Distinguished ground states in FRW spacetimes

Claudio Dappiaggi

II. Institut für Theoretische Physik Hamburg Universität

Durban, 29th of May 2009

Outline of the Talk

- Motivations, *i.e.*, trivia about cosmological models,
- On the geometry of the background and on the cosmological horizon,
- On the underlying field theory: form the bulk to the horizon,
- Constructing distinguished states,
- On the Hadamard property of these distinguished states.

Based on

- C. D., Nicola Pinamonti, V. Moretti: Comm. Math. Phys. 285 (2009) 1129
- C. D., Nicola Pianmonti, V. Moretti: 0812.4033 [gr-qc] to appear on JMP

Motivations

On the geometry On scalar field theories over cosmological spacetimes On the Hadamard property Conclusion

Playground

In the last 100 years and, hopefully, in the last talk we learned:

- 1) Interactions between matter consituents QFT on flat spacetime...
- 2) "except" the gravitational one \longrightarrow General Relativity,

3) Algebraic Quantum Field Theory, \longrightarrow is the natural tool to formulate QFT on curved backgrounds \longrightarrow first step towards a true Quantum Gravity.

Natural playground — Cosmology

- unveils the structure and dynamics of the Universe,
- we can fully use QFT on curved background in the algebraic approach.

The Cosmological Principle and FRW - I

We wish to model the geometry of the Universe!

Occam's razor leads to the Cosmological principle, i.e.,

 $\bullet~$ spacetime is homogeneous \rightarrow at each instant of time, all space points look the same,

This means that $\exists \Sigma_t \in (M, g_{\mu\nu})$ with $t \in \mathbb{R}$ such that $M \sim \Sigma_t \times \mathbb{R}$ and $\forall p, q \in \Sigma_t$, one can found an isometry Ψ of $g_{\mu\nu}$ such that $\Psi(p) = q$.

• **spacetime is isotropic** → there is at each point an observer who sees an isotropic Universe.

This means that \exists a congruence of timelike curves (*a.k.a.*, observers) filling M and with tangent vectors ζ^{μ} such that, for every pair s_{1}^{μ} , s_{2}^{μ} at a point $p \in M$ such that $g^{\mu\nu}\zeta_{\mu}s_{i\nu} = 0$, it exists an isometry $\widetilde{\Psi}$, such that $\widetilde{\Psi}(p) = p$ and $\widetilde{\Psi}_{*}\zeta_{1}^{\mu} = \zeta_{2}^{\mu}$

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 + kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\varphi^{2}) \right].$$

Motivations

On the geometry On scalar field theories over cosmological spacetimes On the Hadamard property Conclusion

The Cosmological Principle and FRW - II

A direct inspection of

$$ds^2 = -dt^2 + a^2(t)\left[rac{dr^2}{1+kr^2} + r^2(d\theta^2 + \sin^2\theta d\varphi^2)
ight],$$

shows that the metric is almost fully determined

- except the parameter $k = 0, \pm 1$ which fixes the topology spatial section: flat planes, spheres or hyperboloids,
- there is still no dynamical content. This determines a(t) and, to this avail, one needs to choose $T_{\mu\nu}$, to solve

$$R_{\mu\nu}-rac{R}{2}g_{\mu\nu}+\Lambda g_{\mu\nu}=8\pi T_{\mu\nu}.$$

- 4 周 ト 4 戸 ト 4 戸 ト

The Cosmological Principle and FRW - III

Which $T_{\mu\nu}$? Let us start with *classical matter*

We know:

- part of mass-energy in the Universe is ordinary matter (stars, galaxies, clusters),
- their density is so low that they appear like "dust" with density ρ . Hence

$$T_{\mu\nu} = \rho \zeta_{\mu} \zeta_{\nu}, \quad \zeta^{\mu} \zeta_{\mu} = 1$$

• if we also include a contribution from pressure, then

$$T_{\mu\nu} = \rho \zeta_{\mu} \zeta_{\nu} + P \left(g_{\mu\nu} + \zeta_{\mu} \zeta_{\nu} \right),$$

which is the stress-energy tensor of a **perfect fluid**. This is the the most general choice for $T_{\mu\nu}$ if the matter is classical.

イロト イポト イラト イラト

The Cosmological Principle and FRW - IV

• One needs a further assumption, namely an equation of state: $P = \gamma \rho$.

One can solve Einstein's equation (from now on $\Lambda = 0$ and k = 0), *i.e.*

$$G_{tt} = 8\pi T_{tt}, \quad G_{xx} = 8\pi T_{xx} \quad \text{and} \quad \nabla^{\mu} T_{\mu\nu} = 0.$$

This leads to

$$3\left(\frac{\dot{a}}{a}\right) = 8\pi\rho, \quad 3\frac{\ddot{a}}{a} = 4\pi(\rho + 3P),$$
$$\dot{\rho} + 3(\rho + P)\frac{\dot{a}}{a} = 0.$$

Notable choices are:

•
$$P = 0$$
 (pure dust) $\longrightarrow a(t) \sim t^{\frac{2}{3}}$ and $\rho a^{3}(t) = const$,

• $P = \frac{\rho}{3}$ (pure radiation) $\longrightarrow a(t) \sim \sqrt{t}$ and $\rho a^4(t) = const.$

- 同 ト - ヨ ト - - ヨ ト

The Cosmological Principle and FRW - V

The standard Cosmological model has several advantages:

- allows for a description of cosmological redshift,
- 2 a natural playground to describe the evolution of (classical) matter,
- 3 above all, it is fairly simple:
 - homogeneity and isotropy,
 - the matter content is "classical",
 - there is an equation of state relating ρ and P.
- It has also several problems
 - the homegeneity problem (fine tuning of inital condition),
 - 2 the flatness problem,
 - **3** the singularity problem $\longrightarrow \rho$ diverges whenever $a(t) \rightarrow 0$.

A possible way out: let us take seriously QFT!

・ロト ・同ト ・ヨト ・ヨト

Motivations

On the geometry On scalar field theories over cosmological spacetimes On the Hadamard property Conclusion

Our goal

We shall thus consider a Universe filled with a scalar field:

- it provides a natural exit to many problems of classical cosmology,
- it is at the heart of many models such of inflation,
- it leaves many question unanswered: dark energy, dark matter...

In the previous talk we have seen

a massive scalar field on a FRW spacetime can be solved in a semiclassical regime:

$$R_{\mu\nu}-rac{R}{2}=8\pi\langle:T_{\mu\nu}:
angle_{\omega},$$

- 2 it leads to an effective cosmological constant,
- it makes precise the role of quantum fluctuations!

Real problem: Does ω exist? Can a genuine ground state be constructed?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A distinguished class of "cosmological spacetimes" - I

Hyp. 1) Cosmological Principle \Longrightarrow

$$g_{FRW} = -dt^2 + a^2(t) \left[\frac{dr^2}{1 - kr^2} + r^2 dS^2(\theta, \varphi) \right], \quad M \sim I \times X_3$$
 and $a(t) \in C^{\infty}(I, R^+).$

Immediate consequences:

- Consider a co-moving observer as the integral line γ(t) of ∂t. If M \ J⁺(γ) ≠ Ø, then causal signals departing from each x ∈ M \ J⁺(γ) never reach γ(t). Then we call ∂J⁺(γ) the (past) cosmological horizon,
- 2) if one introduces the conformal time $d\tau = \frac{dt}{a(t)}$ and rescales the metric as

$$g_{FRW} = a^2(au) \left[-d au^2 + rac{dr^2}{1-\kappa r^2} + r^2 dS^2(heta,arphi)
ight],$$

then τ ranges in $(\alpha, \beta) \subset \mathbb{R}$. Sufficient condition for the existence of an horizon is $\alpha > -\infty$ and/or $\beta < \infty$.

A distinguished class of "cosmological spacetimes" - I

- Hyp. 2) We set $\kappa = 0$, *i.e.*, $M \equiv I \times \mathbb{R}^3$ hence the spacetime is conformally (a piece of) Minkowski.
- Hyp. 3) We restrict the class of scale factors as:

$$\begin{aligned} \mathsf{a}(\tau) &= -\frac{1}{H\,\tau} + O\left(\tau^{-2}\right)\,,\\ \frac{d\mathsf{a}(\tau)}{d\tau} &= \frac{1}{H\,\tau^2} + O\left(\tau^{-3}\right), \quad \frac{d^2\mathsf{a}(\tau)}{d\tau^2} &= -\frac{2}{H\,\tau^3} + O\left(\tau^{-4}\right). \end{aligned}$$

• Here H is chosen *positive* and the interval $I \doteq (-\infty, 0)$.

< 同 > < 回 > < 回 >

Consequences and Properties - I

1 If
$$a(\tau) = -\frac{1}{H\tau}$$
 then $\tau = -e^{-Ht}$, hence

$$ds^2 = -dt^2 + e^{-2Ht}(dr^2 + r^2d\mathbb{S}^2(\theta,\varphi)), \quad t \in (-\infty,\infty).$$

This is the cosmological de-Sitter spacetime.

Solution of a(τ), as τ → -∞, the background "tends to" de Sitter. Hence we are dealing with an exponential acceleration in the proper time t. This is the the prerequisite of all inflationary models.

- 同 ト - ヨ ト - - ヨ ト

Consequences and Properties - II

• There is always a Cosmological horizon. Under the coordinate change

$$U= an^{-1}(au-r)\ ,\qquad V= an^{-1}(au+r),$$

the metric becomes:

$$g_{FRW} = \frac{a^2(U,V)}{\cos^2 U \cos^2 V} \left[-dUdV + \frac{\sin^2(U-V)}{4} dS^2(\theta,\varphi) \right]$$

Theorem:

Under the previous assumptions the spacetime (M, g_{FRW}) can be extended to a larger spacetime $(\widehat{M}, \widehat{g})$ which is a conformal completion of the asymptotically flat spacetime at past (or future) null infinity $(M, a^{-2}g_{FRW})$, *i.e.*, "a" plays the role of the conformal factor. The cosmological horizon is

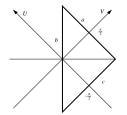
$$\Im^- \doteq \partial J^+(M; \widehat{M}) = \partial M \sim \mathbb{R} \times \mathbb{S}^2.$$

< 日 > < 同 > < 三 > < 三 >

Consequences and Properties - III

• Conformall null infinity \Im^- corresponds to the horizon (region c in the figure) and it is a null degenerate manifold with

$$g|_{\mathfrak{S}^{-}} = \mathbf{0} \cdot dl^2 + H^{-2}\left(d\mathbb{S}^2(\theta,\varphi)\right),$$



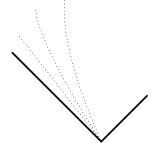
.

A 10

Consequences and Properties - III

Furthermore the manifold $M \cup \Im^-$ enjoys:

- **1** the vector field ∂_{τ} is a conformal Killing vector for \hat{g} in M,
- **2** the vector ∂_{τ} becomes tangent to \Im^{\pm} approaching it and coincides with $-H^{-1}\widehat{\nabla}^{b}a$.



Aim of the analysis:

We want both to model a scalar QFT on a cosmological spacetime and to find a distinguished ground state

Hence from now on, we consider $\Phi: M \to \mathbb{R}$ such that

$$P\Phi = 0,$$
 $P = -\Box_{g_{FRW}} + \xi R + m^2 \text{ and } \xi R + m^2 > 0$

with smooth compactly supported initial data on a Cauchy surface,

 $\ensuremath{\textbf{N.B.}}$ FRW spacetimes are globally hyperbolic, hence Cauchy problems are meaningful.

- Each solution Φ is a smooth function on M, *i.e.*, $\Phi \in C^{\infty}(M)$.
- The set of solutions *S*(*M*) of our equation is a symplectic space if endowed with the Cauchy-independent nondegenerate symplectic form:

$$\sigma(\Phi_1, \Phi_2) \doteq \int_{\Sigma} \left(\Phi_1 \nabla_N \Phi_2 - \Phi_2 \nabla_N \Phi_1 \right) d\mu_g^{(\Sigma)}.$$

< 日 > < 同 > < 三 > < 三 >

More on classical solutions

Next Problem :

We want to better characterise the space of solutions S(M).

Any $\Phi \in \mathcal{S}(M)$ can be decomposed in modes ($\mathbf{k} \in \mathbb{R}^3$, $k = |\mathbf{k}|$,)

$$\Phi(\tau,\vec{x}) = \int_{\mathbb{R}^3} d^3 \mathbf{k} \left[\phi_{\mathbf{k}}(\tau,\vec{x}) \widetilde{\Phi}(\mathbf{k}) + \overline{\phi_{\mathbf{k}}(\tau,\vec{x}) \widetilde{\Phi}(\mathbf{k})} \right],$$

with respect to the functions

$$\phi_{\mathbf{k}}(\tau,\vec{x}) = \frac{1}{a(\tau)} \frac{e^{i\mathbf{k}\cdot\vec{x}}}{(2\pi)^{\frac{3}{2}}} \chi_{\mathbf{k}}(\tau) ,$$

 $\chi_{\mathbf{k}}(\tau)$, is solution of the differential equation

$$\frac{d^2}{d\tau^2}\chi_{\mathbf{k}} + (V_0(\mathbf{k},\tau) + V(\tau))\chi_{\mathbf{k}} = 0,$$

$$V_0(\mathbf{k},\tau) := k^2 + \left(\frac{1}{H\tau}\right)^2 \left[m^2 + 2H^2\left(\xi - \frac{1}{6}\right)\right], \quad V(\tau) = O(1/\tau^3).$$

• Furthermore it holds the normalization

$$\frac{d\overline{\chi_{\mathbf{k}}(\tau)}}{d\tau}\chi_{\mathbf{k}}(\tau) - \overline{\chi_{\mathbf{k}}(\tau)}\frac{d\chi_{\mathbf{k}}(\tau)}{d\tau} = i. \quad \forall \tau \in (-\infty, 0)$$

Idea: Construct a general solution treating $V(\tau)$ as a perturbation potential over solutions with V = 0, *i.e.* those in purely de-Sitter background.

Thus for $V(\tau) = 0$

$$\chi_{\mathbf{k}}^{0}(\tau) = \frac{\sqrt{-\pi\tau}}{2} e^{\frac{i\pi\nu}{2}} \overline{H_{\nu}^{(2)}(-k\tau)},$$

with

$$\nu=\sqrt{\frac{9}{4}-\left(\frac{m^2}{H^2}+12\xi\right)},$$

where $H_{\nu}^{(2)}$ is the Hankel function of second kind.

< 日 > < 同 > < 三 > < 三 >

Perturbative solutions in the general case

• Let us consider the retarded fundamental solutions S_k of

$$\frac{d^2}{d\tau^2}\chi_k^0(\tau) + (V_0(k,\tau))\chi_k^0(\tau) = 0.$$

• Then the general solutions $\chi_{\mathbf{k}}$ can be constructed

$$\chi_{\mathbf{k}}(\tau) = \chi_{\mathbf{k}}^{\star}(\tau) +$$

$$+ \sum_{n=1}^{+\infty} (-1)^n \int_{-\infty}^{\tau} dt_1 \int_{-\infty}^{t_1} dt_2 \cdots \int_{-\infty}^{t_{n-1}} dt_n S_{\mathbf{k}}(\tau, t_1) S_{\mathbf{k}}(t_1, t_2) \cdots$$

$$S_{\mathbf{k}}(t_{n-1}, t_n) V(t_1) V(t_2) \cdots V(t_n) \chi_{\mathbf{k}}(t_n).$$

() 0().

The series is convergent

if $|Re\nu| < 1/2$ and $V = O(\tau^{-3})$, if $\frac{1}{2} \leq |Re\nu| < 3/2$ and $V = O(\tau^{-5})$.

From the bulk to the horizon ...

Bulk) A Weyl C*-algebra $\mathcal{W}(M)$ can be associated to $(S(M), \sigma)$. This is, up to *-isomorphisms, unique and its non vanishing generators $W_M(\phi)$ satisfy:

$$W_M(-\phi) = W_M(\phi)^*, \quad W_M(\phi)W_M(\phi') = e^{\frac{i}{2}\sigma(\phi,\phi')}W_M(\phi+\phi'),$$

Horizon) The symplectic space of real wavefunctions is:

$$\begin{split} \mathcal{S}(\Im^{-}) &= \left\{ \psi \in \mathcal{C}^{\infty}(\mathbb{R} \times \mathbb{S}^2) \mid \psi \in L^{\infty}, \partial_{\ell} \psi \in L^1, \widehat{\psi} \in L^1, \mathsf{k}\widehat{\psi} \in L^{\infty} \right\}, \\ \sigma_{\Im^{-}}(\psi, \psi') &= \int_{\mathbb{R} \times \mathbb{S}^2} \left(\psi \frac{\partial \psi'}{\partial \ell} - \psi' \frac{\partial \psi}{\partial \ell} \right). \quad \forall \psi, \psi' \in \mathcal{S}(\Im^{-}) \end{split}$$

Algebra) Since σ_{\Im^-} is nondegenerate, we can construct a Weyl C*-algebra $\mathcal{W}(\Im^-)$ as

$$W_{\mathfrak{P}^-}(\psi) = W_{\mathfrak{P}^-}^*(-\psi), \qquad W_{\mathfrak{P}^-}(\psi)W_{\mathfrak{P}^-}(\psi') = e^{\frac{1}{2}\sigma_{\mathfrak{P}^-}(\psi,\psi')}W_{\mathfrak{P}^-}(\psi+\psi').$$

Distinguished state on \Im^-

We can introduce a distinguished state $\lambda:\mathcal{W}(\Im^-)\to\mathbb{C}$ unambiguously defined

$$\begin{split} \lambda\left(W(\psi)\right) &= e^{-\frac{\mu(\psi,\psi)}{2}}, \quad \forall W(\psi) \in \mathcal{W}(\mathfrak{S}^{-})\\ \text{where } \forall \psi, \psi' \in \mathcal{S}(\mathfrak{S}^{-})\\ \mu(\psi, \psi') &= \int\limits_{\mathbb{R} \times \mathfrak{S}^{2}} 2k \Theta(k) \overline{\widehat{\psi}(k, \theta, \varphi)} \widehat{\psi}'(k, \theta, \varphi) dk dS^{2}(\theta, \varphi) \end{split}$$

being $\widehat{\psi}(k), \widehat{\psi}'(k)$ the Fourier-Plancherel transform

$$\widehat{\psi}(k) = \int_{\mathbb{R}} dl \; \frac{e^{ikl}}{\sqrt{2\pi}} \psi(l,\theta,\varphi).$$

The state λ enjoys the following (almost straightforward) properties:

- it is quasifree and pure,
- referring to its GNS triple (H, Π, Υ), it is invariant under the left action α of the horizon symmetry group.

Properties of λ

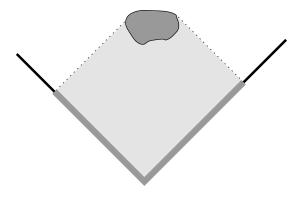
Let us consider the timelike future directed vector field ∂_{τ} whose projection on the horizon is $\widetilde{Y} \propto \partial_l$ (also a generator of the algebra of horizon simmetries). Then

- then λ is the unique quasifree pure state on $\mathcal{W}(\mathbb{S}^-)$ which is invariant under $\alpha_{\exp(s\partial_l)}$ ($s \in \mathbb{R}$) and the unitary group implementing such representation leaving fixed the cyclic GNS vector is strongly continuous with nonnegative self-adjoint generator,
- Each folium of states on W(S⁻) contains at most one pure state which is invariant under α_{exp(s∂l}),
- and much more...

イロト イポト イラト イラト

Back to the bulk

Notice: $\phi \in S(M)$ can be extended to a unique smooth solution of the same equation on $M \cup \Im^- \longrightarrow \Gamma \phi \doteq \phi|_{\Im^-} \in C^{\infty}(\Im^-)$.



- * E > * E >

Back to the bulk - II

Theorem 1

If
$$\phi \in S(M)$$
 and $0 < \epsilon < rac{3}{2} -
u$, then

• $\Gamma \phi$ decays faster than $1/l^{\epsilon}$ whereas $\partial_l \Gamma \phi$ faster than $1/l^{1+\epsilon}$,

•
$$\sigma_{\Im^-}(\Gamma\phi,\Gamma\phi') = H^2\sigma(\phi,\phi').$$

Particularly it exists an isometric *-homomorphism:

$$i: \mathcal{W}(M) \to \mathcal{W}(\Im^{-}),$$

 $i(W(\phi)) \doteq W(\Gamma\phi).$

イロン 不同 とくほう イロン

Back to the bulk - III

• Any state $\widetilde{\lambda} : \mathcal{W}(\mathfrak{F}^{-}) \to \mathbb{C}$ can be pulled back to $\imath^{*}(\widetilde{\lambda}) : \mathcal{W}(M) \to \mathbb{C}$.

• Particularly the preferred state

$$\lambda_M(a) := \lambda(\iota(a)). \quad \forall a \in \mathcal{W}(M)$$

- In the de Sitter spacetime, λ_M is the Bunch-Davies state,
- it is invariant under the natural action of any bulk isometry Y on the algebra. The one-parameter U_s^Y group implementing such an action leaves fixed the cyclic vector in the GNS representation of λ_M ,
- if Y is everywhere timelike and future-directed in M, then the 1-parameter group U^Y_s has positive self-adjoint operator.

Glimpses of Hadamard(ology)

Recall) A quasi-free state ω is fully characterized by its two-point function.

Local description: A two-point function $\omega(x, y)$ of a state ω is **Hadamard** if, for any normal neighbourhood \mathcal{O}_p ,

$$\omega(x,y) = \frac{U(x,y)}{\sigma_{\epsilon}(x,y)} + V(x,y) \ln \sigma_{\epsilon}(x,y) + W(x,y).$$

Global description: using microlocal analysis, a state ω of a real smooth K.-G. field is of Hadamard form if and only if the Schwartz kernel of the two-point function satisfies

$$WF(\omega) = \left\{ ((x, k_x), (y, -k_y)) \in (T^*M)^2 \setminus 0 \mid (x, k_x) \sim (y, k_y), k_x \triangleright 0
ight\}.$$

Is λ_M Hadamard?

- \bullet Hadamard states \longrightarrow ultraviolet behaviour of the ground state in Minkowski!
- \bullet Hadamard states \longrightarrow quantum fluctuations of the (smeared) components of ${\cal T}_{\mu\nu}$ are finite

To investigate λ_M , we first write its Schwartz kernel as the quadratic form

$$\lambda_{\mathcal{M}}(f,g) = \int\limits_{\mathbb{R} imes\mathbb{S}^2} 2k\Theta(k) \overline{\widehat{\psi_f}(k, heta,arphi)} \widehat{\psi_g}(k, heta,arphi) dkd\mathbb{S}^2(heta,arphi),$$

where $\psi_f = \Gamma E(f)$ and $\psi_g = \Gamma E(g)$.

Theorem

 λ_M inviduates a distribution on $\mathcal{D}'(M imes M)$ such that

$$WF(\lambda_M) = \mathcal{V} =$$

$$= \left\{ \left((x,k_x), (y,-k_y) \right) \in \left(T^*M \right)^2 \setminus 0 \mid (x,k_x) \sim (y,k_y), k_x \triangleright 0 \right\},$$

thus it is Hadamard.

On the inclusion \supset

Since it holds

$$\lambda_M(f\otimes Pg) = \lambda_M(Pf\otimes g) = 0, \qquad \lambda_M(f\otimes g) - \lambda_M(g\otimes f) = E(f\otimes g),$$

then the inclusion \supset descends from \subset by means of the theorem of propagation of sigularities proved by Hörmander (see Radzikowski and many others).

- 4 同 6 4 日 6 4 日 6

Sketch of the proof. \subset

• Let us read
$$\lambda_M$$
 as follows: introduce

$$egin{aligned} \mathcal{K} &= (\mathcal{T}\otimes \mathcal{I})(\mathsf{\Gamma} E\otimes\mathsf{\Gamma} E)\in\mathcal{D}'((\Im^- imes\Im^-) imes(M imes M)), \ \mathcal{T} &= rac{1}{H^2\pi^2(\mathcal{I}-\mathcal{I}'-i\epsilon)^2}\otimes\delta(heta- heta')\delta(arphi-arphi'). \end{aligned}$$

• introduce a sequence of cut-off functions $\chi_n \in C_0^{\infty}(\Im^-; \mathbb{C})$ and

$$\lambda_n \doteq \mathcal{K}(\chi_n \otimes \chi_n),$$

where $\mathcal{K}: C_0^{\infty}(\mathfrak{F}^- \times \mathfrak{F}^-) \to \mathcal{D}'(M \times M)$ is the map associated with the kernel ${}^t\mathcal{K}$ in view of Schwarz kernel theorem.

< 日 > < 同 > < 三 > < 三 >

Big Fat Final Theorem:

The sequence λ_n are such that:

WF(λ_n) ⊂ V
 λ_n → λ_M in the weak sense in D'(M × M)
 sup sup |k|^N | hλ_n| < ∞ for all N ≥ 1 and for all h ∈ C₀[∞](M × M; C) where V is any cone closed in (T*M)² \ 0 lying in the complement of V.
 Hence λ_M satisfies ⊂ and its of Hadamard form.

< 日 > < 同 > < 三 > < 三 >

What lies in front of us?

Summary:

- A distinguished Hadamard state for a scalar field theory exists in a large class of FRW backgrounds,
- It has interesting properties of uniqueness and it is Hadamard,
- natural ground state in cosmology (to deal with interactions).

Open Questions:

- How can we connect this results to present observations?
- Is a free scalar field theory enough?¹
- How can we describe interacting theories in our scenario?
- Is the road to mathematically precise inflationary models open?

¹C.D., Klaus Fredenhagen and Nicola Pinamonti, Phys. Rev. D77 (2008) 104015