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Zusammenfassung

In dieser Masterarbeit wird die semiklassische Einstein-Gleichung unter Zuhilfenahme von

kohärenten Zuständen für das Klein-Gordon-Feld gelöst. Diese Zustände sind bezüglich

eines (verallgemeinerten) Grundzustandes definiert und durch eine klassische Lösung f

der Klein-Gordon-Gleichung charakterisiert. Auf einer gegebenen Raumzeit wird die En-

ergiedichte eines allgemeinen kohärenten Zustandes berechnet und dann ein f gesucht so

dass die semiklassische Einsteingleichung im entsprechenden kohärenten Zustand gelöst

wird. Dieser allgemeine Ansatz wird in drei Fällen untersucht. Zunächst wird der Er-

wartungswert der Energiedichte des Grundzustandes in einer 3D Torusraumzeit – der

Casimir-Effekt – berechnet und dazu verwendet um die semiklassische Einsteingleichung

in dieser Raumzeit zu lösen. Dann werden Zustände niedriger Energie auf der de Sitter-

Raumzeit untersucht und es wird versucht die semiklassische Einstein-Gleichung mit Hilfe

von kohärenten Anregungen dieser Zustände zu lösen; dabei stellt sich heraus, dass eine

Lösung nicht existiert. Schließlich wird die semiklassische Einstein-Gleichung auf allge-

meinen Robertson-Walker Raumzeiten unter Zuhilfenahme von kohärenten Anregungen

eines Zustandes niedriger Energie, unter der Annahme, dass die Energiedichte dieses Zu-

standes vernachlässigbar ist, gelöst.

Abstract

In this master thesis the semi-classical Einstein equation will be solved by using coherent

states for the Klein-Gordon field. Coherent states are defined with respect to a (gen-

eralised) ground state and characterised by a classical solution f of the Klein-Gordon

equation. On a given spacetime, we compute the energy density of a general coherent

state and try to find an f such that the semi-classical Einstein equation is satisfied in

the related coherent state. This general idea will be applied in three cases. First the

expectation value of the ground state energy density in the 3D torus spacetime – the

Casimir effect – will be calculated and will be used in order to solve the semi-classical

Einstein equation in this spacetime. Then we consider states of low energy and their

corresponding coherent states in de Sitter spacetime and try to solve the semi-classical

Einstein equation by means of them; in this case it turns out that a solution does not ex-

ist. Finally, the semi-classical Einstein equation in general Robertson-Walker spacetimes

will be solved by means of coherent states with respect to states of low energy under the

assumption that the energy density of the latter is negligible.

7



8



Introduction

In the twentieth century two very significant theories have appeared, quantum field the-

ory and general relativity. Each of them was profoundly successful in their own fields.

Quantum field theory describes the behaviour of particles in Minkowski spacetime and

general relativity describes the geometry of spacetime. At first sight these two theo-

ries are totally far from each other. But we should notice that indeed there exists no

real Minkowski spacetime; every quantum field has a non-zero energy-momentum tensor

and a non-zero energy-momentum tensor changes the geometry of spacetime. Therefore

quantum field theory on curved spacetimes (QFT on CST), which is more general than

quantum field theory on Minkowski spacetime, is necessary for a more fundamental de-

scription. QFT on CST can be applied to the cases where the spacetime curvature is

large, but so low that quantum gravity effects are negligible. For obtaining a description

of quantum field theory on curved spacetimes one should synthesize QFT with general

relativity. One adapts the fundamental relations in QFT on Minkowski spacetimes to

the curved setting and studies the resulting quantum fields. Although this sounds rather

simple, a few complications arise.

Namely, a general curved spacetime has no symmetries. But in flat spacetime symmetries

like the Poincaré group helped us to determine the vacuum state and to have a particle

interpretation of states; hence, in a general curved spacetime we have no preferred state

and related particle interpretation. For overcoming this problem one can formulate the

quantum theory independent of a vacuum state and in terms of fields. This is done by

using the algebraic approach, in which the basis of the theory is given by the algebra of

observables [2]. States in algebraic quantum field theory are continuous linear functionals

on the algebra of observables. In order to distinguish physical states from non-physical

ones, the two-point functions of the states are considered. We compare the singularity

structure of two-point function in curved spacetime with the one of the vacuum in flat

spacetime and say that physical states in a curved spacetime are the ones that have the

same singularity structure [8] [3]. To do this in a precise way, we introduce the notion of

wave front set to define the singularity structure in a way which encompasses both curved
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and flat spacetime and we call each state whose two-point function has the correct wave

front set a Hadamard state.

One problem is solved; now we have a definition for physical states in a curved space-

time. But still we have no idea about the physical interpretation of different Hadamard

states. To solve this problem in Robertson-Walker spacetime one can smear the energy

density along the timelike curve of an isotropic observer with a suitable test function and

search for a state in which the smeared energy density is minimal. These states are called

states of low energy and have been introduced by Olbermann [9].

In this master thesis we are searching for the solution of the semi-classical Einstein

equation for the homogeneous and isotropic case:

Gµν(x) = 8πGω(: Tµν(x) :)

where Gµν is the Einstein tensor, G is the gravitational constant and ω(: Tµν :) is the

expectation value of the quantum stress-energy tensor. We consider the case that the

spacetime metric, and hence the left hand side, is given and look for a state whose stress-

tensor expectation value matches the right hand side. We try to find such a state among

the homogeneous and isotropic coherent states with respect to states of low energy. In

this case, the semi-classical Einstein equation is equivalent to the covariant conservation

of ω(: Tµν :) and the semi-classical Friedman equation:

3H2(t) = 8πGω(: ρ(t) :)

where H(t) is the Hubble expansion rate and ω(: ρ(t) :) is the expectation value of the

energy density in the state ω.

Coherent states are the quantum states which in a sense have the most classical

behavior among all quantum states and related to this the lowest possible Heisenberg

uncertainty. Usually coherent states are defined as the eigenstates of the annihilation

operator whereas in the algebraic framework one can define them as follows. We define

A as the algebra of the Klein-Gordon fields, and αf as an automorphism αf : A → A

by:

αf [φ(g)] := φ(g) +

∫
f(x)g(x)dx, φ(g) ∈ A , φ(g) :=

∫
φ(x)g(x)dx

where g(x) is a test function and f(x) a solution of the Klein-Gordon equation. Then if

ω0 is a state on A which we consider as a generalised “ground state”, ωf := ω0 ◦ αf is

another state, which we call a coherent state with respect to ω0. As a result, the one-point

function of ωf is given by f , i.e. ωf (φ(x)) = f(x).
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We insert the expectation value of the stress energy tensor in a coherent state ωf

with respect to a state of low energy ω0 in the semi-classical Einstein equation and try to

find a homogeneous and isotropic, i.e. only time-dependent, solution of the Klein-Gordon

equation f such the semi-classical Einstein equation holds.

We have investigated this general approach in three special cases: First, we used the

ground state on the torus spacetime, which as a proper ground state is a state of low

energy in particular, to construct the coherent state. After calculating the normal ordered

energy density in the ground state on the three-dimensional torus spacetime following

earlier results by Kay [15], i.e. the Casimir effect on this spacetime, we obtained a suitable

solution of Klein-Gordon equation which solves the semi-classical Einstein equation.

Then we investigated the case of de Sitter spacetime, where we used results on the

energy density in states of low energy computed in [16] for finding the solution of the

semi-classical Einstein equation in this spacetime. In de Sitter spacetime, the left hand

side of the semi-classical Friedman equation is a constant, while the energy density in

a state of low energy grows towards the past. As it turned out that the contribution

of a coherent excitation to the energy density can only be positive, a solution of the

semi-classical Einstein equation was not possible by means of coherent states in this

spacetime.

Finally we considered the case of a general spatially flat Robertson-Walker spacetime

where we assumed that the energy density in the state of low energy is negligible in

comparison with the square of the Hubble rate. This is motivated by recent results [6, 7].

Under this assumption the energy density of the coherent state ωf is given by the classical

energy density of the solution f and we solved the semi-classical Einstein equation both

with and without a cosmological constant for the massless and conformally coupled case.

The thesis is organised as follows. In the first chapter we give a short abstract about

quantum field theory in Minkowski spacetime. In chapter 2 we present some basic defi-

nitions about geometry and curved spacetimes. Then we study the scalar Klein-Gordon

field on a general curved spacetime. We give a brief explanation about Robertson-Walker

spacetime in chapter 3 and then introduce states of low energy in Robertson-Walker and

de Sitter spacetime. In the last chapter we introduce coherent states and use them to

solve the semi-classical Einstein equation.
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Chapter 1

Quantum Field Theory on

Minkowski Spacetime

1.1 The Klein-Gordon Equation

One of the equations that describes quantum fields is the Klein-Gordon Equation[29] [30].

Indeed it explains the free scalar fields’ relativistic behaviour. Actually this equation

is based on special relativity, which yields the Klein-Gordon equation in the following

manner; If we use the quantum-theoretical correspondences:

p→ ~
i
∇ , E → i~

∂

∂t
(1.1)

it yields a relativistically invariant equation for a free scalar field:

E2 −m2c4 + |p|2c2 = 0 ⇒

[−~2 ∂
2

∂t2
+ c2h2∆−m2c4]φ = −c2~2(2 +

m2c2

~2
)φ = 0 (1.2)

where in the first line m is the rest mass and p is the spatial momentum, and φ denotes

a free scalar field and the d’Alembert operator is defined by, 2 = 1
c2

∂2

∂t2
−∆ . Then the

equation is simplified and seems like,

(2 + (
mc

~
)2)φ = 0 (1.3)

We call this equation the Klein-Gordon equation and solutions of this equation are

the Klein-Gordon fields. The corresponding action to the Klein-Gordon fields is:

S =

∫
L(φ(x), ∂µφ(x)) d4x = −1

2

∫
(∂µφ∂

µφ+m2φ2) d4x (1.4)
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here L(φ(x), ∂µφ(x)) is the Lagrangian density for the Klein-Gordon fields, which gives

again the Klein-Gordon equation by using Euler-Lagrange equation,

∂L
∂φ
− ∂µ

∂L
∂(∂µφ)

= 0

With the help of the Fourier transformation of the scalar field we obtain the general

real solution by the following procedures. We represent a free scalar field by its Fourier

transformation:

φ(x) =

∫
d4p

(2π)4
φ̃(p)e−ipµx

µ

(1.5)

the tilde over φ means the Fourier transform of it. Then we impose the Klein-Gordon

operator on it; From now on we use the natural units in which ~ = c = 1:

(2 +m2)φ(x) =

∫
d4p

(2π)4
(m2 − p2)φ̃(p)e−ipµx

µ

= 0 (1.6)

this seems like the distributional product of delta, i.e. xδ(x) = 0, therefore we have:

(m2 − p2)φ̃(p) = 0 ⇒

φ̃(p) = δ(p2 −m2)f(p) (1.7)

and also the delta function can be written as:

δ(p2 −m2) = δ(p2
0 − ω2) = (

δ(p0 − ω) + δ(p0 + ω)

2ω
)f(p) (1.8)

f(p) is a function of p. By the frequency here, ω, means that:

pµ = (ω,p) (1.9)

and

ω =
√

p2 +m2 ≡ ωp (1.10)

by using ap and a†p as two coefficients, which is defined by, ap = f(p0,p) and a†p =

f(−p0,−p), the general real solution of the Klein-Gordon equation seems as follows:

φ(x) =

∫
d4p

(2π)4

1

2ωp

(apδ(p0 − ω)e−ipµx
µ

+ a†pδ(p0 + ω)e−ipµx
µ

)

=

∫
d3p

(2π)3

1

2ωp

(ape
−iωpt+ip·x + a†pe

+iωpt−ip·x) (1.11)

where we replaced p→ −p in the second term. We can see that the Klein-Gordon field

φ(x) is a superposition of the plane wave solutions. Having the plane wave solutions in
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Minkowski spacetime allows us to define the positive and negative frequency notion.

If ψp is a plane wave solution, the positive frequency is defined as:

∂tψp = −iωψp, ω > 0 (1.12)

and the negative frequency solutions satisfy:

∂tψ̄p = iωψ̄p, ω > 0 (1.13)

where the positive frequency solutions correspond to a particle with positive energy.

1.2 Quantization of the free scalar Klein-Gordon Field

In classical mechanics, the canonical coordinates qi and pi, which construct the phase

space, obey the Poisson brackets relations:

{qi, qj} = {pi, pj} = 0

{qi, pj} = δij (1.14)

here, first we want to move to classical field theory and define the conjugate momentum

for the free scalar Klein-Gordon fields which can be straightforwardly yielded from the

Lagrange density:

L = −1

2
∂µφ∂

µφ− 1

2
m2φ2 (1.15)

π =
∂L

∂(∂0φ)
(1.16)

in this case, means the Klein-Gordon fields, it is:

π = ∂0φ (1.17)

for the second quantization, that means the canonical quantization of the scalar fields, first

the canonical coordinates, φ(t,x) and π(t,x) are promoted into the Hermitian operators

and then in analogy to the classical mechanics we impose the canonical commutation

relation (at the equal time) on them:

[φ(t,x), π(t,y)] = iδ(x− y) (1.18)

[φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0 (1.19)

consequently ap and a†p which now have to be operators, should fulfil the following com-

mutation relations:

[ap, ap′ ] = 0 (1.20)
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[a†p, a
†
p′ ] = 0 (1.21)

[ap, a
†
p′ ] = (2π)32ωpδ

(3)(p− p′) (1.22)

which are obtained from 1.19 and 1.20. We should define a Hilbert space of many-

particle state, also called Fock space. Then we define a unique and unitary equivalent

representation for ap with a vacuum state in the Fock space which is annihilated for all

ap:

ap|0〉 = 0 ,∀p (1.23)

where |0〉 is the vacuum state in the Fock space, i.e. a state without any particle. And

we construct the N-particles state by acting a†p on vacuum state, where a†p is the adjoint

of ap:

(a†p1
)n1(a†p2

)n2 ...(a†pf
)nf |0〉 =

√
n1!n2!...nf !|φN〉 (1.24)

N = n1 + n2 + ...+ nf

|φN〉 is a state of N particles, which n1 of them are with the momentum of p1, n2 of them

with the momentum of p2 and so on. We call ap and a†p the annihilation and creation

operators, respectively.

It would be useful to introduce the so called number density operator, which gives the

number of particles with the momentum p:

Np = a†pap (1.25)

also the classical Hamiltonian of the Klein-Gordon field is given by:

H =

∫
d3x (π(∂0φ)− L) (1.26)

after using (1.12), (1.16) and (1.18) it is:

H =

∫
d3p

(2π)3
ωp(a†pap + (2π)3ωpδ

(3)(0)) (1.27)

where we used the relation 1.23 for the last step. It is obvious that the ground state

energy is infinity and makes the integral divergent, but since we can only measure energy

differences, we put the ground state energy equal to zero, then we have:

H =

∫
d3p

(2π)3
ωpa

†
pap (1.28)

with the following commutation relation:

[H, a†p] = ωpa
†
p

[H, ap] = −ωpap (1.29)
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The energy of each Hamiltonian eigenstate can also be obtained by imposing Hamiltonian

operator on it:

H|φN〉 = (n1ωp1 + n2ωp2 + ...+ nfωpf
)|φN〉 (1.30)

At the end of this section it is useful to define the classical stress-energy tensor or

energy-momentum tensor in Minkowski spacetime as follows:

T µν =
∂L

∂(∂µφ)
∂νφ− δµνL (1.31)

for the Klein-Gordon field in Minkowski spacetime it is:

T µν = −1

2
∂νφ∂

µφ− 1

2
δµνm

2φ2 (1.32)

which obeys the following conservation law:

∂µT
µ
ν = 0 (1.33)

and its relations with Hamiltonian and momentum are:

H =

∫
d3xT 00, P i =

∫
d3xT 0i i = 1, 2, 3 (1.34)

T 00 = ρ denotes the energy density and P i is the spatial momentum carried by the field.

1.3 Green’s Functions

One uses the Green’s function or fundamental solution to solve the inhomogeneous dif-

ferential equation with a specific initial condition or boundary condition. In our case for

an inhomogeneous Klein-Gordon equation, (2 + m2)φ(x) = f(x), the Green’s function

should fulfil the following relation:

(2x +m2)G(x, y) = −iδ(4)(x− y) (1.35)

then we have,

φ(x) = i

∫
dy G(x, y)f(y) (1.36)

one can obtain the Green’s function from this equation with the help of Fourier ansatz

and acting Klein-Gordon operator on it, but we do not present it here. We define also

the causal propagator by the so-called retarded and advanced Green’s function:

∆(x, y) = GA(x, y)−GR(x, y) (1.37)
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where GA(x, y) denotes the advanced Green’s function (vanishes for y0 < x0) and GR(x, y)

is the retarded one (vanishes for y0 > x0). It is important to mention that the causal

propagator gives the vacuum expectation value of the commutator of two fields:

i∆(x, y) ≡ 〈0|[φ(x)φ(y)]|0〉 (1.38)

As this propagator is named, it vanishes for ηµνx
µyν > 0. (ηµν denotes the Minkowski

metric with signature (−,+,+,+))

It would be also useful to introduce the Feynman propagator as the vacuum expecta-

tion value of the time ordered product of two fields:

i∆F (x, y) ≡ 〈0|Tφ(x)φ(y)|0〉 (1.39)

where T is the time ordering operator,

T =
{ φ(x)φ(y) for x0 > y0

φ(y)φ(x) for y0 > x0
(1.40)

for the Feynman propagator and only in Minkowski spacetime we can have a particle

interpretation; The Feynman propagator states the creation of a particle at the point x

and its annihilation at the point y for y0 > x0 (and creation at y and annihilation at x

for x0 > y0).
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Chapter 2

Quantum Field Theory in Curved

Spacetime

2.1 Spacetime and Geometry

For describing any physical phenomenon, one observes it from an inertial frame. In a

flat spacetime an inertial frame is presented by an observer that travels in a straight line,

i.e. moves without acceleration. The special relativity postulate declares that from all

inertial frames one observes the same physics, i.e. the laws of physics are invariant under

the change of inertial frames. With the existence of gravity, in a curved spacetime, the

geometry of the spacetime changes, therefore there are no global inertial frames. The

local light cone, equivalently the local inertial frame, depends on geometry of the space-

time, which is determined by a metric. Hence, first of all we should know precisely the

spacetime and its geometry in which the phenomena occur [19].

Let us begin by introducing a topological differentiable manifold M together with a

Lorentzian metric g. We also call TpM the tangent space for each point p ∈M and T ∗pM

denotes the cotangent space at p. We call a vector X ∈ TM , i) timelike if g(X,X) < 0,

ii) spacelike if g(X,X) > 0 and, iii) lightlike or null if g(X,X) = 0. One defines ∇X as

the covariant derivative along a tangent vector X on a manifold M . Covariant derivatives

are actually a covariant generalization of the partial derivative, which unlike the partial

derivative, is independent of coordinates. One defines the covariant derivative by:

∇µX
ν = ∂µX

ν + ΓνµγX
γ

where X ∈ TXM is vector field and Γνµγ is the Christoffel symbol and it is defined by

18



the covariant derivative of the frame basis:

∇eaeb := Γcbaec

The next definition is the Riemann curvature tensor Ra
bcd:

Ra
bcdea = ∇c∇deb −∇d∇ceb −∇[ec,ed]eb (2.1)

where ea,b,c are the frame basis and ∇a = ∇ea . In a coordinate basis the Lie bracket of

the basis vanishes, [ec, ed] = 0. The Ricci tensor is a

(
0

2

)
tensor field which is obtained

by contraction of a covariant index and a contravariant index of the Riemann curvature

tensor:

Rab := Rd
adb (2.2)

and the Ricci scalar is:

R := gabRab (2.3)

A tensor T , for example the metric, has a symmetry, if it is constant along the integral

curves of a vector field X; One means by the integral curves of a vector field, the curves

which the vector field X is their tangent vector field. We present this symmetry by a

specific derivative along the flow (integral curve) of X. It is called Lie derivative:

LXT = 0 (2.4)

If c(t) is the integral curves of X with respect to a curve parameter t, there is a diffeo-

morphism ξXt for small t and on an open neighborhood of c(0). Then The Lie derivative

reads:

LXY := lim
t→0

(ξX−t)
∗Y − Y
t

(2.5)

where Y is a vector on the manifold and (ξX−t)
∗ is the pull back of diffeomorphism at

parameter distance t along the flow of X.

we name X the Killing vector, if on a spacetime (M, g) the Lie derivative along it

preserves the metric and it has also the following property:

(LXg)ab = 0 ⇒ ∇(aXb) = 0

the left hand side of the last relation means the anti-commutator of the indices.

A spacetime (M, g) is time-orientable if there exists a continuous vector field which

is timelike everywhere. Then a causal curve is defined as a curve whose tangent vector
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field is timelike or null everywhere and it is future oriented when its tangent vectors are

in the future light cone. We should notice that the causal structure is determined by the

local light cone. By the causal past of T ⊂M , which we present it by J−(T ) ⊂M , one

means the set of all points which can be connected to T with a future oriented causal

curve. The causal future J+(T ) ⊂ M is defined similarly. The chronological future

I+(T ) is a set of points that can be reached from T by a future directed timelike curve.

The chronological past I−(T ) is defined analogously. Additionally we have these two

definitions:

I(T ) := I+(T ) ∪ I−(T )

J(T ) := J+(T ) ∪ J−(T ) (2.6)

If we could not connect two points in T ⊂ M with a timelike curve, we call this subset

achronal, i.e. I+(T )∩T is empty. For instance, an edgeless spacelike hypersurface in the

Minkowski spacetime is achronal. The future domain of dependence of T , D+(T ),

where T is a closed achronal set, is a set of all points p such that every past directed

inextendible causal curve through p must intersect T . (We mean by inextendible that

there is no point for which g as a metric is not invertible. D−(T ) as the past domain of

dependence is defined by replacing future with past). We define the domain of dependence

D(T ) as follows:

D(T ) = D+(T ) ∪D−(T ) (2.7)

if p ∈ D(T ), we can predict what happens at this point by knowing what happens on T .

By the future Cauchy horizon H+(T ) we define the boundary of D+(T ) and similarly

the past Cauchy horizon H−(T ) is the boundary of D−(T ).

We call a closed achronal surface Σ, a Cauchy surface if its domain of dependence

D(Σ) is the entire manifold M . Now with these definitions, it is comprehensive that if

we know what happens on a Cauchy surface, then we can predict what happens all over

the corresponding spacetime. If there exists a Cauchy surface in a spacetime (M, g), we

denote this spacetime, globally hyperbolic.

2.2 The Klein-Gordon Equation in Curved Space-

time

To write the quantum field theory in a curved spacetime we need some generalizations

for this theory in the flat spacetime. In a curved spacetime there is no Poincarè symme-

try, the symmetry which has helped us in the flat spacetime to distinguish the positive
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and negative frequencies and consequently, to determine the unique vacuum state. In

this section we introduce some fundamental definitions of the Klein-Gordon field on the

curved spacetime and in the next section we want to overcome this problem with the help

of algebraic approach [1][11][18].

The first step to generalize the Klein-Gordon equation is to extend the scalar Klein-

Gordon field’s action on a curved spacetime. We start by defining an integral on a curved

manifold. The integral of a function f on a metric manifold (M, g), which maps M→ R,

looks like: ∫
M

f =

∫
Rn
dnx
√
|g(x)|F (x) (2.8)

where |g(x)| is the determinant of the metric and F (x) is the function f on the inverse

of the chart ξ : M ⊃ U → Rn, i.e. F (x) = f ◦ ξ−1(x). Similarly for the action on the

curved spacetime we have:

S =

∫
d4x
√
|g(x)|L (2.9)

now we should determine the Lagrangian density on the curved spacetime. For this pur-

pose, first we replace the flat-spacetime notions with the corresponding curved-spacetime

expressions. Obviously the Minkowski metric ηµν changes to the general metric on a

curved spacetime gµν and the partial derivatives become covariant derivatives, ∂µ → ∇µ.

It remains only a direct coupling to the curvature. Finally the Lagrangian density in the

curved spacetime looks like:

L = −1

2

√
|g|(gµν∇µφ∇νφ+m2φ2 + ξRφ2) (2.10)

where R denotes the curvature scalar, it is called also Ricci scalar and ξ ∈ R is a di-

mensionless coupling constant. There are two common choices for ξ. One of them is the

minimal coupling which vanishes the direct interaction with the curvature scalar, ξ = 0.

The second choice, the conformal coupling, is:

ξ =
(n− 2)

4(n− 1)
(2.11)

with n as the number of dimension. Then, for our case, i.e. for n = 4, the coupling

constant is ξ = 1
6
.

Additionally, this Lagrangian is invariant under the following conformal transformation:

gµν(x)→ g̃µν(x) = Ω2(x)gµν(x) (2.12)

where Ω(x) is a positive smooth function. Indeed, the causal structure of the curved

spacetime is invariant under conformal transformation of the metric and the lightcones
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of g̃ agree with those of g:

0 = g̃(X,X) = Ω2(x)g(X,X) ⇔ g(X,X) = 0

The equation of motion which yields from the Lagrangian density, is given by:

(−2 +m2 + ξR)φ = 0 (2.13)

the conjugate momentum in a general curved spacetime is defined by:

π =
∂L

∂(∇0φ)
(2.14)

then for the Klein-Gordon fields,

π =
√
|g|∇0φ (2.15)

and by quantizing the theory, the canonical commutation relations are:

[φ(t,x), φ(t,y)] = [π(t,x), π(t,y)] = 0 (2.16)

[φ(t,x), π(t,y)] =
i√
|g|
δ(3)(x− y) (2.17)

We define also the stress-energy tensor on the curved spacetime by the following relation:

T µν = −2
1√
|g|

δS

δgµν
(2.18)

the second fraction means the variation of the action with respect to the metric. For

obtaining the variation of metric we follow the following procedure:

gacgcb = δab =⇒|δ δgacgcb + gacδgcb = 0

δgab = −gacgbdδgcd

and the variations of the determinant of the metric and the Ricci tensor are:

δ(|g|) = (|g|)gabδgab
δR = −Rµνδgµν + gρσgµν(δgρσ;µν − δgρµ;σν) (2.19)

where the indices after semicolon mean the covariant derivative with respect to them.

After imposing variation on the action and using aforementioned variation of the metric

and its determinant, the stress-energy tensor in the curved spacetime looks like:

T µν = ∇µφ∇νφ− 1
2
gµν∇ρφ∇ρφ+ 1

2
gµνm2φ2 − ξ(Rµν − 1

2
gµνR)φ2

+ξ(gµν2φ2 −∇µ∇νφ2) (2.20)

the same as stress-energy tensor in Minkowski spacetime, it vanishes by acting the co-

variant derivative:

∇µT
µν = 0 (2.21)
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2.3 The Algebraic Approach

In the last chapter we tried to solve the Klein-Gordon equation and we described the

corresponding quantum field by means of plane wave solutions of that equation.

In a general curved spacetime we have no plane wave basis to decompose our solutions

to positive and negative frequencies. Therefore we should develop another construction

to describe quantum field theory first in general and then on a specific curved spacetime,

a construction that is independent of any plane wave basis. This is possible by means of

the algebraic approach to quantum field theory.

In contrast to the presentation of quantum field theory in the last section, in which

states are vectors in a Hilbert space and fields are operators on this Hilbert space, in the

algebraic approach the fields are first elements of an abstract algebra and states are func-

tionals on this algebra. The quantum fields in both representation are operator-valued

distributions. But what is the advantage of using distributions in the quantum field the-

ory? ”Any constructive mathematical object must exist in the form of approximations

expressible via finite symbolic sequence. This holds true for continuous functions and for

generalized functions defined as linear functional, but not for the conventional arbitrary

function. Furthermore if one obtains the value of a function’s argument from some mea-

surements involving say statistical errors, then all one can directly measure is an average

of the function against a special test function which describe the distribution of errors.”[5]

The quantum fields φ(x) don’t have the proper value at every point in the spacetime and

it results some problems such as UV divergences. By using operator-valued distributions

on suitable test function can solve this problem [2][4].

Now with these definitions which we mentioned before, we can introduce the operator-

valued distributions, the so-called smeared fields by:

φ(f) = 〈φ, f〉 =

∫
dx φ(x)f(x) (2.22)

where φ(x) is the field at point x at time t and f(x) is a test function. One interprets φ(f)

as the spacetime average (weighted by f) of the field. These smeared fields are the elements

of a defined algebra. This algebra with an operation constructs the commutation relations

between fields. Then one can define states on this algebra which act on its elements and

maps them to the complex number space.

We should also describe the causal propagator of the Klein-Gordon equation as the map

∆ : D(Γ)→ E(Γ) and again ∆ = GA−GR, for GA and GR as the advanced and retarded

Green’s operators, respectively. If P would be the Klein-Gordon operator on a spacetime
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M , then the advanced and retarded Green’s operators satisfy:

i) PGA,R = GA,RP |D(M)= idD(M)

ii) supp(GAf) ⊂ J+(supp f) for all f ∈ D(M)

iii) supp(GRf) ⊂ J−(supp f) for all f ∈ D(M)

for the causal propagator of P we have, ∆ := GA − GR. For every solution of P , i.e.

Pw = 0, with compactly supported initial conditions on the Cauchy surface, there is a

test function f ∈ D(M) such that w = ∆f and also, for all of test functions f ∈ D(M)

which satisfies ∆f = 0 there is another test function g ∈ D(M) such that f = ∆g.

As we mentioned before, lack of Poincarè symmetry in the curved spacetime and therefore

lack of a unique vacuum state leads us to construct a quantum field theory with the help

of algebraic relations between fields and then try to define corresponding states.

We begin with the Borchers-Uhlmann *-algebra A (M) of the free field on a topological

manifold (M, g). The elements of this algebra are smeared fields φ, which are distributions

on D(M), i.e. φ(f) = 〈φ, f〉 for f ∈ D(M). The * operation on φ(f) is defined as:

(φ(f))∗ = φ(f) (2.23)

(φ(f1)...φ(fn))∗ = φ(fn)...φ(f 1) (2.24)

and the canonical commutation relation is:

[φ(f), φ(g)] := i∆(f, g)I (2.25)

where by I we denote the identity operator and by ∆ is meant causal propagator of the

Klein-Gordon operator,

∆(f, g) = 〈f,∆g〉 =

∫
f(x)∆(x, y)g(y)dx dy (2.26)

and the causal condition implies that it vanishes if the supports of f and g are spacelike

separated.

The commutation relation can be also represented with help of the symplectically smeared

field. If we define S (M) as the solution space of the Klein-Gordon equation, for a given

element w ∈ S (M) we have,

{∃f | w = ∆f for Pw = 0} (2.27)
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P means here the Klein-Gordon operator. Then for the Klein-Gordon Lagrangian Ω(w1, w2)

is a symplectic structure Ω : S (M)×S (M)→ R as follows:

Ω(w1, w2) =

∫
Σ

dΣ[(∇Nw1)w2 − (∇Nw2)w1] (2.28)

where Σ is a Cauchy surface and N is the normal vector field on it. Then if we define

symplectically smeared fields Φ(w) as an equivalence of the smeared field φ(f), we have:

[Φ(w1),Φ(w2)] = iΩ(w1, w2) (2.29)

The states as we already mentioned, are functionals on a topological *-algebra A (M).

These states are defined as continuous linear functionals on A (M) which is imposed

on the algebra of the free scalar field, that maps A (M) → C and are normalised and

positive:

ω(I) = 1, ω(A∗A) ≥ 0, ∀A ∈ A (M) (2.30)

if one can describe a state ω as follows:

ω = µω1 + (1− µ)ω2 (2.31)

for ω1 6= ω2 and 0 < µ < 1, then it is called a mixed state, otherwise it is a pure state.

By defining an even state, we introduce the quasifree or Gaussian state. We call a state

on A (M) even, if it is invariant under φ(f) → −φ(f) and its n-point function vanishes

for all odd n.

Then an even state on A (M) is quasifree or Gaussian if its n-point function fulfils the

following relation:

ωn(f1, ..., fn) =
∑
Pn∈Sn

n
2∏
i=1

ω2(fPn(2i−1), fPn(2i)) (2.32)

where Sn is permutation group with n elements. And Pn ∈ Sn should satisfy the following

two conditions:

Pn(2i− 1) < Pn(2i) for 1 ≤ i ≤ n
2

Pn(2i) < Pn(2i+ 1) for 1 ≤ i < n
2

(2.33)

the positivity condition should also hold for a quasifree state, ω2(f, f) ≥ 0 for every

f ∈ D(M). Therefore we have the Cauchy-Schwartz inequality for it as follows:

1

4
|∆(f, g) ≤ ω(f, f)ω(g, g) (2.34)
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for two real-valued test functions f and g. Then a quasifree state is pure if and only if:

ω(f, f) = sup
g

|∆(f, g)|2

4ω(g, g)
(2.35)

for ω(g, g) 6= 0 and g is a real-valued test function in D(M,R).

Another notion that is worthy to mention is about the relation between solution space

and its corresponding test function space. One can define an inner product µ on S (M)

as symmetric part of a state such that if w1 = ∆f1 and w2 = ∆f2 for w1, w2 ∈ S (M)

and f1, f2 ∈ D(M,R), then µ : S (M)×S (M)→ R is:

µ(w1, w2) :=
1

2
(ω(f1, f2) + ω(f2, f1)) (2.36)

then the Cauchy-Schwartz inequality can be represented with the help of µ and knowing

the relation between symplectic form Ω and the causal propagator, which is:

Ω(w1, w2) = ∆(f1, f2) (2.37)

then we have:
1

4
|Ω(w1, w2)|2 ≤ µ(w1, w1)µ(w2, w2) (2.38)

2.4 Hadamard States

In the quantum field theory in Minkowski spacetime, we defined some algebras which

contain linear combination of products of free fields at separate points, like φ(x)φ(y). We

define the expectation value of these linear combinations of free fields by imposing a state

on them:

ω2(f, g) = ω(φ(f)φ(g)) = lim
ε↓0

1

4π2

1

(x− y)2 + iε(x0 − y0) + ε2
(2.39)

as it is obvious from this relation, the two-point function behaves smoothly when x and

y are spacelike or timelike separated points, but it is singular for (x − y)2 = 0, i.e. null

related points. This singularity behaves so good as to be integrable with two proper test

function. We can present also this singularity with the help of the wave front set (you

can find the definition of wave front set in Appendix):

WF (ω2) = {(x, y, k,−k) ∈ T ∗M2 | x 6= y, (x− y)2 = 0, k ‖ (x− y), k0 > 0}

∪{(x, x, k,−k) ∈ T ∗M2 | k2 = 0, k0 > 0} (2.40)

In the Minkowski spacetime for avoiding the singularity for expectation value of φ2(x)

and the other monomials like it, one introduces the notion of normal ordering of φ2(x);
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:φ2(x): , such that in the products of creation and annihilation operators, one arranges

all creation operators on the left hand side of annihilation operators. By multiplying two

normal ordered fields, like :φ2(x): :φ2(y):, the square of the two-point function appear.

We already know that ω2(x, y) has singularities but they are integrable with a proper

test function. Now the problem is, if the singularities of (ω2(x, y))2 are also integrable

with the test function. The mode decomposition of fields to the positive and negative

energy solved this problem and help us here to have a well-defined normal ordering in

the Minkowski spacetime. But how about normal ordering in a general curved spacetime,

in which there is no possibility to decompose the modes? In general, two distribution

ω1, ω2 ∈ D′(M) can be multiplied give a well-defined distribution in D′(M) again, if their

wave front sets satisfy a specific condition.

If v1, v2 ∈ D′(M), then one defines:

WF (v1)⊕WF (v2) := {(x, k1 + k2) | (x, k1) ∈ WF (v1), (x, k2) ∈ WF (v2)} (2.41)

one can defines the product of ω1ω2 such that it yields a well-defined distribution in

D′(M), if WF (ω1)⊕WF (ω2) does not intersect the zero section,

WF (ω1)⊕WF (ω2) = {(x, k1 + k2) 6= (x, 0) | (x, k1) ∈ WF (ω1), (x, k2) ∈ WF (ω2)}
(2.42)

in other words, it means that a distribution with a ”two sides” wave front set can not

be squared. For instance, let us check the wave front set of the δ-distribution. The δ-

distribution is singular at x = 0 and its Fourier transform is a constant. Then its wave

front set is:

WF (δ) = {(0, k) | k ∈ R\{0}}

and it is obvious that δ-distribution does not have a ”one-side” wave front set and ,con-

sequently, it can not be squared.

As the conclusion, we should construct a state in general curved spacetime such that it

can be squared, i.e. it should have a ”one side” wave front set.

We call a state ω a Hadamard state, if its two-point function fulfils the Hadamard

condition:

WF (ω2) = {(x, y, kx,−ky) ∈ T ∗M2 \ {0} | (x, kx) ∼ (y, ky), kx � 0} (2.43)

where (x, kx) ∼ (y, ky) means between x and y there is a null geodesic connection such

that kx is coparallel and cotangent of this null curve at the point x. kx�0 also means that

it is future directed. The last condition is the relation between kx and ky. It expresses
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that ky is parallel transport of kx at the point y along the null curve connecting x and y.

In addition to the aforementioned Hadamard condition, we need some other notion to

realize Hadamard states. we need to define the notion of distance between two points

in curved spacetime. For a sufficiently small neighborhood U around x we introduce

exponential map as follows: expx : TxU → U , Xx → y for x, y ∈ U ⊂ M and Xx ∈
TxU ⊂ TxM . Then the half squared geodesic distance σ(x, y) for x, y ∈ U is:

σ(x, y) :=
1

2
g(exp−1

x (y), exp−1
x (y)) (2.44)

since the geodesic distance vanishes also for null separated points in Lorentzian manifold

and we want it vanishes only for two coincident points, we add an imaginary part to it

and take the limit as it goes to zero:

σε(x, y) = σ(x, y) + 2iε(tx − ty) + ε2 (2.45)

where t is a time function on (M, g). Then the two-point function of a Hadamard state

must obey the following relation:

ω2(x, y) = lim
ε↓0

1

8π2
(
U(x, y)

σε(x, y)
+ V (x, y) log(

σε(x, y)

λ2
) +W (x, y)) (2.46)

where λ is an arbitrary length scale and U(x, y), V (x, y) and W (x, y) are smooth real-

valued biscalar and are called Hadamard coefficients. They are regular at x = y and

U(x, y) = 1 for x = y. W (x, y) is also the symmetric part of the two-point function which

vanishes in causal propagator (since i∆(x, y) = ω2(x, y)− ω2(y, x)).

V (x, y) is given by a series expansion in σ,

V =
∞∑
n=0

vnσ
n

here vn are smooth biscalar coefficients.
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Chapter 3

States of Low Energy

After defining Hadamard states the problem of finding a state with meaningful singular

behavior on a general curved spacetime was solved. But still we can not define a ground

state; indeed we do not know the interpretation of different Hadamard states. Parker

wanted to solve this problem by considering states of minimal particle creation, the so-

called adiabatic vacua, which are locally quasi-equivalent to the Hadamard class [13].

But it was not helpful because in a curved spacetime a particle interpretation is not

meaningful.

After that, Fewster found out that the smeared energy density in a Hadamard state is

bounded from below [21]. Actually, one smears the energy density with a test function

which is compactly supported on a timelike worldline of an observer. As it is obvious

that such an energy density is test function-dependent. Later Olbermann proved that

on Robertson-Walker spacetime, there is a homogeneous and isotropic Hadamard state

which is a state of low energy in this spacetime. In this way we bounded the renormalized

expectation value of the energy density as a functional of the Hadamard states, which is

smeared in time with the square of a fixed test function g(t) along a timelike geodesic,

from blow.

In this chapter we want to have an overview of state of low energy on the Robertson-

Walker spacetime which is introduced by Olbermann [9].
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3.1 The Energy-Momentum Tensor on general curved

Spacetimes

As we mentioned before in the section 2.2, we defined the energy-momentum tensor for

the Klein-Gordon fields by:

Tab :=
2√
|g|
δSKG
δgab

(3.1)

where by |g| one means determinant of the metric g on the spacetime M and SKG is tha

action of the Klein-Gordon field. For the case of minimal coupling, i.e. ξ = 0 it is:

Tab = ∇aφ∇bφ−
1

2
gab(∇cφ∇cφ−m2φ2) (3.2)

this expression which consist of an ill defined pointwise product of distributions yield a

divergent result. For solving this problem, we use the ”point-splitting prescription” and

restrict our energy-momentum to Hadamard states. Therefore we define the bidifferential

operator as follows:

Kab(x, x
′) := ∇a ⊗Bb′

b (x, x′)∇b′ −
1

2
gab(x)(gcd(x)∇cBd

e (x, x′)∇e −m2) (3.3)

where Bb′

b (x, x′) is a bitensor.

We define VM and WM as two vector bundles over M with vector spaces V and W ,

respectively. Then we call VM � WM the exterior tensor product of VM and WM ;

indeed it is a vector bindle over M ×M . A section of VM �WM is called a bitensor.

Let us introduce point-coincidence limit for bitensors with following notation:

[L(x, x′)] := lim
x→x′

L(x, x′) (3.4)

Actually by this manner of representing stress-energy tensor by point-splitting prescrip-

tion, we want to subtract the singularities from the whole expression.

Finally the stress-energy tensor in the Hadamard state ω looks like:

ω(:
˜̂
T ab :) := [Kab(Wω

2 (x, x′)− G(x, x′))] (3.5)

where,

G(x, x′) = lim
ε↓0

1

8π2
(
U(x, x′)

σε(x, x′)
+ V (x, x′)log(

σε(x, x
′)

λ2
)) (3.6)

is the singular part of the two-point function of a Hadamard state. We impose the

covariant derivative on the energy momentum tensor:

∇aω(:
˜̂
T ab :) = −1

3
∇agab[PxG(x, x′)] (3.7)
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where Px is the Klein-Gordon operator with respect to x:

Px := ∇a∇a +m2 + ξR ≡ 2g +m2 + ξR (3.8)

Since the energy-momentum tensor must obey the covariant conservation law, then we

define again the stress-energy tensor which is now covariantly conserved:

ω(: T̂ab :) := ω(:
˜̂
T ab :) +

1

3
gab[PxG(x, x′)] + Cab(α, β, ν, ρ) (3.9)

where Cab is a free tensor and given by:

Cab = αm4gab + βm2Gab + νIab + ρgab (3.10)

Gab is Einstein tensor and Iab abd Jab are:

Iab :=
1√
|g|

δ

δgab

∫
M

R2dµg = 2∇a∇bR + 2RRab − gab(
1

2
R2 + 22gR) (3.11)

Jab :=
1√
|g|

δ

δgab

∫
M

RcdRcddµg = −2gRab −
1

2
gab(RcdR

cd + 2gR) +∇a∇bR + 2RcdRcadb

(3.12)

dµg =
√
|det(gab)| is the volume element and α, β, ν and ρ are renormalisation parameters

which must be determined by experiment.

3.2 Robertson-Walker Spacetime

The most straightforward spacetime for describing quantum field theory on a curved

spacetime is a maximally symmetric spacetime, a spatially homogeneous and isotropic

spacetime which is evolving in time, i.e. a universe consists of infinite spacelike slices

such that each three-dimensional slice is maximally symmetric. Such a universe looks

like R × Σ, where R is time direction and Σ represents a maximally symmetric three-

dimensional manifold. The metric on this spacetime is given by:

ds2 = −dt2 + a2(t)dσ2 (3.13)

a(t) denotes the scale factor and dσ2 is the metric on Σ:

κij(u)duiduj, i, j = 1, 2, 3 (3.14)

where ui,j are coordinates on Σ and κij is a three-dimensional maximally symmetric

metric.We call such a homogeneous and isotropic spacetime Robertson-Walker space-

time.
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The maximally symmetric metrics must obey the following relation with corresponding

3D metric’s Riemann tensor:

R̃ijkl = k(κikκjl − κilκjk) (3.15)

where k is normalised to {-1, 0, +1}. Again tilde over R insist the difference between

this Riemann tensor and the Riemann tensor of a 4-dimensional metric.

A spacetime with k = +1 corresponds to the positive curvature on Σ and it is called also

closed. k = 0 corresponds to the flat spacetime and k = −1 means Σ is open and has

negative curvature.

3.3 States of Low Energy on Robertson-Walker Space-

time

On Robertson-Walker spacetime, we chose states which have the same symmetries as this

spacetime has, i.e. they should be homogeneous and isotropic. We present a quasifree

pure homogeneous and isotropic state ω on the FRW spacetime (I ×Σ, gab) of the Klein-

Gordon field, with its two point function as follows:

Wω
2 (f, g) =

1∑
i,j=0

(F̃i, ω̃ijG̃j) (3.16)

where by the parenthesis it means the scalar product in L2(Σ) and,

F0 := ∆f |Σ, F1 := nα∇α(∆f) |Σ (3.17)

Σ̃ is Fourier transform on Σ. One means by L(Σ) the symplectic space of initial values

on the Cauchy surface:

L = {(f1, f2), f1, f2 ∈ DR(Σ)} (3.18)

nα is also the future-directed normalised vector field normal to Cauchy surface Σ.

As always, the two point function must satisfy following conditions:

Wω
2 (f, g) ≥ 0, f, g ∈ D(Σ)

Wω
2 (f, g)−Wω

2 (g, f) = i∆(f, g) (3.19)

then for quasifree pure state, these conditions make the multiplication operator ω̂ij to

look like:

ω̂00 = a6(t0)|q(k)|2

ω̂11 = |p(k)|2

ω̂01 = ¯̂ω10 = a3(t0)q̄(k)p(k) (3.20)
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where p(k) and q(k) are bounded measured functions on Σ̃, which satisfy q̄p− p̄q = i. t0

is also the Cauchy surface Σ time coordinate.

The Klein-Gordon operator on FRW spacetime is given by:

2g +m2 =
∂2

∂t2
+ 3H(t)

∂

∂t
− a−2(t)∆Σ +m2 (3.21)

here a(t) is the scale parameter and H(t) = ȧ(t)
a(t)

is the Hubble parameter. ∆Σ is the

Laplacian on the Cauchy surface Σ.

As it is obvious from 3.20 we can present solutions of the Klein-Gordon equation by a

time dependent function times spatial one:

fk(x, t) = Sk(t)Jk(x) (3.22)

Jk(x) is an eigenfunction of the Laplacian:

∆ΣJk = −E(k)Jk (3.23)

and Sk(t) is a solution of time part of the Klein-Gordon equation:

S̈k + 3HṠk + ω2
kSk = 0 (3.24)

where,

ω2
k =

E(k)

a2
+m2 (3.25)

and Sk obeys the following condition:

S̄kṠk − Sk ˙̄Sk = ia−3 (3.26)

which is concluded from 3.19. Let us denote Sk with the following initial condition at t0

by Tk, where Tk is given by:

Tk(t0) = −pka−3(t0)

Ṫk(t0) = q(k) (3.27)

we define a set of homogeneous and isotropic pure and quasifree states on A , as the

algebra of Klein-Gordon fields. Then there exists a unique state ωg for which the smeared

energy density functional:

Eg[ω] :=

∫
γ

g2(t)ω(: ρ̂(t) :)dt (3.28)
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is minimum. Here γ is an isotropic geodesic of observer and f := g2 is a given test

function and g ∈ D(I). We should again mention that here ωg is a Hadamard state. The

two-point function of the state ω in the mode function is given by:

Wω
2 (x, x′) =

∫
d3kJk(x)J̄k(x′)Tk(t)T̄k(t

′) (3.29)

Tk(t) can be decomposed as follows:

Tk(t) = λkSk(t) + µkS̄k(t) (3.30)

where Sk(t) is again the solution of the time part of the Klein-Gordon equation which

obeys 3.25. By putting Tk(t) in 3.25 we have:

|λk|2 − |µk|2 = 1 (3.31)

λk and µk, which make 3.27 minimum, can be obtained by putting Tk in 3.27 and try to

find the minimum for each k:

Eg = 1
2

∫
g2(t)(|Ṡk(t) + µ ˙̄Sk(t)|2 + ω2(k)|λSk(t) + µS̄k(t)|2)dt

= 1
2

∫
g2(t)((|λ|2 + |µ|2)(|Ṡk(t)|2 + ω2

k|Sk(t)|2)

+2Re{µλ(Ṡk(t)
2 + ω2

kSk(t)
2)}) (3.32)

by differentiating with respect to µ, one can obtain:

µk =

√
c1(k)

2
√
c1(k)2 − |c2(k)|2

− 1

2
(3.33)

and this yields:

λk = ei(π−arg c2(k))

√
c1(k)

2
√
c1(k)2 − |c2(k)|2

+
1

2
(3.34)

where c1 and c2 are:

c1(k) =

∫
g2(t)(|Ṡk(t)|2 + (E(k)a−2 +m2)(k)|Sk(t)|2)dt (3.35)

c2(k) =

∫
g2(t)(Ṡk(t)

2 + (E(k)a−2 +m2)(k)Sk(t)
2)dt (3.36)

3.4 States of Low Energy on de Sitter spacetime

The easiest example of Robertson-Walker spacetime is a spacetime with a constant Hubble

parameter, i.e. H = ȧ(t)
a(t)

= constant. Then the scale function is given by:

a(t) = eHt (3.37)
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here we want to investigate the state of low energy in this spacetime, which is precisely

calculated in [16] and we give a brief review of it here.

By substituting Sk(t), which is already introduced as a solution of time part of the

Klein-Gordon equation in section 3 of this chapter, by ηk(t) = Sk(t)a(t), then the time

part of the Klein-Gordon equation, (3.24), is reformulated as follows:

∂2
σηk(σ) + (k2 +Mm,ξ(σ))ηk(σ) = 0 (3.38)

where ∂2
σ means second derivative with respect to the conformal time σ, i.e. ∂2

∂σ2 and

Mm,ξ is the time dependent mass and one defines it by:

Mm,ξ(σ(t)) = (m2 + (ξ − 1

6
)R(σ))a2(t) (3.39)

and,

σ(t) :=

∫ t

t0

a−1(t′)dt′ (3.40)

is the conformal time which makes the equations simpler in the Robertson-Walker space-

time.

The equation (3.26) is reformulated to:

η′kη̄k − ηkη̄′k = i (3.41)

the solutions of this equation are:

ηk(σ) =

√
−πσ
2

e
−iπσ

2 H(2)
n (−kσ) (3.42)

here H
(2)
n is the Hankel function of the second kind:

H(2)
n (z) =

1

2π

∫ 0

−∞

e( z
2

)(t− 1
t
)

tn+1
dt (3.43)

and its derivative is given by:

d

dz
H(2)
n (z) =

1

2
[H

(2)
n−1(z)−H(2)

n+1(z)] (3.44)

and n, the index of the Hankel function is given by:

n :=

√
9

4
− 2(

m2

2H2
+ 6ξ) (3.45)

If one presents the bidifferential operator in the FRW spacetime by R, then it looks like:

R :=
1

2
(∂t∂t′ +

1

a2

3∑
i=1

∂xi∂yi +m2) (3.46)
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by imposing it on the [symmetry-reduced] two-point function, it yields:

[RW̃ω
2 ](σ) =

H4

2(2π)3

∫
R3

dkeik·x[(1 + 2µ2
k)(|Ṡk(t)|2 + (k2e−2Ht +m2)|Sk(t)|2)

+2µk|λk|Re{ei argλk(Ṡk(t)2 + (k2e−2Ht +m2)Sk(t)
2)}] (3.47)

where µk here is a real number.
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Chapter 4

Solutions of the Semi-Classical

Einstein Equation

The main motivation of this thesis is solving the semi-classical Einstein equation. We

should find a proper state whose energy-momentum tensor is compatible with the semi-

classical Einstein equation.

Coherent state can be the state we are looking for, since these states are states with

minimum uncertainty and therefore the most classical state in the quantum field theory.

Additionally, we can define the expectation value of the energy density easily. We will

explain it precisely in the following sections.

In this chapter, first we will give a short introduction to the coherent state and then try

it in different cases for the semi-classical Einstein equation.

4.1 Coherent States

The basic motivation of introducing coherent states was finding a state whose expectation

value of the position operator behaves classically[14]:

x̄(t) = 〈z|x̂(t)|z〉 (4.1)

where |z > is a coherent state and x̂(t) is the position operator. Then we want to x̄(t)

obeys the classical equation of motion:

m¨̄x(t) +
∂V̄

∂x
= 0 (4.2)

Actually coherent states are on the boundary of transition from classical mechanics to

quantum mechanics. For coherent state the Heisenberg inequality changes to an equality:

< ∆x >z< ∆p >z=
~
2

(4.3)
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where < ∆x >z:= [〈z|x2|z〉 − (〈z|x|z〉)2]. Furthermore coherent states are eigenstates of

annihilation operator with eigenvalue of z:

a|z〉 = z|z〉, z ∈ C (4.4)

one can obtain a coherent state from the ground state |0〉 of the harmonic oscillator as

follows:

|z〉 = eza
†−z̄a|0〉 (4.5)

If we define A as the algebra on the Klein-Gordon fields, then αf is an automorphism,

which maps A to itself, αf : A → A and it is given as follows:

αf [φ(g)] :=

∫
φ(x)g(x)dx+

∫
f(x)g(x)dx, φ(x) ∈ A (4.6)

where g(x) is a test function and f(x) is a solution of Klein-Gordon equation. If ω is the

ground state on A :

ω(φ(g)φ̄(g)) ≥ 0 (4.7)

then,

ω(αf (φ(g))αf (φ̄(g))) = ω ◦ αf (φ(g)φ̄(g)) ≥ 0 (4.8)

is another state, which is called a coherent state. It is the other definition of coherent

state from algebraic point of view.

4.2 The Semi-Classical Einstein Equation

In the classical Einstein equation, the stress-energy density distribution on the spacetime

determines the whole metric and curvature of the spacetime. In quantum field theory

for studying the backreaction of quantum fields on the background spacetime we use the

semi-classical Einstein equation:

Gµν(x) = 8πGω(: Tµν :) (4.9)

where Gµν denotes the Einstein tensor which is given by:

Gµν := Rµν −
1

2
Rgµν (4.10)

and G is Newton’s gravitational constant. As it is obvious, in semi-classical Einstein

equation we insert the expectation value of a proper Wick polynomial : Tµν : with respect
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to a suitable state ω instead of the stress-energy tensor of classical matter.

We said “a proper Wick polynomial” because one knows that for defining the notion

of normal ordering in general curved spacetime one should find states whose two-point

functions are singular but they are regular enough to allow multiplying them pointwise

in normal ordering procedure. Therefore one has to define the Wick polynomial locally.

The proper state for evaluating the energy-momentum tensor in semi-classical Einstein

equation is Hadamard states. But the problem is that, we do not know which Hadamard

state is the suitable one. Since we know that coherent states have the classical aspect in

quantum theory, therefore use them in semi-classical Einstein equation.

In Minkowski spacetime we use the vacuum state to creating coherent states. But in

general curved spacetime the notion of the vacuum state is meaningless. In last section

we introduced the state of low energy which can supersede the notion of the vacuum state

in general curved spacetime. Then we use them here to create coherent states.

Let us to represent the Einstein equation with a coherent state:

ωc(: Tµν :) =
Gµν

8πG
(4.11)

where ωc denotes the coherent state. Then we should find solutions for each spacetime. By

specifying the spacetime, consequently, we know the right hand side of the equation. Then

we should find a proper coherent state whose stress-energy density tensor’s expectation

value obeys the semi-classical Einstein equation on that spacetime.

We represent the expectation value of the stress-energy tensor of a coherent state as

follows:

ωc(: Tµν :) = ωSLE(: Tµν :) + Tµν(f) (4.12)

where ωSLE denotes the state of low energy and f is a solution of Klein-Gordon equation.

For the massless fields and the minimal coupling case we have:

ωc(: Tµν :) = [∂µωSLE∂νωSLE − 1
2
gµν(g

αβ∂αωSLE∂
αωSLE)]

+[∂µf∂νf − 1
2
gµν(g

αβ∂αf∂
αf)] (4.13)

we know the proper state of low energy and the expectation value of the stress-energy

tensor evaluated by it before, then by determining the metric we should look for the

proper function f . We want to find the solution on various spacetime. First we study the

semi-classical Einstein equation in a cylinder spacetime. Then we try to find a solution

in de Sitter spacetime. We will present them in the following sections.
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4.3 Casimir Effect and solution of Semi-Classical Ein-

stein equation in 3D torus Spacetime

In this section we want to calculate the expectation value of the energy density in 4-

dimensional flat spacetime with the radius of R. Since in this spacetime the fields should

obey the boundary conditions, i.e. φ(x) = φ(x + 2πRn), then it has the conditions for

the Casimir effect.

Here ρ(z) = T00(z) denotes the energy density at a point z. We should know that ρ(z)

operates locally in a small neighborhood V of z. Then we should define the ground state

k on the torus spacetime. But one should pay attention that the ground state on the flat

torus spacetime is different from the vacuum state ω on the flat Minkowski spacetime.

Now we should represent the Klein-Gordon fields on the torus spacetime. The Klein-

Gordon field on 3-dimensional torus spacetime is given by:

φ(t,x) = (2πR)−
3
2

∑
n∈Z3

(
2|n|
R

)−1[ane
−i[ |n|

R
t−n.x

R
] + a†ne

i[
|n|
R
t−n.x

R
]] (4.14)

where,

n = înx1 + ĵnx2 + k̂nx3 , |n| = (n2
x1

+ n2
x2

+ n2
x3

)
1
2 (4.15)

we consider n
R

as the momentum in torus spacetime which can possess only discrete

values because of the boundary conditions. The coefficient can be obtain by using the

commutation relation:

[φ(t,x), π(t,y)] = iδ(x− y) (4.16)

We should take the expectation value of normal ordered energy density. We do the normal

ordering with respect to vacuum state on Minkowski spacetime, then we have:

k(: ρ(z) :) = k(ρ(z))− ω(ρ(z)) (4.17)

the energy density at the point z is given by:

ρ(z) =
1

2
[(
∂φ

∂t
)2 |z +(

∂φ

∂x1

)2 |z +(
∂φ

∂x2

)2 |z +(
∂φ

∂x3

)2 |z] (4.18)

here we use the point-splitting prescription again and represent the expectation value of

the normal ordered energy density by:

k(: ρ(z) :) = lim
x,y→z

{(k − ω)[1
2
(∂tφ(x)∂t′φ(y) + ∂x1φ(x)∂y1φ(y)

+∂x2φ(x)∂y2φ(y) + ∂x3φ(x)∂y3φ(y))]} (4.19)
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we can bring out the partial differential operators and rewrite it:

lim
x,y→z

[
1

2
(∂t∂t′ + ∂x1∂y1 + ∂x2∂y2 + ∂x3∂y3)[k(φ(x)φ(y))− ω(φ(x)φ(y))]] (4.20)

with the help of translation invariance and by putting the point z at zero point and (t,y)

equal to zero, we have to calculate the following limit:

lim
x→0

[−1

2
(∂2
t + ∆)[k(φ(x)φ(0))− ω(φ(x)φ(0))]] (4.21)

now we can use the Poisson resummation, which is given by:∑
n∈Z3

f(n) =
∑
m∈Z3

∫
f(n)e−im2πndn (4.22)

where f is a function of a integer number n. We reformulate the Klein-Gordon field with

Poisson resummation,

k(φ(x)φ(0)) = (2πR)−3
∑
n∈Z3

(
2|n|
R

)−1e−i[
|n|
R
t−n.x

R
]

= (2πR)−3
∑
m∈Z3

∫
(
2|n|
R

)−1e−i[
|n|
R
t−n.x

R
]e−i2πn.m dn (4.23)

and then we can write the two-point function of k as the summation of two-point function

of vacuum state:

k(φ(x)φ(0)) =
∑
n∈Z3

ω(φ(x+ 2πRn)φ(0)) (4.24)

then we have:

k(: ρ :) = lim
x→0
{−1

2
(∂2
t + ∆)[

∑
n∈Z3

ω(φ(x+ 2πRn)φ(0))− ω(φ(x)φ(0))]}

= lim
x→0
{−1

2
(∂2
t + ∆)[

∑
n∈Z3\{0}

ω(φ(x+ 2πRn)φ(0))]

= lim
x→0
{−1

2
lim
ε↓0

(∂2
t + ∆)[

∑
n∈Z3\{0}

1

(x + 2πRn)2 − t2 + iε
]} (4.25)

we drop ε and take the derivative on a spacelike Cauchy surface, then we have:

k(: ρ :) = lim
x→0

[−1

2
(
∑

n∈Z3\{0}

16[(x1 + 2πn1R)2 + (x2 + 2πn2R)2 + (x3 + 2πn3R)2]

[(x1 + 2πn1R)2 + (x22πn2R)2 + (x3 + 2πn3R)2]3

− 12

[(x1 + 2πn1R)2 + (x22πn2R)2 + (x3 + 2πn3R)2]2
)] (4.26)

we take x to zero:

k(: ρ :) =
∑

n∈Z3\{0}

− 2

[(2πn1R)2 + (2πn2R)2 + (2πn3R)2]2
] (4.27)
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the result of this summation is a number that we call it Γ1. Now we should search for

the solution of semi-classical Einstein equation.

We have for the coherent state the following relation:

ωc(: ρ(x) :) = k(: ρ(x) :) + ρ(f) (4.28)

then we should find the proper function f .

On the flat torus spacetime we have no curvature, therefore:

Rabcd = 0, Gµν = 0 (4.29)

then for a homogeneous and isotropic solution which only depends on t, we have:

1

2
(ḟ(t))2 + k(: ρ :) = 0 (4.30)

the solution for function f is obtained by the following steps:

(ḟ(t))2 = −2k(: ρ :)

(ḟ(t)) = (−2Γ1)
1
2

f(t) = (−2Γ1)
1
2 t+ C (4.31)

where C is constant.

For the massive scalar Klein-Gordon field it is almost the same. The free scalar Klein-

Gordon field in a 3D torus spacetime is given by:

φ(t,x) = (2πR)−
3
2

∑
n∈Z3

(2ωn)−
1
2 [ane

−i[ωnt−n·x
R

] + a†ne
i[ωnt−n·x

R
]] (4.32)

ωn = (
n2

R2
+m2)

1
2

and the two-point function in massive case in 3D torus spacetime reads,

k(φ(x)φ(y)) = (2πR)−3
∑
n∈Z3

(2ωn)−1e−i[ωn(t−t′)−n·(x−y)
R

] (4.33)

while the one in Minkowski spacetime, as we know, is:

ω(φ(x)φ(y) = (2π)−3

∫
(2ωk)−1e−i[ωk(t−t′)−k·(x−y)] dk

ωk = (k2 +m2)
1
2

we compute the expectation value of normal ordered energy density at point z on 3D

torus spacetime by:

k(: ρ(z :)) = lim
x,y→z

[
1

2
(∂t∂t′ + ∂x1∂y1 + ∂x2∂y2 + ∂x3∂y3 +m2)[k(φ(x)φ(y))− ω(φ(x)φ(y))]]

(4.34)
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in analogy to the massless case, we put z equal to zero and calculate the two-point function

for φ(y) = φ(0). Again we use the Poisson resummation to the two-point function in 3D

torus in the two-point function of the vacuum state:

k(φ(x)φ(0)) = (2πR)−3
∑
n∈Z3

(2ωn)−1e−i[ωnt−n.x
R

]

= (2πR)−3
∑
m∈Z3

∫
(2ωn)−1e−i[ωnt−n.x

R
]e−i2πn.m dn (4.35)

then we have for the expectation value of the normal ordered energy density:

k(: ρ :) = lim
x→0

[−1

2
(∂2
t + ∆ +m2)[

∑
n∈Z3

ω(φ(x + 2πRn, t)φ(0))− ω(φ(x, t)φ(0))]]

then,

k(: ρ :) = lim
x→0

[−1

2
(∂2
t + ∆ +m2)

∑
n∈Z3\{0}

ω(φ(x + 2πRn)φ(0))] (4.36)

the two-point function of the vacuum state in the massive case is given by:

ω(φ(x)φ(0)) = lim
ε↓0

4m

(4π)2(σε(x, 0))
1
2

K1(m(σε(x, 0))
1
2 ) (4.37)

where σε(x, 0) is the half squared geodesic distance, in this case in the Minkowski space-

time and K1 is a modified Bessel function of order one. For simplicity, we restrict to

asymptotic case for which, mR� 1.

The modified Bessel function K1(x′) behaves asymptomatically as follows:

K1(x′) ' e−x
′
[

√
π

2

√
1

x′
+O((

1

x′
)3/2)]

then by using this approximation the expectation value of the normal ordered energy

density looks like:

k(: ρ :) = lim
x→0
{−1

2
(∂2
t +∆+m2)

∑
n∈Z3\{0}

4m

(4π)2((2πn1R + x1)2 + (2πn2R + x2)2 + (2πn3R + x3)2 − t2)
1
2

e−m((2πn1R+x1)2+(2πn2R+x2)2+(2πn3R+x3)2−t2)
1
2

[

√
π

2

√
1

m((2n1πR + x1)2 + (2n2πR + x2)2 + (2n3πR + x3)2 − t2)
1
2

+O((
1

m((2n1πR + x1)2 + (2n2πR + x2)2 + (2n3πR + x3)2 − t2)
1
2

)3/2)]}

we calculate the derivatives and impose the limit. Then we have:

k(: ρ :) = −1

2

∑
n∈Z3\{0}

[
3
√
mπ/2

4π2

e−m((2πn1R)2+(2πn2R)2+(2πn3R)2)
1
2

((2πn1R)2 + (2πn2R)2 + (2πn3R)2)
7
4

43



+
m
√
mπ/2

2π2

e−m((2πn1R)2+(2πn2R)2+(2πn3R)2)
1
2

((2πn1R)2 + (2πn2R)2 + (2πn3R)2)
5
4

]

the result of the last summation is convergent and we call it Γ2. Now we should find

a solution of the massive Klein-Gordon equation whose expectation value of the energy

density cancel the Casimir effect, because, as we know before, the Einstein tensor is zero:

1

2
(ḟ 2 +m2f 2) + Γ2 =

Gµν

8πG

⇒ ḟ 2 +m2f 2 + 2Γ2 = 0 (4.38)

where the solution of this equation is as follows:

f =
(2|Γ2|)

1
2

m
sin(mt+ c) (4.39)

where c is a constant.

4.4 Finding a Solution for the Semi-Classical Ein-

stein equation on de Sitter spacetime

For calculating the solution of the semi-classical Einstein equation we use the state of low

energy on de Sitter spacetime for which we have given already a summary in section 3.4.

Since we want to study cases, for which ηk(σ) := Sk(t)a(t) can be expressed in terms of

elementary functions, we restrict our calculations to minimal coupling, ξ = 0 and choose

a mass for which the index of Hankel function of the second kind n, which is given by:

n :=

√
9

4
− 2(

m2

2H2
+ 6ξ)

is equal to 1
2

or 3
2
. Then the two cases corresponds to m2 = 2H2 and m2 = 0, respectively.

We consider the massive case.

For massive case, i.e. m2 = 2H2, we have n = 1
2

and the corresponding Hankel function

of the second kind is as follows:

H(2)
n (x) = Jn(x)− iYn(x) ⇒ H

(2)
1
2

(x) = J 1
2
(x)− iY 1

2
(x)

where Jn(x) is a Bessel function and Yn(x) is Bessel function of second kind. For n = 1
2

these two functions are equal to:

J 1
2
(x) =

√
2

πx
sinx , Y 1

2
(x) =

J 1
2
(x) cos 1

2
π − J− 1

2
(x)

sin 1
2
π

= −J− 1
2
(x)
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then the Hankel function of the second kind reads:

H
(2)
1
2

=

√
2

πx
sinx+ i

√
2

πx
cosx

By inserting it in 3.42 we obtain the function ηk(σ):

ηk(σ) =
1

2k
eikσ

Then the relation 3.47 looks like:

[RW̃ω,s
2 ](σ) =

H4η2

2(2π)3

∫
R3

dkeik·r[(1 + 2µ2
k)(kσ

2 +
3

2k
) (4.40)

+2µk|λk|Re{ei(arg λk+2kσ)(
3

2k
+ iσ)}]

By choosing a Gaussian test function:

f(t) = e−
(t−t0)2

ε2

the only task to calculate is λk and µk.

For gaining λk and µk we should first calculate c1 and c2:

c1(k) =

∫
I

dtf(t)(ke−4Ht +
3H2

2k
e−2Ht) =

√
παe−3Ht0(ze4α2

+
3

2z
eα

2

)

where we changed the variables to α = εH and z = kH−1e−Ht0 . c2(k) Results from the

following integral:

c2 =

∫
I

dtf(t)(e2ikσ(
3H2

2k
e−2Ht − iHe−3Ht))

=
3H2

2k

∫ ∞
−∞

dt exp(−(t− t0)2

ε2
− 2Ht+ 2ikσ)− iH

∫ ∞
−∞

dt exp(−(t− t0)2

ε2
− 2Ht+ 2ikσ)

One uses an approximation to solve this integral. One assumes α� 1 and then performs

a Taylor expansion of σ(t) to linear order around t0. We write here only the results:

c1 ≈
√
παe−3Ht0(z +

3

2z
) (4.41)

c2 ≈
√
παe−3Ht0e−α

2z2

√
1 +

9

4z2
exp(−i(arctan

2z

3
+ 2z)) (4.42)

Now for completing the calculation of expectation value of normal ordered energy density

we should know [RG̃1](σ). For m2 = 2H2 one has:

[RG̃1](σ) =
H4

4π2
(
2σ4

r4
+

3σ2

2r2
+

23

240
)
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= {lim
ε→0

H4

2(2π)3

∫
R3

dp e−εpeip·r(σ4p+
3σ2

2p
)}+

23H4

960π2
(4.43)

At the end, we need only [PxG1] and (∂t)
a(∂t)

bCab where (∂t)
a is the worldline tangent of

an isotropic observer γ.

For our case, m2 = 2H2 in the de Sitter spacetime, it yields:

[PxG1] =
1

4π2

H4

20
(4.44)

and,

(∂t)
a(∂t)

bCab = 4αH4 − 6βH4 (4.45)

By imposing a renormalization condition for the energy density as follows:

lim
t→∞

ω(: ρ(t) :) = 0

the coefficients of (∂t)
a(∂t)

bCab must obey:

4α− 6β =
19

240

1

4π2

For simplicity one introduces the auxiliary function by:

z 7→ u(z) :=
c1

2
√
c2

1 − |c2|2
=

z2 + 3
2

2
√

(z2 + 3
2
)2 − e−2α2z2(9

4
+ z2)

Then the energy density for the state of low energy which is smeared by Gaussian test

function is given by:

ωSLE(: ρ :) =
H4

4π2
e−2(t−t0)

∫
R+

dz z[2(u(z)− 1

2
)(z2e−2(t−t0) +

3

2
)

−

√
u(z)2 − 1

4√
1 + 4z2

9

(3 cos(2z(1− e−H(t−t0)))(
4z2e−H(t−t0)

9
+ 1)

+2z sin(2z(1− e−H(t−t0)))(e−H(t−t0) − 1))] (4.46)

Now we can use this result for finding a solution for the semi-classical Einstein equation

in the de Sitter spacetime. We have from (4.12) the following relation for the expectation

value of the normal ordered energy density:

ωcs(: ρ :) = ωSLE(: ρ :) + ρ(f)

where ωcs(: ρ :) denotes the expectation value of the normal ordered energy density of

coherent state and ωSLE(: ρ :) means the expectation value of the normal ordered energy
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density in the state of low energy. The energy density in the coherent state can be

obtained by the semi-classical Einstein equation:

ωcs(: ρ :) =
G00

8πG

first we should calculate the zero-zero component of Einstein tensor in the sitter space-

time. The metric in the de Sitter spacetime is given by:

gµν = diag(−1, e2Ht, e2Ht, e2Ht) (4.47)

and the Einstein tensor reads:

Gµν = Rµν −
1

2
gµνR (4.48)

where Rµν and R are the Ricci tensor and the Ricci scalar respectively. The Ricci tensor

is given by:

Rµν = Rα
µαν = ∂αΓανµ − ∂νΓααµ + ΓααλΓ

λ
µν − ΓανλΓ

λ
αµ (4.49)

where Γανµ is a Christoffel symbol and it is given by:

Γανµ =
1

2
gασ(∂µgσν + ∂νgσµ − ∂σgνµ) (4.50)

then the zero-zero component of the Einstein tensor in the de Sitter spacetime is :

G00 = 3H2 (4.51)

where H, the Hubble parameter, in the de Sitter spacetime is a constant. Then the

semi-classical Einstein equation becomes :

ωSLE(: ρ(t) :) + ρ(f(t)) =
3H2

8πG
(4.52)

to be more precise:

ωSLE(: ρ :) +
1

2
(ḟ 2 +m2f 2) =

3H2

8πG
(4.53)

where f is a homogeneous isotropic solution of the Klein Gordon equation, which in the

de Sitter spacetime looks like:

(
∂2

∂t2
+ 3H

∂

∂t
+m2)f = 0 (4.54)

The right hand side of the relation (4.53) is a constant and this relation is correct for

all t ∈ I. Since the function f is a real solution of the Klein-Gordon equation and from

(4.54), we conclude that ρ(f(t)) takes only positive values for all t. By taking the limit of
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t→ −∞ the expectation value of the energy density in the state of low energy increases

in the direction of infinity and it rises at a specific time above 3H2

8πG
and consequently,

ρ(f(t)) should be negative. We can conclude that in the de Sitter spacetime there exists

no solution for the semi-classical Einstein equation for all t ∈ I. But maybe we can solve

this equation for when ωSLE(: ρ(t) :) < 3H2

8πG
.

For solving the semi-classical Einstein equation and finding the function f , we take a

time derivative from the semi-classical Einstein equation:

ρ̇SLE(t) + ḟ f̈ +m2fḟ = 0

ḟ(f̈ +m2f) = −ρ̇SLE(t) (4.55)

where ρ̇SLE(t) denotes the energy density in the state of low energy. By using the Klein-

Gordon equation we have:

−3Hḟ 2 = −ρ̇SLE(t)

f =

∫
I

dt [
ρ̇SLE(t)

3H
]

1
2 + C (4.56)

where C is a constant. But unfortunately, this is not a solution of the Klein-Gordon

equation. The real homogeneous solution of the Klein-Gordon equation in de Sitter

spacetime is given by:

f(t) = exp(
−3H ±

√
9H2 − 4m2

2
) (4.57)

and for the case of m2 = 2H2 they are:

f1(t) = e−Ht , f2(t) = e−2Ht (4.58)

which are totally different from (4.56). If F (t) denotes the general solution of the Klein-

Gordon equation, we decompose it as follows:

F (t) := ae−Ht + be−2Ht

where a and b are proper constants. Now we try to find the solution of the semi-classical

Einstein equation with this function. We use F (t) in semi-classical Einstein equation and

try to find proper values for constants a and b for which the equation holds approximately.

For finding the constants a and b for which the equation is minimum we should solve the

following relation:

∂

∂a
[

∫
I

(ωSLE(: ρ(t) :) + ρ(F (t, a, b))− 3H2

8πG
) dt] = 0

∂

∂b
[

∫
I

(ωSLE(: ρ(t) :) + ρ(F (t, a, b))− 3H2

8πG
) dt] = 0
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where I is a suitable interval in which ωSLE(: ρ(t) :) has the lowest values in comparison

with other t.

By solving and studying these relations numerically, we remarked that the minimum of

the semi-classical Einstein equation is for a and b equal to zero. Therefore we can conclude

that in the de Sitter spacetime which such an ansatz as the coherent state, there is no

coherent state which can solve the semi-classical Einstein equation.

4.5 Solution of the Semi-Classical Einstein Equation

on General Robertson-Walker Spacetimes

In Robertson-Walker spacetime the Hubble rate is not constant, i.e. it is time dependent.

In general case, we do not know anything about scale factor a and consequently, Hubble

rate. Therefore we replace the variable of the Klein-Gordon equation by scale factor; and

for semi-classical Einstein equation analogously.

Let us to write the semi-classical Einstein equation in Robertson-Walker spacetime again:

ωSLE(: ρ :) + ρ(f) =
3H2

8πG
≡ 3m2

PH
2 (4.59)

where mP is the Planck mass. The standard deviation of the Gaussian test function

ε, which is used in energy density of state of low energy is much bigger than Planck

mass, ε � 1
mp

. It means that the expectation value of energy density evaluated by

the state of low energy is much smaller than the right hand side of the last relation,

ωSLE(: ρ :) � 3m2
PH

2. Therefore we neglect it and try to find a homogeneous and

isotropic solution f of the Klein-Gordon equation which fulfils the semi-classical Einstein

equation alone.

The homogeneous and isotropic Klein-Gordon equation for conformal coupling constant

looks like:

(∂2
t + 3H∂t +m2 +

R

6
)f(t) = 0 (4.60)

where R is the Ricci scalar and in Robertson-Walker spacetime is, R = Ḣ + 2H2. If we

define h(t) by, h(t) := a(t)f(t) and by knowing, ∂t = a−1∂σ, where σ is the conformal

time, we can represent the Klein-Gordon equation much simpler by:

(∂2
σ + a2m2)h(t) = 0 (4.61)

the energy density with conformal coupling constant, which is given by:

ρ(f(t)) :=
1

2
ḟ 2(t) +

1

2
m2f 2(t)− ξ(R00 − 1

2
g00R)f 2(t) (4.62)
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=
1

2
ḟ 2(t) +

1

2
(m2 −H2)f 2(t)

is reformulated to:

ρ(f(t)) =
1

2a4
((∂σh)2 − 2aH(∂σ)h+ a2m2h2) (4.63)

where for the last step of (4.60) we use (4.48) and (4.51). The left hand side of (4.61) is

given by the semi-classical Einstein equation,

G00 = 8πGρ (4.64)

by putting the Planck mass equal to one, mP = 1, we have:

ρ = 3H2

then the semi-classical Einstein equation looks like:

1

2a4
((∂σh)2 − 2aH(∂σh)h+ a2m2h2) = 3H2 (4.65)

now one should gain h(σ(t)) from (4.59) and (4.63). But the problem is that we do not

know H explicitly in function of σ(t) in general case. Actually the scale factor should

be first determined then the Hubble rate can be formulated as a function of σ. Since

we want to solve the semi-classical Einstein equation for all scale factors, we solve the

Klein-Gordon and the semi-classical Einstein equation with respect to a(t). We replace

the partial derivatives with respect to σ with scale factor dependent one, i.e. ∂σ = a2H∂a.

Consequently, the Klein-Gordon equation is represented by:

[(a2H∂a)
2 +m2a2]h = 0 (4.66)

and for semi-classical Einstein equation it yields:

1

2
H2(∂ah)2 − H2

a
(∂ah)h+

m2

2a2
h2 = 3H2 (4.67)

for solving these equations first we try to find a solution for massless case. Obviously, for

massless case the Klein-Gordon equation is:

(a2H∂a)
2h = 0 (4.68)

and the semi-classical Einstein equation is:

1

2
(∂ah)2 − 1

a
(∂ah)h = 3 (4.69)
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the two solutions of the last equation is:

h(a(t)) =
√

6a sinh (c1 − log(a)) ,

h(a(t)) =
√

6a sinh (c1 + log(a)) (4.70)

where c1 is a constant. By inserting these functions in massless Klein-Gordon equation,

one gains the Hubble parameter:

H(a(t)) =
c2

a3
(4.71)

and c2 is another constant. But we know from observations that the Hubble parameter

is given by:
H2

H2
0

=
Ωr

a4
+

Ωm

a3
+ ΩΛ (4.72)

where H0 is the Hubble parameter at the time of observation, Ωr and Ωm denote the

radiation density and the matter density today, respectively. ΩΛ is the cosmological

constant or vacuum density today. By considering that Ωr is negligible and by using

Taylor expansion the Hubble parameter looks like:

H(t) ≈ H0

√
ΩΛ(1 +

Ωm

2ΩΛa3
)

if we compare this Hubble parameter with the one which is yielded from the semi-classical

Einstein equation in (4.67), we remark that the calculated one lacks a constant that should

be added to it. For calculating the Hubble parameter which is more similar to the Hubble

rate in (4.72), we add the cosmological constant to the semi-classical Einstein equation

for the massless case:

1

2
H2(∂ah)2 − H2

a
(∂ah)h+ ΩΛ = 3H2 (4.73)

if one uses the Klein-Gordon equation, the first derivative of the function h(a(t)) is,

∂ah(a(t)) = c
a2H

. We insert it in the semi-classical Einstein equation and then we have:

∂aH =
H(18a4H2 − 6ΩΛa

4 + 3c2)

a(−6a4H2 − 2ΩΛa4 − c2)
.

For simplifying this equation we define a new function by, K(a(t)) = 3H2 −ΩΛ. Finally,

the last differential equation is reformulated to:

a ∂ ln(K + ΩΛ)

∂a
= −6(

2a4K + c2

2a4(K + ΩΛ) + c2
). (4.74)

For solving this equation, we assume the case for which a� 1 and consequently, K � 1.

Then K(a) is obtained from the following equation:

a ∂ ln(K + ΩΛ)

∂a
= −6(1− 1

1 + c2/4a4ΩΛ

) (4.75)
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we solve this equation in the following steps:∫ ln ΩΛ

ln(K+ΩΛ)

d ln(K ′ + ΩΛ) =

∫ ∞
a

(−6(1− 1

de−4 ln a′
)) d ln a′

− ln(
K + ΩΛ

ΩΛ

) = [−6(a′ − 1

−4
(−4a′ − ln(1 + de−4 ln a′)))] |∞a

K + ΩΛ

ΩΛ

= (1 +
d

a4
)

3
2

where d = c2/4ΩΛ. If one expands the last relation for large a then it yields:

K ≈ 3

2

dΩΛ

a4
+O(a−8) =

3

4

c2

a4
+O(a−8)

now in this relation we gained the cosmological constant part and also the radiation

part of the Hubble parameter in (4.72). Maybe if one solves the semi-classical Einstein

equation with the cosmological constant for the massive case, also the matter part of the

Hubble parameter in (4.72) can be obtained.
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Chapter 5

Conclusion

As a conclusion we should give a brief summary of what we have done in this master thesis.

We have successfully calculated the Casimir effect in 3-dimensional torus spacetime and

used the results to solve the semi-classical Einstein equation. The semi-classical Einstein

equation has been solved properly with a suitable coherent state for both massless and

massive scalar free fields in 3D torus spacetime.

We have tried to solve the semi-classical Einstein equation in de Sitter spacetime with

the help of a state of low energy and its corresponding coherent state in this spacetime.

As we know, the Hubble rate is constant in de Sitter spacetime and consequently the

right hand side of semi-classical Einstein equation is constant. On the other hand, the

energy density of state of low energy rises in the past and its value for a specific time

becomes larger than the right hand side of the semi-classical Einstein equation and since

both, the energy density of the state of low energy and also the right hand side of the

semi-classical Einstein equation are positive-valued, then we should find a homogeneous

and isotropic solution whose energy density is negative but such a solution does not exist.

Therefore we can claim that there exists no coherent state with respect to a state of low

energy in de Sitter spacetime which can solve the semi-classical Einstein equation.

We have also solved the semi-classical Einstein equation in a general spatially flat

Friedman-Robertson-Walker spacetime. We have assumed that the energy density of state

of low energy is negligible in comparison to the total energy density in Robertson-Walker

spacetime. Therefore we solved the semi-classical Einstein equation by the classical energy

density of the Klein-Gordon solution. After that we have solved it for the massless case

and it yielded a suitable homogeneous and isotropic state in that spacetime, but the

resulting Hubble rate was different from the Hubble rate which can be inferred from

observations. Therefore, we reformulated the semi-classical Einstein equation by adding
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the cosmological constant to it. It yielded an ordinary differential equation and we solved

it approximately for the case of large scale factors.
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Chapter 6

Appendix

6.1 Distributions

Let us start by defining test function. If Γ ⊆ Rn would be an arbitrary domain, C∞0 (Γ) is

the set of all infinitely differentiable continuous functions f ∈ Γ with compact support.

We call the closure of a set of point x ∈ Γ the support of a function if we have f(x) 6= 0 for

all x ∈ supp f . A sequence {fk}∞k=1 in the vector space C∞0 (Γ) is called to be convergent

to f ∈ C∞0 (Γ) if and only if:

a)There is a compact set L ⊂ Γ that supp(fk) ⊂ L

b)Dαfk, the α-th derivative of fk, converge uniformly to Dαf on L for each multi-index

α

The space C∞0 (Γ), equipped with this convergence of sequence and a compact support, is

called the fundamental space D(Γ) and we name its elements test functions. We denote

also E(Γ) the fundamental space without any compact support.

A linear functional φ on D(Γ), which is continuous, i.e. if there is a convergent sequence

{fk} → f for fk, f ∈ D(Γ) then φ(fk) → φ(f), is called a generalized function or

distribution. By D′(Γ) we denote the set of all distributions, which are linear maps

D(Γ) → R. Dirac delta δa for a ∈ Γ as an arbitrary fixed point is the simplest example

of linear continuous distribution:

δa(f) = 〈δ, f〉 = f(a) (6.1)

We define the dual pairing of φ(x) ∈ D′(Γ) and f(x) ∈ Γ as another example of distribu-

tion on D(Γ) by:

φ(f) = 〈φ, f〉 :=

∫
Γ

dnxφ(x)f(x) (6.2)
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two distribution are equal, i.e. φ(f) = ρ(f), ∀f ∈ Γ, if and only if φ = ρ. We also denote

E ′(Γ) the space of distribution with compact support.

6.2 Schwartz Distributions

We start with the definition of a smooth function in S(Rm). We call a function f ∈ S(Rm)

smooth, if:

sup
x
|xα∂βf(x)| <∞ (6.3)

for all multi-indices α and β. Then we denote ψ a Schwartz distribution or tempered

distribution, as an distribution in the topological dual of S(Rm). A linear functional on

S(Rm) is a Schwartz distribution, i.e. ψ ∈ S ′(Rm), if and only if there exist an N ∈ N
and a constant C ∈ R+, such that,

|ψ(f)| ≤ C
∑

|α|+|β|≤N

sup
x
|xα∂βf(x)| (6.4)

6.3 Wave Front set

Let us start by studying more the singularity structure of distributions. The best way to

resolve a singular distribution is with the help of its Fourier transformation.

We call a distribution φ ∈ E ′(Rm) smooth if and only if for every n ∈ N there is a constant

Cn ∈ R we have:

|φ̂(p)| ≤ Cn(1 + |p|)−n (6.5)

If we multiply a distribution ψ ∈ D′(Rm) by a test function f ∈ D(Rm), then ψf would

be a distribution with compact support, i.e. ψf ∈ E ′(Rm). From these explanations. we

can now come to a conclusion that the singular support of a distribution φ ∈ D′(Rm) is

the complement of the set of points x ∈ Rm such that there is a function f ∈ D(Rm)

with f(x) = 1 which φ̂f is rapidly decreasing.

We can have a detailed analysis of the singularity structure of φ by the set of direc-

tions in which the singularity occurs. We define an open conic neighborhood Γ as a

neighborhood of k0 ∈ (Rm) which is invariant under the action of R+ by multiplication,

i.e. if k ∈ Γ is a point in conic neighborhood of k0 then implies µk ∈ Γ for µ ∈ (0,∞).

So, we call a point (x0, k0) ∈ Rm × (Rm {0}) a regular directed point of φ if there a test
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function f ∈ D(Rm) which is non-zero at x0 and also if there is a constant Cn ∈ R for

every n ∈ N, such that the Fourier transformation of φf obeys the following inequality:

|φ̂f(k)| ≤ Cn(1 + |k|)−n (6.6)

for all k in a conic neighborhood of k0. We call the complement of the set of regular

directed points of φ in Rm × (Rm \ {0}), the wave front set of φ, WF (φ). Obviously if

φ is smooth, then WF (φ) is empty.

In general curved spacetime the wave front set is subset of cotangent vector bundle on

the manifold M , i.e. WF (φ) ⊂ T ∗M .
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