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1 Description of thermal states

1.1 Thermal states in classical statistical mechanics

In classical statistical mechanics, the description of systems which are in
thermal equilibrium with respect to each other (thermal states) is achieved
with the use of Gibbs’ canonical ensemble (Gibbs measure). The canonical
ensemble represents the probability distribution of microscopic states of a
system which can share its energy with a large heat reservoir. The heat
capacity of the reservoir is assumed tobe large enough for the temperature
of the coupled system to remain fixed. Given the fact that the exchange of
energy is possible, the eneergy of each of the component systems is not a pri-
ori known. What is known is that the total system is also in an equilibrium
state. Hence, denoting by ρi = fi(Hi) the probability density functions on
phase space for each of the component systems, the following relation must
hold

f1(E1)f2(E2) = f(E1 + E2) (1)

Differentiating (1) with respect to E1 and E2 respectively yields the equation

f ′1f2 = f1f
′
2 ⇒

f ′1
f1

=
f ′2
f2

(2)

Given the fact that each hand-side of (2) depends upon different independent
variables, the two hand sides must be constant. So, in thermal equilibrium
we will have for the probability density function

ρ = Z−1e−βH (3)

where β ∈ R is an arbitrary constant which is identified with the inverse
of the temperature (β = 1/kT ). Z is called the partition function and
is calculated using the normalization condition for the probability density
function ρ:

Z =

∫
d3N~qd3N~pe−βH(~q,~p) =

∫
dΩH(E)e−βE (4)

where ΩH(E) is the phase space volume enclosed by the hypersurface {(~q,~p),
H(~q,~p)}. If in addition to the exchange of energy, the exchange of particles
between the coupled systems is also allowed, the probability density function
of the equilibrium states will depend on both the energy and the number of
particles, i.e. we will have

ρ = f(H,N) (5)

The equilibrium condition in this case will be given by

f1(E1, N1)f2(E2, N2) = f(E1 + E2, N1 +N2) (6)
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which has the general solution

f(E,N) = Z−1G e−β(E−µN) (7)

where µ is the chemical potential. The states described by the distribution
(7) are called the ”grand-canonical ensemble”.

1.2 Thermal states in quantum statistical mechanics

In order to arrive at a description of equilibrium states in the quantum
mechanical case, we can base the theory on the algebra U of observables.
We start with a 1-component system (a system containing only one type of
particles) confined to a box of volume V. If the total number of particles
is known we consider the Hilbert space HN of totally antisymmetric (re-
spectively totally symmetric) N-particle wavefunctions. Imposing boundary
conditions on the walls of the box gives us the Hamilton operator H. In this
context, a general state is described by a positive operator ρ with trρ = 1
called the density matrix. The expectation value of an observable A∈ B(H)
is then given by

ω(A) = trρA (8)

The density matrix corresponding to an equilibrium state at inverse tem-
perature β = (kT )−1 is then

ρβ = Z−1e−βH ;Z = tre−βH (9)

(generalization of Gibbs’ canonical ensemble to quantum mechanics). The
internal energy of the system, in the sense of thermodynamics , is then given
by

E = trρβH (10)

If in addition to the exchange of energy, we also allow for the exchange
of particles, i.e. if we do not fix the number of particles N , we get the
quantum mechanical adaptation of the grand canonical ensemble. In this
case, we consider the Fock space HF =

⊕∞
N=0HN . The number of particles

N is then an operator in HF . We then consider the algebra generated by the
bosonic and fermionic creation and annihilation operators, which we denote
by U . Denoting by H the Hamiltonian in the Fock space we get the following
density matrix in this case

ρβ,µ = G−1e−β(H−µN);G = tre−β(H−µN) (11)

with β being again the inverse temperature and µ the ”chemical potential”.
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2 Description of thermal states with the use of the
KMS condition.

2.1 Motivation for the introduction of the KMS condition
for thermal state and extraction of the KMS condition.

Before proceeding to the extraction of the KMS condition, we should men-
tion the reasons which led to the pursue of such a condition. The description
of thermal states with the use of Gibbs’ distribution (ρ̂ = e−βH works for
systems of finite volume. But at the thermodynamic limit (V → ∞, E →∞
with N/V and E/V finite) this description breaks down. At the thermo-
dynamic limit the system has an infinite number of degrees of freedom and
the usual formulation of classical mechanics and quantum mechanics is not
sufficient for the description of such a system. The only way to make pre-
dictions about the behaviour of such a system using the usual formulation
would be to consider large, but finite systems and take the thermodynamic
limit at the end. This leads us to look for an alternative way of describing
thermal states. One which would allow us to treat systems with infinitely
many degrees of freedom without having to resort to the ”solution” of seeing
them as limiting cases of systems with finitely many degrees of freedom.

Let A be an observable. Then, the time evolution of A is given by

αt(A) = eiHtAe−iHt (12)

Let A,B∈ B(H) and ωβ be defined as in equations (7), (8), (9). We have,
due to the invariance of the trace under cyclic permutations

ωβ(αt(A)B) = Z−1tre−β(H)eiHtAeiHtB =

Z−1trBeiH(t+iβ)Ae−iHt = ωβ(BeiH(t+iβ)Ae−iH(t+iβ))

Thus
ωβ(αt(A)B) = ωβ(Bαt+iβA) (13)

where, replacing t by a complex variable z, we have written

αzA = eiHzAe−iHz (14)

We note that αz is not, in general, a bounded operator. We now introduce
for each pair A,B∈ B(H) of observables the following two functions of z

F βA,B(z) = ωβ(B(αz(A))

GβA,B(z) = ωβ((αzA)B)
(15)

We see that, with z = t+ iγ

F βA,B(z) = Z−1trBeiHte−γHAe−iHte−(β−γ)H
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is an analytic1 function of z in the strip

0 < γ < β, γ = Im(z) (16)

Indeed,

eiHzAe−iHze−βH
z=t+iγ

= eiH(t+iγ)Ae−iH(t+iγ)e−βH =

eiHte−HγAe−iHteHγe−βH = eiHte−HγAe−iHte−(β−γ)H

will be bounded and of trace class2 for 0 6 γ 6 β because, with these
restrictions on γ, all the factors in the above product are bounded and
either the second factor or the last (or both) are of trace class. Similarly,

e−βHαzA will be of trace class for −β 6 γ 6 0. Therefore, for F βA,B(z) is
well defined in the strip 0 6 γ 6 β. In fact it is differentiable, hence analytic
in the open strip 0 < γ < β and continuous at the boundaries (follows from
the fact that He−αH is a bounded operator for any α > 0). Similarly, the

function GβA,B(z) is analytic in the strip −β < γ < 0 and continuous at the
boundaries. For real values of z, F and G are bounded, continuous functions
of t and we obtain G(t) as the boundary value of F (z) for z → t+ iβ

GβA,B(t) = F βA,B(t+ iβ) (17)

If instead of the canonical ensemble we use the grand canonical one, we arrive
at the same relation with µ and H replaced by H(µ), αt in (12) replaced by
αµt , U by A where

H(µ) = H − µN,αµt A = eiH(µ)tAe−iH(µ)t (18)

Relation (17) survives the thermodynamic limit (V → ∞, E →∞ with N/V
and E/V finite). Specifically we may regard A and B as local quantities,
ωβ,µ as the state (normalized, positive, linear form over A) corresponding to
equilibrium with inverse temperature β, chemical potential µ in unlimited
space. We can now consider H and N in (11) as generators of symmetries
which are realized by automorphism groups on A, namely the time transla-
tions αt ant the U(1) gauge transformations

γφA = eiNφAe−iNφ (19)

H(µ) is an element in the Lie algebra of the symmetry group and

αµt = αtγ−µt (20)

1We remind that a function is called analytic if it is locally given by a convergent power
series. That is, a function f is called analytic if it is equal to its Taylor series in some
neighborhood of every point where it is defined.

2Let H be a separable Hilbert space. An endomorphism of H is a compact operator
for which a trace may be defined, so as to be finite and independent of the choice of basis.
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From the previous analysis (for the case of the canonical ensemble) it is
suggested that F (t) is the boundary value on the real axis of a function
F (z), analytic in the strip given by (16) and that G(t) is obtained as the
boundary value for Im(z) = β as in (17). We thus reach the relation

Gβ,µA,B(t) = F β,µA,B(t+ iβ) (21)

which is analogous to (17) for the grand canonical ensemble. This relation
represents the adaptation of the condition satisfied by the Kubo-Martin-
Schwinger (KMS) states by Haag, Hugenholtz and Winnink and is called
the KMS condition. The KMS condition implies that ωβ,µ is an invariant
state with respect to αµt

ωβ,µ(αµt (A)) = ωβ,µ(A) (22)

Remark: The KMS condition (23) is equivalent to requiring that the Fourier
transforms of F and G are related by a Boltzmann factor, i.e.

G̃(ε) = e−βεF̃ (ε) (23)

where F̃ (ε) =
∫
dtF (t)e−iεt.

2.2 Equivalence of KMS states and canonical ensemble for
finite systems

The question which is raised now is whether the KMS condition suffices to
characterize an equilibrium state. We will start by looking at the case of a
system enclosed in a box of volume V. The standard way to describe such
a system with an arbitrary number of (internal) particles in non-relativistic
quantum theory is by introducing creation and annihilation operators (which
act in a Fock space HF .

The question of the equivalence between the KMS condition and descrip-
tion of the thermal states with the use of Gibbs’ canonical ensemble can
be stated as follows: Does the requirement that ω is a normal3 state on
B(HF ) satisfying the KMS condition imply that ω is given by the density
matrix of (8), (9) or (11)? First we note that a normal state on B(HF ) is
described by a density matrix ρ such that ω(A) = trρA. Also, all auto-
morphisms of B(HF ) as given by (20) are inner, i.e. are maps of the form
αµt : B(HF ) → B(HF );A 7→ e−i(H−µN)tAei(H−µN)t, for every A ∈ B(HF )
and so defines a unitary Uµ(t) ∈ B(HF ) up to a phase factor and, consider-
ing time as a continuous variable defines a generator H(µ) up to an additive

3A state is called normal if it can be described by a density matrix ρ, i.e. by a positive
endomoprhism on HF (ρ ∈ B(HF )).
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constant that plays no role in (11). The expectation values of energy and
particle number for a state described by (11) are given by

E = trρβ,µH;< N >= trρβ,µN (24)

as functions of β, µ and V. Inserting in (21), (22) for A an invariant element,
i.e. one which commutes with all Uµ(t) (that is with all operators of the
form e−iH(µ)t (see equation (18))). In this case, αµt (A) = A and so FA,B(z),
GA,B(z) are independent of z and equal to one another, which implies for the
density matrix tr[ρ,A]B = 0 for allB ∈ B(HF ), i.e. [ρ,A] = 0 if A commutes
with H(µ). Thus ρ ∈ {

⋃
t U

µ(t)}′′ (the double prime denotes the commutant
of the commutant. We remind here the definition of the commutant: the
commutant of a subset S of a semigroup (such as an algebra or a group)
A is the subset S′ of elements of A commuting with every element of S,
i.e. S′ = {x ∈ A : sx = xs, ∀s ∈ S}) and ρ must be a bounded function of
H(µ). The fact that this function is of the form ce−βH(µ) follows then by
choosing for A and B operators which have non-vanishing matrix elements
only between two vectors Ψ1 and Ψ2 which are simultaneous eigenvectors of
H(µ) and ρ. Thus H(µ) and ρ can be simultaneously diagonalized in the
basis of Ψ1, Ψ2. And for ρ to be a diagonal finite operator it has to be of
the form ce−βH(µ).

The equivalence of the description of thermal states using the KMS con-
dition to the one provided by the canonical ensemble, can be elucidated in
the special case where we consider the algebra A of observables to be the
algebra of n × n matrices with complex entries, which will be denoted by
Mn(C). The states on A are of the form ω(A) = trρA, with ρ ∈ Mn(C),
ρ = ρ∗, trρ = 1, ρ ≥ 0. Using the KMS condition (13) for t = 0 we get

trρAB = trρBe−βHAeβH = trBe−βHAeβHρ = trBρA

from which we have

ρA = e−βHAeβHρ⇒ [eβHρ,A] = 0, ∀A ∈ U

Since the algebra is simple, only multiples of the identity commute with all
of its elements, hence

eβHρ = λ1⇒ ρ = λe−βH

3 KMS state for a free field and its GNS repre-
sentation

Let ω be a KMS-state over a C∗-algebra A. We will now look at the
representations π of A resulting from ω by the GNS-construction. The
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representation π has some remarkable properties. We will start by exhibiting
these properties for the case of the system in a box where A = B(HF ) and
ω is given by (7), (11). The density operator, ρ, is a positive operator with
finite trace. Therefore, dropping the indices β and µ, the operator:

κ0 = ρ1/2 (25)

is well defined and of Hilbert-Schmidt class, that is κ0 ∈ {κ : trκ∗κ <∞, κ ∈ B(HF )}.
We denote this set here by H because it is a Hilbert space with respect to
the scalar product

< κ|κ′ >= trκ∗κ′ (26)

complete with respect to the norm ||κ||H = (trκ∗κ)1/2. It is also a ∗-algebra
and it is a 2-sided ideal in B(HF ), i.e.

κ ∈ H&A ∈ B(HF )⇒ Aκ ∈ H&κA ∈ H (27)

Since ρ has finite trace, κ0 ∈ H and since all spectral values of ρ and hence
of κ0 are non-vanishing, we have:

Aκ0 6= 0, κ0A 6= 0, ω(A∗A) ≡ trA∗A 6= 0forA ∈ B(HF ) (28)

Thus ω is a faithful state. Hence in the implementation of the GNS con-
struction, Hω = B(HF ). We now consider the following representation of
A = B(HF ) by operators acting on H:

π(A)|κ >= |Aκ >;κ ∈ H, A ∈ B(HF ) (29)

where by |κ > we denote the Hilbert-Schmidt operator κ seen as a vector of
the Hilbert space H. The state ω(A) can then be written as:

ω(A) =< κ0|πl(A)|κ0 > (30)

From (28) we see that |κ0 > is a cyclic vector for the representation πl.
From (29) and (30) it is obvious that the representation πl is isomorphic
to the GNS representation induced by ω and that |κ0 > is the state vector
corresponding to ω. We thus drop the index ”l” and will henceforth write π
instead of πl.

There is obviously another mapping of the form A ∈ B(HF ) → πr(A) ∈
B(H) (the index ”r” here stands for ”right”) defined by:

πr(A)|κ >= |κA∗ > (31)

It gives a conjugate linear representation of A namely:

πr(AB) = πr(A)πr(B);πr(A
∗) = (πr(A))∗;πr(cA) = c̄πr(A) (32)
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It can be shown that the operator norms of π(A) and πr(A) are equal,
i.e. that ‖ π(A) ‖=‖ πr(A) ‖, as well that the commutant of π(A) (that
is the subset of elements of B(H) commuting with every element of π(A))
is equal to the commutant of the commutant of πr(A), or symbolically:
(π(A))′ = (πr(A))′′. For the relation between the two representations we
also have the following theorem:

Theorem 3.1. (i) κ0 is a cyclic vector for both π(A) and πr(A) and

ω(A) =< κ0|π(A)|κ0 >= < κ0|πr(A)|κ0 > (33)

(ii) π and πr are transformed into each other by an antiunitary conjugation
operator J defined by:

J |κ >= |κ∗ > (34)

with
Jπ(A)J = πr(A), J2 = 1, J |κ0 >= |κ0 > (35)

Proof. The cyclicity of κ0 for the representation π is related to the faith-
fulness of ω in the following way: Suppose there is κ ∈ H such that
< κ|π(A)|κ0 >= 0 for all A ∈ B(HF ). Since κ can also be ragarded as an ele-
ment of B(HF ) we can choose A = κκ0. Then we could get trκ∗κ20 = ω(κκ∗)
and hence, by faithfulness of ω we have κ = 0. The first part of (34) results
directly from the defining equations. This means that the representation π
is the one resulting from the GNS theorem with the state ω. The operator
J is defined by

Jκ = κ∗ (36)

J is anti-unitary since:

< Jκ1|Jκ2 >=< κ∗1|Jκ∗2 >= trκ1κ
∗
2 =< κ2|κ1 >

Because J2 = 1, the operator J is a conjugation. The remaining statements
of the theorem result from the previous.

Given that ω is invariant under the group of automorphisms αµt , we
can implement this automorphism in the GNS representation by unitary
operators Uµ(t) with defining relation:

Uµ(t)π(A)|κ0 >= π(αµt A)|κ0 > (37)

If ω is also invariant under time translations and the gauge symmetry we
mentioned earlier, i.e. if ω is invariant under αt and γφ there will also exist
unitary operators U(t), V (φ) in the GNS representation which will imposing
these transformations. The particle number operator N and the operator
H(µ) = H −µN can then be regarded as the generators for the symmetries
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realised by the operators U , V and Uµ(t) respectively. H, N and H(µ) are
operators acting on H, satisfying:

H|κ0 >= 0, N |κ0 >= 0 (38)

(This eqution results from the invariance of the expectation functional under
the afforementioned groups of automorphisms.) It is obvious though that
the operators mentioned in (43) are not the ones defined in (24), (25). The
Hamiltonian and particle number of our system cannot be equal to zero.
Denoting by HF , NF the Hamiltonian and particle number operators in
Fock space and UF (t) = expiHF t as elements of the algebra A of bounded
operators in Fock space, we have:

U(t) = π(UF (t))πr(UF (t)) (39)

U(t) is the unitary operator implementing the time translation automor-
phism in the representation π(A). Symbolically we can thus write

H = π(HF )− πr(HF ) (40)

(Of course there exist analogous expressions for the operators Uµ amd V (φ)
which implement the other symmetries in the representation π) πr(A) com-
mutes with π(A) since

[π(A), πr(A)]|κ >= (π(A)πr(A)− πr(A)π(A))|κ >= π(A)|κA∗ > −πr(A)|Aκ >
= |AκA∗ > −|AκA∗ >= 0

Thus, the factor πr(HF ) in (41) has no impact on the action of the auto-
morphism of time translations. This can be seen with the following quick
calculation:

< κ0|π(Ut)Aπ(U−t)|κ0 >=< κ0|eiHF tAe−iHF tκ0 >=

= trκ∗0e
iHF tAe−iHF tκ0 = trρeiHF tAe−iHF t = trρA = ω(A)

where the relations κ = ρ1/2 and ρ = e−βHF have been used and similarly:

< κ0|π(Ut)πr(Ut)Aπr(U−t)π(U−t)|κ0 >=< κ0|eiHF tAe−iHF tκ0e−iHF teiHF t >=

= trρA = ω(A)

Hence:
∂π(αtA)

∂t

∣∣∣∣
t=0

= i[H,π(A)] = i[π(HH), π(A)] (41)

The term πr(HF ) plays an important role though when taking the thermo-
dynamic limit. The total energy operator at that limit becomes meaningless
given the fact that both its expectation value and its fluctuations tend to
infinity as V → ∞. It is then obvious that at the thermodynamic limit
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the ability to define a meaningful (i.e. bounded) total energy operator de-
pends on the invariance of the state ω which is determined by the evolution
operator U(t). In this case, the second term of (41) cancels the infinities
which appear (it provides a rescaling of the spectrum of the total energy
operator) so that the equilibrium state vector becomes an eigenvector of
H corresponding to the eigenvalue zero as in (43). In order to make this
procedure of cancelation of infinities more clear, we start by noting that

κ0 = Z−1e−βHF/2 (42)

We then have, acting on κ0 with π(HF )

π(HF )|κ0 >= Z−1|HFe−βHF/2 >≡ Ψ

But according to (41) we have

H|κ0 >= Z−1/2|[HF , e−βHF/2] >= 0

The norm of the vector Ψ increases to infinity as V → ∞ at the thermody-
namic limit while the equilibrium state vector |κ0 > through the use of the
Hamiltonian operator given by (41) becomes an eigenvector of H with eigen-
value equal to zero. As a concluding remark we could say the following: For
a system in a box there are two equivalent descriptions of the equilibrium
states. The first one is the description with the use of the density matrix
ρβ,µ = G−1e−β(H − µN). In this description an irreducible representation4

of the algebra A is used (actually in this description the algebra A of observ-
ables is taken to be the algebra B(HF ) of bounded operators acting on the
Fock space of the system.) In this representation, the mixed5 state ωβ,µ is
described by the density matrix ρ = G−1e−β(H−µN). The second description
is achieved with the use of a reducible representation of the algebra of ob-
servables on the algebra of Hilbert-Schidt class operators acting on the Fock
space of the system. The first description breaks down at the thermody-
namic limit whereas the second one remains valid after the implementation
of the thermodynamic limit.

4A ∗-representation π on a Hilbert space H is irreducible if and only if there are no
closed subspaces of H which are invariant under all the operators π(x) other that H itself
and the trivial subspace 0. If such invariant subspaces exist, the representation π is called
reducible.

5We remind that extremal states on a C∗-algebra are called pure states. States which
are not pure are called mixed. Pure stated can be described by a state vector |ψ > in a
Hilbert space (i.e. this vector completely determines the statistical behaviour of a mea-
surement). On the contrary, mixed states are states prepared by statistically combining
two or more pure states with certain probabilities. In this case there is no state vector
which determines this statistical behaviour (i.e. a state vector |ξ > such that the expec-
tation value of A will be < ξ|A|ξ >). The description of mixed states is done with the use
of the density operator which, in its most general form reads ρ =

∑
j pj |ψj >< ψj |.
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To make the reducibility of the representation of the algebra of observables
provided by the GNS construction evident, we return to the known example
where we consider the algebra of observables to be A = Mn(C) with the
standard representation of a state being achieved with the use of a density
matrix. As described above we have the map π : A → B(H) where, in this
case H = Cn. For the states on the algebra A we have ω(A∗A) = trρA∗A,
which is different than zero for A 6= 0 (faithful state). Thus, we can define
the operator κ0 = ρ1/2 which is of Hilbert - Schmidt class. Consider now
the representation of A by Hilbert - Schmidt class operators defined by
π(A)|κ0 >= |Aκ0 >, |κ0 > cyclic for π (see equation ((29)). The GNS
Hilbert space isH = κ : trκ∗κ <∞. But, as we now there is an isomorphism
Mn(C) ' Cn

2

given the fact that their dimension is the same. Taking λ1 ∈ H
to be the diagonal n × n matrix λ1 = diag(1, 0, ..., 0), we easily see that it
defines an invariant subspace. Considering now the matrices λi, i = 2, 3, ..., n
(i.e. the n × n diagonal matrices whose only nonzero element is λii = 1
we see that they also define invariant subspaces for our representation. The
previous argument confirms the fact that the representation π of our algebra
of observables is reducible. As a final remark we may also note that in the
free field case, for quasi-free fields (that is fields for which all expectation
values are determined by 2 - point functions, the KMS condition takes the
form:

ω(φ(x), αtφ(y)) = ω(αt+iβφ(y), φ(x)) (43)

where ω(φ(f), φ(g)) is the aforementioned 2 - point function.
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