)

with Sgf(A,B) =
∫
dx trB∂A + 2

λ
trB2. The augmented action is no

longer gauge invariant. In particular, the gauge fixing term changes
under an infinitesimal gauge transformation to

〈δSgf(A
g, B)

δg
|g=e, ξ〉 =

∫
dx trBM(A)ξ (3.14)

We now identify the ghost field with the Maurer-Cartan form of the
gauge group at the identity, i.e. c(ξ) = ξ. The equation above can then
be written as

dgSgf(A
g, B)|g=e =

∫
dx trBM(A)c (3.15)

in terms of the exterior differential dg of the gauge group. This term
coincides up to a sign with the ghost action when c̄ is replaced by
B. One now introduces the BRST transformation s as a graded (with
respect to ghost number) translation invariant derivation,

s(A) = ∂c+ [A, c] (3.16)

s(c) = −[c, c] (3.17)

s(c̄) = −B (3.18)

s(B) = 0 (3.19)

On A and c, the BRST transformation coincides with the differential
dg. In particular, (3.17) is the Maurer-Cartan equation. Moreover, s
itself is a differential (i.e. it satisfies s2 = 0).

We now verify that the extended action is BRST invariant. But
this follows from M(A)c = s(∂A), hence s(M(A)c) = 0 and

s(Sgh(c, c̄)) = −
∫
dx trBM(A)c = −s(Sgf(A,B)) . (3.20)

Renormalization of gauge theories is now performed such that BRST
invariance is preserved in every step. In terms of the effective action
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(the vertex functional) the procedure is the following. One constructs
the effective action Γ(A,B, c, c̄) as a formal power series in ~ with ghost
number zero, Γ =

∑∞
n=0 Γn. In zeroth order Γ0 = S. We now assume

s(Γk) = 0 for k < n. One then shows that s(Γn) is a local functional
of the fields. The crucial question is now whether there exists another
local functional Sn with ghost number zero and s(Sn) + s(Γn) = 0. If
yes, one adds ~nSn to the classical action S and obtains an effective
action which has ghost number zero and is BRST invariant up to nth
order.

The possibility of preserving BRST invariance is guaranteed if the
cohomology of the BRST transformation on local functionals with
ghost number 1 is trivial. This is generally true for semisimple gauge
groups.

4. The triangle anomaly

An instructive and extremely important example of an anomaly
(i.e. a nontrivial cohomology class) is the so-called triangle anomaly.
It occurs already in QED in connection with the axial current.

Let ψ be a Dirac field and jµ = ψγµψ the vector current and j5
µ =

ψγ5γµψ the axial current.
The Dirac equation for ψ yields

∂µjµ = 0 , ∂µj5
µ = 2imψγ5ψ . (4.1)

We want to define the vacuum expectation value of the product of 3
currents,〈

Ω, T jµ(x)jν(y)j
5
λ(z)Ω

〉
≡ tµνλ(u, v) , u = x− z, v = y − z . (4.2)

These distributions have scaling degree 9; they are symmetric under
permutation of the two vector currents, i.e. under the interchange of
(u, µ) ↔ (v, ν) and transform under orthochronous Lorentz transfor-
mations according to

tµνλ(Λu,Λv)Λ
µ
αΛ

ν
βΛ

λ
γ det Λ = tαβγ(u, v) (4.3)

They are unique up to a derivative of the δ-function of first order with
the same symmetry. The possible finite counter terms are multiples of

Cµνλ(u, v) = εµνλρ(∂
ρ
u − ∂ρv)δ(u)δ(v) . (4.4)

We now want to impose the conservation of the vector current (this
is actually needed for the renormalizability of QED). The distribution

∂µu tµνλ(u, v) ≡ Vνλ(u, v) (4.5)

has scaling degree ≤ 10 and vanishes outside of the origin. The sym-
metry properties of tµνλ imply that Vνλ has the structure

Vνλ(u, v) = aενλαβ∂
α
u∂

β
v δ(u)δ(v) (4.6)
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with some constant a. If we replace tµνλ by tµνλ + bCµνλ(u, v), the
divergence is

∂µu(tµνλ(u, v) + bCµνλ(u, v)) = Vνλ(u, v)− bεµνλρ∂
µ
u∂

ρ
vδ(u)δ(v) (4.7)

We observe that we have to choose a = b. Due to the symmetry
(u, µ) ↔ (v, ν) then also the divergence with respect to the other vector
current vanishes.

But now tµνλ is uniquely determined, and there is no freedom left
to achieve the conservation of the axial current (in the sense of (4.1)).
In fact, this relation turns out to be violated after renormalization.

We want to compute

Wµν(u, v) = −(∂λu + ∂λv )tµνλ(u, v)− 2im
〈
Ω, T jµ(x)jν(y)ψγ5ψ(x)Ω

〉
= cεµναβ∂

α
u∂

β
v δ(u)δ(v) . (4.8)

For this purpose we use the Pauli-Villars method and subtract the

corresponding expression for another mass M . r
(M)
µνλ = tµνλ − t

(M)
µνλ has

scaling degree 8. For (u, v) 6= 0 it satisfies the equation

− (∂λu + ∂λv )r
(M)
µνλ (u, v)− 2im

〈
Ω, T jµ(x)jν(y)ψγ5ψ(x)Ω

〉
(4.9)

= −2iM
〈
Ω, T jµ(x)jν(y)ψγ5ψ(x)Ω

〉(M)
.

Both sides have scaling degree 9. Therefore they are uniquely deter-
mined since there is no counter term with the correct symmetry, hence

equation (4.9) holds everywhere. Moreover, for the same reason, r
(M)
µνλ

converges towards tµνλ for M →∞. We thus conclude that

Wµν(u, v) = lim
M→∞

(−2iM)
〈
Ω, T jµ(x)jν(y)ψγ5ψ(x)Ω

〉(M)
. (4.10)

It remains to compute the right hand side of (4.10). In terms of the
Feynman propagator for Dirac fields with mass M ,

SF (x) = (i∂/+M)∆F (x) = (2π)−4

∫
d4p e−ipx(p/−M + iε)−1 , (4.11)

we have〈
Ω, T jµ(x)jν(y)ψγ5ψ(x)Ω

〉(M)
= (4.12)

tr γµSF (x− y)γνSF (y − z)γ5SF (z − x) + ((x, µ) ↔ (y, ν)) .

We perform the trace over the Dirac matrices. Using

1

4
tr γµγνγργσγ

5 = εµνρσ (4.13)

and the fact that the trace of an odd number of γ-matrices as well as
that of γµγνγ

5 vanish, we find〈
Ω, T jµ(x)jν(y)ψγ5ψ(x)Ω

〉(M)
= 8iMεµνρσ∂

ρ
u∂

σ
v∆F (u−v)∆F (−u)∆F (v) .

(4.14)
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It remains to compute the limit M2∆F (u− v)∆F (−u)∆F (v) for M →
∞. Smearing with a test function f ∈ S(R8) with a Fourier transform
with compact support yields∫

d4ud4vM2∆F (u− v)∆F (−u)∆F (v)f(u, v) = (4.15)

(2π)−8

∫
M2f̂(p, q)d4pd4qd4k

((p+ k)2 −M2 + iε)(k2 −M2 + iε)((p+ q + k)2 −M2 + iε)
(4.16)

Here the k integral is not absolutely convergent. We define it as∫
dk = lim

Λ→∞

∫
|k|<Λ

d3k

∫ ∞

−∞
dk0 (4.17)

For finite Λ the integral is absolutely convergent. Moreover, the inte-
grand is a meromorphic function of k0 with poles at

±
√
|k|2 +M2 − iε,

− p0 ±
√
|p + k|2 +M2 − iε,

− p0 − q0 ±
√
|p + q + k|2 +M2 − iε . (4.18)

For M sufficiently large all poles with positive real part have negative
imaginary part and vice versa. We may now deform the integration
contour for k0 and integrate instead over the imaginary axis. The
arising integral over k is then absolutely convergent, moreover, for all
(p, q) ∈ supp f̂ it is uniformly bounded by an integrable function. We
then change variables k → Mk, perform the limit M → ∞ pointwise
in p and q and obtain

lim
M→∞

∫
d4ud4vM2∆F (u− v)∆F (−u)∆F (v)f(u, v) = (4.19)

f(0)(2π)−4

∫
d4k(|k|2 + 1)−3 =

1

32π2
f(0) .

We finally arrive at the numerical value of the constant c in the axial
anomaly

c = − 1

2π2
. (4.20)


