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1 Introduction
We are interested in techniques which deal with linear wave equations on Lorentzian manifolds.

Recall 1. The wave equation in R×R3 is given by

2u = 0 , 2 := ∂2
t −

3

∑
i=1

∂2
xi

(1)

with 2 denoting the d’Alembert operator.

We observe the following properties of the solutions to 1: 2 is linear, therefore the kernel of 2 is a
vector space. Possible solutions to 1 are: (t, x) 7→ cos(nt) cos(nx1), n ∈ Z, therefore the kernel of
2 is of infinite dimensions.

However from our intuition we can see, that for each height and speed of a specific wave, there
has to be a unique solution, corresponding to this solution.

The aim of this talk is, to prove the existance and uniqueness of solutions to the wave equation
not on Minkowski space, but on the more generalized setting of a Lorentzian manifold. From the
talk Partial differential equations I we know, that for the search for a solution to a given PDE, we
should focus on the search for the fundamental solution to the given differential operator. For
this, we need to generalize several mathematical concepts.

In the following, (Mn, g) will denote an n-dim. Lorentzian manifold.

Def. 1.1. A generalized d’Alembertian P on M is a linear differential operator of second order
whose principal symbol is given by minus the metric. In the scalar setting (which we will keep
throughout this talk), P can be written in local coordinates by

P = −
n

∑
i,j=1

gij(x)
∂2

∂xi∂xj +
n

∑
j=1

Aj(x)
∂

∂xj + B1(x)

where Aj and B1 are matrix-valued coefficients depending smoothly on x and gij is the inverse
matrix of gij with gij = 〈 ∂

∂xi ,
∂

∂xj 〉.

Example 1.2. The d’Alembertian acts on smooth functions on (Mn, g) by 2 f := −trg(Hess( f )),
where Hess(X, Y) := 〈∇Xgrad f , Y〉. In normal coordinates,

2 f = −µ−1
x

n−1

∑
j=0

∂xj(µx(grad f )j)

with µx := |det((gij)ij)|
1
2 . Therefore, the principal symbol is given by minus the metric.

Def. 1.3. Let P be a generalized d’Alembertian in the setting above. The generalized wave
equation associated with P is

Pu = f

with f ∈ C∞(M, K)
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2 Distributions and Fundamental Solutions
Def. 2.1. The space of K-valued distributions on M is defined by

D′(M, K) := {T : D(M, K)→ K, linear and continuous}

where D(M, K) := {ϕ ∈ C∞(M, K), supp(ϕ) is compact} denotes the space of K-valued test
functions on M.

How do differential operators act on distributions? Given T ∈ D′(M, K) and a linear differential
operator P on M, one can define

PT[ϕ] := T[P∗ϕ]

with ϕ ∈ D(M, K) and P∗ being the formal adjoint of P, i.e. on a Hilbert-space it fulfills 〈Pu, v〉 =
〈u, P∗v〉.

How can functions be understood as distributions? For a fixed f ∈ C∞(M, K) the map (which is
called again f )

ϕ 7→
∫

M
f (x)ϕ(x)dx

defines a K-valued distribution on M.

Def. 2.2. Let P be a generalized d’Alembertian in the setting above and x ∈ M. A fundamental
solution for P at x on M is a distribution F ∈ D′(M, K) with

PF = δx , (2)

where δx denotes the Dirac distribution in x, i.e. δx[ϕ] = ϕ(x), ∀ϕ ∈ D(M, K)

After this short recall, we focus on finding fundamental solutions to generalized d’Alembertians
on Lorentzian manifolds.

3 Riesz Distributions on Minkowski space
Our aim will be first to describe a fundamental solution to the generalizes d’Alembertian at the
origin 0 on the Minkoswki space (Rn, γ), γ := 〈〈·, ·〉〉0.

Def. 3.1. For any complex number α with Re(α) > n let R+(α) and R−(α) be the functions
defined on Rn by

R±(α)(X) :=
{

C(α, n)γ(X)
α−n

2 , if X ∈ J±(0),
0, otherwise,

where C(α, n) := 21−απ
2−n

2

( α
2−1)!( α−n

2 )!
, J±(0) being the causal future or past of 0 and z 7→ (z− 1)! is the

Gamma function.

Lemma 3.2. For all α ∈ C with Re(α) > n we have

2R±(α + 2) = R±(α) (3)

In particular, the map α 7→ R±(α), {Re(α) > n} → D′(Rn, C) can be holomorphically extended
on C.

Proof 3.3. We first proof the following identity: γ · R±(α) = α(α− n + 2)R±(α + 2). It follows
from

C(α, n)
C(α + 2, n)

=
2(1−α) ( α+2

2 − 1)! ( α+2−n
2 )!

2(1−α−2) ( α
2 − 1)! ( α−n

2 )!
= α (α− n + 2).



Second, we proove the identity (grad γ) · R±(α) = 2α grad R±(α + 2): We choose a Lorentzian
orthonormal basis e1, . . . , en of V and we denote differentiation in direction ei by ∂i. We fix a
testfunction ϕ and integrate by parts:

∂iγ · R±(α)[ϕ] = C(α, n)
∫

J±(0)
γ(X)

α−n
2 ∂iγ(X)ϕ(X) dX

=
2C(α, n)
α + 2− n

∫
J±(0)

∂i(γ(X)
α−n+2

2 )ϕ(X) dX

= −2αC(α + 2, n)
∫

J±(0)
γ(X)

α−n+2
2 ∂i ϕ(X) dX

= −2αR±(α + 2)[∂i ϕ]

= 2α∂iR±(α + 2)[ϕ],

From the last identity it follows that

∂2
i R±(α + 2) = ∂i

(
1

2α
∂iγ · R±(α)

)
=

1
2α

(
∂2

i γ · R±(α) + ∂iγ ·
(

1
2(α− 2)

∂iγ · R±(α− 2)
))

=
1

2α
∂2

i γ · R±(α) +
1

4α(α− 2)
(∂iγ)

2 (α− 2)(α− n)
γ

· R±(α)

=

(
1

2α
∂2

i γ +
α− n

4α
· (∂iγ)

2

γ

)
· R±(α) .

Putting these pieces together, we conclude

2 R±(α + 2) =
(

n
α
+

α− n
4α
· 4γ

γ

)
R±(α) = R±(α).

Def. 3.4. We call R±(α) the advanced (resp. retarded) Riesz distribution on Rn for α ∈ C.

Lemma 3.5. The Riesz distribution satisfies

1. For any α ∈ C one has supp(R±(α)) ⊂ J±(0)

2. R±(0) = δ0

Corollary 3.6. R±(2) satisfies 2R±(2) = δ0, and supp(R±(2)) ⊂ J±(0).

Therefore, R±(2) is an advanced (resp. retarded) fundamental solution to 2 in the origin.

4 Local fundamental solution
We took the first step on the way to a fundamental solution to a generalized d’Alembertian on a
Lorentzian manifold, by finding the Riesz distribution and it’s properties on Minkowski space.
We will make use of this distribution to take the second step. But how exactly can we construct a
solution out of it? Locally, we can try to pull the Riesz distribution back from the tangent space at
a point onto a neighbourhood of that point.

4.1 First attempt
Def. 4.1. Let Ω be a geodesically starshaped neighbourhood of a point x in a Lorentzian manifold
(Mn, g). Let expx : exp−1(Ω) → Ω be the exponential map and µx := |det((gij)ij)|

1
2 . We define

the Riesz distribution at x on Ω to the parameter α ∈ C by

RΩ
±(α, x) : D(Ω, C)→ C , ϕ 7→ R±(α)[(µx ϕ) ◦ expx]

Where µx takes into account the difference between the volumeforms of M and Tx M.



Figure 1: Ω is geodesically starshaped w.r.t. x. Picture source: [1]

Lemma 4.2. In the given setting, the Riesz distribution at x on Ω satisfies

1. RΩ
±(0, x) = δx

2. supp(RΩ
±(α, x)) ⊂ JΩ

± (x)

3. 2RΩ
±(α + 2, x) =

(
2Γx−2n

2α + 1
)

RΩ
±(α, x)

With Γx := γ ◦ exp−1
x : Ω→ R.

We observe that (1) and (2) makes RΩ
±(2, x) a promising candidate for a fundamental solution for

2 at x, but (3) let this attempt fail because 2Γx − 2n does not vanish in general.

4.2 Formal Ansatz
In the given setting, we look for a fundamental solution of the form

T±(x) :=
∞

∑
k=0

Vk
x RΩ
±(2 + 2k, x)

where for each k, Vk
x is a smooth coefficient depending on x. This series is only formal but by plug-

ging it into the equation PT± = δx and using previously seen properties of the Riesz distribution,
we deduce for the coefficients the following:

∇grad Γx Vk
x −

(
1
22Γx − n + 2k

)
Vk

x = 2k PVk−1
x (4)

for every k ≥ 1 as well as V0
x,x = 1.

Def. 4.3. Let Ω ⊂ M be convex. A sequence of Hadamard coefficients for P on Ω is a sequence
(Vk)k≥0 of C∞(Ω×Ω, C) which fulfills 4 and V0

x,x = 1, for all x ∈ Ω and k ≥ 1, where we denote
by Vk

x := Vk
x,· ∈ C∞(Ω, C).

Γx denotes the parallel-transport of x which exists, because we have choosen our neighbourhood
Ω to be geodesically starshaped. Therefore, 4 is also called transport equation and we benefit from
it since it turns out to be a single differential equation which can be solved without any further
assumptions.

For simplicity we consider from now on a generalized d’Alembertian P, which has no first order
term. This is because such a term would involve the parallel transport of the connection which is
canonically associated with P.



Proposition 4.4. Let Ω be a convex open subset in a Lorentzian manifold (Mn, g) and P be a
generalized d’Alembertian on M of the form P = 2 + b, b ∈ C∞(M, K). Then there exists an

unique sequence of Hadamard coeff. for P on Ω. It is given for all x, y ∈ Ω by V0
x,y = µ

1
2
x (y) and,

for all k ≥ 1

Vk
x,y = −kµ

1
2
x (y)

∫ 1

0
µ

1
2
x (Φ(y, s))sk−1 · (P(2)V

k−1
x (Φ(y, s)))ds ,

where Φ(y, s) := expx(sexp−1
x (y)), Φ : Ω× [0, 1] → Ω. The index "(2)" in P(2)Vk−1 stands for P

acting on z 7→ Vk−1(x, z).

This leads us to the following Definition.

Def. 4.5. Let Ω and P be given as above. Let (Vk)k≥1 be the sequence of Hadamard coefficients
for P on Ω. The advanced (resp. retarded) formal fundamental solution for P at x ∈ Ω is the
formal series

RΩ
±(x) =

∞

∑
k=0

Vk
x RΩ
±(2 + 2k, x) (5)

4.3 Exact local fundamental solution

The existance of the Hadamard coefficients still does not provide any (local) fundamental solu-
tion, since the series 5 may diverge.

The idea is now to keep the first term of the formal fundamental solution unchanged, while mul-
tiplying the higher terms by a cutoff function.

More precisely, let Ω′ be a convex open subset in M. Let σ : R → [0, 1] be a smooth function
with supp(σ) ⊂ [−1, 1] and σ|[− 1

2 , 1
2 ]

= 1. Fix an integer N ≥ n
2 to insure that RΩ′

± (2 + 2k, x) is
continuous for any k ≥ N, and a sequence (ε)j≥N of real positive numbers.

Set

R̃±(x) :=
N−1

∑
j=0

V j
x · RΩ′

± (2 + 2j, x) +
∞

∑
j=N

σ(
Γx

εj
)V j

x · RΩ′
± (2 + 2j, x)

for every x ∈ Ω, with Γx := γ ◦ exp−1
x , γ := −〈〈·, ·〉〉0.

Figure 2: The cutoff function and Γ "squeeze" the support into the blue area. Picture source: [1].

Remark 4.6. This does not a priori define a fundamental solution, since it does not even define a
distribution. The tactic here is that for εj small enough, both conditions are almost fulfilled.



Proposition 4.7. Given Ω′ as above and Ω ⊂⊂ Ω′ relatively compact. Fix an integer N ≥ n
2 , then

there exists a sequence (ε)j≥N of positive real numbers such that for all x ∈ Ω̄, R̃±(x) defines a
distribution on Ω satisfying

1. P(2)R̃±(x)− δx = K±(x, ·), where K± ∈ C∞(Ω̄× Ω̄, C)

2. supp(R̃±(x)) ⊂ JΩ′
± (x)

3. y 7→ R̃±(y)[ϕ] is smooth on Ω for all ϕ ∈ D(Ω, C)

In other words: choosing suitably ε leads to a distribution depending smoothly on the base point
and which is nearly a fundamental solution in the sense that the difference P(2)R̃±(x) − δx is a
smooth function. How can we obtain now a "true" solution out of this? The idea is to get rid of
the error term by using methods of functional analysis. We set

K±(u) :=
∫

Ω̄
K±(·, y)u(y)dy

It follows, that (1) of the last proposition can be written as

P(2)R̃±(·)[ϕ] = (Id +K±)ϕ

So we should look for an inverse to the operator (Id +K±). For any given bounded endomorh-
pism A of a Banach space, (Id + A) is invertible as soon as ‖A‖ < 1.

Proposition 4.8. Let Ω ⊂⊂ Ω′ be a relatively compact causal domain in Ω′ and assume that

Vol(Ω̄) · ‖K±‖C0(Ω̄×Ω̄) < 1 . (6)

While ‖·‖ denotes the maximum norm. In particular, K± scales like the volume of the subset Ω.
Since we are free to choose the neighbourhood, we can choose it small enough that (Id + K±)
becomes an isomorphism for all k ∈N and is therefore invertible.

Setting

FΩ
± (·)[ϕ] := (Id +K±)−1(y 7→ R̃±(y)[ϕ])

for all ϕ ∈ D(Ω, C) we obtain the main result of this talk, namely the exact (local) fundamental
solution which we will proof.

(PFΩ
± (x))[ϕ] = FΩ

± (x)[P∗ϕ]

= {(Id +K±)−1(y 7→ R̃±(y)[P∗ϕ])}(x)

= {(Id +K±)−1 (y 7→ P(2)R̃±(y)[ϕ])}︸ ︷︷ ︸
(Id+K±)ϕ

(x)

= ϕ(x)

Therefore, we finally we arrived at

PFΩ
± (x) = δx (7)

which leaves us with the following conclusion:

Corollary 4.9. Let P be a generalized d’Alembertian on a Lorentzian manifold (Mn, g). Then
every point on M posesses a relatively compact causal neighbourhood Ω such that for every
x ∈ Ω, there exist fundamental solutions FΩ

± (x) on Ω for P at x satisfying

1. supp(FΩ
± (x)) ⊂ JΩ

± (x)

2. x 7→ FΩ
± (x)[ϕ] is smooth for all ϕ ∈ D(Ω, C)



5 Global fundamental solution
We want to construct now a global fundamental solution. A first idea could be to take the fun-
damental solutions constructed in the previous chapter and glue them together. There arises a
problem namely, which equations should be solved in each coordinate patch not containing the
point at which the fundamental solution is sought after? It becomes clear, that the global topology
of the manifold could set up some serious problems. Therefore we restrict our search on a "nice"
class of manifolds, i.e. on globally hyperbolic manifolds, even if uniqueness and existance of the
results can be extended to a broader class of spacetimes.

The technique can be understood step by step: We first start by solving the Cauchy problem which
provides us with a local-to-global construction. Afterwards we will use this to extend our local
fundamental solution to globally hyperbolic manifolds.

5.1 Results from the Cauchy problem

Recall 2. Let P be a generalized d’Alembertian on a globally hyperbolic spacetime (Mn, g) and
S ⊂ M be a (smooth) spacelike hypersurface with unit tangent vector field ν. Let f ∈ C∞(M, K)
and u0, u1 ∈ C∞(S, K). The Cauchy problem for P with Cauchy data ( f , u0, u1) is the system of
equations

Pu = f on M
u|s = u0

∂νu = u1 on S .

The main results of this analysis are the following

Proposition 5.1. Under the assumption of 4.8, there exists for every v ∈ D(Ω, C) a function
u± ∈ C∞(Ω, C) such that

Pu± = v
supp(u±) ⊂ JΩ

± (supp(v))

Proof 5.2. Sketch: We use our construction of FΩ
± to set

u±[ϕ] :=
∫

Ω
v(x)FΩ

± (x)[ϕ]dx , for every ϕ ∈ D(Ω, C).

We need to show first the support condition, second, that u± is a solution of Pu± = v, and last,
that u± is in fact a smooth section. For this, see [2].

Corollary 5.3. Let P be given as above. Then there exists at most one advanced (resp. retarded)
fundamental solution for P in x.

Theorem 5.4. Let (Mn, g), S and ν be given as above. Then for each open subset Ω of M satisfying
the properties of 4.8 and such that S ∩Ω is a Cauchy hypersurface of Ω, the following holds: For
all u0, u1 ∈ D(S ∩Ω, C) and each f ∈ D(Ω, C) there exists a unique u ∈ C∞(Ω, C) with

Pu = f
u|S = u0

∂νu = u1 .

Furthermore, supp(u) ⊂ JΩ
+ (K) ∪ JΩ

− (K), where K := supp(u0) ∪ supp(u1) ∪ supp( f ).



Proof 5.5. This is proven by using 5.1.

Theorem 5.6. Let P, M, S and ν be given as above.

1. For all ( f , u0, u1) ∈ D(M, C)⊕D(S, C)⊕D(S, C) there exists a unique u ∈ C∞(Ω, C) such
that

Pu = f
u|S = u0

∂νu = u1 .

Moreover, supp(u) ⊂ JΩ
+ (K) ∪ JΩ

− (K), with K := supp(u0) ∪ supp(u1) ∪ supp( f ).

2. The map D(M, C)⊕D(S, C)⊕D(S, C) → C∞(M, C), ( f , u0, u1) 7→ u, where u is the solu-
tion of (1), is linear continuous.

Proof 5.7. This is proven by using 5.4.

5.2 Global existance of a fundamental solution

We are now able to put the pieces of the puzzle together and recieve

Theorem 5.8. Let P be a generalized d’Alembertian on a globally hyperbolic manifold spacetime
M. Then there exists for each x ∈ M a unique fundamental solution F+(x) with past compact
support, and F−(x) with future compact support for P at x. They satisfy

1. supp(F±(x)) ⊂ Jµ
±(x)

2. for every ϕ ∈ D(M, C) the map M→ C, x 7→ F±(x)[ϕ] is a smooth function with

P∗(x 7→ F±(x)[ϕ]) = ϕ

Proof 5.9. This Theorem is proven by adding 4.8, 5.1 and 5.4.

In conclusion, the wave equation Pu = f with f ∈ D(M, C) posesses a unique solution u± ∈
C∞(M, C) with supp(u±) ⊂ Jµ

±(supp( f )) or equivalently with supp(u±) being past (resp. future)
compact on a globally hyperbolical spacetime M.
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