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Modular Action on the Massive Algebra

Abstract:

The subject of this thesis is the modular group of automorphisms
(
σtm
)
t∈R

,
m > 0, acting on the massive algebra of local observables Mm(O) having their
support in O ⊂ R4. After a compact introduction to micro-local analysis and
the theory of one-parameter groups of automorphisms, which are used exen-
sively throughout the investigation, we are concerned with modular theory and
its consequences in mathematics, e.g., Connes’ cocycle theorem and classifica-
tion of type III factors and Jones’ index theory, as well as in physics, e.g.,
the determination of local von Neumann algebras to be hyperfinite factors of
type III1, the formulation of thermodynamic equilibrium states for infinite-
dimensional quantum systems (KMS states) and the discovery of modular ac-
tion as geometric transformations. However, our main focus are its applications
in physics, in particular the modular action as Lorentz boosts on the Rindler
wedge, as dilations on the forward light cone and as conformal mappings on the
double cone. Subsequently, their most important implications in local quantum
physics are discussed.

The purpose of this thesis is to shed more light on the transition from the
known massless modular action to the wanted massive one in the case of double
cones. First of all the infinitesimal generator δm of the group

(
σtm
)
t∈R

is investi-
gated, especially some assumptions on its structure are verified explicitly for the
first time for two concrete examples. Then, two strategies for the calculation of
σtm itself are discussed. Some formalisms and results from operator theory and
the method of second quantisation used in this thesis are made available in the
appendix.



Modulare Wirkung auf der Massiven Algebra

Zusammenfassung:

Gegenstand dieser Dissertation ist die modulare Automorphismengruppe(
σtm
)
t∈R

, m > 0, auf der massiven Algebra der lokale Observablen Mm(O) mit

Träger in O ⊂ R4. Nach einer kompakten Einführung in die mikrolokale Anal-
ysis und die Theorie einparametriger Automorphismengruppen, von denen in
dieser Arbeit ausgiebig Gebrauch gemacht wird, behandeln wir die modulare
Theorie und ihre Konsequenzen sowohl in der Mathematik, z.B. das Kozykel-
Theorem und die Klassifizierung von Faktoren vom Typ III von Connes und
die Indextheorie von Jones, als auch in der Physik, als da sind die Bestimmung
der lokalen von Neumann Algebren als hyperfinite Faktoren vom Typ III1,
die Formulierung von thermodynamischen Zuständen in unendlichdimension-
alen Quantensystemen (KMS-Zustände) und die Entdeckung der modularen
Wirkung als geometrische Transformation. Unser Hauptaugenmerk sind je-
doch die physikalischen Anwendungen und hier ganz besonders die modulare
Wirkung als Lorentz-Boosts auf dem Rindler-Keil, als Dilatationen auf dem
Vorwärtslichtkegel und als konforme Abbildungen auf dem Doppelkegel. Ihre
wichtigsten Folgerungen in der lokalen Quantenphysik werden anschließend be-
sprochen.

Ziel dieser Arbeit ist es, im Falle des Doppelkegels mehr Licht auf den
Übergang von der bekannten masselosen modularen Wirkung auf die noch zu
berechnende massive zu werfen. Zunächst wird der infinitesimale Generator δm
der Gruppe

(
σtm
)
t∈R

analysiert, insbesondere werden einige Vermutungen über
seine Struktur zum ersten Mal für zwei konkrete Beispiele explizit bestätigt.
Danach diskutieren wir zwei Strategien für die Berechnung von σtm selbst. Die
in dieser Arbeit verwendeten Formalismen und Resultate aus der Operatorthe-
orie und der zweiten Quantisierungsmethode werden im Anhang zur Verfügung
gestellt.
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Chapter 1

Introduction

Problems worthy of attack
prove their worth by hitting back.

P. H. Grooks

Although the Lagrangian formulation of relativistic quantum mechanics, es-
pecially the perturbation theory, has yielded some spectacular agreement with
experiment, its theoretical structure is not consistent since the singularities and
divergencies appearing there are handled insufficiently leaving the approach in
an unsatisfactory state. For a deeper understanding and a better mastering
of quantum field theory one has reclaimed the very fundamental concepts and
returned to mathematically more rigorous approaches, as there are, above all,
the Lehmann-Symanzik-Zimmermann theory (LSZ) [78], the Wightman theory
[117] and the Haag-Kastler-Araki theory, the so-called algebraic quantum field
theory or local quantum physics [54], emphasising special aspects. While the
LSZ formalism is suited for the calculation of the S-matrix from the time or-
dered correlation functions, the Wightman ansatz reflects the relation between
locality and the spectrum condition. In the Wightman theory one faces, in
contrast to the algebraic formulation, domain problems as a consequence of the
appearence of unbounded operators and one has to restrict the causal structure
by hand. Unfortunately, bounded operators, which are used in local quantum
physics, do not get along with strict locality of states, a disadvantage of local
quantum physics. One expects these three approaches to be more or less phys-
ically equivalent, but the transition from one theory into another is not fully
understood yet.

In algebraic quantum field theory, the setting of this thesis, the main objects
are C∗-algebras or von Neumann algebras, to be more precise. Its core is the
assignment to each open subset O ⊂ M of a spacetime M a C∗-algebra A(O)
generated by local observables,

O 7→ A(O). (1.1)

Under some physically reasonable conditions this mapping is assumed to contain
in principle all physical information. The quasi-local algebra is defined as the
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C∗-inductive limit of the net {A(O)}O⊂M, and the global algebra of observables
is introduced as its bicommutant M := A′′. The states are represented by
normalised and positive linear functionals,

ω : A −→ C.

The “usual” approach and the algebraic formulation of quantum field theory is
then connected through the GNS representation.

The choice of an algebra is motivated by the facts that, first, the S-matrix
depends only on large classes of fields, the so-called Borchers’ classes, and not
on a special field system from the class, and second, quantum field theories,
i.e., quantum systems with infinitely many degrees of freedom, have a host of
inequivalent irreducible representations describing classes of states for which the
superposition principle is not valid. Algebraic quantum field theory entails the
conceptual separation of the physical system (algebra) and the possible states
of the system (representations).

Last but not least, the algebraic language admits the entry of modular
theory with its powerful tools into quantum field theory. Modular theory or
Tomita-Takesaki theory is the generalisation of the modular function, which
constitutes the difference between the left and right Haar measure, to non-
commutative algebras. Although the prerequisite for this theory is only the
specification of an underlying von Neumann algebra M and a cyclic and sepa-
rating vector Ω ∈ H or, equivalently, a faithful and normal state ω, it provides
a deep insight into the most complex structure of von Neumann algebras. The
main properties of the modular objects are addressed in Tomita’s theorem [104],
i.e., the anti-unitary modular conjugation J relates M to its commutant M′,

JMJ = M′,

and the positive, selfadjoint modular operator ∆ ensures the existence of an
automorphism group,

σtω : M −→ M

A 7→ σtω(A) := π−1
ω

(
∆itπω(A)∆−it

)
,

for all t ∈ R, where πω is the cyclic GNS representation of M with respect to the
faithful state ω. These statements, in particular that a state already determines
the dynamics of a system, have far-reaching consequences in mathematics as
well as in physics.

To start with, Connes shows that modular groups are equivalent up to inner
automorphisms, i.e., two arbitrary groups σtω1

and σtω2
with respect to the states

ω1 and ω2, respectively, are linked via a one-parameter family of unitaries Γt,
the so-called cocycle,

σtω2
(A) = Γtσ

t
ω1

(A)Γ∗
t , ∀A ∈ M, t ∈ R.

This suggests the introduction of the modular spectrum S(M) :=
⋂
ω Spec∆ω

by means of which Connes gives a complete classification of factors [29], i.e.,
von Neumann algebras with M ∩ M′ = C1:
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• M is of type I or type II, if S(M) = {1};

• M is of type III0, if S(M) = {0, 1};

• M is of type IIIλ, if S(M) = {0} ∪ {λn| 0 < λ < 1, n ∈ Z};

• M is of type III1, if S(M) = R+.

The next development of paramount transboundary importance is Jones’ clas-
sification of type II1 subfactors [66]. He shows, contrary to everyone’s expec-
tation, that for the (global) index [M : N] not all positive real numbers are
realised, but

[M : N] ∈
{
4 cos2 π

n
| n ∈ N, n ≥ 3

}
∪
[
4,∞

]
.

This result is extended by Kosaki to arbitrary factors [73]. Jones’ index the-
ory on his part connects widely separated areas, such as parts of statistical
mechanics with exactly solvable models, and leads to some groundbreaking de-
velopments, e.g., a new polynomial invariant for knots and links in R3.

The interplay of modular theory and quantum field theory is most naturally
apparent in the algebraic formulation since here the requirements of modular
theory are already fulfilled: an underlying von Neumann algebra M(O) is given
and, due to the Reeh-Schlieder theorem, a cyclic and separating vacuum vector.
The first physical application of modular theory is proved by Takesaki who
recognises that the equilibrium dynamics is determined by the modular groups,
since their infinitesimal generator is the thermal Hamiltonian and, due to the
property

(
∆1/2πω(A)Ωω,∆

1/2πω(B)Ωω

)
=
(
Jπω(A∗)Ωω, Jπω(B∗)Ωω

)

=
(
πω(B∗)Ωω, πω(A∗)Ωω

)
,

they satisfy the KMS condition, the generalisation of Gibbs’ notion of equilib-
rium to systems with infinitely many degrees of freedom,

ω
(
Aσiβ(B)

)
= ω(BA),

where β is the inverse of the temperature.
The classification theory is not less important in physics, in fact, the quest

for decomposition of quantum systems has been one of von Neumann’s most
important reasons for the investigation of operator algebras. In local quantum
physics, one is interested in the structure of the von Neumann algebra of local
observables M(O). The analysis, which has been undertaken by a colloboration
of many persons, discovered M(O) as a hyperfinite factor of type III1. The
substructure of M(O), which is of utmost significance for decoding the physical
information contained in the mapping (1.1), is determined only for conformal
local nets with central charge c < 1 yet.

The third main application for modular theory in local quantum physics is
the modular action as a geometric transformation on the local algebra for special
spacetimes. For the local algebra generated by Wightman fields with mass m ≥
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0 and which are localised in the right wedge, Bisognano and Wichmann identify
the modular action with the Lorentz boosts Λ and the modular conjugation with
the TCP operator Θ [10],[11]:

JWR
= ΘU

(
R1(π)

)
,

σtWR

(
ϕ[f ]

)
= ϕ[fs], fs(x) := f

(
Λs(x)

)
, x ∈ WR, s := 2πt,

where R1 denotes the spatial rotation around the x1-axis. For massless theories
this result has been transferred via conformal transformations to other space-
time regions. While the rôle of J remains unchanged, for forward light cones
V+ the modular action conicides with dilations as shown by Buchholz [24], and
for double cones D they are conformal transformations as proved by Hislop and
Longo [60]:

x±(s) =
1 + x± − e−s(1 − x±)

1 + x± + e−s(1 − x±)

with x+ := x0 + |x| and x− := x0 − |x|, x ∈ D, s ∈ R.

The geometric interpretation of the modular group is of paramount importance
in further applications. The result of Bisognano and Wichmann is not only
closely related to the Unruh effect and the black hole evaporation, actually, in
analogy of the Rindler wedge with a black hole, it implies the Hawking radiation,
but has also made possible the derivation of some most fundamental concepts of
quantum field theory, as there are the proofs of the PCT theorem by Borchers
[14] and of the spin-statistics theorem by Guido and Longo [51], where modular
theory intervenes twice through Jones’ index theory, the construction of the
Poincaré group by Brunetti, Guido and Longo [23], and the introduction of
modular nuclearity condition by Buchholz, D’Antoni and Longo [26], nuclearity
as a tool to single out models with decent phase space properties. Moreover,
Schroer and Wiesbrock’s investigation gives a hint that modular theory plays
a decisive rôle in the construction of field theories with interaction [96].

As aforementioned, the modular group for massive theories, σtm, is known
only for wedge regions. In fact, the transfer of Bisognano and Wichmann’s
result via conformal mappings to forward light cones and double cones does
not work in massive theories. If one assumes the modular group to act locally,
then, as shown by Trebels [106], the action can be determined as the ones of
Bisognano-Wichmann, Buchholz and Hislop-Longo up to a scaling factor. But
in general the modular action has to be non local and does not act as a geometric
transformation anymore. This is mainly due to the fact that the massive scalar
field is not invariant under conformal transformations.

Since the discovery of Bisognano and Wichmann, there have been many
attempts to derive the massive modular group in the case of double cones,
the most important spacetime regions, but no progress has been made so far.
What should be mentioned are some assumptions on its nature, to be more
precise, on the structure of its infinitesimal generator δm, where m denotes the
mass. It is well known that the generators δ0 of the massless groups are all
ordinary differential operators of order one. Because of the non local action
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and a result of Figliolini and Guido, who prove that δm is depending on m in
the strong generalised sense [42], one assumes that the generator δm has to be
of pseudo-differential nature, the generalisation of differential operators. One
expects exactly the following structure,

δm = δ0 + δr, (1.2)

where δ0 constitutes the leading (principal) part of δm, i.e., it comprises the
term of highest order, namely one. The additional part δr is expected to be a
pseudo-differential operator of order less than one and responsible for the non
local character of the modular group σtm.

The ultimate desire still remains the calculation of the modular group acting
on massive fields localised in the double cone, which would allow for many
applications of not yet foreseeable significance, since the modular group governs
the dynamics of quantum systems.

In this thesis, after an extensive and very detailed overview of the state-of-
the-art of modular theory and its applications in mathematics as well as in local
quantum physics, we will confirm the assumption (1.2) on the structure of the
infinitesimal generator, in fact, we will verify it explicitly for the first time for
two examples of modular groups with non local action, given by Borchers and
Yngvason [119],[17]. Concerning the derivation of σtm itself, we first discuss the
approach of Figliolini and Guido [42], second determine some properties of the
general massive infinitesimal generator, and third elaborate two approaches of
our own. As an intermediate step, we present a modular group with respect to
the massless vacuum acting on the massive algebra.

The thesis is structured as follows.

In the second chapter we give a compact summary of microlocal analysis,
since this discipline has become more and more important in local quantum
physics. Especially our investigation will make use of the terminology as well
as of some its powerful tools, as there are, for example, the generalisation of
differential operators to pseudo-differential or even Fourier integral operators
and their mapping properties.

Chapter 3 contains the most important facts on one-parameter groups of
automorphisms, the central objects of this thesis, and an introduction to con-
formal transformations.

In chapter 4 we are concerned with modular theory and its state-of the-art
status in mathematics and local quantum physics. While the mathematical
consequences, e.g., the classification theories of Connes and Jones, are given in
a nutshell, the applications in physics are discussed in more detail. We start
with the determination of the type of local algebras M(O) and the formulation
of equilibrium states (KMS states). Subsequently, the modular action will be
analysed for three spacetime regions, the wedges, the forward light cones and
the double cones. We close this chapter with the most significant concepts
of quantum field theory where modular theory plays a decisive rôle, as there
are, the Hawking radiation, the PCT theorem, the spin-statistics theorem, the
construction of the Poincaré group and the modular nuclearity condition.
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The main results of our own are comprised in chapter 5. After a short
motivation of our assumption, the very nature of the infinitesimal generator δm
and some of its properties, we will analyse the ansatz of Figliolini and Guido,
whose investigation of the massive group is based on the second quantisation
formalism. Then, we will present two approaches, first via unitary equivalence
of free local algebras, and second through the cocycle theorem.

We conclude the thesis with a summary and an appendix containing useful
information on operator algebras and free quantum fields.



Chapter 2

Pseudo-Differential Operators

au taraf-e auriz mora.
Water flows towards the waterfall.

A Hazaragi proverb

One of the most fundamental characteristics of physical equations is their
being concerned with local measurements, i.e., they represent the interplay
of physical quantities at the same time and in the same place or at least in
an infinitesimal neighbourhood of a spacetime point. The physical state in a
subset Ω ⊂ R3 of the configuration space at a particular moment determines
via the physical laws governing the evolution in time the future situation in the
causal shadow Ω̃ of Ω. However, effects from the outside of Ω cannot influence
the events in Ω̃ instantaneously. By shifting this principle of locality, i.e., the
independence of events in spacelike separated regions, onto the phase space, one
can introduce the principle of micro-locality, i.e., finite velocity of causal effects
via equations governing their propagation. The micro-local analysis dealing
with this subject can be considered as the local analysis in the cotangent bundle,
and it is for two reasons of great help in mathematical physics. First it gives a
more precise treatment of the notion of singular points, and second it provides
an easy treatment of their propagation. In this chapter we follow mainly [76]
and [107]. Beside these books there are the classics [62], [61] and [35].

We want to give some more details of these two advantages. In the theory
of partial differential equations (PDE) it is possible to extract already from the
form of the equation,

Pu = f with

P =
∑

|α|≤m

aα(x)D
α, aα ∈ C∞(Ω), Dα := (−i)|α|∂α,

u, f ∈ D′(Ω), Ω ⊂ Rn,

information about the regularity of the weak (distributional) solution u, i.e., one
is able to analyse quite extensively the singularities of u with the knowledge of
the differential operator P and the inhomogeneity f only. For this purpose one
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has to generalise the notion of the singular support singsupp(u) of u, that is the
set of all points in Ω having no neighbourhood in which u could be described as
a C∞-function, to the so-called wave front set WF (u) of u, see Definition 2.12.
An equivalent characterisation of the wave front set will be given in Proposition.
The wave front set is a subset of the cotangent space Ω×Rn of Ω and it provides
beside the singularity itself also the direction of the singular ‘behaviour’ of u.

The concept of the wave front set can be introduced in two different ways, via
the local Fourier transformation and the pseudo-differential operators (PsDO).
It is also possible to establish the notion of singularities for PsDOs, and one
gets the so-called micro-support µsupp(P ) of the differential operator P . The
wave front set and the micro-support are closely connected via the relation

WF (Pu) ⊆WF (u) ∩ µsupp(P ),

the more precise form of the ‘micro-locality property’

WF (Pu) ⊆WF (u).

In the theory of PsDOs the elliptic ones, see Definition 2.6, play a special role
since they leave the wave front set of distributions invariant:

(x0, ξ0) ∈WF (u) ⇐⇒ (x0, ξ0) ∈WF (Pu), (x0, ξ0) ∈ Ω × Rn.

Because P is elliptic in (x0, ξ0) if and only if the principal symbol p0 of P ,
i.e. the leading symbol of P , does not vanish in (x0, ξ0) and the so-called
bicharacteristic curve

γ : R ⊇ I −→ Ω × Rn with p0

(
γ(s)

)
= 0 ∀s ∈ I

runs through each zero point of p0, one can prove that under particular condi-
tions on p0 the singularities of u must propagate along γ:

(
∃s ∈ I : γ(s) ∈WF (u)

)
=⇒

(
∀s′ ∈ I : γ(s′) ∈WF (u)

)
.

In the sequel we give the exact definitions of the concepts mentioned in the
preceding paragraph, focussing on PSDOs.

First of all, let us consider a differential operator with variable coordinates

p(x,D) :=
∑

|α|≤m

aα(x)D
α
x ,

then one has

p(x,D)u(x) =
1

(2π)
n
2

p(x,D)

∫

Rn

ũ(ξ)eixξdnξ

=
1

(2π)
n
2

∫

Rn

p(x, ξ)ũ(ξ)eixξdnξ,

where ũ denotes the Fourier transform of u and p(x, ξ) :=
∑

|α|≤m aα(x)ξα. This
concept of differential operators with variable coordinates can be generalised by
replacing the polynomial p(x, ξ) with the so-called symbols.
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Definition 2.1 Let m ∈ R and 0 < δ ≤ ρ ≤ 1, δ < 1. Then p ∈ C∞(Rn
x × Rn

ξ )
is said to be a symbol of order m and of type (ρ, δ) if p satisfies the following
condition:

∀α, β ∈ Nn
0 : ∃Cα,β ≥ 0 :

(∣∣∂αξ ∂βxp(x, ξ)
∣∣ ≤ Cα,β

(
1 + |ξ|

)m+δ|β|−ρ|α|

∀(x, ξ) ∈ Rn
x × Rn

ξ

)
.

(2.1)

The vector space generated by the symbols is denoted by Smρ,δ = Smρ,δ(R
n × Rn).

Furthermore we introduce the spaces

S−∞ :=
⋂{

Smρ,δ|m ∈ R
}

and S∞
ρ,δ :=

⋃{
Smρ,δ|m ∈ R

}
.

Remark 2.2 It should be mentioned that some authors use a different notion
of symbols p ∈ Smρ,δ(K × Rn

ξ ), often referred as Hörmander’s version, by de-
manding the variable x to lie in a compact subset K ⊂ Ω, where Ω is an open
subset of Rn

x. But be aware that Hörmander works with both versions, with
the latter definition in [61] and with Definition 2.1 in [62]. The analysis in this
section will be based on Definition 2.1.

The space of all symbols equipped with the semi-norms

|p|(l)Sm
ρ,δ

:= sup
{∣∣∂αξ ∂βxp(x, ξ)

∣∣(1 + |ξ|2
)−(m+δ|β|−ρ|α|)

:

α, β ∈ Nn
0 , |α+ β| ≤ l, (x, ξ) ∈ R2n

}

becomes a Fréchet space. In this thesis we have to deal only with symbols of
type (1, 0), i.e., we will consider elements of Sm = Sm1,0.

Definition 2.3 Let m′ ∈ R, 0 < δ ≤ ρ ≤ 1, δ < 1, and adopt the remaining

notation as given above. Then we denote as Sm,m
′

ρ,δ = Sm,m
′

ρ,δ (Rn) the vector

space of all p ∈ C∞
(
Rn
x × Rn

ξ × Rn
x′ × Rn

ξ′
)
, such that

∀α,α′, β, β′ ∈ Nn
0 : ∃Cα,α′,β,β′ ≥ 0 : ∀(x, x′, ξ, ξ′) ∈ R2n × R2n :

(∣∣∂αξ ∂α
′

ξ′ ∂
β
x∂

β′

x′ p(x, x
′, ξ, ξ′)

∣∣ ≤Cα,α′,β,β′

(
1 + |ξ|2

)m+δ|β|−ρ|α|

(
1 + |ξ|2 + |ξ′|2

)δ|β′|
(1 + |ξ′|2)m′−ρ|α′|

)
.

The elements of the set Sm,m
′

ρ,δ are called double symbols.

The space Sm,m
′

ρ,δ is also a Fréchet space when equipped with the semi-norms

|p|(l)
Sm,m′

ρ,δ

:= sup
{∣∣∂αξ ∂α

′

ξ′ ∂
β
x∂

β′

x′ p(x, x
′, ξ, ξ′)

∣∣(1 + |ξ|2
)−(m+δ|β|−ρ|α|)

(
1 + |ξ|2 + |ξ′|2

)−δ|β′|(
1 + |ξ′|2

)−(m′−ρ|α′|)
: α,α′, β, β′ ∈ Nn

0 ,

|α+ α′ + β + β′| ≤ l; (x, x′, ξ, ξ′) ∈ R4n
}
.

As above we set Sm,m
′
= Sm,m

′

1,0 .
Now we are ready to give the definition of PsDOs.



12 Pseudo-Differential Operators

Definition 2.4 To each symbol p ∈ Smρ,δ we associate a pseudo-differential op-
erator (PsDO)

P ≡ p(X,Dx) : S(Rn) −→ S(Rn)

u 7→ p(X,Dx)u

with

p(X,Dx)u(x) :=

∫
p(x, ξ)ũ(ξ)eixξdξ

=
1

(2π)n/2

∫∫
p(x, ξ)u(x′)ei(x−x

′)ξdx′dξ (2.2)

for all u ∈ S(Rn) and x ∈ Rn. The space of PsDOs associated with symbols
from Smρ,δ is denoted by S

m
ρ,δ(R

n). We set

S
m := S

m
1,0, S

∞ :=
⋃{

S
m : m ∈ R

}
,

and S
−∞ :=

⋂{
S
m : m ∈ R

}
.

The elements of S
−∞ are called regularising.

For the PsDO P ∈ S
m
ρ,δ we define the formal adjoint P ∗ and the transpose tP

of P by

〈u, P ∗v〉 := 〈Pu, v〉 and

〈u, tPv〉 := 〈Pu, v〉 ∀u, v ∈ S(Rn),

respectively. P ∗ and tP are still elements of S
m
ρ,δ.

PsDOs will be of great interest for us insofar as the infinitesimal generator δm
of the modular group acting on the massive algebras localised in a double cone
is assumed to be of this kind. One expects that the transfer from the massless
algebra, where the infinitesimal generator δ0 is a differential operator derived by
Hislop and Longo [60], to the massive algebra will conserve δ0 as the principal
part of δm, but will also yield an additional part of pseudo-differential nature.

The mapping

Smρ,δ(R
n) −→ S

m
ρ,δ(R

n)

p 7→ p(X,Dx)

is bijective and its inverse is denoted by σ. Each PsDO P is a linear and
continuous mapping P : S(Rn) → S(Rn), i.e., for each l ∈ N0 one can find
constants Cl ≥ 0 and l′ ∈ N0 such that

|Pu|(l)S ≤ Cl|p|(l
′)

Sm
δ,ρ
|u|(l

′)
S ∀u ∈ S(Rn), P = p(X,Dx) ∈ Smδ,ρ,

with

|u|(l
′)

S := sup
{
|xαDβ u(x)| | α, β ∈ Nn

0 , |α+ β| ≤ l
}
.

Since we are concerned with the Klein-Gordon equation in this work, the next
two examples will appear in our analysis of the modular group, especially in
the context of the approach of Figliolini and Guido in Section 5.3.



13

Example 2.5 The d’Alembert operator ✷ := ∂2
x0 −∑n

i=1 ∂
2
xi is a pseudo-

differential operator of order two with symbol p✷(x, ξ) = −ξ20 +
∑n

i=1 ξ
2
i . The

Laplace operator ∆ :=
∑n

i=1 ∂
2
xi is even an elliptic pseudo-differential operator

of order two with symbol p∆(x, ξ) = −∑n
i=1 ξ

2
i , see Definition 2.6.

Definition 2.6 The PsDO P is said to be elliptic of order m if for every com-
pact subset K ⊂ Ω, where Ω is an open region in Rn, there exist constants CK
and R such that

|p(x, ξ)| ≥ CK
(
1 + |ξ|

)m

for all x ∈ K and |ξ| ≥ R.

Compared with other types of PsDOs, the functional calculus of elliptic PsDOs
is better understood, i.e., the quest for the class of all functions f(λ) such
that f(P ) is still a PsDO. Seeley [98] investigates the special case of complex
powers of elliptic operators on a compact manifold, and his results assure that
the energy operator ω := (−∆ + m2)1/2 is a PsDO with symbol pω(x, ξ) =
(ξ2 +m2)1/2.
The following notion concerns the expansion of PsDOs and plays an important
role in the construction of PsDOs.

Definition 2.7 Let (mi)i∈N0 , mi ∈ R, be a decreasing sequence with limi→∞mi =
−∞, p(x, ξ) ∈ Smρ,δ and pi(x, ξ) ∈ Smi

ρ,δ ∀i ∈ N0. Then p is said to have the
asymptotic expansion

∑∞
i=0 pi(x, ξ), denoted by p(x, ξ) ∼ ∑∞

i=0 pi(x, ξ), if the
following statement is valid:

p(x, ξ) −
N−1∑

i=0

pi(x, ξ) ∈ SmN
δ,ρ ∀N ∈ N.

In this case p0(x, ξ) is called the principal symbol of P .

Corollary 2.8 Let (mi)i∈N0 and
(
pi(x, ξ)

)
i∈N0

be as aforementioned, then there

exists a symbol p(x, ξ) ∈ Sm0
ρ,δ such that

p(x, ξ) ∼
∞∑

i=0

pi(x, ξ).

p(x, ξ) is determined uniquely modulo S−∞.

In the sequel we summarise some properties of PsDOs and of their products.

Theorem 2.9 Let us assume that p(x, ξ) ∈ Smρ,δ, q(x, ξ) ∈ Sm
′

ρ,δ, P := p(X,Dx)
and Q := q(X,Dx). Then the following statements are valid:

(i) The product PQ lies in S
m,m′

ρ,δ .
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(ii) PQ is generated by the double symbol

p(x, ξ) · q(x′, ξ′) =: r(x, x′, ξ, ξ′) ∈ Sm,m
′

ρ,δ ,

i.e., PQ = r(X,X ′,Dx,Dx′). Then

|r|(l)
Sm,m′

ρ,δ

≤ max
i+i′=l

|p|(i)Sm
ρ,δ
|q|(i

′)

Sm′
ρ,δ

∀l ∈ N0.

(iii) Let r ∈ Sm,m
′

ρ,δ with r(X,Dx) = PQ. Then one has

r ∼
∑

|α|≥0

1

α!
∂αξ p(x, ξ) · (−i)|α|∂αx q(x′, ξ′).

(iv) For p ∼∑ pi and q ∼∑ qi one obtains

r ∼
∑

|α|≥0
i,j∈N0

1

α!
∂αξ pi(x, ξ) · (−i)|α|∂αx qj(x′, ξ′),

which means that the asymptotic expansion of the product of PsDOs is
derived from the asymptotic expansions of their factors.

Example 2.10 In Example 2.5 we have seen that the Laplace operator ∆ is
a positive and elliptic operator. Due to the investigation of Seeley on complex
powers of elliptic operators [98], one can apply the functional calculus to ∆ and
show that, since ∆ and −∆ +m2 are positive, its square root and the energy
operator ω = (−∆ + m2)1/2 are of pseudo-differential nature, too. Moreover,
the symbol of ω can be determined as

pω(x, ξ) = (ξ2 +m2)1/2,

and one obtains the identity

ωf(x) =

∫
(ξ2 +m2)1/2f̃(ξ)eixξdξ

=

∫

|ξ|<m

(ξ2 +m2)1/2f̃(ξ)eixξdξ +

∫

|ξ|>m

(ξ2 +m2)1/2f̃(ξ)eixξdξ.

In order to get a well-defined expansion of the symbol pω(x, ξ) we adopt the
approach of Lämmerzahl [77] and decompose the test function f̃ in f̃nr and f̃ur
with their support lying in Unr := {ξ ∈ R3| |ξ| < m} and Uur := {ξ ∈ R3| |ξ| >
m}, respectively. Then we expand the symbol in the first integral with respect
to ξ and in the second one with respect to m, i.e.,

(ξ2 +m2)1/2 = m+
ξ2

2m
+

∞∑

k=2

(−1)k+1 1 · 3 · 5 · · · (2k − 3)

2 · 4 · 6 · · · 2k m−2k+1ξ2k,

(ξ2 +m2)1/2 = (ξ2)1/2 +
m2

2
(ξ2)−1/2 +

∞∑

k=2

(−1)k+1 1 · 3 · 5 · · · (2k − 3)

2 · 4 · 6 · · · 2k (ξ2)−k+
1
2m2k

=:

∞∑

i=0

pi(x, ξ), (2.3)
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where the former series converges for |ξ| < m and the latter one for |ξ| > m.
The right-hand side of (2.3) constitutes an asymptotic expansion of the symbol
(ξ2 +m2)1/2, because the requirements in Definition 2.7 are fulfilled, i.e.,

pi(x, ξ) ∈ Smi
δ,ρ with mi

i→∞−→ −∞,

and p(x, ξ) −
N−1∑

i=0

pi(x, ξ) ∈ SmN
δ,ρ ∀N ∈ N.

Thus we obtain for the energy operator:

ωf(x) =

∫

|ξ|<m

(
m+

ξ2

2m
+

∞∑

k=2

(−1)k+1 1 · 3 · · · (2k − 3)

2 · 4 · · · 2k m−2k+1ξ2k

)
f̃nr(ξ)e

ixξdξ

+

∫

|ξ|>m

(
(ξ2)1/2 +

m2

2
(ξ2)−1/2+

+

∞∑

k=2

(−1)k+1 1 · 3 · 5 · · · (2k − 3)

2 · 4 · · · 2k (ξ2)−k+
1
2m2k

)
f̃ur(ξ)e

ixξdξ

=

(
m− ∆

2m
−

∞∑

k=2

1 · 3 · · · (2k − 3)

2 · 4 · · · 2k m−2k+1∆k

)
fnr(x)

+

(
(−∆)1/2 +

m2

2
(−∆)−1/2

+
∞∑

k=2

1 · 3 · 5 · · · (2k − 3)

2 · 4 · · · 2k (−∆)−k+
1
2m2k

)
fur(x)

=: ωnrfnr(x) + ωurfur(x),

where we set f̃nr(ξ) := χ|ξ|<mf̃(ξ) and f̃ur(ξ) := χ|ξ|>mf̃(ξ). Via the expan-
sions, converging on |ξ| < m and |ξ| > m,

(ξ2 +m2)−1/2 =
1

m
− ξ2

2m3
+

∞∑

k=2

(−1)k
1 · 3 · · · (2k − 3)

2 · 4 · 6 · · · 2k m−2k−1ξ2k,

(ξ2 +m2)−1/2 = (ξ2)−1/2 − m2

2
(ξ2)−3/2 +

∞∑

k=2

(−1)k
1 · 3 · · · (2k − 3)

2 · 4 · 6 · · · 2k (ξ2)−k−
1
2m2k,

one calculates in the same manner the inverse of the energy operator:

ω−1f(x) =

(
1

m
+

∆

2m3
−

∞∑

k=2

1 · 3 · 5 · · · (2k − 3)

2 · 4 · · · 2k m−2k−1∆k

)
fnr(x)

+

(
(−∆)−1/2 − m2

2
(−∆)−3/2

+
∞∑

k=2

1 · 3 · 5 · · · (2k − 3)

2 · 4 · · · 2k (−∆)−k−
1
2m2k

)
fur(x)

=: ω(−1)
nr fnr(x) + ω(−1)

ur fur(x).
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Thus ωur and ω
(−1)
ur are asymptotic expansions of ω and ω−1, respectively.

As aforementioned, one of the most important classes of PsDOs are the
elliptic ones.

Definition 2.11 Q′ ∈ S
m
δ,ρ is called left parametrix or right parametrix of Q ∈

S
m
δ,ρ, if

Id−Q′Q ∈ S
−∞ or Id−QQ′ ∈ S

−∞,

respectively. If Q′ possesses both properties then it is said to be a parametrix of
Q.

If the conditions given in Definition 2.7 for the asymptotic expansion are ful-
filled, then one can show that the requirement,

inf
{
|p0(x, ξ)| : (x, ξ) ∈ Rn × Sn

}
> 0,

is sufficient for ellipticity. Every elliptic PsDO P ∈ S
m
ρ,δ has a parametrix

Q ∈ S
−m
ρ,δ .

The wave front set, one of the main tools in micro-local analysis which we
mentioned in the beginning of this chapter, can also be characterised in terms
of PsDOs.

Proposition 2.12 Let u ∈ D′(Rn), then one has for the wave front set,

WF (u) =
⋂

P∈S0

Pu∈C∞

char(P ),

where

char(P ) ≡ char(p) :=
{
(x, ξ) ∈ Rn × Rn

∗ : p0(x, ξ) = 0
}

is the so-called characteristic set of the (properly supported, see Definition 2.19)
PsDO P with principal symbol p0.

Since Radzikowski [89] has shown that the so-called Hadamard condition, which
extracts the physical relevant states, is encoded in the wave front set of the
two-point function, the microlocal analysis plays an increasing role in algebraic
quantum field theory. The most important properties of the wave front set is
collected in the following

Theorem 2.13 Let u, v ∈ D′(Ω) and Ω ⊂ Rn an open subset, then the follow-
ing statements hold:

(i) WF (u) is closed in Ω × Rn
∗ and conical in ξ for all u.

(ii) For the complex-conjugate u one has:

WF (u) = −WF (u), i.e.,
(
(x, ξ) ∈WF (u) ⇐⇒ (x,−ξ) ∈WF (u)

)
.
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(iii) For each closed and conical subset A ⊆ Ω× Rn
∗ there exists a distribution

u with WF (u) = A.

(iv) WF (u+ v) ⊆WF (u) ∪WF (v).

(v) For the tensor product one has:

WF (u⊗ v) ⊆
(
WF (u) ×WF (v)

)
∪ ((supp(u) × {0}) ×WF (v))

∪ (WF (u) × (supp(v) × {0})).

(vi) Let χ : Ω −→ Ω′ with Ω,Ω′ ⊂ Rn be a diffeomorphism. Then

WF (χ∗u) = χ∗WF (u) :=
{(
x, t[Dχ(x)]ξ

)
:
(
χ(x), ξ

)
∈WF (u)

}
,

where

χ∗u(φ) := u
(
det(Dχ)

−1φ ◦ χ−1
)
, φ ∈ D(Ω′),

is the so-called pull-back operator.

(vii) The wave front set is related to the conventional notion of singularity in
the following way:

πx
(
WF (u)

)
= singsupp(u).

It is a well-known fact that the product of distributions is not well-defined in
general and, therefore, the space of distributions D′(Ω), Ω ⊂ Rn, is not an asso-
ciative differential algebra. Nevertheless, for a particular class of distributions
the product can be introduced properly.

Definition 2.14 The so-called Fourier product w ∈ D′(Ω) of the distributions
u, v ∈ D′(Ω), Ω ⊂ Rn, is said to exist, if for all x ∈ Ω there is always a test
function f ∈ D(Ω), identically one in an arbitrary neighbourhood of x, such
that the convolution,

f̃2w(ξ) =
1

(2π)n/2

∫
f̃u(η)f̃ v(η)(ξ − η)dnη,

converges absolutely.

The existence of the Fourier product may be verified by a requirement on the
wave front set.

Proposition 2.15 If for u, v ∈ D′(Ω), Ω ⊂ Rn, the following condition,

(x, ξ) ∈WF (u) =⇒ (x,−ξ) /∈WF (v),

is satisfied for all x ∈ Ω, then the Fourier product u · v exists and is uniquely
defined. Furthermore one has,

WF (u · v) ⊆
(
WF (u) ⊕WF (v)

)
∪WF (u) ∪WF (v),

where

WF (u) ⊕WF (v) :=
{
(x, ξ + η)| (x, ξ) ∈WF (u), (x, η) ∈WF (v)

}
.
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Now, we want to introduce Sobolev spaces and list some of their fundamental
properties, because, in Section 5.3 in particular, we will make extensive use of
them.

Definition 2.16 For each s ∈ R the Sobolev space

Hs(Rn) :=
{
u ∈ S ′(Rn) : 〈Dx〉su ∈ L2(R

n)
}
,

where 〈Dx〉s ∈ Ss is the unique PsDO with reference to the symbol (x, ξ) 7→
(1 + |ξ|2)s/2, equipped with the scalar product

(u, v) : =
(
〈Dx〉su, 〈Dx〉sv

)
L2(Rn)

=

∫
(1 + |ξ|2)2sũ(ξ)ṽ(ξ)dξ, u, v ∈ Hs(Rn),

is a Hilbert space.

Because of
s < s′ =⇒ Hs′(Rn) ⊂ Hs(Rn), (2.4)

one sets

H∞(Rn) :=
⋂{

Hs(Rn) : s ∈ R
}

and

H−∞(Rn) :=
⋃{

Hs(Rn) : s ∈ R
}
.

Due to Sobolev’s lemma on embedding, the inclusion

Hs(Rn) ⊆ Ck(Rn) and

∃Cn,s ≥ 0 :
(
|u(x)| ≤ Cn,s ‖ u ‖Hs(Rn) ∀x ∈ Rn, u ∈ Hs(Rn)

)

hold. In particular one obtains H∞(Rn) ⊆ C∞(Rn).

Proposition 2.17 Let us assume that P ∈ S
m
ρ,δ. Then:

(i) P is well defined on H∞(Rn).

(ii) P has the following property,

P : Hs(Rn) → Hs−m(Rn), (2.5)

and is continuous. Furthermore,

P
(
H−∞(Rn)

)
⊆ H−∞(Rn) and

P ∈ S
−∞ =⇒ P

(
H−∞(Rn)

)
⊆ H∞(Rn) ⊆ B(Rn) ⊆ C∞(Rn).

Let us consider the following Sobolev spaces defined on the open subsets Ω ⊂ Rn

and with respect to compact subsets K of Ω:

Hs
c (K) :=

{
u ∈ D′(K)

}
,

Hs
c (Ω) :=

⋃

K⊂Ω

Hs
c (K),

Hs
loc(Ω) :=

{
u ∈ D′(Ω)| ϕu ∈ Hs(Rn) for ϕ ∈ D(Ω)

}
.
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The topology of Hs
loc(Ω) is then defined by the semi-norms u 7→ ‖ϕu‖s, ϕ ∈

D(Ω), with respect to the scalar product in Hs(Ω). The open sets in Hs
c (Ω),

i.e., the topology on Hs
c (Ω), can be introduced through open intersections with

Hs
c (K). One may verify the following continuous linear injections with dense

images:

S(Rn) →֒ Hs(Rn) →֒ Hs′(Rn) →֒ S ′(Rn) for s′ ≤ s,

D(Ω) →֒ Hs
c (Ω) →֒ Hs

loc(Ω) →֒ D′(Ω),

and the set-theoretical identifications

C∞(Ω) =
⋂

s

Hs
loc(Ω), D(Ω) =

⋂

s

Hs
c (Ω),

E ′(Ω) =
⋃

s

Hs
c (Ω), D′

F (Ω) =
⋃

s

Hs
loc(Ω),

where D′
F (Ω) denotes the set of distributions of finite order in Ω.

Theorem 2.18 Let ρ > 0, δ < 1 and δ < ρ, then any continuous linear
operator P ∈ S

m
ρ,δ(Ω) with P : E ′(Ω) −→ D′(Ω) defines a continuous map from

Hs
c (Ω) onto Hs

loc(Ω) for arbitrary real numbers m and s.

Definition 2.19 The distributional kernel KP ∈ D′(Rn
x × Rn

x′) of P ∈ S
m
ρ,δ is

defined as

〈KP , u× v〉 := 〈Pu, v〉 ∀u, v ∈ D(Rn).

A closed set M ⊆ Rn × Rn is said to be properly supported if

(K × Rn) ∩M ⊏ Rn × Rn and

(Rn ×K) ∩M ⊏ Rn × Rn ∀K ⊏ Rn

hold, where ‘ ⊏’ symbolises the inclusion of a compact subset. P ∈ S
m
ρ,δ is called

properly supported if supp(KP ) has this property.

Due to Schwartz’ kernel theorem, the existence of a unique KP is ensured. The
PsDO P is properly supported if and only if the following criterion is fulfilled:

∀K ⊏ Rn : ∃K ′
⊏ Rn : ∀u ∈ D(Rn) :

(
supp(u) ⊆ K =⇒ supp(Pu), supp(tPu) ⊆ K ′

)
.

For each P ∈ S
m
ρ,δ one can always find a decomposition P = P0 + P ′, where

P0 ∈ S
m
ρ,δ is properly supported and P ′ is regularising, i.e., P ′ ∈ S

−∞. A
properly supported PsDO P can be uniquely extended to a continuous operator

P : D′(Rn) → D′(Rn).

Beyond this the following three restrictions,

P : E ′(Rn) → E ′(Rn),

P : C∞(Rn) → C∞(Rn), and

P : D(Rn) → D(Rn),
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are continuous in their respective domains.

At the beginning we had announced that the wave front set of a distribution
can be characterised with the help of PsDOs.

In a final step we mention the pseudo-locality property in the following

Theorem 2.20 Let P ∈ S
m
ρ,δ be given with its distributional kernel KP ∈

D′(Rn × Rn). Then

singsupp(KP ) ⊆ ∆ :=
{
(x, x) : x ∈ Rn

}
,

where the singular support of the kernel, singsupp(KP ), is the complement of
the open set on which KP is smooth. There holdds the so-called pseudo-locality
property:

singsupp(Pu) ⊆ singsupp(u),

for all u ∈ E ′(Rn) or u ∈ D′(Rn), provided P is properly supported.

One may generalise PsDOs by addmitting general phase functions θ(x, ξ)
in Definition 2.4 instead of the scalar product xξ which satisfy the following
conditions:

(i) θ(x, ξ) is (in general) complex-valued, smooth and homogeneous of degree
one.

(ii) The gradient ∇xθ(x, ξ) does not vanish on the conic support of the symbol
a(x, ξ) for ξ 6= 0.

This leads to so-called Fourier integral operators.

Definition 2.21 To each symbol a ∈ Smρ,δ we associate a Fourier integral op-
erator (FIO)

A ≡ a(X,Dx) : S(Rn) −→ S(Rn)

u 7→ a(X,Dx)u

with

Au(x) :=

∫
a(x, ξ)ũ(ξ)eiθ(x,ξ)dξ

for all u ∈ S(Rn) and x ∈ Rn.

One of the main differences between PsDOs and FIOs is that, while the
distributional kernel of every PsDO is smooth off the diagonal in Rn × Rn, a
FIO does not have this property in general.

We want to show in the next example [39] that FOIs appear naturally in
concrete problems and are not only of theoretical interest.
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Example 2.22 Let us consider the Cauchy problem for the wave equation

∂2u

∂t2
− a2∆u = 0, t > 0,

u = u0,
∂u

∂t
= u1, t = 0,

where a = const and u0, u1 ∈ D(Rn). This problem can be transformed via

v(t, ξ) :=

∫
u(t, x)e−ixξdx

to a Cauchy problem for an ordinary differential equation:

∂2v

∂t2
+ a2|ξ|2v = 0, t > 0,

v = û0,
∂v

∂t
= û1, t = 0.

The solution v is given as

v(t, ξ) = û0(ξ) cos(at|ξ|) + û1(ξ)
sin(at|ξ|)
at|ξ| ,

and finally u can be determined as:

u(t, x) =
(2π)−n

2

{∫ (
û0(ξ) +

1

iat|ξ| û1(ξ)
)
ei(at|ξ|+xξ)dξ

+

∫ (
û0(ξ) −

1

iat|ξ| û1(ξ)
)
ei(−at|ξ|+xξ)dξ

}
,

which is a sum of two FIOs with real-valued phase function θ(x, ξ, t) := ±at|ξ|+
xξ.
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Chapter 3

One-Parameter Groups,

Conformal Group

Es ist unglaublich, wie unwissend die studirende Jugend
auf Universitäten kommt, wenn ich nur 10 Minuten

rechne oder geometrisire, so schläft 1/4 derselben ein.

G. C. Lichtenberg

All theories in physics comprise a kinematical part which contains the el-
ements of the system, e.g., states and observables, and a dynamical part con-
sisting of physical laws which determine the interaction between the elements.
The states and observables are represented in classical mechanics by points in
a differential manifold and functions defined on the manifold, respectively, in
quantum mechanics by rays in a Hilbert space and linear operators acting on
the space, and in algebraic quantum field theory by positive linear functionals
on a C∗-algebra of local observables defined as operator-valued distributions.
The dynamical nature of the theory, i.e., the time development of the system,
as well as symmetries of the theory are formulated in terms of one-parameter
groups of automorphisms, e.g., in classical mechanics one has a group of diffeo-
morphisms, in quantum mechanics a group of unitaries operating on the Hilbert
space, and in quantum field theory a group of automorphisms of the C∗-algebra.

In this thesis we will be concerned with the so-called modular group of
automorphisms which will be introduced and investigated in detail in Section
4.1. For this purpose we need some general preparations. First we want to give
an introduction to one-parameter groups and summarise some main features,
which are excerpted mainly from [40] and [20]. In the second subsection we will
address the conformal group and the conformal transformation, as they will
appear throughout our investigation. This is mainly due to the fact that the
modular group of automorphisms acts conformally on the massless algebra.
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3.1 One-Parameter Groups

The starting point for the investigation of one-parameter groups is the quest for
all maps α : G −→ L(X ), where G is a locally compact group, X a Banach space
and α a representation of G in L(X ), the space of bounded linear operators on
X , satisfying the functional equation

αg1αg2 = αg1g2 and αe = 1. (3.1)

One may formulate the whole theory in a more general setting, namely in terms
of semigroups, but, since we will only deal with the case G = R, we restrict
ourselves to groups.

Definition 3.1 A family (αt)t∈R of bounded linear operators on a Banach space
X fulfilling the functional equation (3.1) is called a one-parameter group on X .

In physics one usually refers to a dynamical system (X ,G, α). We will always
be concerned with C∗-dynamical or even W ∗-dynamical systems because in our
case X will be a C∗-algebra or a von Neumann algebra. But, nonetheless, we
will stick to the general formalism. One may require these representations to be
continuous with respect to different topologies. The strongest topology, namely
the uniform topology, is too restrictive, since many one-parameter groups nat-
urally arising in physics are not uniformly continuous. One counter-example is
the group of left translations,

αl : R −→ L
(
L∞(R)

)

t 7→ αtl(f)(s) := f(t+ s).

For our purposes strong continuity will suffice, i.e., the family (αt)t∈R should
satisfy the functional equation (3.1), and the orbits,

ξX : R −→ X
t 7→ ξX(t) := αt(X), (3.2)

are supposed to be continuous for each X ∈ X , where R carries the natural
topology and X the uniform topology. The next theorem justifies the restriction
to strong continuity, in view of the fact that the central object of this thesis,
the modular automorphism group, is (originally) weakly continuous.

Theorem 3.2 The group (αt)t∈R acting on a Banach space is strongly contin-
uous if and only if it is weakly continuous.

For the analysis of groups on Banach spaces two tools are of great help, namely
the infinitesimal generator and the resolvent. We will make extensive use of the
former one.
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Definition 3.3 Let (αt)t∈R be a strongly continuous group acting on a Banach
space X . Then its infinitesimal generator is defined as

δ : X ⊇ D(δ) −→ X ,
D(δ) :=

{
X ∈ X| ξX in (3.2) is differentiable

}
,

δX :=
d

dt
ξX(0) = lim

h→0

αh(X) −X

h
.

The generator is a linear, closed operator, but in general it is not defined on
the whole Banach space.

Theorem 3.4 Every strongly continuous group is uniquely determined by its
densely defined infinitesimal generator.

For the domain of the generator one can prove a much stronger statement.

Proposition 3.5 For the generator δ of a strongly continuous group on a Ba-
nach space X even the space

⋂∞
i=1 D(δi), where δi+1 := δ(δi), is dense in X .

The domain of the closed infinitesimal generator is a dense subspace of X , and
it is even X itself if and only if the group (αt)t∈R is uniformly continuous. In
all these cases the group can be formulated with the help of the exponential
function,

αt = etδ :=
∞∑

i=0

tiδi

i!
∀t ∈ R.

This is why the functional equation (3.1) determining the group can be replaced
by the equivalent differential equation

d

dt
αt = δαt ∀t ∈ R and α0 = 1.

If the group is strongly continuous, then the exponential series converges only
on a linear subset of D(δ), the so-called set of (entire) analytic vectors which is
still a dense subset of X . Consequently, for the analytic vectors X ∈ X we can
describe the one-parameter group as

αt(X) = etδX :=

∞∑

i=0

ti

i!
δiX ∀t ∈ R.

For strongly continuous semigroups the analytic vectors do not have to consti-
tute even a dense subset; there are examples for which the exponential series
converges for t = 0 and X = 0 only.

For the sake of completeness we give the connection between the group αt

and the resolvent R(λ, δ) := (λ1− δ)−1 at λ in the resolvent set ρ(δ).

Theorem 3.6 Let δ be the infinitesimal generator of the strongly continuous
group (αt)t∈R on the Banach space X satisfying

‖αt‖ ≤MeNt, M ≥ 1, N ∈ R,
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for all t ∈ R. If λ ∈ C such that

R(λ)X :=

∫ ∞

0
e−λsαs(X)ds

exists for all X ∈ X , then λ ∈ ρ(δ) and R(λ) = R(λ, δ). Furthermore, the
spectral bound of the generator, s(δ) := sup{Reλ| λ ∈ σ(δ)}, satisfies

−∞ ≤ s(δ) ≤ wα0 <∞,

where wα0 := inf
{
w ∈ R| ∃Mw ≥ 1 : ‖αt‖ ≤ Mwe

wt, ∀t ≥ 0
}

is the growth
bound.

The next task is to take the opposite direction, i.e., to find all the operators
which generate a strongly continuous one-parameter group. To demand the
properties of the infinitesimal generators mentioned above, linearity, closedness,
dense domain and their spectrum lying in some proper left half-plane, is not
sufficient, since one can construct groups fulfilling all these conditions but still
not mapping X into itself. An additional assumption on the resolvent will
extract the correct candidates for real generators.

Theorem 3.7 Let δ be a linear operator on a Banach space X and M ≥ 1,
N ∈ R arbitrary constants, then the following statements are equivalent:

(i) δ generates a strongly continuous group (αt)t∈R satisfying the growth es-
timate

‖αt‖ ≤MeNt, t ∈ R.

(ii) δ is closed, densely defined and for every λ ∈ R, |λ| > N , one has λ ∈ ρ(δ)
and ∥∥[(|λ| −N)R(λ, δ)

]n∥∥ ≤M, ∀n ∈ N.

Theorem 3.8 (Stone) Let δ be a densely defined operator on a Hilbert space
H. Then δ is the infinitesimal generator of a unitary group (αt)t∈R on H if and
only if it is skew-adjoint, i.e., δ∗ = −δ.
Let us consider the abelian Banach algebra X := C0(Rn) equipped with the
supremum norm ‖f‖ := sup{|f(x)|| x ∈ Rn} and a continuously differentiable
vector field F : Rn −→ Rn which satisfies the estimate supx ‖DF (x)‖ < ∞,
where DF (x) denotes the derivative of F at x ∈ Rn. F induces a continuous
flow

βt : R × Rn −→ Rn

(t, x) 7→ βt(x),

i.e., βt+s(x) = βtβs(x) and β0(x) = x. Additionally, the flow satisfies the
following differential equation,

∂

∂t
βt(x) = F

(
βt(x)

)
,

and we can formulate
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Proposition 3.9 Let X := C0(Rn) then

αt(f)(x) := f
(
βt(x)

)
, f ∈ X , x ∈ Rn,

defines a strongly continuous group (αt)t∈R on X , and its infinitesimal generator
is given by the closure of the differential operator

δf(x) := 〈gradf(x), F (x)〉 =

n∑

i=1

Fi(x)
∂f

∂xi
(x)

=
n∑

i=1

Fi
(
β0(x)

) ∂f
∂xi

(x),

D(δ) : = C1
c (R

n).

From now on we focus on the one-parameter groups of ∗-automorphisms of C∗-
algebras or von Neumann algebras and use the algebraic setting for this purpose.
The fundamental algebraic tool for the investigation of infinitesimal generators
is the symmetric derivation. The defining characteristics of derivations are
naturally motivated by the main algebraic properties of the groups:

αt(A)∗ = αt(A∗) and

αt(AB) = αt(A)αt(B).

Definition 3.10 A symmetric derivation δ of a C∗-algebra A is a linear op-
erator from a ∗-subalgebra D(δ), the domain of δ, into A satisfying, for all
A,B ∈ D(δ), the conditions:

(i) δ(A)∗ = δ(A∗).

(ii) δ(AB) = δ(A)B +Aδ(B).

For the discussion of automorphism groups the notion of spatial derivations
is of great importance, due to the fact that they occur as their infinitesimal
generators.

Definition 3.11 A symmetric derivation δ of a C∗-algebra A of bounded oper-
ators on a Hilbert space H is called spatial or inner if there exists a symmetric
operator H ∈ A with the properties

δ(A) = i[H,A], A ∈ D(δ),

and D(δ)D(H) ⊆ D(H).

H is said to implement δ.

In the case of a C∗-algebra A a linear operator δ on A is the generator of a
uniformly continuous one-parameter group of ∗-automorphisms αt if and only
if it is a symmetric derivation of A with D(δ) = A. Then the existence of a
self-adjoint operator H ∈ π(A)′′, where π is an arbitrary representation of A, is
ensured, and the group can be described as

π
(
αt(A)

)
= eitHπ(A)e−itH

for all A ∈ A and t ∈ R. If the group αt is to be strongly continuous then more
information is needed. We only give one of many possible combinations.
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Theorem 3.12 The densely defined closed linear operator δ on a C∗-algebra
A is the infinitesimal generator of a strongly continuous one-parameter group
of ∗-automorphisms if and only if the following conditions hold:

(i) δ is a symmetric derivation, and its domain is a ∗-algebra.

(ii) δ has a dense set of analytic elements in A.

(iii) ‖(1+Mδ)(A)‖ ≥ ‖A‖ for all A ∈ D(δ) and M ∈ R.

If within the framework of von Neumann algebras the second condition is re-
placed by

(ii′) (1+Mδ)
(
D(δ)

)
= M for all M ∈ R\{0},

then the above theorem is also valid for arbitrary von Neumann algebras M.
In this case we know more about the derivations.

Theorem 3.13 Every derivation of a von Neumann algebra is inner.

If two separable C∗-algebras A and B are connected via a surjective morphism
π : A −→ B, then for every derivation δB on B one can always find a derivation
δA on A such that

π ◦ δA = δB ◦ π and ‖δA‖ = ‖δB‖.

Definition 3.14 An automorphism α acting on the C∗-algebra A is said to be
inner, α ∈ Int(A), if there exists a unitary operator U ∈ A such that

α(A) := UAU−1

holds for all elements A ∈ A. If the automorphism is not inner then we call
it outer, α ∈ Out(A). The automorphism α is called approximately inner if
α ∈ Int(A).

For one-parameter groups of automorphisms αt the set of all t ∈ R such that αt

is inner establish a subgroup of R, which can be investigated more extensively
through spectral theory.
Each uniformly continuous one-parameter group (αt)t∈R of a separable and
unital C∗-algebra A can be approximated by inner automorphisms, i.e., there
exists a sequence (αtn)n∈N of inner automorphism groups such that

‖αt(A) − αtn(A)‖ n→∞−→ 0

uniformly in t on any compact subset of R for all A ∈ A.
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3.2 Conformal Transformations

The metric gµν := diag(1,−1,−1,−1) first describes distances between events
and second defines the causal structure of spacetime, i.e., for each point x it di-
vides the spacetime in timelike, lightlike and spacelike regions. If one drops the
first property and requires only conservation of the causal structure, then one
obtains the highest spacetime symmetry possible, the so-called conformal sym-
metry. The conformal group is also the largest group which preserves the light
cone. The fundamental physical laws are expected to be invariant under the
conformal group, which contains the Poincaré group and the transformations
preserving angles between world lines. The following summary is extracted
from [95] and [43].

Let the pair (M, g) be a semi-Riemannian manifold consisting of a smooth
manifold M and a differentiable tensor field g which maps every point a ∈ M
into a non-degenerate, symmetric, bilinear form on the tangent space TaM,

ga : TaM× TaM −→ R.

Equivalently, one can describe the bilinear form by means of local coordinates
(x1, x2, · · · , xn) of M as

ga(X,Y ) = gµνX
µY ν ,

where X := Xµ ∂

∂xµ
, Y := Y ν ∂

∂xν
∈ Ta(M),

and with the properties

det
(
gµν(a)

)
6= 0 and

(
gµν(a)

)t
=
(
gµν(a)

)
.

Definition 3.15 Let U ⊂ M and U ′ ⊂ M′ be two open subsets of the semi-
Riemannian manifolds (M, g) and (M′, g′), respectively, then a differentiable
map φ : U −→ U ′ is called a conformal transformation if there exists a dif-
ferentiable function Ω : U −→ R+, the so-called conformal factor for φ, such
that

φ∗g′(X,Y ) := g′
(
Tφ(X), Tφ(Y )

)
= Ω2g(X,Y ),

where Tφ : TU −→ TU ′ is the derivation of φ.

The relation given above can equivalently be described by means of local coor-
dinates as

(φ∗g′)µν(a) = g′αβ
(
φ(a)

)
∂µφ

α∂νφ
β = Ω2(a)gµν(a).

From now on we restrict ourselves to local one-parameter groups of isometries
ϕt =: etX satisfying the differential equation

d

dt
ϕt(a) = Xϕt(a) with ϕ0(a) = a, a ∈ M,

where X is the infinitesimal generator of the group.
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Definition 3.16 The vector field X : Rp,q ⊃ M −→ Rn on M ⊂ Rp,q is said
to be a conformal Killing field if ϕt = etX is conformal in a neighbourhood of
a = 0 for all t ∈ R.

For the tensor field

g(X,Y ) = gp,q(X,Y ) :=

p∑

i=1

XiY i −
p+q∑

i=p+1

XiY i

and the conformal Killing field X = (X1, ...,Xn) = Xν∂ν one can always find
a twice differentiable function κ : M −→ R, which satisfies the so-called con-
formal Killing equation,

∂νgµλX
λ + ∂µgνλX

λ = κgνµ.

This fact prompts the next

Definition 3.17 A differentiable function κ : M −→ R is called conformal
Killing factor if there is a conformal Killing field X fulfilling the equation

∂νXµ + ∂µXν = κgνµ. (3.3)

Corollary 3.18 Let ∆g := gαβ∂α∂β be a Laplace-Beltrami operator, then the
function κ : M ⊃ U −→ R is a conformal Killing factor if and only if

(n− 2)∂µ∂νκ+ gµν∆gκ = 0

holds.

This means that in the case n = 2 the condition for κ being a conformal Killing
factor reduces to ∆gκ = 0. In the case of p = 2 and q = 0, the Euclidean plane,
φ = (u, v) : M −→ R2,0 ∼= C is a holomorphic function on an open subset
M ⊂ R2,0 with non vanishing derivation Dφ if and only if φ is a conformal and
orientation-preserving transformation. Here, the conformal factor is determined
by

Ω2 = u2
x + u2

y = det(Dφ).

The other possibility, p = q = 1, represents the two-dimensional Minkowski
space, and the differentiable function φ = (u, v) : M −→ R1,1 on an open,
connected subset M ⊂ R1,1 is conformal if and only if

• u2
x > u2

y and

• ux = vy, uy = vx or ux = −vy, uy = −vx.

The extant case, i.e., p + q > 2, which will be considered in this thesis, allows
for the conditions

∂µ∂νκ = 0 for µ 6= ν and

∂µ∂µκ = ±(n− 2)−1∆gκ for µ = ν.
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The second equation leads to ∆gκ = 0 and therefore to ∂µ∂µκ = 0. Thus we
conclude ∂µ∂νκ = 0 for all µ, ν ≤ n = p+ q and

∂µκ(x) = ∂µκ(x
1, · · · , xn) = aµ,

where x ∈ M and aµ ∈ R is an arbitrary constant. The solutions of the
differential equation for a conformal Killing factor κ are linear functions of the
form

κ(x) = ανx
ν + λ ∀x ∈ M,

where λ, αν ∈ R are arbitrary constants.
We are now interested in the conformal Killing fields X with reference to

the Killing factor κ. First of all we can choose κ = 0 with the consequence that,
due to the relations

∂µXµ + ∂µXµ = 0 =⇒ Xµ is independent of xµ,

∂νXµ + ∂µXν = 0 =⇒ ∂νX
µ = 0,

the Killing fields have the following structure,

Xµ(x) = ωµνx
ν + cµ with ωµν , c

µ ∈ R.

Therefore we obtain three different possibilities:

(i) ωµν = 0, cµ 6= 0 determines the conformal transformation as the translation
φc(x) = x+ c.

(ii) ωµν 6= 0, cµ = 0 leads to φΛ(x) = Λx with
Λ ∈ O(p, q) :=

{
Λ̃ ∈ Rn×n| Λ̃tgp,qΛ̃ = gp,q

}
.

(iii) ωµν 6= 0, cµ 6= 0 is a linear combination of the first two items.

The choice κ = λ = const 6= 0 determines the conformal Killing field X(x) = λx
and consequently the conformal transformation as

(iv) the dilation φ(x) = eλx.

For a non-constant conformal Killing factor κ one can verify by straightforward
calculation that the conformal Killing field, defined as

Xµ(x) = 2(x, b)xµ − (x, x)bµ

with

(x, b) := gµνx
µbν and b ∈ Rn\{0},

solves equation (3.3). The associated conformal transformation is the

(v) proper conformal transformation or conformal translation,

φ(x) =
xµ − (x, x)cµ

1 − 2(x, c) + (x, x)(c, c)
.
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Contrary to the first four possibilities, the proper conformal transformation has
no extension from M ⊂ Rp,q onto the whole space Rp,q. These transformations
are singular for any point x′µ on the hypersurface 1 − 2(x, c) + (x, x)(c, c) = 0,
and for this reason they cannot constitute a global symmetry.

To put it in a nutshell the following statement holds.

Corollary 3.19 The composition of two conformal transformations is again
conformal. Let M ⊂ Rp,q, p + q = d ≥ 3, be open, then each conformal
transformation ρ : M −→ Rp,q can be described as a composition of

(i) a translation x′µ = xµ + aµ, a ∈ Rd,

(ii) an orthogonal transformation x′µ = Λx, Λ ∈ O(p, q),

(iii) a dilation x′µ = λxµ, λ ∈ R, and

(iv) a special conformal transformation x′µ = xµ−(x,x)cµ

1−2(x,c)+(x,x)(c,c) , c ∈ Rd.

If we consider an infinitesimal conformal transformation of a point x,

xµ 7→ xµ + ǫuµ(x),

with ǫ→ 0, then u has to be of the following form:

uµ(x) = aµ + gµλωλνx
ν + b xµ + 2xµcλx

λ − xλx
λcµ. (3.4)

In this equation the quantities aµ, b and cµ are arbitrary constants. In the case
of a d-dimensional spacetime uµ(x)∂µ is generating a 1

2(d + 1)(d + 2)- dimen-
sional Lie group, the so-called conformal group, more specifically one obtains
the following infinitesimal generators:

P := aµ∂µ : translations (d generators),

M := gµλωλνx
ν∂µ : Lorentz transformations

(d(d−1)
2 generators

)
,

D := b xµ∂µ : dilations (1 generator),
K :=

(
xµcλx

λ − xλx
λcµ
)
∂µ : special (proper) conformal transformations

(4 generators).

The generators of the Lorentz transformation can be decomposed in d− 1 gen-
erators for the Lorentz boosts and 1

2(d− 1)(d− 2) generators for the rotations.
The commutation relations of these generators read:

[Pµ, Pν ] = 0, [Pα,Mµν ] = i(gαµPν − gανPµ),

[Pµ,D] = iPµ, [Kν , Pµ] = 2i(gµνD +Mµν),

[Mµν ,Mαβ ] = i(gµβMνα + gναMµβ − gµαMνβ − gνβMµα), (3.5)

[Mµν ,D] = 0, [Kα,Mµν ] = i(gαµKν − gανKµ),

[D,D] = 0, [D,Kµ] = iKµ, [Kµ,Kν ] = 0.
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Because of the local isomorphism between the conformal group Conf(Rp,q) and
the group of pseudo-orthogonal transformations,

Conf(Rp,q) ∼= SO(p+ q, q + 1),

which in our case reads

Conf(R3,1) ∼= SO(4, 2),

we will, for the sake of technical simplicity, also make use of the so-called
pseudo-orthogonal transformations, which are described in terms of coordinates
ξα, α = 0, 1, · · · , d+ 2, of a real space equipped with the metric

gαβ :=

{
δαβ , α = 0, d + 2,

−δαβ , α = 1, 2, · · · , d+ 1.

The group transformations in the new coordinates have the form

ξα 7→ ξ′α := Mα
β ξ

β,

where M is the matrix determined by the equations

gαβM
α
γM

β
δ = gγδ and detM = 1.

Their relation to the Minkowski coordinates are

xµ = ξ−1
+ ξµ and (x, x) = gµνx

µxν =
ξ−
ξ+

with ξ± := ξd+2 ± ξd+1.

The conformal transformations in Minkowski space have their analogue in the
pseudo-orthogonal coordinates:

(i) Translations correspond to transformations: ξµ 7→ ξ′µ := ξµ + ξ+c
µ.

(ii) Homogeneous Lorentz transformations correspond to pseudo-rotations in
a d-dimensional subspace:

ξµ 7→ ξ′µ := Λµν ξ
ν , µ, ν = 0, 1, · · · , d− 1.

(iii) Dilations correspond to pseudo-rotations in a 2-dimensional subspace:

ξd+1 7→ ξ′d+1 := ξd+2 sinh τ + ξd+1 cosh τ,

ξd+2 7→ ξ′d+2 := ξd+2 cosh τ + ξd+1 sinh τ.

(iv) Special conformal transformations correspond to the transformations of
the type: ξµ 7→ ξ′µ := ξµ + ξ−c

µ.



34 One-Parameter Groups, Conformal Group

The correspondence between the infinitesimal generators Jαβ = −Jβα of the
pseudo-orthogonal group and the ones of transformations in Minkowski space
are given by

Pµ = Jµ d+2 − Jµ d+1, Mµ ν = Jµ ν ,

D = Jd+2 d+1, Kµ = Jµ d+2 + Jµ d+1,

and the commutation relations of Jαβ can be summarized as

[Jαβ , Jγδ ] = −i
(
gαγJβδ + gβδJαγ − gβγJαδ − gαδJβγ

)
.

For our purposes, i.e., the special case of a four-dimensional Minkowski space,
the following quantities will be of greater interest,

gαβ :=

{
δαβ , α = 0, 5

−δαβ , α = 1, 2, 3, 4.

The two different coordinate systems are linked to each other by the relation

xµ = (ξ4 + ξ5)−1ξµ.

The variation of the distance between two events under a conformal transfor-
mation is given by a conformal factor N as

(x′1 − x′2)
2 = N(x1)

−1N(x2)
−1(x1 − x2)

2.

It can be calculated for each type of transformations as

N =





1 for translations,

1 for Lorentz transformations,

λ−1 for dilations,

η−1η′ for special conformal transformations,

where η′+ := η+ − 2(ξ, c) + (ξ4 − ξ5)(c, c) and η+ := ξ4 + ξ5.

For the analysis of modular automorphism groups in quantum field the-
ory the so-called conformal inversion map will be of great significance, more
precisely, if one wishes to transfer the modular action on the Rindler wedge
WR := {x| x3 > |x0|} to that on the forward light cone V+ := {x ∈ R4| (x, x) >
0 and x0 > 0} or the double cone D := (V+−e0)∩ (V− +e0), where V− := {x ∈
R4| (x, x) > 0 and x0 < 0} is the backward light cone. The inversion map is
defined as

ρ : M −→ M

xµ 7→ ρ(xµ) :=
−xµ
(x, x)

.

First, while the inversion map and the Lorentz transformation commute and the
consecutive application of ρ and the dilation leads to a change of the parameter,
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i.e.,

xµ
Λ7→ Λµν x

ν ρ7→ (Λµν x
ν)−2Λµν x

ν =
1

(x, x)
Λµν x

ν ,

xµ
ρ7→ xµ

(x, x)

Λ7→ Λµν
xν

(x, x)
,

xµ
ρ7→ xµ

(x, x)

dil.7→ λ
xµ

(x, x)

ρ7→ 1

λ
xµ,

the successive application of ρ and the translation has the proper conformal
transformation as a consequence:

xµ
ρ7→ xµ

(x, x)
trans7→ xµ

(x, x)
+ cµ

ρ7→ xµ + (x, x)cµ

1 + 2(x, c) + (x, x)(c, c)
.

The second interesting feature of the inversion map is that it maps the right
Rindler wedge onto the forward light cone and onto the double cone with radius
one D1 via the equations

ρ(D1 − e0) = V+ +
e0
2

and

ρ(D1 + e3) = WR +
e3
2
.

Here the canonical orthonormal basis of R4 is denoted by
{
e0, e1, e2, e3

}
.

These two properties are of interest insofar as in a free massless scalar theory
the inversion map can be represented by a vacuum-preserving, unitary operator,

Uρϕ(x)U−1
ρ =

1

(x, x)3
ϕ
(
ρ(x)

)
(3.6)

and UρΩ = Ω,

on the one-particle Hilbert space, and Uρ itself through its second quantisation
operator Γ(Uρ), a vacuum-preserving, unitary operator on the Fock space, such
that

Γ(Uρ)ϕ(x)Γ(Uρ)
−1 =

1

(x, x)3
ϕ
(
ρ(x)

)
, and

Γ(Uρ)A(O)Γ(Uρ)
−1 = A

(
ρ(O)

)
,

where O is an arbitrary double cone.

It is noteworthy that the requirement of vacuum invariance is stronger than
the assumption of conformal symmetry.

Definition 3.20 An equation for a field ϕ is called conformally invariant if
there exists a constant s ∈ R, the so-called conformal weight of the field ϕ, such
that ϕ is a solution with respect to the metric gµν if and only if ϕ̃ := Ωsϕ is
a solution with respect to the metric g̃µν := Ωsgµν , where Ω is the conformal
factor.
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For the conformal symmetry to hold vacuum invariance under the group of
translations, Lorentz transformations and dilations is sufficient.

Let UP , UD and UK be the unitary operators induced by translations, dila-
tions and special conformal transformations, respectively, then

UP (a)ϕ(x)U−1
P (a) = ϕ(x+ a),

UD(λ)ϕ(x)U−1
D (λ) = ϕ(λx),

UK(c)ϕ(x)U−1
K (c) =

(
1 − 2cx+ c2(x, x)

)−3
ϕ

(
x− c(x, x)

1 − 2cx+ c2(x, x)

)
,

UρUD(λ)Uρ = UD(λ−1),

and UK(c) = UρUP (c)Uρ.

The latter two relations hold under the assumption that the action of Uρ is

Uρϕ(x)Uρ = (x, x)−3ϕ
(
ρ(x)

)
.

These relations can be transferred to the infinitesimal generators of translations,
Lorentz transformations, dilations and proper conformal transformations,

UρPµUρ = Kµ,

UρMµνUρ = Mµν , and

UρDUρ = −D,

which means that the generator of the Lorentz transformations commutes and
that of the dilations anti-commutes with the operator Uρ, respectively. These
relations in particular show that the algebra of the conformal group is invariant
under Uρ.



Chapter 4

Modular Theory and

Quantum Field Theory

Tu as voulu de l’algèbre,
et tu en auras jusqu’au menton.

J. Verne
Autour de la Lune

In this chapter we give a short introduction to modular theory, which has
been formulated by Tomita but first published by Takesaki [104], and a general
survey of its most innovative applications in mathematics and physics.

While the assumptions for the formulation of modular theory are only the
underlying von Neumann algebra M and a cyclic and separating vector Ω in the
representing Hilbert space H, the consequences of its main statement, namely
Tomita’s theorem which relates M with its commutant M′ and ensures the
existence of a group of automorphisms σt : M −→ M, t ∈ R, is immense.

In mathematics, the classification of von Neumann algebras would be hardly
imaginable, in particular Connes’ classification of type III factors [29], Jones’
classification of type II1 subfactors [66] and it generalisation by Kosaki to arbi-
trary subfactors [73], which will be addressed in the first section. These achieve-
ments again have made possible many developments in mathematics, e.g., the
index theory of Jones yields groundbreaking insights in algebraic topology with
a new polynomial invariant for knots and links in R3.

Since local quantum physics, due to the Reeh-Schlieder Theorem 4.22, from
the outset brings along the conditions for modular theory, both theories are
fitted perfectly to each other as reflected in many results. The very first fruit has
been the generalisation of Gibbs’ equilibrium states to KMS states formulated
by Haag, Hugenholtz and Winnink [53]. Another branch is the determination
of local algebras as hyperfinite factors of type III1 by the collaboration of
many authors through a long process, and the classification of conformal local
subfactors by Kawahigashi and Longo [70]. This thesis is mainly concerned
with the third branch, the modular action. The investigation of Bisognano
and Wichmann yield the surprising insight that for wedge regions the modular
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action coincides with Lorentz boosts [10], [11]. An immediate consequence of
this result is the discovery of black hole evaporation, the so-called Hawking
radiation. Buchholz can identify the modular action on forward light cones as
dilations [24], and Hislop and Longo identify it as conformal transformations in
the case of double cones [60]. The consequence of the geometric modular action
for the development of the algebraic quantum field theory is revolutionary,
because it serves to prove some main pillars and indispensable concepts of
quantum field theory. We will mention only the most important ones, as the
investigations on the PCT theorem by Borchers [14], the construction of the
Poincaré group by Brunetti, Guido and Longo [23], the algebraic spin-statistics
theorem by Guido and Longo [51] and the modular nuclearity condition by
Buchholz, D’Antoni and Longo [26].

4.1 Modular Theory in Mathematics

In this section we give a short and straightforward introduction to the Tomita-
Takesaki theory, also called modular theory [104]. Although one can formulate
it in a more general setting, namely in terms of left or right Hilbert algebras
which are identical for isometrical involutions, we will restrict ourselves to what
is absolutely necessary for our aims. We will follow the standard literature, e.g.,
[103], [102], [20] and [68]. Confer also Appendix A for definitions and notations
which are used but are not mentioned here.

The modular theory has also been investigated in the framework of O∗-
algebras, i.e., ∗-algebras of closable operators, see e.g. [64].

Our starting point is a von Neumann algebra M acting on a Hilbert space
H and Ω ∈ H with a cyclic, i.e., MΩ is dense in H, and separating vector, i.e.,
AΩ = 0 implies A = 0 for A ∈ M. Because cyclicity of Ω for M is equivalent
to it being separable for the commutant M′, the vector Ω transports these
two properties from the algebra onto its commutant. Thus the following two
anti-linear operators are well defined:

S0 : D(S0) = MΩ ⊂ H −→ H
AΩ 7→ S0AΩ := A∗Ω,

F0 : D(F0) = M′Ω ⊂ H −→ H
AΩ 7→ F0AΩ := A∗Ω.

Both operators are closable, and one defines F := F0 = S∗
0 and S := S0 =

F ∗
0 . Therefore, the Tomita operator S allows for a unique polar decomposition

into the positive, selfadjoint operator ∆ and the anti-unitary operator J , the
so-called modular operator and modular conjugation with respect to the pair
(M,Ω), respectively:

S = J∆1/2.
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One may easily verify the following relations:

∆ = FS, J = J∗,

∆−1 = SF, J2 = 1,

F = J∆−1/2, ∆−1/2 = J∆1/2J.

We are now already in the position to formulate the core of the modular theory.

Theorem 4.1 For the von Neumann algebra M and the associated modular
operator and modular conjugation the relations

JMJ = M′ and ∆itM∆−it = M

hold for all t ∈ R.

Definition 4.2 A von Neumann algebra is said to be σ-finite if it contains (at
most) countably many pairwise orthogonal projections.

In statistical quantum mechanics and quantum field theory only σ-finite von
Neumann algebras appear, which therefore can be represented in a separable
Hilbert space, while von Neumann algeras, which can be represented in a sep-
arable Hilbert space, need not be σ-finite in general.

Lemma 4.3 For the von Neumann algebra M acting on the Hilbert space H
the following statements are equivalent:

(i) M is σ-finite.

(ii) There exists a countable subset of H, which is separating for M.

(iii) There exists a faithful and normal weight on M.

(iv) M is isomorphic to a von Neumann algebra π(M) which admits a cyclic
and separating vector.

Given a faithful and normal weight ω, one can derive the associated cyclic
representation (Hω, πω,Ωω) through the GNS construction and the modular
operator for the pair (πω(M),Ωω). The above theorem ensures the existence of
a σ-weakly continuous one-parameter group of ∗-automorphisms,

(
σtω
)
t∈R

,

σtω : M −→ M

A 7→ σtω(A) := π−1
ω

(
∆itπω(A)∆−it

)
,

the so-called modular automorphism group associated with
(
πω(M),Ωω

)
. Since

we are concerned with von Neumann algebras, due to Theorem A.12, the mod-
ular group is continuous with respect to the strong topology, too. The modular
group is a powerful and constructive tool for the investigation of von Neumann
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algebras and has made possible many applications in mathematics and theoret-
ical physics. The main linkage between the modular theory and physics is the
following property,

(
∆1/2πω(A)Ωω,∆

1/2πω(B)Ωω

)
=
(
Jπω(A∗)Ωω, Jπω(B∗)Ωω

)

=
(
πω(B∗)Ωω, πω(A∗)Ωω

)
,

the so-called modular condition, which can equivalently be described by means
of the modular group itself,

ω
(
σi/2ω (A)σ−i/2ω (B)

)
= ω(BA)

for all A,B ∈ M.
As previously mentioned, one-parameter groups of inner automorphisms can

be analysed more elaborately with the help of spectral theory, but since in this
thesis we deal with von Neumann algebras of type III1, the next statement
rules out this possibility in the present context.

Proposition 4.4 The modular group associated with a faithful normal state on
a von Neumann algebra M is inner if and only if M is semifinite, i.e., if the
decomposition of M has no part of type III.

Because, due to Theorem 3.13, every derivation on a von Neumann algebra is
inner, for the derivation of the infinitesimal generator of the modular group it
is sufficient to know the generator of the modular group.

Theorem 4.5 Let M be a von Neumann algebra on a Hilbert space H, ∆Ω the
modular operator with respect to the cyclic and separating vector Ω ∈ H, and,
with the help of the self-adjoint operator H ∈ M, HΩ = 0, define the domain

D(δ) :=
{
A ∈ M| i[H,A] ∈ M

}
.

Then the following two conditions are equivalent:

(i) eitHMe−itH = M for all t ∈ R.

(ii) D(δ)Ω is a core for H, and H and ∆ commute strongly, i.e., ∆itH∆−it =
H for all t ∈ R.

One may also ask for the inverse problem in the modular theory, namely
investigate the question, how to characterise all von Neumann algebras N which
are isomorphic to a given von Neumann algebra M and share with M the same
cyclic and separating vector ΩM and modular objects ∆M and JM. Boller and
Wollenberg investigate the case of factors [118], [12]. Let us write for the set of
these factors NF (M,ΩM,∆M, JM). Their result is as follows:

Theorem 4.6 Let F∞ := L
(
L2(R, dx)

)
, ρ a faithful, normal and semifinite

state on F∞, Hρ the GNS space for (F∞, ρ), πρ the isomorphism from F∞

onto its GNS representation, Fρ := πρ(F∞) and ωM(·) := (ΩM, · ΩM).
Then a factor N belongs to NF (M,ΩM,∆M, JM) if there exists a unique oper-
ator U with the properties:
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(i) N = UMU∗.

(ii) There are unitaries K ∈ {∆M

⊗
∆ρ}′, Y1 ∈ M⊗Fρ, Y2 ∈ M′⊗F ′

ρ on
H⊗Hρ such that

U ⊗ 1ρ = KY1Y2.

(iii) ωM ⊗ ρ1(·) = c(ωM ⊗ ρ1)(K ·K∗) with c > 0.

One of our approaches for the derivation of the modular group with respect
to the massive algebra of local observables will be to formulate, in a first step,
the modular group on the massive algebra with respect to the ‘wrong’ massless
vacuum state, and then, in a final step, bridge the gap to the modular group
with respect to the ‘right’ massive vacuum state. The modular theory makes
some tools available for this purpose.

Theorem 4.7 For the modular groups σtω1
and σtω2

on the von Neumann al-
gebra M such that respect to the faithful normal states ω1 and ω2 the following
statements are equivalent:

(i) ω1 is σtω2
-invariant.

(ii) ω2 is σtω1
-invariant.

(iii) σtω1
and σtω2

commute.

(iv) There exists a unique positive injective operator B affiliated with Mσω1 ∩
Mσω2 , i.e., B commutes with all unitaries from Mσω1∩Mσω2 , with ω2(A) =
ω1(BA) for all A ∈ M.

Lemma 4.8 Let M and N be two von Neumann algebras and α : M −→ N an
isomorphism. If ω is a faithful, normal and semifinite state on N, then

σtω◦α = α−1 ◦ σtω ◦ α
holds.

If there exists more than one faithful, normal and semifinite state on M, it can
be shown that the modular automorphism is unique up to unitaries. Let ω1

and ω2 be two faithful, normal and semifinite states on M and σtω1
and σtω2

the
corresponding modular groups. Let us consider the faithful and normal weight

ρ

[(
A11 A12

A21 A22

)]
:=

1

2

(
ω1(A11) + ω2(A22)

)

on M ⊗M2 and the corresponding modular group σtρ, then the unitaries Γt,
defined as (

0 Γt
0 0

)
:= σtρ

[(
0 1

0 0

)]
,

connect the two original modular groups. The next theorem is dealing exactly
with this situation, but first we have to introduce the following notions. We
denote by A(D) the set of bounded and holomorphic functions on the domain
D and define

nω :=
{
A ∈ M| ω(A∗A) <∞

}
.
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Theorem 4.9 (Connes’ Cocycle Derivative) If ω1, ω2 are two faithful, nor-
mal and semifinite states on M, then there exists a σ-strongly continuous one-
parameter family of unitaries

(
Γt
)
t∈R

in M with the following properties:

(i) Γs+t = Γsσ
s
ω1

(Γt), s, t ∈ R.

(ii) Γsσ
s
ω1

(nω1 ∩ n∗
ω2

) = nω1 ∩ n∗
ω2

.

(iii) For every x ∈ n∗
ω1
∩nω2 and y ∈ nω1∩n∗

ω2
there exists an element F ∈ A(D)

such that

F (t) = ω2

(
Γtσ

t
ω1

(y)x
)

and F (t+ i) = ω1

(
xΓtσ

t
ω1

(y)
)
.

(iv) σtω2
(A) = Γtσ

t
ω1

(A)Γ∗
t , A ∈ M, t ∈ R.

The third condition determines the family of unitaries uniquely.

The main statement of this theorem is that two arbitrary modular automor-
phism groups are equivalent up to inner automorphisms. One of our approaches
will be based mainly on the cocycle theorem. The specific problem with its
statement is that it assures the existence of the unitaries only, but fails to give
a method for their construction.

The above theorem still holds true with few adjustments if the faithfulness
is given only for one of the weights. The family of unitaries is called cocycle
derivative of ω1 with respect to ω2 and denoted by (Dω2 : Dω1)t := Γt. For two
faithful, normal and semifinite states we have

(Dω2 : Dω1)t = (Dω2 : Dω2)
−1
t , t ∈ R.

If an additional third faithful, normal and semifinite state on M is given, then
one can establish the chain rule,

(Dω1 : Dω2)t = (Dω1 : Dω3)t(Dω3 : Dω2)t, t ∈ R.

Consequently, the equivalence of two cocycle derivatives of ω1 with respect to
ω2 and ω3 uniquely determines the identity of ω2 and ω3:

(Dω1 : Dω2)t = (Dω1 : Dω3)t ∀t ∈ R ⇐⇒ ω2 = ω3.

On the other hand, the knowledge of a modular group σtω1
and a family of

unitaries is sufficient for the existence of another faithful, normal and semifinite
state, namely:

Theorem 4.10 For a faithful, normal and semifinite state ω1 on M and a σ-
strongly continuous one parameter family of unitaries Γt in M, satisfying the
cocycle identity

Γs+t = Γsσ
t
ω1

(Γt),

there exists a second faithful, normal and semifinite state ω2 on M such that

(Dω2 : Dω1)t := Γt, t ∈ R.
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In some special cases more information about the cocycle derivative is known
which could lead to its explicit derivation. For the next theorem we will need
the notion of the centralizer of the state ω on the von Neumann algebra M

defined as
Mω :=

{
A ∈ M| σtω(A) = A for all t ∈ R

}

Theorem 4.11 (Pedersen, Takesaki) Let ω1 and ω2 be two faithful, nor-
mal and semifinite states on the von Neumann algebra M, then the following
statements are equivalent:

(i) ω2 ◦ σtω1
= ω2 ∀t ∈ R.

(ii) (Dω2 : Dω1)t ∈ Mω2 ∀t ∈ R.

(iii) (Dω2 : Dω1)t ∈ Mω1 ∀t ∈ R.

(iv)
{
(Dω2 : Dω1)t

}
t∈R

is a strongly continuous group of unitary elements of
M.

(v) There exists a positive and self-adjoint operator A affiliated with Mω1 ,
i.e., A commutes with all unitary elements of Mωi , such that ω2(B) =
ω1(A

1/2BA1/2) holds for all B ∈ M+.

One of the most important mathematical applications of the Tomita-Takesaki
theory is the classification of factors. If for a fixed t0 ∈ R and a particular faith-
ful, normal and semifinite state ω its modular group σt0ω is inner, then, because
of the cocycle theorem, σt0ω′ is inner for any faithful, normal and semifinite
weight ω′. Thus the modular period group

T (M) :=
{
t ∈ R| σtω is inner

}

characterises the von Neumann algebra. Let ω be an arbitrary faithful and
semifinite state, then T (M) is related to the so-called modular spectrum of M,

S(M) :=
⋂

ω

Spec∆ω, (4.1)

via the inclusion

ln
(
S(M)\{0}

)
⊂
{
s ∈ R| eist = 1 ∀t ∈ T (M)

}
.

This modular spectrum can be used for the classification.

Theorem 4.12 Let M be a factor. Then the following statements hold:

(i) M is of type I or type II, if S(M) = {1};

(ii) M is of type III0, if S(M) = {0, 1};

(iii) M is of type IIIλ, if S(M) = {0} ∪ {λn| 0 < λ < 1, n ∈ Z};

(iv) M is of type III1, if S(M) = R+.
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We want to have a closer look at the factors of type III, in particular at those
of type III1. While the structure of factors of type In is well understood, as
isomorphic to the algebra Mn(C) for finite n and to L(l2) for infinite n, the
detailed classification for general factors is not known. There is one special
class of factors for which one can extract more details about their structure.

Definition 4.13 A separable von Neumann algebra M is said to be hyperfinite
or approximately finite-dimensional, abbreviated AFD, if for any A1, A2, · · · , An ∈
M and any σ-strong neighborhood U of 0 in M there exists a finite-dimensional
*-subalgebra N with

Ai ∈ N + U, i = 1, 2, · · · , n.

In the algebraic setting of quantum field theory factors of type III1 play a signif-
icant role, because the algebras of local observables are of this form. Haagerup
has even shown that they are AFD [57].

It should be mentioned, that subalgebras of AFD von Neumann algebras are
not automatically AFD, whereas the W ∗-inductive limit of increasing sequences
of AFD von Neumann algebras is again AFD.

Because every factor of type I is approximately finite-dimensional, its struc-
ture could be already analysed. Factors of type II1 are AFD if and only if they
are isomorphic to the infinite tensor product of M2(C), defined as the inductive
limit

∞∏

n=1

⊗M2(C)n : = lim
−→

{
M2(C), πn

}

= lim
−→

{
M2(C)1 ⊗min M2(C)2 ⊗min · · · ⊗min M2(C)n, πn

}
,

where πn is the isomorphismM2(C)n ∋ X 7→ X⊗1 ∈M2(C)n+1. For 0 < λ < 1
let

ωn

[(
A11 A12

A21 A22

)]
:=

λ−1/2

λ−1/2 + λ1/2
A11 +

λ1/2

λ−1/2 + λ1/2
A22

be a state on M2(C). Then the von Neumann algebra

Rλ :=
∞∏

n=1

⊗{M2(C)n, ωn}, where ωλ :=
∞∏

n=1

⊗ωn

is the product state on
∏∞
n=1

⊗M2(C)n,

ω
(
A1 ⊗A2 · · · ⊗ 1⊗ 1⊗ · · · · · ·

)
=

∞∏

n=1

ωn(An),

is an AFD factor of type IIIλ, and one can prove even more.

Theorem 4.14 Every AFD factor of type IIIλ is isomorphic to Rλ.
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Definition 4.15 Let πα and λ be the representations of the von Neumann al-
gebra M and the locally compact group G, respectively. Then the von Neumann
algebra generated by πα(M) and λ(G) with

(
πα(A)f

)
(s) := α−1

s (A)f(s) and
(
λ(t)f

)
(s) := f(t−1s), A ∈ M, f ∈ L2(G,H), s, t ∈ G,

is called the crossed product of M and α and denoted by M ⋊α G.

For a factor of type III0 the following statement holds.

Theorem 4.16 Every separable AFD factor of type III0 is of the form M⋊αZ,
where α is an arbitrary ergodic automorphism of an abelian and separable von
Neumann algebra M.

Theorem 4.17 The following statements hold:

(i) All AFD factors of type III1 are mutually isomorphic.

(ii) If Mλ and Mµ are AFD factors of type IIIλ and IIIµ, 0 < λ,µ < 1

respectively, then Mλ
⊗

Mµ is an AFD factor of type III1.

(iii) If M is an AFD factor of type III1, then Aut(M) = Int(M).

For AFD factors of type III1 we may drop the condition of the state being
semifinite in order to obtain at least an approximately inner modular group,
see Definition 3.14.

Theorem 4.18 If ω is an arbitrary faithful normal state on M then, due to
(iii) of Theorem 4.17, the modular group of automorphisms σtω, t ∈ R, is ap-
proximately inner.

We close this section with the groundbreaking result of Jones on the struc-
ture of subfactors of type II1 [66], which has many innovative applications in
both disciplines, mathematics and physics. Jones’ result is useful particularly
in algebraic quantum field theory as this formulation is based on von Neumann
algebras. Two prominent examples are the classification of conformal local nets
for c < 1 by Kawahigashi and Longo [70] and the investigation of Longo on spin
and statistics [81]. Both subjects will be discussed later, see Theorem 4.28 and
Theorem 4.53, respectively.

Let us consider a factor M of type II1 and a subfactor N ⊂ M, then the
(global) index of N in M, the so-called Jones index, is defined by means of
the dimension of H relative to M and relative to N, dimM(H) and dimN(H),
respectively, as

[M : N] :=
dimN(H)

dimM(H)
= dimNL

2(M),

whenever M is represented on H with finite commutant M′.
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Theorem 4.19 (Jones) Let M be a factor of type II1 and N a subfactor of
M, then for the index of N in M one has:

[M : N] ∈
{
4 cos2 π

n
| n ∈ N, n ≥ 3

}
∪
[
4,∞

]
.

Moreover, each number in this union of sets is realised as an index for some
subfactor.

This result has been a complete surprise. Since one deals here with continuous-
dimensional objects (von Neumann algebras), everyone had expected the index
to be allowed to take each value from the interval [1,∞].

Kosaki extends Theorem 4.19 to arbitrary factors [73]. He formulates a
generalised version of the index as

IndexE := E−1(1),

where E is an operator-valued weight from M to N, i.e., a mapping

E : M+ −→ N̂+,

where N̂+ denotes the extended positive cone of N, the set of all lower semi-
continuous weights m : N+,∗ −→ [0,∞]. In the case of type II1 factors M,
[M : N] can be shown to coincide with IndexE, for which Kosaki proves the
statement of Theorem 4.19.

4.2 The Algebraic Approach to Quantum Field The-

ory

The usual formulation of quantum field theory is based on the representation
of states as unit rays in a Hilbert space, with observables as operators acting
on them. The algebraic ansatz proceeds in the opposite direction. There, the
starting point are observables as elements of an abstract ∗-algebra, on which
the states are introduced as normalised, positive and linear functionals. For
more details we refer the reader to the main source [52], but also to [1] and [63].

First one constructs a net of C∗-algebras {A(O)}O⊂M, the so-called local
algebras, i.e., to each open subset O of the spacetime M a C∗-algebra A(O) is
assigned that represents physical quantities to be measured in O,

O 7→ A(O).

Since all physical information is assumed to be encoded in this mapping, its
knowledge allows one in principle to extract all kinds of physical data. The
C∗-Algebra A :=

⋃
O A(O), i.e., the C∗-inductive limit of the net {A(O)}O⊂M,

is called the quasi-local algebra of observables and the bicommutant A′′ of A the
global algebra of observables. Two nets of local observables, A(O) and Ã(O),
respectively, are said to be mutually isomorphic if there is an isomorphism
i : A → Ã with i[A(O)] = Ã(O). In addition the net is required to satisfy the
following conditions:
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(i) Isotony: O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2).

(ii) Locality: [A(O1),A(O2)] = {0} for spacelike separated regions O1 and
O2.

(iii) Additivity: O =
⋃
i
Oi =⇒ A(O) =

(⋃
i
A(Oi)

)′′

.

(iv) Covariance: There is a strongly continuous unitary representation U(P)
of the Poincáre group P with

A(gO) = U(g)A(O)U(g)−1, g ∈ P. (4.2)

(v) Spectrum condition: SpecU(g) ⊆ V+.

(vi) Vacuum sector: There exists a vector Ω ∈ H, ‖Ω‖ = 1, such that U(g)Ω =

Ω, g ∈ P, and

( ⋃
O⊂M

A(O)

)
Ω is dense in H.

If M = M is the Minkowski space, then the isometries turn out to be the
Poincaré transformations, and the last condition becomes the Poincaré covari-
ance and cyclicity of the vacuum vector Ω. The former four axioms have been
proposed by Haag and Kastler, who were the first to formulate quantum field
theory on Minkowski space in the algebraic framework [54].

A state on the observable algebra A is represented by a linear functional ω :
A −→ C, which is normalised, i.e., ω(1) = 1, and positive, i.e. ω(A∗A) ≥ 0 for
all A ∈ A. Thus the state takes on the role of the expectation value functional.
Unfortunately, the set of states introduced in this way is too large, and by far
not all of them make sense physically. Even the restriction to quasifree states,
see (4.5) below, is from a physical point of view not sufficient, because there
still exist quasifree states with an unbounded expectation value for the energy-
momentum tensor. One of the main procedures for the extraction of physically
relevant states is the requirement of the Hadamard form proposed by Brehme
and de Witt [31]. A more fruitful equivalent characterisation of Hadamard
states is given by Radzikowski in the context of microlocal analysis [89], namely
in terms of the wave front set of the two-point function, see Proposition 2.12
and (4.4).

The ‘usual’ and the algebraic formulation of quantum field theory can be
connected via the GNS representation.

The Hilbert space H occurring in the last axiom (vii) can be written as
a direct sum of subspaces Hi, the so-called coherent subspaces or superselec-
tion sectors. These subspaces are defined as subsets, wherein the superposition
principle is valid without restriction. The local net containing observable fields
determined by the causality assumption is operating only inside these sectors,
whereas the unobservable fields ‘communicate’ between different sectors. They
may be interpreted as charge-carrying fields transporting some kind of quan-
tum quantities from one sector to another. The quasi-equivalent nets of local
observables Ai|Hi restricted to the superselection sectors Hi still do include all
physically relevant information, and superselection rules are needed only if the
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observable algebra A has inequivalent representations on a Hilbert space. For
some investigations of inner symmetries it is more convenient to extend the lo-
cal nets to the so-called field algebra, which in addition to the observable fields
also contains the unobservable ones.

The net of von Neumann algebras {F(O)}O⊂M on a Hilbert space H, where
O is a double cone, consists of the so-called local field algebras if they satisfy
the following assumptions:

(i) Irreducibility, i.e.,
⋂

O F (O)′ = C1 for all F ∈ F(O).

(ii) There exists a strongly continuous and unitary representation U of the

covering group of P↑
+ in H such that

U(g)F(O)U(g)−1 = F(gO) for all g ∈ P↑
+.

The infinitesimal generators Pµ of the translations fulfill the spectrum
condition, i.e., SpecPµ ⊂ V+. Furthermore, there exists a Poincaré-
invariant vector Ω ∈ H, the vacuum vector, which is uniquely determined
up to a phase factor.

(iii) There is a strongly continuous, faithful and unitary representation U of a
compact group G, the so-called global gauge group, in H such that

U(g)F(O)U(g)−1 = F(O), U(g)Ω = Ω, and

U(g)U(g′) = U(g′)U(g) for all g ∈ G, g′ ∈ P↑
+.

(iv) There exists an element g ∈ G with g2 = 1 such that for spacelike sepa-

rated regions O1 and O2 and for elements F
(i)
± := F±(Oi) ∈ F(O), i = 1, 2,

the relations

αg

(
F

(i)
±

)
:= U(g)F

(i)
± U(g)−1 = ±F (i)

± and
[
F

(1)
+ , F

(2)
+

]
=
[
F

(1)
+ , F

(2)
−

]
=
[
F

(1)
− , F

(2)
−

]
+

= 0 (graded locality) (4.3)

hold.

(v) Additivity: O =
⋃
i
Oi =⇒ F(O) =

(⋃
i
F(Oi)

)′′

.

(vi) Haag duality (G-invariant):

( ⋃
O⊂Oc

F(O) ∩ U(G)′
)′′

= F(O)′ ∩ U(G)′.

The closure of the union of the local field algebras is called the field algebra,

F :=
⋃

O

F(O).

The observable fields can now be introduced as gauge-invariant elements of the
field algebra F:

A(O) =
{
A ∈ F(O)| αg(A) = A for all g ∈ G

}

= F(O) ∩ U(G)′.
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The opposite direction is also ensured. Via the Doplicher-Roberts reconstruc-
tion procedure one is able to show that the field algebra F together with the
gauge group G are uniquely characterized by the local algebra of observables A

under physically well-motivated assumptions .

4.2.1 The Free Klein-Gordon Field

In this thesis we are dealing only with the simplest case of a quantum field
theory, i.e., the free scalar field ϕ[f ] satisfying the Klein-Gordon equation

ϕ
( (

✷g +m2
)
f
)

= 0,

where ✷g := |g|−1/2∂µg
µν |g|1/2∂ν is the d’Alembert operator for which the

Cauchy problem is well-posed [32].

Definition 4.20 The submanifold Σ of a Lorentz manifold M is said to be
a Cauchy surface, if it owns only spacelike tangent spaces and if each non-
extendible causal curve meets Σ exactly once.

If M is the Minkowski spacetime M, then every subspace with t = const is a
Cauchy surface. Lorentz manifolds possessing a Cauchy surface Σ are diffeo-
morphic to the manifold R × Σ.

Theorem 4.21 (Cauchy Problem) Let Σ be a Cauchy surface and u0, u1 ∈
C∞

0 (Σ), then there exists a uniquely defined function u ∈ C∞(M) such that

(
✷g +m2

)
u = 0, ρ0(u) = u0, ρ1(u) = u1,

and supp(u) ⊂
⋃

i

⋃

±

J±
(
supp(ui)

)
,

where ρ0(u) : C∞(M) → C∞(Σ) is the restriction operator and ρ1(u) : C∞(M) →
C∞(Σ) the normal derivation on Σ.

Therefore, for each test function f ∈ D(M) there exist the advanced and re-
tarded fundamental solutions

Eav/ret : D(M) −→ E(M)

with the properties

(
✷g +m2

)
Eav/retf = Eav/ret

(
✷g +m2

)
f = id,

supp(Eavf) ⊂ J+
(
supp(f)

)
and supp(Eretf) ⊂ J−

(
supp(f)

)
.

Their kernels are distributions on the set of test functions D(M) × D(M) =
D(M×M), defined as

Eav/ret(f, g) :=

∫
f(x)(Eav/retg)(x)g

1/2d4x.
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The difference E := Eret−Eav is an antisymmetric distribution, called the fun-
damental solution or the propagator of the Klein-Gordon equation. It satisfies
the conditions :

(
✷g +m2

)
Ef = E

(
✷g +m2

)
f = 0, and

supp(Ef) ⊂ J+
(
supp(f)

)
∪ J−

(
supp(f)

)
, f ∈ D(M).

By means of the field equation and the commutation relations on an arbitrary
Cauchy surface Σ,

[
ϕ(x), ϕ(y)

]
= 0,[

ϕ(x), ∂Σφ(y)
]

= iδΣ(x, y), and[
∂Σϕ(x), ∂Σϕ(y)

]
= 0 for all x, y ∈ Σ,

one obtains the commutation relations on the entire manifold M×M:
[
ϕ(x), ϕ(y)

]
= iE(x, y) for all x, y ∈ M.

For the sake of proper definition of the quantum field as an operator, we have
to continue our formulation of the theory with the smeared-out fields,

ϕ[f ] =

∫
ϕ(x)f(x)d4x with f ∈ D(M).

The quantum field will be considered as an operator-valued distribution, i.e.,
as a linear map ϕ : D(M) −→ L(H). To summarise the above discussion, we
are dealing with a unital ∗-algebra A which is generated by the quantum fields
ϕ[f ], f ∈ D(M), and fulfills the following requirements:

(i) The map ϕ : D(M) −→ L(H) is linear.

(ii) ϕ[f ]∗ = ϕ[f̄ ].

(iii) ϕ
[ (

✷g +m2
)
f
]

= 0.

(iv)
[
ϕ[f ], ϕ[g]

]
= iE(f, g) ∀f, g,∈ D(M).

One obtains the desired algebra by dividing the Borchers algebra over D(M),
i.e., the tensor algebra with the particular ∗-operation f∗ := f̄ , by the ideal
which is determined by the field equation and the commutation relations. Then
the local algebras A(O) are generated by the elements ϕ[f ], f ∈ D(O). Since the
commutation relations do not allow any representation by bounded operators,
one has to obtain a C∗-norm via the Weyl algebra, that is the algebra generated
by the elements eiϕ[f ].
A state on this C∗-algebra A is determined uniquely by its n-point functions
ωn, n ∈ N,

ωn(f1, · · · , fn) := ω
(
ϕ[f1] · · ·ϕ[fn]

)
, fi ∈ D(M), (4.4)

where ωn is a distribution with respect to each component. Due to the Schwartz
kernel theorem, the n-point functions are well-defined distributions on the entire
manifold Mn. The relations within the algebra are enforcing the following
properties for the n-point functions:
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(i) In each component they are solutions of the Klein-Gordon equation.

(ii) Because of the commutation relations they satisfy

ωn(x
1, · · · , xk, xk+1, · · · , xn) − ωn(x

1, · · · , xk+1, xk, · · · , xn) =

iE(xk, xk+1)ωn−2(x
1, · · · , xk−1, xk+2, · · · , xn).

(iii) Normalization: ω0 ≡ 1, due to ω(1) = 1 for general states ω.

(iv) Positivity:
∑

i,j

ωi+j(f
∗
i ⊗ fj) ≥ 0, with fk ∈ D(Mk), k = 1, · · · , n,

and f∗k (x
1, · · · , xk) = fk(x1, · · · , xk).

We will be concerned only with quasifree states, whose n-point functions with
odd n vanish, while those with even n are characterised uniquely by their two-
point function Λ ≡ ω2:

ω2n(f1, · · · , f2n) =
∑

σ

n∏

i=1

Λ
(
fσ(i), fσ(i+n)

)
, n ∈ N. (4.5)

Here the sum extends over all permutations σ of {1, · · · , 2n} with σ(1) < σ(2) <
· · · < σ(n) and σ(i) < σ(i+ n).

We state the properties of the 2-point function in a nutshell:

(i) Λ
( (

✷g +m2
)
f, h
)

= Λ
(
f,
(
✷g +m2

)
h
)

= 0 ∀f, h ∈ D(M).

(ii) Λ(f, h) = Λ(h, f).

(iii) ImΛ(f, h) = 1
2E(f, h).

(iv) Λ(f̄ , f) ≥ 0.

4.3 Type of Local Algebras and KMS States

The starting point for the application of modular theory to the algebraic for-
mulation of quantum field theory, i.e., the existence of a cyclic and separating
vector for a von Neumann algebra of local observables, has been established by
Reeh and Schlieder [91]. Their result is a direct consequence of the axioms for
the nets of local observables and reads as follows.

Theorem 4.22 (Reeh-Schlieder) The vacuum vector Ω ∈ H is cyclic and
separating for the polynomial algebra P(O) generated by the operators

A :=
∑

i

∫
fi(x1, x2, · · · , xi)ϕ(x1)ϕ(x2) · · ·ϕ(xi)

∏
d4xi

with suppfi ⊂ O, provided the causal complement Oc of O contains an open
region.
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Sketch of the Proof: First, one shows the cyclic property of the vector Ω. Let
us consider for this purpose the matrix elements,

F (x1, x2, · · · , xn) =
(
ψ,ϕ(x1)ϕ(x2) · · ·ϕ(xn)Ω

)

=
(
ψ, eiPx1ϕ(0)eiP (x2−x1)ϕ(0) · · · eiP (xn−xn−1)ϕ(0)Ω

)
,

where P is an arbitrary polynomial of field operators, which are boundary values
of analytic functions F (z) defined by

F (z1, z2, · · · , zn) :=
(
ψ, eiP z1ϕ(0)eiP z2ϕ(0) · · · eiP znϕ(0)Ω

)
.

The analyticity domain of F is the tube,

z1 := x1 + iη1, z2 := x2 − x1 + iη2 · · · , zn := xn − xn−1 + iηn,

where the real parts are arbitrary, but all imaginary parts ηj are contained
in the forward light cone V+. Now, choose a vector ψ from the orthogonal
complement of P(O)Ω, i.e., ψ is orthogonal to all vectors ϕ(x1)ϕ(x2) · · ·ϕ(xn)Ω
with xj lying in O. One has F (z1, z2, · · · , zn) = 0 inside O and therefore, due
to the edge of the wedge Theorem A.33, F vanishes for all x in the Minkowski
space. Consequently, ψ has to be orthogonal to the whole Wightman domain.
But since this domain is dense one gets ψ = 0, i.e., the orthogonal complement
of P(O)Ω is trivial, and therefore P(O)Ω is a dense subspace of the Hilbert
space H and Ω a cyclic vector.

In order to prove the separability property for Ω, let us consider an operator
P such that PΩ = 0. For an arbitrary polynomial P̃ ∈ P(O) we obtain
P̃PΩ = 0, and, because of locality, PP̃Ω = 0. But since P(O)Ω is a dense
subset of H, P = 0 identically and hence Ω is also a separable vector. For more
details of the proof confer [52].

✷

It is worth mentioning that the vacuum vector in the Reeh-Schlieder theorem
can be replaced by an arbitrary element of the Hilbert space with bounded
energy.

4.3.1 Type of Local Algebras

The quest for the type of the local algebra of observables has its root in the
early sixties. Since in quantum theory a factor of type I can be associated to
each system, from the very beginning of algebraic quantum theory the question
arose, how far the Haag-Kastler axioms determine the type of the underlying
von Neumann algebra.

The first result is due to Kadison [69] and Guenin and Misra [49] who prove
that the local algebras cannot be of finite type. Under general assumptions
Borchers shows in [13] that if O1 is contained in O then every non-zero projec-
tion of the local algebra M(O1) is equivalent to 1 in any M(O).
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Theorem 4.23 (Borchers) For the von Neumann algebras of local observ-
ables M(Oi), i = 1, 2, the following statements hold:

(i) Let O1 ⊂ O2 such that there is O3 ⊂ (O2
⋂O′

1). If E is a projection in
M(O1), then E is equivalent to its central support in M(O2), mod M(O2).

(ii) If O1 + x ⊂ O2 for x in some open neighborhood of Rd, then the central
support of E in M(O2) belongs to the center of the global algebra.

To get a richer structure one has to add additional assumptions. Araki gives a
more precise characterisation in showing, by explicit calculation, that the von
Neumann algebras associated with free fields are factors of type III [3]. Araki
an Woods conjecture in [5] that for local subspaces Spec

(
4δ(δ − 1)−2

)
, where

δ is the infinitesimal generator of the modular operator ∆, contains continuous
parts so that the local algebra is therefore of type III1. For special nonlocal
algebras Sto/rmer proves the type III structure in [101], and Driessler establishes
the type III1 form in [33]. In an other publication he succeeds in proving the
following sufficient condition for von Neumann algebras to be of type III [34].

Theorem 4.24 Let H be a separable Hilbert space and M ⊂ L(H) a von Neu-
mann algebra with separating vector Ω ∈ H. Let furthermore N ⊂ M be a
subalgebra of infinite type and (αn)n∈N ⊂ Aut

(
L(H)

)
a sequence of transfor-

mations such that

(i) αn(N) ⊂ N ∀n ∈ N,

(ii) w-lim
n→∞

αn(A) = ω(A)1 ∀A ∈ N with ω ∈ N∗, ω 6= 0, and

(iii) w-lim
n→∞

[
αn(A), B

]
= 0 ∀A ∈ N ∀B ∈ M.

Then M is of type III.

As an application of this theorem he shows that for dilation-invariant local
systems the local algebra is of type III. This conclusion is more precise than
Roberts’ statement which rules out only the type I structure for such algebras
[92].

Hislop and Longo are the first to show the type III1 structure for the mass-
less case [60] by using unitary equivalence of free local algebras, a result of
Eckmann and Fröhlich [37]. In the same year Longo generalises their achieve-
ment to the massive case. Haagerup proves the hyperfinite (AFD) property of
the local von Neumann algebras, see Definition 4.13, and the uniqueness of the
hyperfinite factor of type III1 up to W ∗-isomorphisms [57].

Fredenhagen’s analysis on the type of double cone algebras is based on the
standard algebraic postulates, the Bisognano-Wichmann property, see Theorem
4.37, and the compliance with a scaling property introduced by Haag, Narnhofer
and Stein in [55], which is expected to hold in all renormalizable field theories
with an ultraviolet fixed point [44].
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Definition 4.25 A Wightman field ϕ(x) is said to have a Haag-Narnhofer-
Stein scaling limit if there exists a positive and monotone scaling function N(λ),
λ > 0, such that for all n ∈ N

N(λ)n
(
Ω, ϕ(λx1) · · ·ϕ(λxn)Ω

)

converges for λ −→ 0 to a non vanishing Wightman field.

Fredenhagen chooses a double cone in the corner of the Rindler wedge and
then derives the Connes invariant for the double cone via the known modular
group of automorphisms for the Rindler wedge, which has been calculated by
Bisognano and Wichmann in [10] and [11]. We will give more details of this
investigation later.

Instead of the Bisognano-Wichmann property, see Theorem 4.37, Buchholz,
D’Antoni and Fredenhagen propose in [25] a nuclearity condition introduced
by Buchholz and Wichmann [28], which will also be explained more extensively
later, see (4.10), and obtain the following result for the double cone.

Theorem 4.26 Let the net of local algebras M(O) satisfy the nuclearity con-

dition and consider two double cones D1 ⊂ D2 such that D1 ⊂
◦
D2, where

◦
D2

denotes the interior of D2. Then there exists a factor M̃ of type I with

M(D1) ⊂ M̃ ⊂ M(D2).

Borchers combines this with Fredenhagen’s result and discovers further struc-
tural properties [16].

Theorem 4.27 Let us assume the net of local algebras M(O) in the vacuum
sector to satisfy the (Buchholz-Wichmann) nuclearity condition, see (4.10), and
the (Haag-Narnhofer-Stein) scaling property, Definition 4.25. Furthermore, let
M(D) be continuous from the inside, i.e.,

M(D) =

(⋃

i

M(Di)

)′′

with D =
⋃

i

Di and Di ⊂
◦
Di+1

(or equivalently from the outside). Then there exists a unique hyperfinite factor
M̃ of type III1 such that

M(D) ∼= M̃ ⊗Z(M),

where Z(M) is the center of M(D).

As already mentioned, in algebraic quantum field theory all physical infor-
mation is encoded in the net structure,

O 7→ M(O).

Therefore, the ultimate challenge in the analysis of algebras of local observables
is the determination of their subnet structure. A first and important step has
been taken by Kawahigashi and Longo who give a complete classification of the
discrete series of local conformal nets, i.e., for the case where the central charge
is c < 1 [70].
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Theorem 4.28 An irreducible local conformal net M with the central charge
c < 1 is completely classified by the pair (m, s), where the number of finite-index
conformal subnets can take the values s = 1, 2, 3 and c = 1 − 6

m(m+1) . For any
m ∈ N the following values for s can be realised:

(i) s = 1 for all m ∈ N,

(ii) s = 2 if m = 1, 2 mod 4, and if m = 11, 12, and

(iii) s = 3 for m = 29, 30.

4.3.2 KMS States

Modular theory can also be connected with algebraic quantum field theory by
KMS states, the generalisation of Gibbs states. For a survey we refer the reader
to [21] (confer also [94]).

One of the possible formulations of equilibrium states is the grand canonical
ensemble, where the energy as well as the particle number are variable. Here, an
equilibrium state, the Gibbs state, is represented by a state over L(H) defined
as

ωβ,µ(A) :=
TrH

(
e−β(H−µN)A

)

TrH
(
e−β(H−µN)

) ,

where H is the Hamiltonian, N the particle number operator and β, µ ∈ R.
But the assumption in this approach that e−β(H−µN) be a trace-class operator
is unfortunately not fulfilled in infinite-dimensional systems. However, this
assumption can be circumvented by introducing the time evolution

σt : L(H) −→ L(H)

A 7→ σt(A) := eit(H−µN)Ae−it(H−µN),

which, as long as H is self-adjoint, always exists and can be used to introduce
the so-called KMS states.
The KMS condition has first been formulated by Kubo [74], Martin and Schwinger
[84], but Haag, Hugenholtz and Winnink [53] are the first to impose it as a cri-
terion for equilibrium states.

Definition 4.29 Let (M, σ) be a W ∗-dynamical system. A state ω : M → C is
called σ-KMS state with reference to β ∈ R, or (σ, β)-KMS state if it satisfies
the KMS condition,

ω
(
Aσiβ(B)

)
= ω(BA),

for all A,B in a norm-dense, σ-invariant ∗-subalgebra of M.

This definition is equivalent to the requirement that for all A,B ∈ M there
exists a function FA,B which is analytic in the strip

Dβ :=

{{
z ∈ C| 0 < Imz < β

}
if β ≥ 0,{

z ∈ C| 0 > Imz > β
}

if β ≤ 0,
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and continuous in the closure Dβ with

FA,B(t) = ω
(
Aσt(B)

)
and

FA,B(t+ iβ) = ω
(
σt(B)A

)

for all t ∈ R.

KMS states have received a lot of attention since their introduction and
physical interpretation, in particular due to their formulation through modular
theory. Tomita associates to an arbitrary normal and faithful state ω on a
von Neumann algebra an automorphism group σtω, and Takesaki succeeds in
showing that this state is a KMS state with respect to σtω.

Theorem 4.30 (Takesaki) Let ω be a normal state on the von Neumann al-
gebra M. Then the following statements are equivalent:

(i) ω is a faithful state on πω(M), i.e., there exists a projection E ∈ M∩M′

with ω(1− E) = 0, and ω|ME is faithful.

(ii) There exists a σ-weak and continuous one-parameter ∗-automorphism group
σtω, t ∈ R, of M such that ω is a (σ, β)-KMS state .

If these conditions are satisfied, then σωt (E) = E holds for all t ∈ R, and the
restriction of σtω onto ME is the modular automorphism group on ME, uniquely
determined by ω.

Corollary 4.31 Let ω1 be a normal, faithful and semifinite state on the von
Neumann algebra M with center Z(M), and let ω2 be a normal semifinite state
on M. Then the following statements are equivalent:

(i) ω2 satisfies the KMS condition with respect to σtω1
.

(ii) Let E,F ∈ M be two projections defined as

ME : = {A ∈ M| ω2(A∗A) <∞} and

MF : = {A ∈ M| ω2(A
∗A) = 0},

where the closure is meant with respect to the σ-strong topology, and
s(ω2) := E − F , the so-called support of ω2. Then one has s(ω2) ∈ Z(M)
and σtω2

= σtω1


Ms(ω2)

for all t ∈ R.

(iii) There exists a positive self-adjoint operator A ∈ M affiliated with the
center Z(M) such that ω2(B) = ω1

(
A1/2BA1/2

)
for all B ∈ M+.

Corollary 4.32 Let us assume that ω is a normal, faithful and semifinite state
on the von Neumann algebra M of type III and β ∈ R, β 6= 1, then there is
no normal, faithful, semifinite state on M satisfying the KMS condition with
respect to σtω.
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Over the years the interpretation of KMS states as equilibrium states has gained
additional support. On the one hand one can show that KMS states satisfy
certain stability conditions, and on the other hand one is able to derive them
from some realistic stability criteria. A prominent example from quantum field
theory on curved spacetime, where the KMS property has played an essential
role, is the Hawking effect [58]. The proof in [45] is based on an idealised
detector which is simulated with the help of the KMS condition (see also [93]).

In the investigation of stability properties of KMS states one compares a
general C∗-dynamical system (A, τ) with a disturbed system (A, τP ), where
P = P ∗ ∈ A denotes a small perturbation. Here, the disturbed automorphism
group τP is generated by the infinitesimal generator,

δ + δP with δP (A) := i[P,A] ∀A ∈ A,

where δ is the infinitesimal generator of the undisturbed automorphism group
τ . One distinguishes between two different approaches, the “time-independent”
one of Connes and Araki, which is of advantage for the comparison of τ -KMS
states with τP -KMS states, and the “time-dependent” one of Robinson, which
is easier to use in the case of general states on systems having ergodicity proper-
ties, for example L1(A0)-asymptotic commutativity, i.e., satisfying the require-
ment ∫ ∞

−∞

∥∥[A,σt(B)
]∥∥dt <∞, A,B ∈ A0,

where A0 is a norm-dense subalgebra of A. We give here only one example of
many stability properties.

Theorem 4.33 Let ω be a (σ, β)-KMS state over the C∗-dynamical or W ∗-
dynamical system (A, σ) with the strong cluster-property

lim
t→±∞

ω
(
Aσt(B)

)
= ω(A)ω(B) ∀A,B ∈ A.

Then

lim
T1→±∞

· · · lim
Tn→±∞

in
∫ T1

0
dt1

∫ T2

t1

dt2 · · ·
∫ Tn

tn−1

dtnω
([
σtn(B)

[
· · · [σt1(B), A]

]])

=

∫ β

0
ds1 · · ·

∫ sn−1

0
dsnωT

(
A;σisn(B); · · · ;σis1(B)

)
,

where ωT denotes the truncated state. In particular,

lim
T→∞

∫ T

−T
ω
(
[A,σt(B)]

)
dt = 0

for all A,B ∈ A.

One expects an equilibrium state not only to be stable under small perturba-
tions, but also to be derivable from physically motivated stability assumptions.
One postulates for KMS states the following physically reasonable conditions:
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(i) σt-invariance, i.e., stationarity in time;

(ii) ergodicity of (A, σt), e.g., asymptotic commutativity;

(iii) relative “purity” of ω, e.g., ω should be extremal under the σt-invariant
states;

(iv) stability under perturbations.

These postulates can be shown to lead to the following stability criterion,

∫ ∞

−∞
ω
(
[A,σt(B)]

)
dt = 0, ∀A,B ∈ A,

which is a strong indication that the KMS property could be a consequence of
the postulates given above. One may lend weight to these postulates differently.
We give here one version which demands weak cluster properties instead of
L1(A0)-asymptotic commutativity for the state [19].

Theorem 4.34 (Bratteli, Kishimoto, Robinson) Let (A, σ) be a n L1(A0)-
asymptotic commutative C∗-dynamical system and ω a σ-invariant state on A.
Let us further assume the validity of the following two conditions:

(i) Either

lim
inf
i6=j

|ti−tj |→∞
ω
(
σt1(A1)σ

t2(A2)σ
t3(A3)

)
= ω(A1)ω(A2)ω(A3) ∀Ak ∈ A,

or ω is a factor state.

(ii) ω satisfies the stability condition,

∫ ∞

−∞
ω
(
[A,σt(B)]

)
dt = ∞ ∀A,B ∈ A0.

Then ω is an extremal (σ, β)-KMS state with β ∈ R.

The aforementioned theorems bound up the notion of stability with KMS
states for L1(A0)-asymptotic commutative C∗-dynamical systems, and one can
therefore justify the interpretation of KMS states as equilibrium states of phys-
ical systems.

Despite of all these properties of the KMS condition for thermal states, one
last desire remains to be fulfilled, namely its relativistic formulation. Ojima
shows that a KMS state cannot be Lorentz-invariant [87], because the KMS
condition implies a distinguished time axis. To be more precise, the reason
for the breakdown of the Lorentz invariance is due to the fact that every au-
tomorphism group of the local algebra A(O) leaving the KMS state invariant
can be implemented by a unitary operator which commutes with the modular
operator and the modular conjugation. Therefore, since the time translation
commutes with the modular group of automorphisms but the Lorentz boosts
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do not commute with the time translations, see (3.2), the KMS state cannot be
Lorentz-invariant.

This problem is addressed by Bros and Buchholz [22] who propose the fol-
lowing first version of the KMS condition.

Definition 4.35 A state ω : A −→ C satisfies the so-called relativistic KMS
condition with respect to the automorphism group σ at inverse temperature β >
0 if and only if for all A,B ∈ A there exist a positive timelike vector e ∈ V+,
e2 = 1, and a function F , which is analytic in the tube T :=

{
z ∈ Cd| Imz ∈

V+ ∩ (βe + V−)
}

and continuous at the boundary sets Imz = 0 and Imz = βe
with

FA,B(x) = ω
(
Aσx(B)

)
and

FA,B(x+ iβe) = ω
(
σx(B)A

)

for all x ∈ Rd.

Contrary to Definition 4.29, this definition treats all spacetime coordinates
equally, and therefore any observer moving with constant velocity experiences
a relativistic KMS state as an equilibrium state with a distinguished rest frame
and time axis along e.

4.4 Modular Action

We start with the introduction of the CPT operator which will appear through-
out the following investigation. The CPT operator is defined uniquely as an
anti-unitary operator via the relation

Θϕ(x)Θ−1 = (−1)m(−i)nϕ∗(−x),
ΘΩ = Ω,

n :=

{
0, ϕ is a Bose field,

1, ϕ is a Fermi field,

where Ω ∈ H represents the vacuum vector and m is the number of dotted
spinor indices of ϕ, i.e., these spinors transform under the complex conjugation
representation α −→ ᾱ, where α is the representation of SL(2,C) onto the
complex vector space of covariant spinors, confer [52] for more details. For
our analysis the commutation relation with the representation of the Poincaré
group,

ΘU(a, α) = U(−a, α)Θ,

will be of interest.

Definition 4.36 The net of von Neumann algebra M(O) is said to satisfy
wedge duality, if

(
M(WR)

)′
= M(W ′

R),

where W ′
R denotes the interior of the spacelike complement of WR.
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The ground-breaking result, proved by Bisognano and Wichmann in [10],
states that, since, due to the Reeh-Schlieder Theorem 4.22, the von Neumann
algebra of (finite-component) Wightman fields on the right Rindler wedge WR

satisfies the conditions for the modular theory, the resulting modular conjuga-
tion implements a combination of charge conjugation, time and spatial reflec-
tion, while the modular operator implements the Lorentz boosts.

Theorem 4.37 (Bisognano-Wichmann) In the Wightman framework the
modular objects for the von Neumann algebra of observable fields M(WR) with
reference to the vacuum state are

JWR
= Γ

(
ΘU
(
R1(π)

))
, ∆it

WR
= Γ

[
U(Λs)

]
,

where R1 denotes the spatial rotation around the x1-axis, and the modular au-
tomorphism group acts geometrically as pure Lorentz transformations:

σtWR

(
ϕ[f ]

)
= ∆it

WR
ϕ[f ]∆−it

WR
= ϕ[fs],

where fs(x) := f
(
Λs(x)

)
, s := 2πt,

Λs :=




cosh s sinh s 0 0
sinh s cosh s 0 0

0 0 1 0
0 0 0 1


 .

Furthermore, the theory fulfills wedge duality.

Sketch of the Proof: First of all the Tomita operator is established as

S := ΘU
(
R1(π)

)
U
(
Λ(iπ)

)
,

by making use of the spectrum condition for the energy-momentum. Since R1 is
the spatial rotation around the x1-axis, R1(π) causes the inversion of the signs
of xi, i = 2, 3. S really being the Tomita operator, is proved by verification of its
properties. To this end Bisognano and Wichmann show that the transformation
law of covariant fields under the action of S is

Sϕ(x1)ϕ(x2) · · ·ϕ(xn)Ω = ϕ∗(x1)ϕ∗(x2) · · ·ϕ∗(xn)Ω.

This property is generalised for all elements A in the polynomial algebra P(WR)
generated by operator-valued distributions with support in the Rindler wedge
WR to yield

SAΩ = A∗Ω.

Finally, it is shown that the domain P(WR)Ω constitutes a core for the operator
S which is thus uniquely defined. The conditions of the modular theory are
therefore satisfied and one concludes,

JWR
= ΘU

(
R1(π)

)
, and ∆

1/2
WR

= U
(
Λ(iπ)

)
.

✷



4.4 Modular Action 61

The geometric rôle of the modular conjugation is to transform the right
wedge onto the left one, i.e., JWR

M(WR)JWR
= M(WL).

The infinitesimal generator δWR
of the modular group σtWR

can directly be
computed as in Proposition 3.9:

δWR
ϕ[f ] := ∂sσ

t
WR

(
ϕ[f ]

)
s=0

= ϕ
[
∂sfs

]
s=0

(4.6)

with

∂sfs(x)

s=0

= x1∂x0f(x) + x0∂x1f(x)

It is worth mentioning that the modular group and the modular conjuga-
tion of wedge regions act locally and map local algebras into local ones. This
property will be of importance in proving the PCT theorem.

In a subsequent paper, Bisognano and Wichmann verify these statements
in a more general setting, namely for charged Bose and Fermi fields fulfill-
ing various physically reasonable assumptions, e.g., covariance with respect to
finite-dimensional representations of the proper orthochronous Lorentz group
[11].

Although this theorem is based on a fairly general formalism, the finiteness
of the components of the fields poses a restriction which can be dropped. This
is done by Kuckert [75] using a result of Borchers [14]. Borchers proves that
the spectrum condition only implies the commutation relations between the
modular objects and the translations U(a),

JWR
U(a)JWR

= ΘU(R1(π)),

∆is
WR

U(a)∆−is
WR

= U(Λ−s(a)).

Wiesbrock shows that these commutation relations are not only necessary but
even sufficient for the spectrum condition [113].

Unfortunately, a mistake enters the proof of Wiesbrock’s main Theorem
3, Corollary 6 and Corollary 7 in [113], mentioned in [114], which has recently
been remedied by Araki and Zsidó [7]. They even generalise Wiesbrock’s result,
formulating their statement for normal, semifinite, faithful weights ϕ, whereas
Wiesbrock demands ϕ to be bounded.

If additionally some symmetry condition is given, i.e., the associated mod-
ular group should map local nets into local nets again, Borchers’ commutation
relations can be shown to lead to the Bisognano-Wichmann property.

Theorem 4.38 (Kuckert) Let O ⊂ Rn be an arbitrary double cone, then the
following statements hold:

(i) If for every O there exists an open set MO with

JWR
M(O)JWR

= M(MO),

then the modular conjugation acts as given in the Bisognano-Wichmann
Theorem 4.37.
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(ii) If for every O and all t ∈ R there exists an open set Mt
O such that

∆it
WR

M(O)∆−it
WR

= M(Mt
O),

then the modular operator acts geometrically as Lorentz boosts given in
the Bisognano-Wichmann Theorem 4.37.

Bisognano and Wichmann deal with local algebras which are generated by a
finite number of Poincaré-covariant Wightman fields and therefore not with the
general case, since there exists an infinite number of quantum fields satisfying
Poincaré covariance. Borchers gives a derivation of the Bisognano and Wich-
mann property in a purely algebraic setting including these fields, too [15]. Let
us consider the so-called characteristic two-plane of the wedge

W(l1, l2) :=
{
λl1 + µl2 + l⊥, | µ < 0 < λ, (l1, l⊥) = (l2, l⊥) = 0

}
,

where l1 and l2 are two linearly independent lightlike vectors and the vector
l⊥ is perpendicular to l1 and l2, and let Λl1,l2 be the Lorentz boost which
leaves W(l1, l2) invariant. Then the elements A ∈ M

(
W(l1, l2)

)
such that

U
(
Λl1,l2(2πt)

)
A∗Ω can be analytically continued into the strip S(−1

2 , 0) :=
{a + ib ∈ C| − 1

2 < b < 0}. They form a dense set in M(W(l1, l2)), and

there exist elements Â and Ã affiliated with M
(
W(l1, l2)

)′ ≡ M
(
W(l2, l1)

)
that

satisfy

ÂΩ := U
(
Λl1,l2(−iπ)

)
AΩ and ÃΩ := U

(
Λl1,l2(−iπ)

)
A∗Ω.

Definition 4.39 A Poincaré-covariant theory of local observables in the vac-
uum sector satisfying wedge duality is said to fulfill the reality condition, if for
elements A ∈ M

(
W(l1, l2)

)
with the aforementioned property one has Â∗ = Ã,

i.e., U
(
Λl1,l2(−iπ)

)
A∗Ω = Â∗Ω.

Borchers then shows the following

Theorem 4.40 (Borchers) In a representation of a Poincaré-covariant the-
ory of local observables with reference to the vacuum state, the Bisognano-
Wichmann property holds for the net if and only if the theory fulfills wedge
duality and the reality condition with respect to the Lorentz transformation.

Borchers’ reality condition implies the assumption of Schroer and Wiesbrock
[97] that the mapping

AΩ 7→ U

(
Λl1,l2

(
− i

2

))
A∗Ω, A ∈ M

(
W(l1, l2)

)
,

is uniformly bounded. This is the basis of their algebraic proof of the Bisognano-
Wichmann property.

The first algebraic investigation of the Bisognano-Wichmann theorem has
been carried out by Brunetti, Guido and Longo in the case of conformal quan-
tum field theory [23]. Their proof is based on the assumption that the modular
group already acts geometrically on an arbitrary wedge region. In addition to
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that, the split property is assumed to be satisfied by the local net, i.e., for all
standard diamonds D1 ⊂ D2 there exists a factor N of type I satisfying

M(D1) ⊂ N ⊂ M(D2).

Furthermore, they show that conformal theories automatically satisfy essential
duality and PCT symmetry .

In [86] Mund investigates the Bisognano-Wichmann theorem in an algebraic
context for massive theories. He assumes that

• there exist massive particles with their scattering states spanning the
whole Hilbert space,

• within each charge sector the occurring particle masses have to be isolated
eigenvalues of the mass operator,

• the representation of the covering group of the Poincaré group should not
have ‘accidental’ degeneracies, and

• localisation in spacelike cones should be given.

All investigations mentioned so far are concerned with one preferred space-
time region, namely the right Rindler wedge WR. The wish to transport the
result of Bisognano and Wichmann to other interesting spacetime regions, like
the light cone V± and the double cone D, seems obvious. The action of the
modular group was first computed for the forward light cone by Buchholz [24]
and then some years later for the double cone by Hislop and Longo [60]. Unfor-
tunately, these results deal with the massless case only, whereas the Bisognano-
Wichmann theorem is valid for all masses m ≥ 0. In the sequel we first present
the derivation of Hislop and Longo for D1 and then proceed to Buchholz’ result
on V±.

Via the rotations in the ξ1 − ξ4-plane,

T41(ϕ)ξ :=





ξ1(ϕ) = −ξ4 sinϕ+ ξ1 cosϕ,

ξ4(ϕ) = −ξ4 cosϕ+ ξ1 sinϕ, ϕ ∈ [0, π],

ξi(ϕ) = ξi, i = 0, 2, 3, 5,

the wedge WR can be mapped conformally onto the double cone D1:

T41

(π
2

)
WR = D1.

In x-coordinates the transformation reads

xµ(ϕ) := ξµ(ϕ)
(
ξ4(ϕ) + ξ5(ϕ)

)−1
, µ = 0, 1, 2, 3.

The idea now is to transport the known modular action from WR onto D1

through the relation

T04(s)ξ : = T41

(π
2

)
T10(s)

(
T41

(π
2

))−1
ξ

=





ξ0(s) = ξ0 cosh s+ ξ4 sinh s,

ξ4(s) = ξ0 sinh s+ ξ4 cosh s, s ∈ [0, π],

ξi(s) = ξi, i = 1, 2, 3, 5,
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where T10 are the Lorentz boosts written as pseudo-rotations in the (ξ1 − ξ0)-
plane:

T10(s)ξ :=





ξ0(s) = −ξ0 cosh s+ ξ4 sinh s,

ξ1(s) = −ξ0 sinh s+ ξ1 cosh s, s ∈ [0, π],

ξi(s) = ξi, i = 2, 3, 4, 5.

The new conformal transformation in the x-space then is:

x(s) =

{
x0(s) = N(s)−1

(
x0 cosh s+ 1

2(1 + (x, x)) sinh s
)
,

xi(s) = N(s)−1xi, i = 1, 2, 3,
(4.7)

where

N(s) := x0 sinh s+
1

2

(
1 + (x, x)

)
cosh s+

1

2

(
1 − (x, x)

)
.

This can be written in a more compact form as:

x±(s) =
1 + x± − e−s(1 − x±)

1 + x± + e−s(1 − x±)

with x+ := x0 + |x| and x− := x0 − |x|.

If the net structure is respected by the conformal group, i.e., for each g in a
neighborhood N

1

of the identity in the conformal group one has an algebraic
isomorphism αg : M(O) −→ M(gO), where O is a bounded region, with

αg : M(O1) −→ M(gO1), O1 ⊂ O, g ∈ N
1

,

and if the vacuum state ω0 is invariant under the conformal group, i.e.,

ω0

(
αgϕ[f ]

)
= ω0

(
ϕ[f ]

)
,

then the isomorphism αg can be implemented unitarily:

Ugϕ[f ]Ω =
(
αgϕ[f ]

)
Ω.

Both conditions defining conformal invariance of a theory are given in a free
massless field theory, only. Thus we get for the modular objects on the double
cone D1,

JD1 = UT41JWR
U−1
T41
, and

∆it
D1

= UT41∆
it
WR

U−1
T41
.

Finally, one arrives at

Theorem 4.41 (Hislop-Longo) In a free massless quantum field theory the
modular objects for the von Neumann algebra of observable fields M(D1) with
reference to the vacuum state are

JD1 = Γ
(
ItUρ

)
and ∆−it

D1
= Γ

[
U(s)

]
,
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where It is the time reversal operator, Uρ the conformal ray inversion oper-
ator, defined in (3.6), and s := 2πt. The modular automorphism group acts
geometrically as special conformal transformations:

σtD1

(
ϕ[f ]

)
= ∆it

D1
ϕ[f ]∆−it

D1
= ϕ[fs],

where fs(x) := γ
(
x0, x3, s

)
f
(
x±(−s)

)
,

γ(x0, x3, s) := 26
(
1 + z+ + e−s(1 − z+)

)−3(
1 − z− + es(1 + z−)

)−3
,

z+ := x0 + x3, z− := x0 − x3.

The geometric action of the modular conjugation is illustrated in Figure 4.1,
namely JD1 transforms the double cone D1 onto the shaded region.

t

xD
1

Figure 4.1: Geometric action of JD1

The infinitesimal generator δD1 of the modular group σtD1
can directly be

computed as in Proposition 3.9. It seems to be a linear combination of the
generator of time translations and that of proper conformal transformations:

δD1ϕ[f ] := ∂sσ
t
D1

(
ϕ[f ]

)
s=0

= ϕ
[
∂sfs

]
s=0

with

∂sfs(x)

s=0

= ∂sγ(x
0, x3, s)


s=0

f(x) + ∂sf
(
xµ(−s)

)
s=0

=
(
3x0 + ∂sx

µ(−s)

s=0

∂xµ

)
f(x)

=
(
3x0 +

1

2

(
− 1 + (x0)2 + x2

)
∂x0 + x0

∑

i

xi∂xi

)
f(x),

where we have made use of (4.7).
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The forward light cone is another important example for which the modular
objects can be computed. Analogous to the previous case one has the continuous
transformation

T05(ϕ)ξ :=





ξ0(ϕ) = −ξ0 cosϕ+ ξ4 sinϕ,

ξ5(ϕ) = −ξ0 sinϕ+ ξ1 cosϕ, ϕ ∈ [0, π],

ξi(ϕ) = ξi, i = 1, 2, 3, 4,

of the double cone D1 onto the forward light cone V+:

T05

(π
2

)
D1 = V+,

T54(s)ξ : = T05

(π
2

)
T04(s)

(
T05

(π
2

))−1
ξ

=





ξ4(s) + ξ5(s) = e−s(ξ4 + ξ5),

ξ4(s) − ξ5(s) = es(ξ4 − ξ5), s ∈ [0, π],

ξi(s) = ξi, i = 0, 1, 2, 3.

For conformally invariant theories this mapping is also unitarily implementable,
and one directly obtains the modular objects for V+ as

JV+ = UT05JD1U
−1
T05

, and

∆it
V+

= UT05∆
it
D1
U−1
T05
.

Theorem 4.42 (Buchholz) In a free massless quantum field theory the mod-
ular objects for the von Neumann algebra of observable fields M(V+) with ref-
erence to the vacuum state are

JV+ = Γ
(
ItIs

)
and ∆it

V+
= Γ

[
U(e−s)

]
,

where Is is the space reflection operator and s := 2πt. The modular automor-
phism group acts geometrically as dilations:

σtV+

(
ϕ[f ]

)
= ∆it

V+
ϕ[f ]∆−it

V+
= ϕ[f−s]

with fs(x) := e3sf(esx).

Thus, the modular conjugation maps the forward light cone onto the backward
light cone, i.e., JV+M(V+)JV+ = M(V−).

In this case the infinitesimal generator is given by

δV+ϕ[f ] := ∂sσ
t
V+

(
ϕ[f ]

)
s=0

= ϕ
[
∂sfs


s=0

]

with
∂sfs(x)


s=0

=
(
− 3 + xµ∂xµ

)
f(x).

Trebels examines the opposite direction [106]. He starts from a physically
well-defined one-parameter group of unitaries and compares their action with
the known modular action on WR, V+ and D1. For double cones he can show
that the assumption of local action implies the Hislop-Longo transformation
(4.7) up to a scaling factor.
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Definition 4.43 A unitary transformation V : M(K) −→ M(K), where K ⊂
M is open, with V Ω = Ω is called geometric, causal and order-preserving if
there exists an isomorphism g : K −→ K with the following properties:

(i) x ∈ K =⇒ g(x), g−1(x) ∈ K.

(ii) If x, y ∈ K and x− y is spacelike, then so are g(x) − g(y) and g−1(x) −
g−1(y).

(iii) (x− y) ∈ V+ =⇒ g(x) − g(y), g−1(x) − g−1(y) ∈ V+.

(iv) VM(K1)V
−1 = M

(
g(K1)

)
for all subsets K1 ⊂ K.

Geometric and causal one-parameter groups are automatically order preserving.

Theorem 4.44 In the context of a free massless quantum field theory in the
vacuum sector let a subset K of Minkowski space be given. Let us further assume
that the unitary group Ut has a geometric and causal action gt 6= 1K and that
for all A ∈ M(K) the mapping t 7→ UtAΩ has an analytic continuation on the
strip S(0, γ) for some γ > 0, then the following statements hold:

(i) For K = WR gt is identical to the action of Bisognano and Wichmann
up to a scaling parameter.

(ii) For K = V+ gt coincides with the dilation up to a scaling parameter.

(iii) For K = D1 gt is identical to the Hislop-Longo transformation g(t) =
emtδD1 up to a scaling parameter.

One can fix the scaling parameter to 1 for wedges, forward and backward light
cones with the help of translations which leave it invariant. Due to the absence
of such translations for double cones, the scaling parameter m is only known
to be positive in general. For special cases of quantum field theories it can be
shown that 0 < m ≤ 1.

Fredenhagen [44] compares the result of Bisognano and Wichmann with
that of Hislop and Longo. One expects a relativistic quantum field theory to be
conformally invariant in the short distance limit (because of 1. the importance
of chirality in the standard model and 2. the existence of an ‘ultraviolet fixed
point’, of a scaling limit, is of great significance for quantum field theories in
curved spacetime). If one chooses a double cone D ⊂ WR which contains the
origin in its closure, one gets

|x|−1
(
x±(s) − Λs

)
x −→ 0 as x −→ 0

for x ∈ D. The natural question is, if this coincidence of the two actions in the
neighbourhood of the origin is of general validity.

Proposition 4.45 For each f ∈ L1(R) and λ ∈ (0, 1) there exists a constant
cf (λ) > 0 such that the following statements hold:
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(i) ‖
∫
dtf(t)(∆−it

D − ∆−it
WR

)AΩ‖2 ≤ cf (λ)
(
‖AΩ‖2 + ‖A∗Ω‖2

)
for all A ∈

M(λD), and

(ii) cf (λ) −→ 0 for λ −→ 0.

The constant cf (λ) > 0 depends neither on the details of the theory nor on the
size of D.

Thus the action of the modular group for the double cone σtD on M(λD) becomes
approximately geometrical, and it converges to that of the modular group for
the wedge σtWR

. Therefore the spectra of the modular operators ∆WR
and

∆D have also to coincide, provided that the theory is asymptotically scaling-
invariant. This information leads to the identification of the type of local von
Neumann algebras.

Proposition 4.46 If ω is a faithful, normal state on a von Neumann algebra
M then a necessary and sufficient condition for λ ∈ R to be in Spec∆ω is that
for each ǫ > 0 there exists an A ∈ M with ω(A∗A) = 1 such that

|ω(AB) − λω(BA)| ≤ ǫ
(
ω(B∗B) + λω(BB∗)

) 1
2

for all B ∈ M.

Fredenhagen then proves that the above condition is satisfied for all positive
numbers λ in a scaling-invariant theory.

Theorem 4.47 Let M be a von Neumann algebra with M(D) ⊂ M ⊂ M(WR).
If a Wightman field theory with a scale-invariant limit is associated to the local
net then the modular spectrum, see (4.1), is S(M) = R+.

Consequently, due to Theorem 4.12, he obtains the following result.

Corollary 4.48 The von Neumann algebras of local observables are of type
III1.

One might get the wrong impression of the modular group always acting
locally, but Yngvason [119] dashes this hope with the construction of a simple
counter-example. In the case of the left and right wedges he constructs a group
of automorphisms which he proves to be the modular group by verifying the
KMS condition.

In the case of the right wedge the group is defined by the unitary operator
VWR

which acts first on the one-particle Hilbert space H1 := L2
(
Rn,M(p)dµ(p)

)
,

as

VWR
(λ)ϕ(p) :=

F (−λp+,−λ−1p−,−p̂)
F (−p+,−p−,−p̂)

ϕ(λp+, λ
−1p−, p̂),

and then is lifted on to the Fock space by the second quantisation procedure.
Here the function F is assumed to have some kind of analytic properties by
means of VWR

. The group reads

σtWR

(
W (f)

)
:= VWR

(
e−2πt

)
W (f)VWR

(
e2πt

)
,
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with the coordinates p̂ := (p2, · · · , pn) and p± := p0 ± p1 and can explicitely be
shown to act non locally in the directions parallel to the edge of the wedges.
Since this pathological behaviour is of interest for our investigation in the sense
that the non local action could give us a hint for the form of the infinitesimal
generator of the modular group acting on the massive algebra, we will analyse
this group in detail in the next chapter.

4.5 More Applications of the Modular Action

In Section 4.3 we have already seen two important applications of modular the-
ory in the algebraic approach to quantum field theory, namely the discussion
on the type of local algebras and the mathematically rigorous formulation of
thermal equilibrium states, the KMS states. Fortunately, these are not the only
fields where modular theory enters the physical arena leading to great break-
throughs. In this section we present the main and prominent consequences of
modular theory in quantum field theory, the Hawking effect, the PCT theorem,
the construction of the Poincaré group, the algebraic spin-statistics theorem and
the modular nuclearity condition. There are many other applications, some of
them still under investigation, which we are not able to incorporate for the sake
of brevity. For more information we refer the reader to [16].

Hawking Radiation and Unruh Effect

Sewell shows in [99] that the Bisognano-Wichmann theorem is closely related
to the Unruh effect and Hawking radiation. In a classical treatment black holes
can only absorb, and consequently their mass increases permanently. But if one
takes into account also quantum field theoretical arguments, then this picture
changes significantly. Hawking proves in [58] that, due to vacuum fluctuations
near the Schwarzschild radius, static and uncharged black holes are not so black,
but rather radiate constantly like black bodies with the temperature

T =
a

2π
, (4.8)

where a is the acceleration. Motivated by this achievement, Unruh finds that a
uniformly accelerated observer feels the Minkowski vacuum like a thermal bath
at the so-called Unruh temperature given above in (4.8) [108].

Now let us imagine, for the sake of simplicity, an observer uniformly accel-
erated in the x1-direction, i.e., his acceleration vector is given as (0, a, 0, 0)t,
where a is the magnitude of the absolute value of the acceleration. The ob-
server’s worldline is then given by the trajectory of the point

x =
(
0, a−1, 0, 0

)t

under the boosts in x1-direction, the modular action in the right Rindler wedge
of Theorem 4.37,

Λsx =




cosh s sinh s 0 0
sinh s cosh s 0 0

0 0 1 0
0 0 0 1







0
a−1

0
0


 =




a−1 sinh s
a−1 cosh s

0
0


 .
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Replacing the boost parameter by the proper time τ = a−1s, we find that the
operator aK, where K is the infinitesimal generator of the Lorentz boosts in
x1-direction, generates time translation in the observer’s rest frame, i.e.,

Λaτx(τ0) = x(τ0 + τ).

Applying the Bisognano-Wichmann Theorem 4.37, we can compare this oper-
ator with the modular operator of the modular group for the Rindler wedge,
and see that

U(Λaτ ) = eiaτK = e2πitK = ∆it
WR

holds if and only if aτ = 2πt. Hence we get the Unruh temperature,

TWR
=

1

β
=
t

τ
=

a

2π
,

where β is the inverse of the temperature defined through the KMS condition.
The Unruh effect does not explain the Hawking effect in a mathematically

rigorous manner, and therefore we should not expect the Bisognano-Wichmann
theorem to do so. Nevertheless, their close relationship may be justified easily
insofar as the boundary of the Rindler wedge can be interpreted as a simple case
of a horizon, because a signal sent across this boundary will never be responded.

Since the Bisognano-Wichmann theorem is only built upon the general
framework of axiomatic quantum field theory, it ensures the validity of the
Unruh effect for all field theories, in particular for the interacting ones. Un-
ruh investigates only free field theories. On the other hand, the Bisognano-
Wichmann Theorem can hardly be generalised to curved spacetimes, because
it is based on a self-adjoint and semi-bounded Hamiltonian operator whose
existence is not assured in non-stationary spacetimes.

In the same manner, i.e., with the help of the modular operators for dou-
ble cones and forward light cones, one can calculate the Unruh effect for the
diamond and the forward light cone, as done recently by Martinetti and Rov-
elli [85]. Their analysis is mainly based on the known modular actions on the
wedges, Theorem 4.37, light cones, Theorem 4.42, and double cones, Theorem
4.41, and the so-called thermal time hypothesis, which has first been intro-
duced by Connes and Rovelli [30]. This hypothesis says that the physical time
is state-dependent, and when the system is in a state ω then time is defined by
the modular group with respect to ω. One consequence is that if there exist to
independent definitions of time flow, e.g., thermal and geometrical ones, then
the temperature is defined by their ratio.

Martinetti and Rovelli investigate the case of an observer with finite lifetime
and calculate the diamond’s temperature to be

TD(τ) =
a2L

2π
(√

1 + a2L2 − cosh aτ
) ,

where L is the radius of the diamond’s basis, |x0| + |x| < L. First of all, for
large acceleration a, representing an observer travelling near the boundary of
the diamond and for large L we obtain the temperature

TD(τ) =
a

2π
(
1 − cosh aτ

aL

) .
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This function rapidly approaches infinity at the boundary of the observer’s
proper time, but nearly stays constant for most of his lifetime at the Unruh
temperature. Thus, the observer with finite lifetime L

2 experiences the Unruh
effect for most of his lifetime; however, the situations shortly after his birth and
before his death remain to be discussed.

This investigation is even more striking for an unaccelerated observer, as the
assumption a = 0 leads to a non vanishing temperature which has its maximum

βD =
1

πL

at x0 = 0. In the case of the forward light cone the temperature is given by

TV+(τ) =
1

2π
e−aτ ,

and consequently the temperature at the birth of a uniformly accelerated ob-
server with a 6= 0 is positive and converges rapidly to zero. An unaccelerated
observer would still feel a non vanishing temperature.

PCT Theorem

Jost gives the first proof of the PCT theorem in 1957 [67]. It took more than
three decades to give an algebraic version of this theorem, i.e., within the frame-
work of the algebra of local observables M(O). This is mainly due to Borchers
[14], [18].

The PCT theorem states that the product of space reflection, charge conju-
gation and time reversal is a symmetry. The algebraic proof of this statement
in principle reduces to establishing the existence of the PCT operator Θ, which
is determined by the following properties:

(i) The operator Θ is anti-unitary, and for all bounded regions O ⊂ M

Θπ0

(
M(O)

)
Θ = π0

(
M(−O)

)
,

where π0 is the cyclic representation with respect to the vacuum state.

(ii) Θ fulfills the following commutation relation with Poincaré transforma-
tions,

ΘU(Λ, a)Θ = U(Λ,−a).

(iii) Θ maps a charge sector into its conjugate sector.

Up to the formulation of the modular theory and its application in algebraic
quantum field theory, the Bisognano-Wichmann Theorem, it seems to have
been impossible to verify the PCT theorem in terms of local algebras. But the
Bisognano-Wichmann Theorem supplies Borchers with a possible candidate for
the PCT operator,

Θ = JW+U
(
R1(π)

)
.

He shows the defining properties of Θ by clarifying the commutation relation
between the modular automorphism group and the translations in a first step.
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Theorem 4.49 (Borchers) Let M be a von Neumann algebra with a cyclic
and separating vector Ω and U(t), t ∈ R, a one-parameter group fulfilling the
requirements:

(i) U(t)Ω = Ω for all t ∈ R.

(ii) SpecU(t) ⊂ R+.

(iii) U(t)MU(−t) ⊂ M for all t ∈ R.

Then the following statements hold:

∆itU(s)∆−it = U
(
e−2πts

)
,

and JU(s)J = U(−s).

A converse of this theorem has been proved by Wiesbrock [113], [115], [116].
He starts from a von Neumann subalgebra N of M satisfying the condition of
+-half sided modular inclusion (or −-half sided modular inclusion), i.e., N has
the same cyclic and separating vector Ω and

∆itN∆−it ⊂ N (4.9)

for all t ≥ 0 (t ≤ 0). Then he shows that there always exists a one-parameter
group U(t) = eiHt with positive infinitesimal generator H, which leaves Ω
invariant and satisfies

U(1)MU(−1) = N.

Apart from yielding the PCT operator, the Bisognano-Wichmann Theorem
ensures the validity of wedge duality, see Definition 4.36, which is required for
the next statement.

Theorem 4.50 (PCT, Borchers) Every Poincaré-covariant quantum field the-
ory of local observables satisfying wedge duality and the reality condition, see
Definition 4.39, is invariant under the PCT operations.

Construction of the Poincaré Group

We have seen that the modular group for wedge regions acts as Lorentz boosts,
and therefore one can pose the question if this fact is sufficient for the con-
struction of a representation of the Poincaré group. If the answer is positive,
then this fact can be used to discriminate the real relativistic, i.e., Poincaré-
covariant, vacuum from all the other cyclic and separating states fulfilling the
Reeh-Schlieder property of Theorem 4.22. This would also mean that all space-
time symmetries are already encoded intrinsically in the net of von Neumann
algebras of local observables.

Borchers shows in [14] that the two-dimensional case, where all wedges are
described by translations of the left or right wedge, can be covered with the help
of Wiesbrock’s construction of the translations [113]1. The higher-dimensional

1Concerning the results of this paper confer the remark on p. 61.
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problem has been solved by Brunetti, Guido and Longo whose proof is built
up on Moore’s theory of central extension of locally compact groups by Polish
groups [23]. They construct a representation only of the covering P̃↑

+ of the

proper orthochronous Poincaré group P↑
+.

Theorem 4.51 (Brunetti, Guido, Longo) Let the modular group with re-
spect to the cyclic and separating vector Ω act on the von Neumann algebra of
local observables M(O) associated with an open and bounded region O. If the
Bisognano-Wichmann property holds, then there exists a unitary representation
U of P̃↑

+, determined by the equation

U
(
Λ̃WR

(t)
)

= ∆it
WR

, t ∈ R,

which preserves the vacuum, UΩ = Ω, satisfies the spectrum condition and is
M(O)-covariant, i.e., the local algebras transform covariantly under U . Fur-
thermore, wedge duality holds.

The invariance of the vector Ω with respect to the representation U of P̃↑
+

justifies treating Ω as the vacuum vector. Consequently, if one restricts the
discussion to this case, then it should be possible to solve the problem for
P↑

+ itself. In a later publication Guido and Longo prove the existence of the

unitary U for the Poincaré group P↑
+ as a byproduct of their general algebraic

spin-statistics theorem [51].

Borchers succeeds in showing directly from the Bisognano-Wichmann prop-
erty the existence of such a representation for P↑

+ by making use of the modular
intersection property, a concept of Wiesbrock [115], [116].

Definition 4.52 The triple (M,N,Ω), where M and N are von Neumann alge-
bras with the same cyclic and separating vector Ω, is said to fulfill the ±-modular
intersection property if the following two conditions hold:

(i) M∩N satisfies the condition of ±-half sided modular inclusion (4.9) with
respect to M and N.

(ii) JN

(
s− limt→±∞∆it

N
∆−it

M

)
JN = s− limt→±∞∆it

N
∆−it

M
.

Borchers continues his presentation with von Neumann algebras Mi,k,where
i 6= k and M′

i,k = Mk,i, which satisfy the subsequent requirements (apart from
some additional technical ones):

(i) All algebras Mi,k have a common cyclic and separating vector Ω, and the
triples (Mi,k,Mi,j ,Ω) fulfill the conditions of +-modular intersection and
of −-modular intersection.

(ii) The modular operators ∆
itj,k

j,k generate a six-dimensional Lie group.

(iii) There exists an algebra M1,2,λ such that the triple (M1,2,λ,M1,2,Ω) sat-
isfies the condition of +-half sided inclusion.
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Using all these assumptions he then shows in [15] that, if Mi,j, 1 ≤ i ≤ j ≤ 4,
are six von Neumann algebras satisfying the conditions (i) and (ii) and M1,2,λ

fulfills the condition (iii), then the corresponding modular groups generate a

continuous representation of the Poincaré group P↑
+ (in four dimensions) which

satisfies the spectrum condition.

Algebraic Spin-Statistics Theorem

Another main supporting pillar of quantum field theory, which can be verified
algebraically with the help of modular theory, is the connection between spin
and statistics, namely that it is not possible to quantise consistently an integer
spin system by Fermi statistics and a half-integer system by Bose statistics.
This has been established by Guido and Longo in [51], starting from the local
field algebra F(O) and assuming the following conditions to hold:

(1) The Reeh-Schlieder property, Theorem 4.22, for spacelike cones.

(2) Normal commutation relations, i.e., there exists a vacuum-preserving, self-
adjoint and unitary operator Γ, the so-called statistics operator, which
implements an automorphism on every local field algebra F(O), and the
field algebras

F±(O) :=
{
F ∈ F(O)| ΓFΓ = ±F

}

satisfy graded locality (4.2).

(3) Modular covariance, i.e., the field algebra fulfills the relation

∆it
WF(O)∆−it

W = F
(
ΛW(t)O

)
, t ∈ R,

for all wedges W and all regions O.

Their proof is based on a former result of Longo [81], [82], who connects the
statistical dimension with the Jones index, see Theorem 4.19. Let us consider
for this purpose an irreducible endomorphism ρ : M −→ M localised in a double
cone O and a unitary element U ∈ M such that the endomorphism,

ρ′(·) := Uρ(·)U−1,

is localised in the spacelike complement of O. Then the statistical operator,
defined as

ǫ := U−1ρ(U),

can be shown to be a unitary element of ρ2(M) ∩ M and to fulfill

ρ(ǫ)ǫρ(ǫ) = ǫρ(ǫ)ǫ.

In the context of Doplicher-Haag-Roberts (DHR) theory, where ρ represents
superselection sectors, a representation of the permutation group S∞ can be
introduced for spacetime dimension four via the equation

ǫi := ρi−1(ǫ),
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which can be classified by the value of the so-called statistical parameter,

λρ := φ(ǫ) = 0,±1,±1

2
,±1

3
,±1

4
, · · · ,

where φ is the left inverse of ρ. From this Longo derives the index-statistics
relation, i.e., a relation between the Jones index Ind(ρ) and the DHR statistical
dimension d(ρ):

d(ρ) := |λρ|−1 = Ind(ρ)1/2.

In a final step the assumption of modular covariance bridges the gap between
the local field algebra F(O) (local net of observables M(O)) and the statisti-
cal parameter λρ, because given this a representation of the Poincaré group
with respect to a covariant irreducible superselection sector ρ will be uniquely
determined and this uniqueness connects them intrinsically.

Theorem 4.53 (Guido-Longo)

(i) Let F(O) be a local field algebra satisfying the conditions (1), (2) and (3)
given above, then

Γ = U(2π)

holds.

(ii) For an irreducible, modular-covariant local net of observables A(O) on
Minkowski space and an irreducible, covariant and localized endomor-
phism ρ with finite statistics one has

Uρ(2π) = sign(λρ),

where Uρ is the representation of P̃↑
+ in the sector ρ.

In the same paper [51] Guido and Longo also give a proof of the PCT theorem
within the formalism of local field algebras. For this purpose they consider the
intersection

Fd(O) :=
⋂

W⊃O

F(W),

which fulfills the Reeh-Schlieder property, locality and duality for convex, causally
complete regions.

Theorem 4.54 (Guido-Longo) Let F(O) be a local field algebra satisfying
the conditions (1), (2) and (3) given above, then there exists an anti-unitary
operator Θ implementing the PCT symmetry on the local field algebra Fd(O):

ΘFd(O)Θ = Fd(−O).
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Modular Nuclearity Condition

The axioms for the nets of local algebras do not yet implement one of the main
concepts of high energy physics, namely the concept of particles. This problem
is closely connected with the properties of the phase space volume associated
with physical states of bounded energy which are localised in spacetime. In the
algebraic formulation of quantum field theory there are several proposals how
this volume should depend on the energy and localisation in order to allow for
a particle interpretation.

Haag and Swieca were the first to give a characterisation of theories with
a particle interpretation [56]. They have been motivated by the fact that in
quantum mechanics, due to the uncertainty relation, only finitely many quan-
tum states fit in to a bounded subset of phase space. Therefore, they formulate a
compactness criterion for states in a phase space volume associated with energy-
damped local excitations of the vacuum state. To be more precise, for given
β > 0 and bounded spacetime regions O they consider special maps defined as

Θβ,O : A(O) −→ H
A 7→ Θβ,O(A) := e−βHAΩ,

where H is the Hamiltonian and Ω ∈ H the vacuum vector. They claim that
in theories allowing for a particle interpretation the following condition holds
true:

Compactness condition (Haag-Swieca): The maps Θβ,O are compact in
the norm topology for all β > 0 and any bounded spacetime region O.

Fredenhagen and Hertel [46] start from global states of limited energy and
consider their restriction to local algebras. For each real number β > 0 they
first choose a subset of the space of normal linear functionals SN on B(H),

Sβ :=
{
ω ∈ SN | eβHωeβH ∈ SN

}
,

which is a Banach space of functionals of limited energy when equipped with the
norm ‖ω‖β := ‖eβHωeβH‖. Localisation in configuration space is introduced by
restriction of these functionals to the local algebras A(O) ⊂ B(H). The map to
be considered in this ansatz is defined as

Πβ,O : Sβ −→ A(O)∗

ω 7→ Πβ,O(ω) := ω|A(O),

and one postulates for quantum field theories with decent properties:

Compactness condition (Fredenhagen-Hertel): The maps Πβ,O are
compact for all β > 0 and any bounded spacetime region O in the norm
topology.

In contradistinction to the approach of Haag and Swieca, the order of energy
damping and localisation in configuration space is closer to the algebraic for-
mulation and can be applied to all superselection sectors.
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Buchholz and Wichmann were the first to introduce a quantitative descrip-
tion of the phase space in quantum field theory in terms of a nuclearity criterion.
This does not only state the qualitative property of compactness of the phase
space volume, but also requires a certain dependence on the available energy
and localisation region [28]. They investigate the map

Θ̃β,O : A(O) −→ H
A 7→ Θ̃β,O(A) := e−βHAΩ

and formulate their condition in terms of the notion of nuclearity.

Definition 4.55 Let X and Y be Banach spaces. Then the linear operator
Θ : X −→ Y is said to be nuclear if there exist a sequence of continuous linear
functionals ωi ∈ X ∗ and a sequence of vectors Yi ∈ B such that

Θ(X) =

∞∑

i=1

ωi(X)Yi for all X ∈ X ,

with
∞∑

i=1

‖ωi‖ · ‖Yi‖ <∞.

Given this one defines the nuclearity index of Θ as

ν(Θ) := inf

{
∞∑

i=1

‖ωi‖ · ‖Yi‖
}
,

where the infimum extends over all decompositions of Θ complying with the
above properties.

Nuclearity condition (Buchholz-Wichmann): The maps Θ̃β,O are
nuclear for all β > 0 and any bounded spacetime region O, and their
nuclearity index νβ,O(Θ) is bounded by

νβ,O(Θ) < ecr
3β−n

, (4.10)

where r is the spatial radius of O and c and n are constants.

This formulation of the nuclearity condition is not completely local, since
it makes use of the global Hamiltonian as well as of the global vacuum state.
Exactly at this point the modular theory, to be more precise the Bisognano-
Wichmann Theorem, plays a decisive role. Buchholz, D’Antoni and Longo give
a local nuclearity condition in terms of the modular operator [26], local in the
sense that only information about the restriction of the vacuum state ω0 to the
local algebras A(O) is needed. Moreover, this nuclearity condition is applicable
to theories on any spacetime manifold, because the vacuum can be replaced
by an arbitrary dense set of vectors. The idea for a modular formulation is
that the Hamiltonian can be naturally connected with the modular operator
∆Wτ = U

(
Λ(2πτ), 0

)
corresponding to the local algebra A(Wτ ) on the wedge-

shaped region
Wτ :=

{
x ∈ M| |x0| ≤ x1 + τ

}
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and the vacuum vector Ω, where U is the representation of the Poincaré group
on the Hilbert space H. In fact, one may prove the following relation:

e− sin 2πvτHAΩ = U
(
Λ(∓iv), 0

)
V±(iv)U

(
1,∓[1 − cos 2πv]τ

)
AΩ

with

V±(u) := U
(
1,∓τ

)
U
(
Λ(±u), 0

)
U
(
1,∓τ

)−1

for all 0 ≤ v < 1
4 and all operators

A ∈ A
(
WR + [1 − cos 2πv]τ

)⋂
A
(
−WR + [1 − cos 2πv]τ

)
,

where τ denotes the spacelike vector, whose components are all zero apart from
τ1 = τ > 0.

Now let O1 and O2, O1 ⊂ O2, be two arbitrary bounded regions of Minkowski
space with O2 ⊂ Wτ ∩ (−Wτ ), and consider the map

ΞO1,O2 : A(O1) −→ H
A 7→ ΞO1,O2(A) :=

(
1 + ∆

−1/2
O2

)
AΩ,

where ∆O2 is the modular operator associated with the local algebra A(O2) and
the vacuum vector Ω. N(ǫ) is called the ǫ-content of the map ΞO1,O2, if for a
given ǫ > 0 N(ǫ) is the maximal number of elements Ai ∈ A

1

(O1), the unit ball
of A(O1), i = 1, · · · , N(ǫ), such that ‖ΞO1,O2(Ai − Aj)‖ > ǫ for all i 6= j. The
map ΞO1,O2 is compact if and only if its ǫ-content N(ǫ) is finite for all ǫ > 0.

Definition 4.56 Let ǫ, N(ǫ) and ΞO1,O2 be as aforementioned, then one de-
fines, if existent, the order q of the map ΞO1,O2 as

q := lim sup
ǫց 0

ln lnN(ǫ)

ln ǫ−1
.

With these notations we are now ready to formulate the local nuclearity crite-
rion:

Modular nuclearity condition (Buchholz-D’Antoni-Longo): The maps
ΞO1,O2 have to be of arbitrary small order if the inner distance between O1

and O2 is sufficiently large.

The next task is to combine the compactness requirement of Fredenhagen
and Hertel with the notion of p-nuclearity, a generalisation of the nuclearity
given in Definition 4.55, in order to give a more precise description of the size
of the phase space in quantum field theory.

Definition 4.57 Let X and Y be Banach spaces. Then the linear operator
Θ : X −→ Y is said to be p-nuclear, where 0 < p ≤ 12, if there exist a sequence

2The upper bound was mentioned in [41] and will be discussed in the next page.
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of continuous, linear functionals ωi ∈ X ∗ and a sequence of vectors Yi ∈ B such
that

Θ(X) =

∞∑

i=1

ωi(X)Yi for all X ∈ X

with

∞∑

i=1

‖ωi‖p · ‖Yi‖p <∞.

Combinations of such functional and vectors are called p-nuclear decompositions
of Θ. Furthermore, one defines the p-nuclearity index of Θ as

νp(Θ) := inf
p−nucl.decom.

(
∞∑

i=1

‖ωi‖p · ‖Yi‖p
)1/p

, (4.11)

where the infimum extends over all p-nuclear decompositions of Θ.

Buchholz and Porrmann examine this problem and give the strongest of all
phase space conditions, which is satisfied by the free field theory of massive and
massless particles in four spacetime dimensions [27].

Nuclearity condition (Buchholz-Porrmann): The maps Πβ,O are
p-nuclear for all sufficiently large β > 0 and any bounded spacetime region O.

To put it in a nutshell, one verifies the following diagram showing the relations
between the different nuclearity and compactness conditions:

Buchholz-Porrmann =⇒ Buchholz-Wichmann

ww�
ww�

Fredenhagen-Hertel =⇒ Haag-Swieca ,

where the arrows denote real implications. In this diagram neither an additional
relation can be added, nor any of the existing ones can be reversed.

In a recent paper Fewster, Ojima and Porrmann, in the context of their
investigation of a possible equivalence relation between nuclearity criteria and
quantum energy inequalities, which restrict the violation of the classical energy
conditions to the amount compatible with the uncertainty relations of quantum
theory, mention the occurrence of two inconsistencies [41]. First, one should be
aware of the different definitions of p-nuclearity for p ≥ 1 given by mathemati-
cians, e.g. [65], and physicists, which may provoke confusion.

Their second concern is of greater importance for the whole concept, since
they can show that the p-nuclearity index (4.11) vanishes for any p > 1. In
order to save the Definition 4.57, they suggest to further restrict the set of
admissible p-nuclear decompositions. One could demand, for example, linear
independence of the vectors (Yi)i∈N of the sequence, which still does not suffice.
In the special case of Hilbert spaces one could also restrict attention to p-nuclear
decompositions in terms of orthonormal bases.
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Chapter 5

Modular Group on the

Massive Algebra

Beweisen muss ich den Käs’
sonst ist die Arbeit unseriös.

F. Wille

We have seen in the previous chapter how the knowledge of the modular
group has led to a variety of most important applications. Modular theory in
general seems to become more and more a powerful tool for diverse problems
and the natural formalism by which local quatum physics may be formulated.
But the potential of modular theory will not be exhausted fully as long as the
modular group σtm acting on the massive algebras Mm(O) is not determined.
With σtm one would obtain a deeper and easier accessible understanding of the
dynamics of quantum systems.
Due to the result of Trebels, see Theorem 4.44, σtm has to act non-locally on
Mm(O), otherwise it would coincide with σt0 up to a scaling factor. Thus, exam-
ples of modular automorphism groups acting non-locally may serve as a testing
ground for the aforementioned assumptions on their infinitesimal generators δm,
namely, they have to be of the form (1.2).

Assumption on the massive generator 5.1 The massive infinitesimal gen-
erator δm has the following structure:

δm = δ0 + δr, (5.1)

where δ0 is the massless generator, satisfying the following properties:

(i) the known massless generator δ0 is the principal term in δm;

(ii) δr is a PsDO;

(iii) the order of δr is less than 1.
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The first part of our investigation begins with the motivation of these as-
sumptions. In Section 2, we will then verify these assumptions for the first time
explicitly for two concrete examples of modular groups with non local action.
The first example is due to Yngvason from his analysis of essential duality [119],
and the second one is given by Borchers and Yngvason in the context of the
formulation of modular groups with respect to general KMS states [17]. In the
subsequent Section we discuss the ansatz of Figliolini and Guido who treat the
modular operator and its continuity properties in the second quantisation for-
malism [42]. The last two Sections contain two approaches of our own. The first
one is based on the unitary equivalence of free local algebras and the second
one relies on the cocycle theorem of Connes, Theorem 4.9.

5.1 Why a Pseudo-Differential Operator?

The assumption that the infinitesimal generator δm of the modular group σtm
acting on the massive algebra Mm(D), where D is a double cone, is a pseudo-
differential operator, is mentioned explicitly first by Schroer and Wiesbrock [97].
However, the authors restrict themselves to a few remarks on their strategy
how to calculate δm. This strategy supposes an intermediate step, namely the
computation of the modular group σtm,0 on Mm(D) with respect to the ‘wrong’
massless vacuum vector Ω0. They claim, without giving a proof, to have shown
this to lead to a pseudo-differential operator for the infinitesimal generator
δm,0, whose principal symbol is identical to the infinitesimal generator δ0, a
differential operator of first order, derived by Hislop and Longo for the massless
algebra M0(D) with respect to Ω0, see Theorem 4.41. Furthermore, they state
that its action “on a smaller massive subalgebra inside the original one is not
describable in terms of the previous subgroup”, and “the geometrical aspect of
the action is wrecked by the breakdown of Huygens principle, which leads to a
nonlocal reshuffling inside D but is still local in the sense of keeping the inside
and its causal complement apart” [97]. They propose to derive, in a final step,
the modular group σtm and its generator δm with respect to the ‘right’ massive
vacuum vector Ωm via Connes’ cocycle theorem,

σtm(A) = Γtσ
t
m,0(A)Γ∗

t ,

for all A ∈ Mm(D), where Γt is the σ-strongly continuous family of unitaries
defined in Theorem 4.9. Schroer and Wiesbrock assume that this procedure
will not change the pseudo-differential nature of the infinitesimal generator.

δm Has to Be Timelike

It is well known that, due to the theorem of Noether, a conservation law is the
consequence of a continuous symmetry group, and in our special case symmetry
under time translations, i.e., the existence of a time-independent Hamiltonian,
leads to the conservation of energy. The physically well-motivated demand of
such a conservation condition determines the causal property of the Killing
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vector field Xµ, or in our case of the infinitesimal generator δm, see [72], [111]
and [100] .
In general relativity, i.e., in a Riemannian spacetime, the stress-energy tensor
satisfies the local conservation law

T µν ;ν = 0, (5.2)

where the semicolon denotes the covariant derivative,

Aµ;ν := ∂νA
µ − ΓµνρA

ρ with

Γµνρ :=
1

2
gµν

(
∂

∂xν
gρλ +

∂

∂xρ
gνλ +

∂

∂xλ
gνρ

)
.

But in general no genuine integral analogue can be found, because of the absence
of a Gauss law for tensor fields of order greater than 1. In the case of a spacetime
with a Killing vector field Xµ one derives

(
XµT

µν
)
;ν

= Xµ;νT
µν +XµT

µν
;ν = 0.

The first addend vanishes since Xµ;ν is anti-symmetric and T µν is symmetric,
while the second one is 0 due to equation (5.2). Now we have a new situation,
as the term on the left-hand side is a vector and the Gauss law may be applied
to this relation. Finally, one obtains a conserved quantity,

T :=

∫

x0=const
T µ0Xµ(− det gµν)

1/2d3x.

The interpretation of T as the energy is physically meaningful, only if the vec-
tor field Xµ is timelike, i.e., XµX

µ < 0. Thus, the energy of a gravitational
system can be defined properly when a timelike vector field exists, and then it
is automatically conserved.
In our case this means in particular that, if the infinitesimal generator δm is
not timelike, then one would be able to find scalar fields, defined with respect
to Xµ, whose energy would not be bounded from below [71].

Conformal Invariance of the Klein-Gordon Equation

We begin by justifying the requirement of the infinitesimal generator of the
modular group for the massive algebra to be a pseudo-differential operator. To
this end we discuss the Klein-Gordon equation, in particular its maximal local
symmetry.

The invariance under a maximal symmetry operator Q, see [48] and [47],
means that, if ϕ is a solution of the Klein-Gordon equation, then so is the
transformed scalar field Qϕ:

(
✷ +m2

)
ϕ(x) =: Lϕ(x) = 0 =⇒

(
✷ +m2

)
Qϕ(x) = 0.

We are concerned here with linear differential operators of first order, which can
be interpreted as generators of continuous transformation groups. If we express
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the symmetry operator by Q := AµPµ+B, where Aµ and B are complex-valued
functions and Pµ is the infinitesimal generator of translations, see Table 3.2,
then the implication given above is equivalent to the existence of a complex-
valued function αQ such that

[Q,L] = αQL.

The set of all symmetry operators for the Klein-Gordon equation forms a com-
plex Lie algebra, since along with the symmetry operators Q1 and Q2 also their
linear combinations and their commutators are symmetry operators. This so-
called invariance algebra can be finite-dimensional or infinite-dimensional.
Writing the symmetry operator in terms of the anti-commutator [A,B]+ :=
AB +BA,

Q =
1

2
[Aµ, Pµ]+ + C with C :=

1

2
[Aµ, Pµ] +B,

we obtain
[1
2
[Aµ, Pµ]+ + C,L

]
= αQL ⇐⇒

1

2

[
[∂νAµ, Pµ]+, Pν

]
+

+
[
∂νC,Pν

]
+

=

1

4

[
[αQ, P

µ]+, Pµ
]
+

+
i

2

[
∂µαQ, Pµ

]
+
−m2αQ.

The operators on both sides are equivalent, if the coefficients of the same anti-
commutators fulfill the following conditions:

∂νAµ + ∂µAν =
1

2
gµναQ,

∂µC = ∂µαQ, and m2αQ = 0. (5.3)

From now on we have to distinguish between two different possibilities. The
first one is the massless case, namely the invariance algebra of the massless
Klein-Gordon equation, and we conclude that the general solution of the first
two equations is

Aµ = uµ(x) = aµ + gµλωλνx
ν + dxµ + 2xµcλx

λ − xλx
λcµ,

confer equation (3.4). Thus the maximal invariance algebra of the massless
Klein-Gordon equation is the whole conformal algebra generated by the trans-
lations, Lorentz transformations, dilations and the special conformal transfor-
mations.
Due to the implication αQ = 0 in (5.1), the second case, that is the massive
Klein-Gordon equation, leads to the conditions

∂νAµ + ∂µAν = 0 and ∂µC = 0.

The general solution of these equations is a linear combination of the infinites-
imal generators of the translations and of the Lorentz transformations. There-
fore, the massive Klein-Gordon equation is only Poincaré-covariant.
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In the next Sections we will derive a group of automorphisms on the massive
algebra Mm with respect to the massless vacuum state. The existence of the
automorphism group on Mm for the massive vacuum state is then ensured by
the cocycle theorem of Connes. Since Figliolini and Guido, see Theorem 5.9,
have shown continuity with respect to the strong toplogy of the mapping

m 7→ δm ,m ≥ 0,

the generator δm of the massive group has to contain in a certain sense the
massless one δ0, which is a differential operator of order one as derived by Hislop
and Longo [60], as a special case, namely in the case m = 0. But, as discussed
above, δm cannot be maximally symmetric like δ0, because the massive Klein-
Gordon equation is not conformally invariant. The ‘additional term’ in δm seems
to be responsible for the breakdown of conformal symmetry and, therefore,
cannot be a differential operator. This circumstance is a hint for its pseudo-
differential or even Fourier integral nature. In fact, this conjecture is confirmed
by at least two examples due to Yngvason and Borchers, which will be discussed
in the next Section in detail. The non-local action of these modular groups is
reflected by their infinitesimal generators, which can be shown explicitly to be
pseudo-differential and Fourier integral operators.

5.2 Modular Groups with Nonlocal Action

Before we try to calculate the modular automorphism group σtm, we want to
investigate the Assumption 5.1 on its infinitesimal generator δm, which is ob-
viously not known in general. As aforementioned, the modular groups to be
considered as constructive examples for our purpose are such with nonlocal ac-
tion. To the best of our knowledge, there exist only two concrete examples for
such modular groups in the literature. The first modular automorphism group
is given by Yngvason in the context of his investigation on essential duality
[119], and the second one is introduced by Borchers and Yngvason who formu-
late modular groups in a more general setting, namely with respect to arbitrary
KMS states instead of the vacuum state [17].

Yngvason’s Counter-example

In a Poincaré covariant Wightman framework, Bisognano and Wichmann iden-
tify the modular groups with the Lorentz boosts and, furthermore, show that
wedge duality holds. Yngvason investigates the validity of these two properties
for local nets [119]. He can give explicit examples for fields violating essential
duality, an implication of wedge duality and major assumption in the superse-
lection theory, or Lorentz covariance. We take one of his concrete examples as
an opportunity to analyse the infinitesimal generator of a modular group with
nonlocal action.
He starts with a Hermitian Wightman field ϕ which transforms covariantly un-
der spacetime translations, but not necessarily under Lorentz transformations.
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A general two-point function, satisfying positivity, translation covariance, spec-
trum condition and locality, is of the following form in the Fourier space,

ω2(p) =

n∑

i=1

Mi(p)dµi(p),

where Mi is a polynomial, which is positive on the support of dµi(p) in V+,
i = 1, · · · , n, the positive, Lorentz-invariant measure. For the sake of simplicity
let us consider a two-point function consisting of only one term,

ω2(p) = M(p)dµ(p),

whose polynomial factorises as

M(p) =: F (p)F (−p) and F (p)∗ = F (−p),

where F (p) (in general no polynomial) is analytic in a certain sense and has no
zeros in the right wedge characterised by x+ > 0 and x− < 0. The existence of
such polynomials is ensured by the following example,

M(p) :=

n∑

i=1

(pi)2 +m2,

with

F (p) = (p̂p̂+m2)1/2 + ip1 = (p̂p̂+m2)1/2 +
i

2
(p+ + p−), (5.4)

where we have used the notation p̂ := (p2, · · · , pn) and p± := p0 ± p1. One
obtains the generalised free field ∂tϕm(x), where ϕm is the free field of mass m,
by setting dµ(p) := Θ(p0)δ

(
(p, p)M − m2

)
and M(p) := (p0)2. For λ > 0 one

can now define the unitary operator VWR
(λ) on the Fock space F , first on the

one-particle space H1 := L2
(
Rn,M(p)dµ(p)

)
by

VWR
(λ)ϕ(p) :=

F (−λp+,−λ−1p−,−p̂)
F (−p+,−p−,−p̂)

ϕ(λp+, λ
−1p−, p̂)

for ϕ ∈ H1, and then by canonical extension (second quantisation) to F . One
then introduces a one-parameter group of automorphisms on the von Neumann
algebra M(WR) over H generated by the Weyl operators W (f) := eiϕ[f ]:

σtWR

(
W (f)

)
:= VWR

(
e−2πt

)
W (f)VWR

(
e2πt

)
. (5.5)

Yngvason identifies this group with the modular group with respect to the
vacuum state on M(WR) by proving, due to Theorem 4.30, the validity of the
KMS condition, namely, he proves that the function

F (t) :=
(
Ω, σtWR

(
W (f)

)
W (g)Ω

)
,
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where f and g are test functions with support in R+, has an analytic con-
tinuation from the real axis into the half strip

{
t + is| 0 < s < 1, t, s ∈ R

}

with

lim
s→1

F (is) =
(
Ω,W (g)W (f)Ω

)
.

But the operator VWR
(λ) maps the Fourier transform f̃ of f with suppf ⊂ WR

into

f̃λ(p) := VWR
(λ)f̃(p) =

(p̂p̂+m2)1/2 − i
2(λp+ − λ−1p−)

(p̂p̂+m2)1/2 − i
2(p+ − p−)

f̃(λp+, λ
−1p−, p̂),

which is not analytic in p̂ and therefore cannot be the Fourier transform of a
function with compact support in the x̂-direction, x̂ := (x2, · · · , xn) . Conse-
quently, W (fλ) cannot be an element of any wedge algebra unless the wedge is
a translate of WR or the left wedge WL :=

{
x ∈ M| |x0| < −x3

}
. The operator

W (fλ) is still localised only in the x0, x1-directions in the sense that it is an
element of M(WR + a) ∩ M(WR + b)′ for some a, b ∈ WR.
Correspondingly one derives for the left wedge WL,

VWL
(λ)ϕ(p) :=

F (λp+, λ
−1p−, p̂)

F (p+, p−, p̂)
ϕ(λp+, λ

−1p−, p̂).

By comparing the modular conjugation of the two wedges,

JWR
(λ)ϕ(p) =

F (p+, p−,−p̂)
F (−p+,−p−,−p̂)

ϕ(p+, p−,−p̂)∗ and

JWL
(λ)ϕ(p) =

F (−p+,−p−, p̂)
F (p+, p−, p̂)

ϕ(p+, p−,−p̂)∗,

one recognises that wedge duality, i.e., M(WR)′ = M(WL), is satisfied if and
only if F (p) = F (−p) holds on the support of dµ. This condition is violated by
our example mentioned above.

One may ask if the non-local behaviour of this example is reflected in some
way by the infinitesimal generator of the group (5.5). First, we derive the
generator for the modular group,

∆it
WR

ϕ(p) =
F (−λp+,−λ−1p−,−p̂)
F (−p+,−p−,−p̂)

ϕ(λp+, λ
−1p−, p̂)

=: F̂ (λ, p+, p−, p̂)ϕ(λp+, λ
−1p−, p̂),

where λ = e−2πt, as

δWR
ϕ(p) = ∂t∆

it
WR

ϕ(p)
∣∣
t=0

= ∂tF̂ (λ, p+, p−, p̂)
∣∣
t=0

ϕ(p+, p−, p̂) + ∂tϕ(λp+, λ
−1p−, p̂)

∣∣
t=0

=

{
2π

F (−p+,−p−,−p̂)
(
p+∂p+ − p−∂p−

)
F (−p+,−p−,−p̂)

− 2πp+∂p+ + 2πp−∂p−

}
ϕ(p+, p−, p̂).
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For our example (5.4) we obtain:

δWR
ϕ(p) =

{
iπ(−p+ + p−)

(p̂p̂+m2)1/2 − i
2(p+ + p−)

− 2πp+∂p+ + 2πp−∂p−

}
ϕ(p+, p−, p̂)

=

{ −2iπp1

(p̂p̂+m2)1/2 − ip0
− 4π

(
p0∂p1 + p1∂p0

)}
ϕ(p+, p−, p̂).

While the second term can be identified with the Bisognano-Wichmann in-
finitesimal generator (4.6), the first term containing the mass m is a PsDO of
order zero. This additional part has to comprise the non local character of the
modular group ∆it

WR
. To put it in a nutshell, we have verified the Assumption

5.1 with

δr :=
−2iπp1

(p̂p̂+m2)1/2 − ip0
.

Borchers-Yngvason’s Counter-example

In [17] Borchers and Yngvason give other examples for modular automorphism
groups which act non locally on the wedges, light cones and double cones.
Whereas all investigations given so far have been concerned with modular
groups with respect to the vacuum state, Borchers and Yngvason formulate
the automorphism groups by means of KMS states.

They start with a general C∗-dynamical system (A, αt), an αt-invariant sub-
algebra B, i.e., αt(B) ⊆ B, and an (α, β)-KMS state ω. Due to the analyticity
property of KMS states, Ω is separating, and also cyclic for M := πω(A)′′ and
N := πω(B)′′, if one assumes

⋃
t∈R

αt(B) to be dense in A in the norm topology.
Hence, the existence of the modular objects is ensured and one may determine
the action of the modular automorphism group. Their main theorem reads as
follows.

Theorem 5.2 (Borchers-Yngvason) Let T (t) := eitH be the unitary group
implementing the automrphism group αt and N(t) := T (t)N, then one has:

∆iτ
NN(t)∆−iτ

N
= N

(
ντ (t)

)
,

where

ντ (t) :=
β

2π
log
(
1 + e−2πτ

(
e2πt/β − 1

))

for all t, τ ∈ R satisfying

1 + e−2πτ
(
e2πt/β − 1

)
> 0.

Furthermore,

∆iτ
NM∆−iτ

N
⊂ M and N =

⋂

τ≥0

∆iτ
NM∆−iτ

N

hold for all τ ≥ 0.
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This result is then applied to quasi-local algebras A(O) and B := A(O0),
where O0 is invariant under half-sided translations in t-direction. The authors
restrict themselves to two-dimensional theories which factorise in the light cone
variables x+ := x0+x1 and x− := x0−x1. In these cases one may first establish
the modular group on the algebra M(R+) as

∆iτ
+M

(
[x±,∞[

)
∆−iτ

+ = M
(
[νt+(x±),∞[

)
,

where

νt+(x±) :=
β

2π
log
(
1 + e−2πt

(
e2πx±/β − 1

))

for all t, x± ∈ R satisfying

1 + e−2πt
(
e2πx±/β − 1

)
> 0. (5.6)

In the same manner one introduces the modular group on the algebra M(R−)
as

∆iτ
+M

(
] −∞, x±]

)
∆−iτ

+ = M
(
] −∞, νt−(x±)]

)

with

νt−(x±) := −ν−t+ (−x±)

for all t, x± ∈ R fulfilling

1 + e2πτ
(
e−2πx±/β − 1

)
> 0. (5.7)

Now, one can express the algebra for the two-dimensional space I+ × I− ⊆ R2

via the tensor product

M(I+ × I−) = M(I+) ⊗ M(I−),

in particular, one obtains for the examples of our interest:

M(WR) = M(R−) ⊗ M(R+),

M(V+) = M(R+) ⊗ M(R+), and

M(O) = M(I−) ⊗ M(I+).

The corresponding modular groups with respect to a factorising KMS state
ω ⊗ ω are given as:

∆it
WR

= ∆it
− ⊗ ∆it

+,

∆it
V+

= ∆it
+ ⊗ ∆it

+, and

∆it
O = ∆it

− ⊗ ∆it
+.

Thus, Theorem 5.2 can be applied and one gets as a corollary



90 Modular Group on the Massive Algebra

Theorem 5.3 (Borchers-Yngvason) For the forward light cone one has

∆it
V+
ϕ[f ]∆−it

V+
= ϕ

[
νtV+

f
]

with
(
νtV+

f
)
(x−, x+) := f

(
νt+(x−), νt+(x+)

)
,

for all t ∈ R and x± ∈ R satisfying (5.6) for x = x±.
Analoguously, one has for the right wedge

∆iτ
WR

ϕ[f ]∆−iτ
WR

= ϕ
[
νtWR

f
]

with
(
νtWR

f
)
(x−, x+) := f

(
νt−(x−), νt+(x+)

)
,

for all t ∈ R and x± ∈ R satisfying (5.7) and (5.6) for x = x− and x = x+,
respectively.

For more concrete calculations Borchers and Yngvason investigate the Weyl
algebra of free Bose fields generated by elements W (f), f ∈ D(R), with

W [f ]∗ = W [−f ] and

W [f ]W [g] = e−K(f,g)/2W [f + g],

and

K(f, g) :=

∫ ∞

−∞
pQ(p2)f̃(−p)g̃(p)dp,

where Q(p2) is a non-negative polynomial. They introduce for each scaling
dimension n ∈ N and interval I ⊂ R the algebra M(n)(I) which is generated by
the Weyl operators W (n)[f ] corresponding to Q(p2) = p2n. While the algebra
is known to be independent of n for unbounded I, for bounded intervals one
only has the inclusion

M(m)(I) ⊂ M(n)(I), (5.8)

whenever m > n. Thus the modular operators ∆+ and ∆− corresponding to
the positive real axis and the negative one, respectively, are independent of n.

Theorem 5.4 (Borchers-Yngvason) Let ω be a quasi-free KMS state on the
Weyl algebra M(0)(R+) and π the corresponding cyclic representation, then one
has:

∆it
+π
(
W (0)[f ]

)
∆−it

+ = π
(
W (0)[η

t,(0)
+ f ]

)
,

with

(
η
t,(0)
+ f

)
(x±) := f

(
νt+(x±)

)
:= f

(
β

2π
log
{
1 + e−2πt

(
e2πx±/β − 1

)})
,

and suppf ⊂ R+.
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Because of

W (n)[f ] = W (0)
[
inf (n)

]
,

one may transform the action of the modular group to the case n > 0,

∆it
+π
(
W (n)[f ]

)
∆−it

+ = ∆it
+π
(
W (0)

[
inf (n)

])
∆−it

+

= π
(
W (0)

[
η
t,(0)
+ inf (n)

])

=: π
(
W (n)

[
η
t,(n)
+ f

])
,

and obtains the following result.

Theorem 5.5 (Borchers-Yngvason) Let ω be a quasi-free KMS state on the
Weyl algebra M(n)(R+), n > 0, and π the corresponding cyclic representation,
then the action of ad∆it

+ reads as follows:

∆it
+π
(
W (n)[f ]

)
∆−it

+ = π
(
W (n)[η

t,(n)
+ f ]

)
,

where

(
η
t,(n)
+ f

)
(x±) =

∫ x±

0

∫ x1

0
· · ·
∫ xn−1

0
η
t,(0)
+ f (n)(xn)dxn · · · dx1,

and f (n) is the n-th derivative of the test function f with suppf ⊂ R+.

The modular action on the negative axis is formulated as aforementioned, i.e.,

η
t,(0)
− is defined via the transformation νt−(x±).

Borchers and Yngvason show that the modular group acts locally only in
the case n = 0. While the action on the field operator, which can be regained
from the Weyl operators

π
(
W (n)[f ]

)
=: ei

R

ϕ(n)(x)f(x)dx

through functional derivation, is

∆it
+ϕ

(0)(x±)∆−it
+ = ∂x±ν

t
+(x±)ϕ(0)

(
νt+(x±)

)
,

for n = 1 one gets an additional term, e.g., at the origin

∆it
+ϕ

(1)(0)∆−it
+ = e−2πtϕ(1)(0) − 2π

β
e−4πt

∫ ∞

0
ϕ(1)(x)dx.

In the case of double cones, namely where we are dealing with bounded intervals
I± ⊂ R±, fields of higher scaling dimension ϕ(n), n ≥ 1, are in general localised
only in the algebra M(0)(I±) after the modular action, due to the inclusion
(5.8), but no longer in the original subalgebra M(0)(I±).

To be more precise, due to Theorem 5.3, for the modular action on the
forward light cone we obtain:

∆it
V+
ϕ(0)[f ]∆−it

V+
= ϕ(0)

[
η
t,(0)
V+

f
]

with
(
η
t,(0)
V+

f
)
(x−, x+) := f

(
νt+(x−), νt+(x+)

)
.
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Written in terms of the originial spacetime coordinates the transformated co-
ordinates,

x̄0 =
1

2

(
νt+(x+) + νt−(x−)

)
and

x̄1 =
1

2

(
νt+(x+) − νt−(x−)

)
(5.9)

of x0 and x1, respectively, are

x̄0 =
β

4π
log
{[

1 + e−2πt
(
e2πx+/β − 1

)][
1 + e−2πt

(
e2πx−/β − 1

)]}
,

x̄1 =
β

4π
log

{
1 + e−2πt

(
e2πx+/β − 1

)

1 + e−2πt
(
e2πx−/β − 1

)
}
,

Close to the apex of V+, one obtains the known case β = ∞, i.e., dilations with
the light cone coordinates x+ and x− scaled by the factor e−2πt.

In the case of the right wedge the same arguments lead to the following
modular action:

∆iτ
WR

ϕ(0)[f ]∆−iτ
WR

= ϕ(0)
[
η
t,(0)
WR

f
]

with
(
η
t,(0)
WR

f
)
(x−, x+) := f

(
νt−(x−), νt+(x+)

)
.

The transformed coordinates are:

x̄0 =
β

4π
log

{
1 + e−2πt

(
e2πx+/β − 1

)

1 + e2πt
(
e−2πx−/β − 1

)
}
,

x̄1 =
β

4π
log
{[

1 + e−2πt
(
e2πx+/β − 1

)][
1 + e2πt

(
e−2πx−/β − 1

)]}
.

Here, near the edge of the the wedge, the action may be identified with the case
β = ∞, i.e., with Lorentz boosts where the light cone coordinates x+ and x−
are scaled by the factors e−2πt and e2πt, respectively.

Also in this case, we are interested in the infinitesimal generator δ(n) of the
modular automorphism group acting on wedges, forward light cones and double
cones, since we expect to see this non local behaviour in the pseudo-differential
structure of δ(n). The generator corresponding to the positive real axis in the
case of n = 0 is

δ
(0)
+ ϕ(0)[f ] : = ∂t∆

it
+ϕ

(0)[f ]∆−it
+

∣∣
t=0

= ϕ(0)
[
∂tη

t,(0)
+ f

]∣∣
t=0

,

with
(
∂tη

t,(0)
+ f

)
(x±)

∣∣
t=0

= ∂tf
(
νt+(x±)

)∣∣
t=0

= −β
(
1 − e−2πx±/β

)
∂x±f(x±),

while the counterpart with respect to the negative real axis reads

δ
(0)
− ϕ(0)[f ] : = ∂t∆

it
−ϕ

(0)[f ]∆−it
−

∣∣
t=0

= ϕ(0)
[
∂tη

t,(0)
− f

]∣∣
t=0

,
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with
(
∂tη

t,(0)
− f

)
(x±)

∣∣
t=0

= ∂tf
(
νt−(x±)

)∣∣
t=0

= −β
(
1 − e2πx±/β

)
∂x±f(x±).

In terms of the original spacetime coordinates the infinitesimal generators have
the following form:

δ
(0)
V+
f(x0, x1) =

β

2

[(
e−2πx+/β + e−2πx−/β − 2

)
∂x0

+
(
e−2πx+/β − e−2πx−/β

)
∂x1

]
f(x0, x1), (5.10)

δ
(0)
WR

f(x0, x1) =
β

2

[(
e−2πx+/β + e2πx−/β − 2

)
∂x0

+
(
e−2πx+/β − e2πx−/β

)
∂x1

]
f(x0, x1). (5.11)

The generator for an arbitrary n > 0 is given in the next

Theorem 5.6 The infinitesimal generator of the modular group acting on the
algebra M(n)(R+) is for n > 0

δ
(n)
+ f(x±) = δ

(n−1)
+ f(x±) + δ

(n,r)
+ f(x±), (5.12)

where

δ
(n,r)
+ f(x±) := 2π

∫
(iξ)n(

iξ − 2π
β

)n f̃(ξ)eix±(ξ+2πi/β)dξ. (5.13)

The counterpart for M(n)(R−) for n > 0 reads

δ
(n)
− f(x±) = δ

(n−1)
− f(x±) + δ

(n,r)
− f(x±) (5.14)

with

δ
(n,r)
− f(x±) := −2π

∫
(iξ)n(

iξ + 2π
β

)n f̃(ξ)eix±(ξ−2πi/β)dξ. (5.15)

Proof: By induction one obtains for the positive real axis:

δ
(n+1)
+ f(x±) = ∂t

∫ x±

0

∫ x1

0
· · ·
∫ xn

0
η

(0)
t f (n+1)(xn+1)dxn+1 · · · dx1

∣∣∣∣
t=0

=

∫ x±

0

∫ x1

0
· · ·
∫ xn

0
∂tf

(n+1)
(
νt+(xn+1)

)
dxn+1 · · · dx1

∣∣∣∣
t=0

=

∫ x±

0

∫ x1

0
· · ·
∫ xn

0
∂n+2
xn+1f(xn+1)∂tν

t
+(xn+1)

∣∣
t=0

dxn+1 · · · dx1

=

∫ x±

0

∫ x1

0
· · ·
∫ xn−1

0
∂n+1
xn f(xn)∂tν

t
+(xn)

∣∣
t=0

dxn · · · dx1

−
∫ x±

0

∫ x1

0
· · ·
∫ xn

0
∂n+1
xn+1f(xn+1)∂xn+1∂tν

t
+(xn+1)

∣∣
t=0

dxn+1 · · · dx1

= δ
(n)
+ f(x±) − δ

(n+1,r)
+ f(x±).
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Due to the fact that suppf ⊂ R+, we get for the additional term

δ
(n+1,r)
+ f(x±) = 2π

∫ x±

0

∫ x1

0
· · ·
∫ xn

0
(iξ)n+1f̃(ξ)eix

n+1
± ξe−2πxn+1

± /βdξdxn+1 · · · dx1

= 2π

∫
(iξ)n+1

(
iξ − 2π

β

)n+1 f̃(ξ)eix±(ξ+2πi/β)dξ.

The expression for the generator δ
(n+1,r)
− corresponding to R− is calculated in

the same way.

✷

What we have shown is that the infinitesimal generators δ
(n)
+ and δ

(n)
− with

scaling dimension n ≥ 1 are no longer differential operators but Fourier integral
operators instead, see Definition 2.21. To be more precise, the generators do
have the following structure:

δ
(n)
± = δ

(0)
± +

n∑

k=1

δ
(k,r)
± =: δ

(0)
± + δ

(n)
±,r.

Whereas the principal symbol δ
(0)
± is still a differential operator of order one, the

additional part δ
(n)
±,r is a Fourier integral operator of order zero with complex-

valued symbol

a
(n)
±,r(ξ) :=

n∑

k=1

(iξ)k
(
iξ ∓ 2π

β

)k

and a complex-valued phase function

θ±(x±, ξ) := x±

(
ξ ± 2πi

β

)
,

which is independent of n. In Hörmander’s terminology, see Remark 2.2, δ
(n)
±,r

is a PsDO of order zero with the symbol,

p
(0)
±,r(x±, ξ) :=

n∑

k=1

(iξ)k
(
iξ ∓ 2π

β

)k e
−2πx±/β .

The generators with respect to the spacetime coordinates can be computed

via the equations (5.9). We denote them by δ
(n)
WR,r

, δ
(n)
V+,r

and δ
(n)
D,r. Thus,

Assumption 5.1 is proved with

δ0 := δ
(0)
WR

, δ
(0)
V+
, δ

(0)
D and

δr := δ
(n)
WR,r

, δ
(n)
V+,r

, δ
(n)
D,r

for all n ∈ N.
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5.3 The Approach of Figliolini and Guido

The analysis of Figliolini and Guido [42] is based on the second quantisation
formalism for free time-zero fields over a one-particle Hilbert space. Confer for
a short introduction Appendix B. They consider the modular operator as the
second quantisation of an operator ∆̌, i.e.,

∆ ≡ dΓ(∆̌),

for which they give an explicit expression. This procedure preserves properties
like self-adjointness, positivity and unitarity, but not, for example, bounded-
ness. Now consider a real-valued and closed subset K ⊂ H, denoted by K ⊆R H,
such that the vacuum Ω0 is cyclic and separating for the von Neumann algebra
M(K) :=

{
W (f)| f ∈ K

}′′
which is generated by the Weyl operators W (f) .

In this case one can start with modular theory and define the modular objects
S, J and ∆ in the usual way.

Eckmann and Osterwalder [38] give important insight into the interplay of
modular theory with quantum field theory of Bose fields and perform explicit
calculations of fundamental quantities using their

Theorem 5.7 If K is cyclic and separating for M(K), then the Tomita operator
S is the second quantisation dΓ(S̃) of the closed, densely defined and conjugate-
linear operator Š over H defined by

Š : K + iK −→ K + iK
f + ig 7→ f − ig.

Furthermore, for the polar decomposition Š = J̌∆̌1/2 of S, one has

J = dΓ(J̌) and ∆ = dΓ(∆̌).

The investigation of Figliolini and Guido relies on the statements of this theorem
and the results of Araki [2], and of Leyland, Roberts and Testard [79].

Now let us consider a double cone D ⊂ R4 whose basis O ⊂ R3 is contained
in the time-zero hyperplane. Then we can associate with O the von Neumann
algebra

M(O) :=
{
W (h)| h ∈ Km(O)

}

with Km(O) :=
{
ω−1/2
m f − iω1/2

m g| f, g ∈ D(O)
}
,

where the energy operator ωm is given as

(ωmf )̃ (p) :=

∫
(−∆ +m2)1/2f(x)e−ipxd3x

= (p2 +m2)1/2f̃(p)

for m ≥ 0. The operator ωm is anti-local, which means

suppf ⊂ O and supp(ωf) ⊂ O =⇒ f = 0. (5.16)
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The investigation of Figliolini and Guido [42] is mainly based on ‘local’ Sobolev
spaces,

H±1/2
m (O) := L2(O) ∩ D(ω

±1/2
m )

‖ω
±1/2
m (·)‖

,

in terms of which they reformulate

Km(O) = ω−1/2
m H

−1/2
m,R (O) − iω1/2

m H
1/2
m,R(O).

For bounded regions O ⊂ R3 and α > −3
2 they show

Hα
m(O) ∼= Hα

0 (O),

i.e., it is about the same vector spaces with equivalent norms. On these Sobolev
spaces the important operator Aσ is defined for σ = ±1 as

Aσ : Hσ/2(O) ⊃ Fσ −→ H−σ/2(O), Aσ := P−σω
σ
∣∣
Hσ/2(O)

,

and Fσ := ω−σ
(
H−σ/2(O) + H−σ/2(Oc)

)
∩ Hσ/2(O),

where we have skipped the indices m and R. Fσ is dense in Hσ/2(O), and the
indicator function Pσ is given by

Pσ : Hσ/2(R3) ⊃
(
Hσ/2(O) + Hσ/2(Oc)

)
−→ Hσ/2(R3)

Pσ :=

{
1 on Hσ/2(O),

0 on Hσ/2(Oc),

where Oc represents the causal complement of O. It can be shown that Aσ is
a densely defined and closed operator with the property

(Aσ)
∗ = A−σ.

Now, Figliolini and Guido introduce an isommetric isomorphism between the
domain of S̃ and a direct sum of Sobolev spaces via the unitary operator

T : H−1/2(O) ⊕ H1/2(O) −→ D(Š)

T := 2−1/2
(
ω−1/2 ⊕−iω1/2

)
,

and they identify herewith Š with the operator diag(C,C), since this isomor-
phism maps the invariant elements with respect to diag(C,C) onto the invariant
ones of Š. With this correspondence Figliolini and Guido give an explicit for-
mula for the infinitesimal generator ∆̌m of the modular operator with respect
to the mass m ≥ 0.

Theorem 5.8 Let B be the self-adjoint operator defined as

B : H−1/2(O) ⊕ H1/2(O) ⊃ F−1/2 ⊕F1/2 −→ H−1/2(O) ⊕H1/2(O)

B :=

(
0 iA+1

−iA−1 0

)
,

then for m ≥ 0

1 /∈ Specp(B) and T ∗∆̌mT =
B + 1

B − 1

. (5.17)
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Consequently, 1 is also not contained in the point spectrum of ∆̌m, but one
can show that, since Aσ and therefore B are unbounded, 1 has to be in the
spectrum of ∆̌m. This means that the von Neumann algebra M(O) is the
unique hyperfinite factor of type III1.
The next result of Figliolini and Guido will also be of importance for us.

Theorem 5.9 Let δm be given as aforementioned. Then:

(i) The function m 7→ ∆̌m is continuous in the strong generalised sense.

(ii) The function m 7→ ∆̌it
m is strongly continuous, uniformly for every t in

any finite interval.

(iii) The function m 7→ ∆it
m is strongly continuous, uniformly for every t in

any finite interval.

Although with Theorem 5.8 Figliolini and Guido seem to give an explicit
expression for the massive generator, its real nature is not apparent. Even if one
tries to calculate the special case m = 0 directly via (5.17) in order to confirm
the results of Bisognano and Wichmann, Theorem 4.37, Buchholz, Theorem
4.42, and Hislop and Longo, Theorem 4.41, one faces some obstacles. Also the
verification of Theorem 5.8 by use of the known modular operators for m = 0,
i.e., by insertion of the known massless modular operators acting on the Cauchy
data into equation (5.17), is not free of difficulties.

As mentioned above, see (5.16), the energy operator ω reshuffles the support
of the test functions also into the causal complement of O, what is then corrected
by the characteristic operator Pσ. Because of this anti-local property of ω, the
term

A−1A+1 = P+1ω
−σ
∣∣
H−1/2(O)

P−1ω
σ
∣∣
H1/2(O)

,

can hardly be further analysed directly, as long as one is not able to completely
determine this reshuffling procedure. This lack of knowledge termitates the idea
to approach the problem with the use of asymptotic expansions of ω and ω−1,
see Example 2.10,

ωf(x) =

(
(−∆)1/2 +

m2

2
(−∆)−1/2 +

∞∑

k=2

1 · 3 · · · (2k − 3)

2 · 4 · · · 2k (−∆)−k+
1
2m2k

)
f(x),

and

ω−1f(x) =

(
(−∆)−1/2 − m2

2
(−∆)−3/2

+
∞∑

k=2

1 · 3 · · · (2k − 3)

2 · 4 · · · 2k (−∆)−k−
1
2m2k

)
f(x),

where f is a test function.
It is more probable that Theorem 5.8 could contribute to the determination

of the order of the infinitesimal generator, since the analysis of Figliolini and
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Guido is realised by means of Sobolev spaces and, for pseudo-differential op-
erators, the order is linked up with the mapping property via Equation (2.4),
namely via the implication:

s < s′ =⇒ Hs′(Rn) ⊂ Hs(Rn).

This relation could lead to an upper bound for the order and, if the upper
bound is less than one, confirm the assertion of the infinitesimal generator for
the massless theory being the leading part.

5.4 Unitary Equivalence of Free Local Algebras

In [37] Eckmann and Fröhlich prove the unitary equivalence of local algebras
Mm(O) ≡ M(O,m), where O is a bounded open subset of Rd, in the quasifree
representation for m ≥ 0. Their proof is based on the strategy that two rep-
resentations of the CCR are isomorphic if the number operators from one of
them can be described by means of the state which implements the other rep-
resentation. In the sequel we want to summarize their result. Let Rd be the
configuration space and H := L2(Rd, dx) the Hilbert space of the one-particle
wave functions. Furthermore we denote by

F(H) :=

∞⊕

m=0

L2(Rd, dx)⊗sm, with L2(Rd, dx)⊕s0 := C,

the symmetric Fock space over H and the vacuum vector by Ω0 := (1, 0, 0, · · · ) ∈
H.
The creation and annihilation operators A∗(f) and A(g), f, g ∈ H, satisfy the
canonical commutation relations (CCR),

[
A(f), A∗(g)

]
= (f, g)2 :=

∫

Rd

f̄(x)g(x)dx,

[
A(f), A(g)

]
=
[
A∗(f), A∗(g)

]
= 0,

and
A(f)Ω0 = 0 ∀f ∈ H.

Eckmann and Fröhlich are considering the Fourier transform of multiplication
by (k2 +m2)1/2 on L2(Rd, dk),

µf(x) :=

∫ (
(k2 +m2)1/2

)∼
(x− y)f(y)dy

for all m ≥ 0. Then µ is a real, positive and self-adjoint operator on H, and,
for some dense set Dµ ⊆ L2

real(R
d, dk), it fulfills the following inclusions:

D(µ1/2) ⊇ D(µ) := Dµ + iDµ, and D(µ−1/2) ⊇ D(µ).

Further on they restrict themselves to the time-zero formulation, i.e.,

ϕµ[f ] = 2−1/2
(
A∗(µ−1/2f) +A(µ−1/2f)

)
, (5.18)

πµ[f ] = 2−1/2
(
A∗(µ+1/2f) +A(µ+1/2f)

)
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for f ∈ Dµ. These fields satisfy the Weyl relations,

eiϕµ[f ]eiπµ[g] = ei(f,g)2eiπµ[g]eiϕµ[f ].

For a bounded open region O ⊆ Rd a complex ∗-algebra

◦
Mµ(O) :=

{
eiϕµ[f ], eiπµ[f ]| f ∈ Dµ, suppf ⊂ O

}
(5.19)

is constructed along with the von Neumann algebra Mµ(O) as its weak closure
in F(H).
Since von Neumann algebras with respect to different masses are to be com-
pared, Eckmann and Fröhlich examine two different operators µ−1

1 and µ−1
2 ,

which satisfy the following statements for D := D + iD with a dense subset
D ⊆ L2

real(R
d, dk):

D
(
µ

+1/2
1

)
⊇ D ∪ µ−1/2

2 D, D
(
µ

+1/2
2

)
⊇ D ∪ µ−1/2

1 D,
D
(
µ
−1/2
1

)
⊇ D ∪ µ+1/2

2 D, D
(
µ
−1/2
2

)
⊇ D ∪ µ+1/2

1 D.

The ∗-algebras Mµi(O), i = 1, 2, are defined via (5.19) by replacing Dµ with
D. The Bogoliubov transformation β := (β+, β−) is introduced as

β± :=
1

2

(
µ
−1/2
2 µ

1/2
1 ± µ

1/2
2 µ

−1/2
1

)
.

If all conditions given above are fulfilled, then the mapping

(A∗, A) 7→ (A∗
β , Aβ)

with

A∗
β := A∗(β+f) +A(β−f),

Aβ := A∗(β−f) +A(β+f),

defines another one for the fields

(
ϕµ1 [f ], πµ1 [g]

)
7→
(
ϕµ2 [f ], πµ2 [g]

)
,

via the relations (5.18) to get herewith an invertible homomorphism

τβ :
◦
Mµ1(R

d) −→
◦
Mµ2(R

d). (5.20)

One obtains the explicit form

ϕµ2 [f ] = 2−1/2
(
A∗
β [µ

−1/2
1 f ] +Aβ[µ

−1/2
1 f ]

)

= 2−1/2
(
A∗[β+µ

−1/2
1 f ] +A[β−µ

−1/2
1 f ] +A∗[β−µ

−1/2
1 f ] +A[β+µ

−1/2
1 f ]

)

= 2−1/2
(
A∗[(β+ + β−)µ

−1/2
1 f ] +A[(β− + β+)µ

−1/2
1 f ]

)

= 2−1/2
(
A∗[µ

−1/2
2 f ] +A[µ

−1/2
2 f ]

)
.

(5.21)
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For irreducible representations, τβ according to (5.20) is unitarily implementable
on F if and only if β is a Hilbert-Schmidt operator.
The main result of Eckmann and Fröhlich, namely the unitary equivalence of
von Neumann algebras of local observables Mµi , i = 1, 2, is stated in the fol-
lowing

Theorem 5.10 Let

µif(x) :=

∫ (
(k2 +m2

i )
1/2
)∼

(x− y)f(y)dy, i = 1, 2, (5.22)

then the factors Mµ1(O) and Mµ2(O) are unitarily equivalent for bounded open
regions O ⊂ Rd with piecewise smooth boundaries

(i) in d = 2, 3 space dimensions if mi = 0 for one µi, and

(ii) in d = 1 space dimensions if mi 6= 0 for both i = 1, 2.

We want to make use of this unitary equivalence of local algebras for the
description of the massive fields by means of the massless ones in order to reduce
the modular action in the massive to the known massless case.

Corollary 5.11 For the massive ϕm[f ] ∈ Mm(O), m > 0, and massless free
scalar fields ϕ0[f ] ∈ M0(O), where O is a bounded open region in R3, the
following statement holds:

ϕm[f ] = ϕ0[f ] + ϕ0

[
frest

]
(5.23)

with frest(x) = −4π

∫ ( |r|3/2
(r2 +m2)1/4

− r

)
sin
(
r|x− y|

)

|x− y| f(y)drdy.

Proof: First, we choose in (5.22) operators µ0 and µm with the masses m = 0

and m > 0, respectively, and obtain for the product µ
1/2
0 µ

−1/2
m (f):

µ
1/2
0 µ−1/2

m (f) =

∫ ( |k|1/2
(k2 +m2)1/4

)∼

(x − y)f(y)dy

=

∫ ( |k|1/2
(k2 +m2)1/4

− 1 + 1

)∼

(x − y)f(y)dy

=

∫ {( |k|1/2
(k2 +m2)1/4

− 1

)∼

(x − y) + δ0(x− y)

}
f(y)dy

= f(x) +

∫ ( |k|1/2
(k2 +m2)1/4

− 1

)∼

(x − y)f(y)dy

= f(x) +

∫ ( |k|1/2
(k2 +m2)1/4

− 1

)

︸ ︷︷ ︸
=:K(k)

e−i〈k,(x−y)〉f(y)dkdy

=: f(x) + fr(x).

(5.24)



5.4 Unitary Equivalence of Free Local Algebras 101

Since K(k) and therefore K̃(x−y) are invariant under rotations we are allowed
to simplify the right-hand side by choosing special coordinates (0, 0, |x − y|)t,

frest(x) =

∫ ( |k|1/2
(k2 +m2)1/4

− 1

)
e−i〈k,(0,0,|x−y|)t〉f(y)dkdy. (5.25)

Passing to spherical coordinates yields,

frest(x) = −
∫ ( |r|1/2

(r2 +m2)1/4
− 1

)
e
−ir

fi„

cos θ cos φ
cos θ sin φ

sin θ

«

,

„

0
0

|x − y|

«fl

·

· r2 cos θf(y)drdφdθdy

=

∫ ( |r|1/2
(r2 +m2)1/4

− 1

)
e−ir sin θ|x−y|r2 cos θf(y)drdφdθdy

=
2π

i

∫ [( |r|3/2
(r2 +m2)1/4

− r

)
e−ir sin θ|x−y|

|x − y|

]π
2

−π
2

f(y)drdy

=
2π

i

∫ ( |r|3/2
(r2 +m2)1/4

− r

)
e−ir|x−y| − eir|x−y|

|x − y| f(y)drdy

= −4π

∫ ( |r|3/2
(r2 +m2)1/4

− r

)
sin
(
r|x − y|

)

|x− y| f(y)drdy

= −4π

∫
R(r)

sin
(
r|x− y|

)

|x − y| f(y)drdy,

where

R(r) :=
|r|3/2

(r2 +m2)1/4
− r.

Because of relation (5.21) we conclude:

ϕm[f ] = 2−1/2
(
A∗[µ

−1/2
2 f ] +A[µ

−1/2
2 f ]

)

= 2−1/2
(
A∗[µ

−1/2
1 µ

1/2
1 µ

−1/2
2 f ] +A[µ

−1/2
1 µ

1/2
1 µ

−1/2
2 f ]

)

= ϕ0

[
µ

1/2
1 µ

−1/2
2 (f)

]
,

(5.26)

where we set ϕ0[f ] := ϕµ1 [f ] and ϕm[f ] := ϕµ2 [f ]. We complete the proof of the
statement with the help of Theorem 5.10 and the relations (5.24) and (5.26),

ϕm[f ] = ϕ0[f(x)] + ϕ0[frest(x)].

✷

Thus the term ϕ0[frest] represents the difference between the massless and
massive algebra.
Evidently, the next step would be to derive the action of δm on the massive
algebra via the action of δ0 on the massless algebra, i.e. via equation (5.23).
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But this strategy cannot be applied since the test functions f and frest do not
have the same support. In general, the support of frest does not have to lie
in the same double cone as that of f . Also here, the reshuffling procedure
cannot be specified further, what would be necessary for the the final step of
this analysis.

In the cases where this non locality would not occur, the massive infinitesi-
mal generator reads

δm = δ0 + δrest

with

δrestf(x) :=

∫
R(r)

(
r|x − y| cos

(
r|x− y|

)
− sin

(
r|x− y|

))

|x− y|3 ·

· y0(1 + x2)f(y)drdy.

Under the assumption of δrest being a pseudo-differential operator, the symbol
of the infinitesimal generator has to be of the following form:

p(x,y, r) := R(r)e−i(x−y)ry0(1 + x2)·

·

(
r|x− y| cos

(
r|x− y|

)
− sin

(
r|x− y|

))

|x − y|3 .

One identifies p(x,y, r) as a classical symbol with a singularity at the point
x = y.

5.5 Cocycle-Theorem

One may use the unitary equivalence relation between the massive algebra
Mm(O) and the massless algebra M0(O) for the investigation of another ap-
proach. The idea is to formulate the modular automorphism group for the
massive von Neumann algebra στm,0 with reference to the ‘wrong’ massless vac-
uum vector Ω0 in an intermediate step. This strategy is allowed insofar as, due
to the unitary equivalence, Ω0 is cyclic and separating for the massive algebra,
too, and consequently one can formulate the modular objects in this case.

As a well-known fact the massive free scalar field ϕm ∈ Mm(O) can be
described by means of the ∆m(x− y) := E(x, y) and the Cauchy data ϕ0(0,y)
and ∂tϕ0(0,y),

ϕm(t,x) =

∫ (
∆m(t,x − y)ϕ̇0(0,y) + ∆̇m(t,x − y)ϕ0(0,y)

)
dy,

where ϕ0 ∈ M0(O). The modular group στm,0 acts on the smeared-out field
according to:
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στm,0ϕm[f ] = στ0

(∫ [
∆m(t,x − y)ϕ̇0(0,y) + ∆̇m(t,x − y)ϕ0(0,y)

]
f(x)dydx

)

=

∫ (
∆m(t,x − y)ϕ̇0

(
ν−τ (0,y)

)

+ ∂t∆m(t,x − y)ϕ0

(
ν−τ (0,y)

))
γτf

(
ν−τ (x)

)
dydx,

where στ0 denotes the modular group in Theorem 4.41, which has been derived
by Hislop and Longo for the massless algebra and double cones. Also for the def-
inition of γτ ≡ γ(x0, x3, τ) and ν−τ (x) consult Theorem 4.41.The infinitesimal
generator δm,0 of στm,0 is then given by the derivative at the point τ = 0.

∂τσ
τ
m,0ϕm[f ] =

∫
∂τ

{(
∆m(t,x − y)ϕ̇0

(
ν−τ (0,y)

)

+ ∆̇m(t,x− y)ϕ0

(
ν−τ (0,y)

))
γτf

(
ν−τ (x)

)}
dydx

=

∫ (
∆m(t,x − y)∂τ ϕ̇0

(
ν−τ (0,y)

)

+ ∆̇m(t,x− y)∂τϕ0

(
ν−τ (0,y)

))
γτf

(
ν−τ (x)

)
dydx

+

∫ (
∆m(t,x − y)ϕ̇0

(
ν−τ (0,y)

)

+ ∆̇m(t,x− y)ϕ0

(
ν−τ (0,y)

))
∂τ
(
γτ
)
f
(
ν−τ (x)

)
dydx

+

∫ (
∆m(t,x − y)ϕ̇0

(
ν−τ (0,y)

)

+ ∆̇m(t,x− y)ϕ0

(
ν−τ (0,y)

))
γτ∂τf

(
ν−τ (x)

)
dydx.

(5.27)

Let us have a closer look on the first addend on the right-hand side of equation
(5.27),

∂τ∂tϕ0

(
ν−τ (0,y)

)
= ∂2

t ϕ0

(
ν−τ (0,y)

)
∂τν−τ (0,y)

+

3∑

i=1

∂yi∂tϕ0

(
ν−τ (0,y)

)
∂τν−τ (0,y)

=
(
∆ −m2

)
ϕ0

(
ν−τ (0,y)

)
∂τν−τ (0,y)

+

3∑

i=1

∂yi∂tϕ0

(
ν−τ (0,y)

)
∂τν−τ (0,y),

∂τϕ0

(
ν−τ (0,y)

)
= ∂tϕ0

(
ν−τ (0,y)

)
∂τν−τ (0,y)

+

3∑

i=1

∂yiϕ0

(
ν−τ (0,y)

)
∂τν−τ (0,y)
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By plugging this into (5.27) at the origin τ = 0 we get,

δm,0ϕm[f ] = ∂τσ
τ
m,0ϕm[f ]

∣∣
τ=0

=

∫ {
∆m(t,x − y)

[(
∆ −m2

)
ϕ0(0,y) +

3∑

i=1

∂yiϕ̇0(0,y)
]
∂τν−τ (0,y)

∣∣
τ=0

+ ∆̇m(t,x − y)
3∑

i=0

∂yiϕ0(0,y)∂τ ν−τ (0,y)
∣∣
τ=0

}
f(x)dydx

+

∫ {
∆m(t,x − y)∂tϕ0(0,y) (5.28)

+ ∆̇m(t,x − y)ϕ0(0,y)
}
∂τγτ

∣∣
τ=0

f(x)dydx

+

∫ {
∆m(t,x − y)ϕ̇0(0,y)

+ ∆̇m(t,x − y)ϕ0(0,y)
}
∂τf

(
ν−τ (x)

∣∣
τ=0

)
dydx,

=

∫ {
∆m(t,x − y)

[
(∆ −m2)ϕ0(0,y)+

3∑

i=1

∂yiϕ̇0(0,y) + ϕ̇0(0,y)∂t

]
f(x)

+ ∆̇m(t,x − y)
[ 3∑

i=1

∂yiϕ0(0,y) + ϕ0(0,y)∂t

]}

f(x)(1 + x2)dydx,

where we have used the relations

lim
τ→0

γ(x0, x3, τ) = lim
τ→0

ν−τ (x) = 1,

∂τν−τ (x
0)
∣∣
τ=0

= −1

2
(1 + x2) + (x0)2,

and ∂τν−τ (x)
∣∣
τ=0

= xx0.

To put it in a nutshell we have shown

Theorem 5.12 Let Mm(O) be the von Neumann algebra generated by the mas-
sive free scalar field ϕm[f ], then δm,0 given in (5.28) is the infinitesimal gen-
erator of the modular automorphism group στm,0 on Mm(O) with respect to the
massless vacuum vector Ω0.

Now one hopes to bridge the gap between the ‘wrong’ massless vacuum
and the massive vacuum via the cocycle theorem. For this purpose we have to
thoroughly investigate the proof of Connes’ Theorem 4.9.
First of all, we define a new faithful, semifinite and normal state on Nρ :=
Mm

⊗
M2 with reference to the massive and massless states on Mm by

ρ

(
A11 A12

A21 A22

)
:= (ωm ⊕ ω0)

(
A11 A12

A21 A22

)
:= ωm(A11) + ω0(A22).
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Because of the properties of ρ mentioned above, we may introduce the cor-
responding modular objects. One finds that the representation space can be
expressed as a direct sum of mutually orthogonal subspaces,

Hρ = Hωm,ωm ⊕Hωm,ω0 ⊕Hω0,ωm ⊕Hω0,ω0,

with

Hωm,ωm :=
[(

(nωm ∩ n∗ωm
) ⊗ e11

)
+ Nρ

]
,

Hωm,ω0 :=
[(

(n∗ωm
∩ nω0) ⊗ e12

)
+ Nρ

]
,

Hω0,ωm :=
[(

(nωm ∩ n∗ω0
) ⊗ e21

)
+ Nρ

]
,

Hω0,ω0 :=
[(

(nω0 ∩ n∗ω0
) ⊗ e22

)
+ Nρ

]
,

where Nρ :=
{
A ∈ Nρ| ρ(A∗A) = 0

}
is a left ideal of Nρ, nωm :=

{
A ∈

Mm| ωm(A∗A) <∞
}
, nω0 :=

{
A ∈ Mm| ω0(A

∗A) <∞
}

and

e11 :=

(
1 0
0 0

)
, e12 :=

(
0 1
0 0

)
, e21 :=

(
0 0
1 0

)
, e22 :=

(
0 0
0 1

)

are the matrix units. The brackets ‘[ · ]’ denote the closure in the Hilbert space
Hρ. The von Neumann algebra Nρ inherits its involution from M. Since we
are concerned with states, not weights, the sets simplify to nωm = nω0 = Mm.
Furthermore, because ρ is faithful, we obtain Nρ = {0}. For the domain of the
∗-operation on has,

D∗ =
(
D∗ ∩Hωm,ωm

)
⊕
(
D∗ ∩Hωm,ω0

)
⊕
(
D∗ ∩Hω0,ωm

)
⊕
(
D∗ ∩Hω0,ω0

)
,

which determines the Tomita operator as

S
(
D∗ ∩Hωm,ωm

)
= D∗ ∩Hωm,ωm,

S
(
D∗ ∩Hωm,ω0

)
= D∗ ∩Hω0,ωm ,

S
(
D∗ ∩Hω0,ωm

)
= D∗ ∩Hωm,ω0,

S
(
D∗ ∩Hω0,ω0

)
= D∗ ∩Hω0,ω0 .

Written in a more compact form, we obtain for the Tomita operator the follow-
ing matrix:

S =




S11 0 0 0
0 0 S23 0
0 S32 0 0
0 0 0 S44


 .

Its adjoint is given by

F =




F11 0 0 0
0 0 F23 0
0 F32 0 0
0 0 0 F44


 ,
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where the components are fixed as

F11 := S∗
11, F23 := S∗

32, F32 := S∗
23 and F44 := S44.

Finally, via polar decomposition

S = J∆1/2 = ∆−1/2J,

which is equivalent to

S11 = J11∆
1/2
11 = ∆

−1/2
11 J11,

S23 = J23∆
1/2
33 = ∆

−1/2
22 J23,

S32 = J32∆
1/2
22 = ∆

−1/2
33 J32,

S44 = J44∆
1/2
44 = ∆

−1/2
44 J44,

we arrive at the modular conjugation and, most important for us, the modular
operator:

J =




J11 0 0 0
0 0 J23 0
0 J32 0 0
0 0 0 J44


 and ∆ =




∆11 0 0 0
0 ∆22 0 0
0 0 ∆33 0
0 0 0 ∆44


 .

Let Mm act on the Hilbert space H, then one can find linear maps

ξ : nωm ∋ A 7→ ξ(A) ∈ H and

η : nω0 ∋ A 7→ η(A) ∈ H

such that for all AM ∈ Mm, Am, Bm ∈ nωm and A0, B0 ∈ nω0

AMξ(Am) = ξ(AMAm), ωm(A∗
mBm) =

(
ξ(Am), ξ(Bm)

)
,

AMη(A0) = η(AMA0), ω0(A
∗
0B0) =

(
η(A0), η(B0)

]
,

and H =
[
ξ(nωm)

]
=
[
η(nω0)

]
.

The form of the representation space with respect to ρ is reduced to

Hρ = H⊕H⊕H⊕H,

and the representation itself to:

πρ

(
A11 A12

A21 A22

)
=




A11 A12 0 0
A21 A22 0 0
0 0 A11 A12

0 0 A21 A22


 .

Since the modular automorphism group on Nρ should leave the representation
space invariant, i.e.,

σtρ
(
πρ(Nρ)

)
= ∆itπρ(Nρ)∆

−it = πρ(Nρ),
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we conclude

∆it
11A11∆

−it
11 = ∆it

33A11∆
−it
33 , ∆it

11A12∆
−it
22 = ∆it

33A12∆
−it
44 ,

∆it
22A21∆

−it
11 = ∆it

44A21∆
−it
33 , ∆it

22A22∆
−it
22 = ∆it

44A22∆
−it
44 .

The identification of ∆11 and ∆44 with ∆ωm and ∆ω0 , respectively, yields the
following expressions for the modular automorphism groups,

σtωm
(A) = ∆it

11A∆−it
11 ∈ Mm, σtωm,ω0

(A) = ∆it
11A∆−it

22 ∈ Mm,

σtω0,ωm
(A) = ∆it

22A∆−it
11 ∈ Mm, σtω0

(A) = ∆it
22A∆−it

22 ∈ Mm,

for all A ∈ Mm. Finally, we can write down the form of the modular group
with respect to ρ explicitly:

σtρ

[(
A11 A12

A21 A22

)]
=

(
σtωm

(A11) σtωm,ω0
(A12)

σtω0,ωm
(A21) σtω0

(A22)

)
. (5.29)

As already mentioned, the unitary cocycle appearing in Connes’ Theorem is
defined by (

0 Γt
0 0

)
:= σtρ

[(
0 1

0 0

)]
,

and therefore one has its explicit structure

Γt = σtωm,ω0
(1)

for all t ∈ R.
Thus, the modular automorphism group with respect to the massive vacuum

on the massive algebra is determined up to a cocycle, i.e., up to a perturbation
term.
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Chapter 6

Summary and Outlook

Laß uns das Leben genießen,
solange wir es nicht begreifen.

K. Tucholsky

In this thesis, the interplay between modular theory and quantum field the-
ory has been investigated extensively. It has been shown that modular theory
not only is an excellent tool for the description of quantum field theory, espe-
cially for its most fundamental pillars like the PCT theorem, the spin-statistics
theorem, and the concept of particles, but also discloses totally new and concep-
tually groundbreaking insights, for example the classification of quantum sys-
tems as hyperfinite factors of type III1, the formulation of equilibrium states,
the KMS states, and, last but not least, the introduction of the modular action
as a geometric transformation. It has also been proven that another increas-
ingly important mathematical discipline, namely micro-local analysis, apart
from Radzikowki’s characterisation of Hadamard states by wave front sets, en-
ters quantum field theory a second time via the determination of the infinitesi-
mal generator of modular groups with non local action as a pseudo-differential
operator.

The well-known Assumption 5.1 on the qualitative structure of the infinites-
imal generator of modular groups acting non locally has been confirmed explic-
itly for the first time in two concrete examples. The first example, given by Yn-
gvason [119], is concerned with the algebra of massive Hermitian fields defined
on the left or right wedges and transforming covariantly under translations, but
not in general under Lorentz boosts. The second one, formulated by Borchers
and Yngvason [17], introduces modular automorphism groups for the wedges,
forward light cones, and double cones with respect not only to the vacuum state
but also to general KMS states, which turn out to act locally only in the limit
β = T−1 → ∞, i.e., in the limit of ground states. One may pose the question if
an automorphism group acting non locally on the von Neumann algebra always
implies a pseudo-differential form for its infinitesimal generator.

The ansatz of Figliolini and Guido [42] for the derivation of the modular
operator in the case of m ≥ 0 has been discussed, and the conceptual and
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technical difficulties occurring there have been explored. Even the verification
of the known results in the massless case can hardly be mastered as long as
one is not able to determine the reshuffling property of the operators on which
their analysis is based. It is possible, that the analysis of Figliolini and Guido
could contribute to the identification of the order of the massive infinitesimal
generator through the mapping property of the operator B, defined in Theorem
5.8, and the implication (2.4) for Sobolev spaces,

s < s′ =⇒ Hs′(Rn) ⊂ Hs(Rn).

Furthermore, two new approaches to the calculation of the modular auto-
morphism group

(
σtm
)
t∈R

have been investigated. The first one, the ansatz via
the unitary equivalence of local algebras, is shown to lead to non-local transfor-
mations, an obstacle which has been faced many times in various settings and
which leads to uncontrollable domain problems. The second one gives a partial
result, namely an automorphism group on the massive algebra, but with respect
to the ‘wrong’ massless vacuum state

(
σtm,0

)
t∈R

. The desire to bridge the gap

to our main target
(
σtm
)
t∈R

, the modular automorphism group with reference
to the ‘right’ massive vacuum, via Connes’ cocycle theorem remains unaccom-
plished, since this theorem is not constructive, but only ensures the existence
of the cocycle. The perturbation formalism, which is used in the analysis of the
interplay between KMS states and stability criteria, could provide assistance
with this problem.

One may replace in future investigations the two-point function of the mas-
sice vacuum,

∆+
m(x) =

1

(2π)3

∫
Θ(p0)δ(p2 −m2)eipxdp,

by the modified version, proposed in [36],

Hµ
m(x) := ∆+

m(x) − log

(
m2

µ2

)
m2h(m2x2),

with Hµ
0 (x) = ∆+

0 (x),

where µ > 0 is a new fixed mass parameter and h is an analytic function such
that Hµ

m(x) is smooth in m ≥ 0. This ansatz is based on the idea that, since the
second term comprises all logarithmic singularities, the new two-point function
could be more compatible with conformal transformations.



Appendix A

C∗-Algebras, States,

Representations

Was auch immer geschieht:
Nie dürft ihr so tief sinken, von dem Kakao,

durch den man euch zieht, auch noch zu trinken!

E. Kästner

In this chapter we want to give in a nutshell the basic terminology and
some concepts of operator algebras which is used throughout this thesis. In
the sequel we present in the following a number of definitions and statements
collected mainly from [103], [20] and [102] without giving their proofs.

Definition A.1 A C∗-algebra A is a Banach∗-algebra, i.e., A is a Banach
algebra with involution and ‖A∗‖ = ‖A‖, such that ‖A∗A‖ = ‖A‖2 for all
A ∈ A. A is said to be simple, if the only closed ideals are {0} and A itself.

Theorem A.2 Let A be an abelian and unital C∗-algebra, then there exists a
compact Hausdorff space X such that A is (isometrically) isomorphic to C(X ).
In the case of a non-unital C∗-algebra, A is (isometrically) isomorphic to C0(X ),
if X is locally compact. In both cases the space X is uniquely determined up to
homomorphisms.

Definition A.3 A C∗-algebra M is called W ∗-algebra, if it is the dual space of
some Banach space.

If one is concerned with operator algebras, then it is usual to call W ∗-algebras
von Neumann algebras. Sakai has proved that the abstract characterisation of
von Neumann algebras given above is equivalent to the more usual definition:
Let H be a Hilbert space and L(H) the algebra of linear bounded operators

A : H −→ H
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equipped with the norm

‖A‖ := sup
ψ∈H,‖ψ‖≤1

‖Aψ‖ <∞.

Define the commutant A′ of A as the algebra

A′ := {X ∈ L(H) : XA = AX, A ∈ A}

with the properties

A ⊆ A′′ = A(4) = A(6) = · · · ,
A′ = A′′′ = A(5) = A(7) = · · · ,

where A(n+1) :=
(
A(n)

)′
.

Then one verifies the following

Theorem A.4 (Sakai) Every ∗-algebra M ⊆ L(H) is a von Neumann algebra
if and only if M = M′′.

Examples A.5

(i) L(H) is not only a von Neumann algebra, but even a factor since L(H)′ =
C1.

(ii) The C∗-algebra of compact operators LC(H) on H cannot be a von Neu-
mann algebra, because LC(H)′′ = (C1)′ = L(H) 6= LC(H).

For further discussions on von Neumann algebras, additional topologies
apart from the uniform topology are needed. For the sake of completeness,
we introduce the most important ones although we will not make use of all of
them explicitly.

Definition A.6 On L(H) we distinguish between the locally convex operator
topologies defined by the following sets of seminorms:

(i) σ-weak: p(un),(vn)(A) :=
∣∣∑
n

(un, Avn)
∣∣ for all un, vn ∈ H

with
∑
n

(
‖un‖2 + ‖vn‖2

)
<∞.

(ii) weak: pu,v(A) := |(u,Av)| for all u, v ∈ H.

(iii) strong: pu(A) := ‖Au‖ for all u ∈ H.

(iv) σ-strong: p(un)(A) :=
∑
n
‖Aun‖2 for all un ∈ H with

∑
n
‖un‖2 <∞.

(v) ∗-strong: A→ pu(A) + pu(A
∗) for all u ∈ H.

(vi) σ∗-strong: A→
{∑

n
‖Aun‖2 +

∑
n
‖A∗un‖2

} 1
2

for all un ∈ H
with

∑
n
‖un‖2 <∞.
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For our purposes the σ-weak and σ-strong topologies will be of particular
interest, because the modular group of automorphisms is contiuous with respect
to them. If we denote by “<” the relation “finer than”, then the following dia-
gram shows the relation between the various topologies:

uniform < σ∗-strong < σ-strong < σ-weak
∧ ∧ ∧

∗-strong < strong < weak .

The σ∗-strong, σ-strong and σ-weak topologies allow for the same contin-
uous linear functionals. This statement remains true if one drops the σ-. The
main difference between the ∗-strong and the σ∗-strong topology is the fact that
the involution A 7→ A∗ is only ∗-strongly continuous.
With the help of these topologies we formulate the next

Theorem A.7 (Bicommutant -) Let A ⊂ L(H) be a nondegenerate ∗-algebra,
i.e., [AH] := {Aξ| A ∈ A, ξ ∈ H} = H, then the following statements are equiv-
alent:

(i) A = A′′.

(ii) A is weakly closed.

(iii) A is strongly closed.

(iv) A is ∗-strongly closed.

(v) A is σ-weakly closed.

(vi) A is σ-strongly closed.

(vii) A is σ∗-strongly closed.

Therefore, a von Neumann algebra is a weakly closed C∗-subalgebra of L(H).
The bicommutant theorem also states that the closure of the ∗-algebra is inde-
pendent of the choice of a particular topology. An immediate consequence is
the next

Corollary A.8 (von Neumann density -) The nondegenerate ∗-algebra of
operators A on H is weakly, strongly, ∗-strongly, σ-weakly, σ-strongly and σ∗-
strongly dense in A′′.

This statement can be tightened to a stronger version.

Theorem A.9 (Kaplanskys density -) The unit ball of the ∗-algebra of op-
erators A on H is σ∗-strongly dense in the unit ball of the weak closure of A.

Definition A.10 Let A,B be C∗-algebras, then a linear map φ : A −→ B is
called a ∗-homomorphism if
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(i) φ(AB) = φ(A)φ(B), and

(ii) φ(A∗) =
(
φ(A)

)∗

hold for all A,B ∈ A.

The notions mono-, epi-, iso-, endo- and automorphism are introduced in the
usual manner. We want to keep hold of some fundamental properties of ∗-
homomorphisms φ in the following

Lemma A.11 Let A and B be C∗-algebras and φ : A −→ B a ∗-homomorphism.
Then the following statements are valid:

(i) φ preserves positivity: A ≥ 0 =⇒ φ(A) ≥ 0.

(ii) φ is continuous, and ‖φ(A)‖ ≤ ‖A‖ for all A ∈ A, thus φ can only decrease
the norm.

(iii) φ is a ∗-isomorphism if and only if kerφ := {A ∈ A : φ(A) = 0} = {0}.

(iv) A ∗-isomorphism is automatically isometrical, i.e., norm preserving: ‖φ(A)‖ =
‖A‖ for all A ∈ A.

(iv) The image φ(A) of a C∗-algebra A is again a C∗-algebra.

In the case of von Neumann algebras we may state stricter properties of ∗-
homomorphism.

Theorem A.12 ∗-homomorphisms φ : M −→ N between von Neumann alge-
bras M and N are σ-weakly and σ-strongly continuous.

Definition A.13 A representation of a C∗-algebra A is a pair (H, π), consist-
ing of a complex Hilbert space H and a ∗-homomorphism π : A −→ L(H),
and it is said to be faithful if π is a ∗-isomorphism, and nondegenerate if
{v ∈ H : π(A)v = 0, A ∈ A} = {0}. A subspace F ⊂ H is called invari-
ant under π(A) if π(A)F ⊆ F for all A ∈ A. Whenever {0} and H are the only
invariant and closed subspaces, we call the representation (H, π) irreducible,
otherwise reducible. Two representations (H1, π1) and (H2, π2) are said to be
unitarily equivalent if there exists a unitary operator U : H1 −→ H2 such that
π2(A) = Uπ1(A)U∗ for all A ∈ A. If the two Hilbert spaces are connected via a
∗-isomorphism instead, then we call π1 and π2 quasi-equivalent.

Corollary A.14 The representation (H, π) of a C∗-algebra A is faithful if and
only if one of the following (equivalent) conditions is satisfied:

(i) ker π = {0}.

(ii) ‖π(A)‖ = ‖A‖ ∀A ∈ A.

(iii) π(A) > 0 ∀A ∈ A+.
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Each representation (H, π) of a C∗-algebra A defines a faithful representation
of the quotient algebra Aπ := A/ ker π. The representation of a simple algebra
is always faithful.

Definition A.15 Let M be a von Neumann algebra on a Hilbert space H, then
a subspace H′ ⊆ H is said to be separating for M if and only if Aξ = 0 implies
A = 0 for all A ∈ M and ξ ∈ H′.

Definition A.16 A cyclic representation is a triple (H, π,Ω), where (H, π) is
a representation of A and Ω ∈ H is a cyclic vector for π in H, i.e., {π(A)Ω :
A ∈ A} is dense in H.

Corollary A.17 For a von Neumann algebra M on a Hilbert space H and
K ⊆ H the following statements are equivalent:

(i) K is cyclic for M.

(ii) K is separating for M′.

If the vector Ω ∈ H is cyclic and separating for the von Neumann algebra M,
then it has these properties also for its commutant M′. Every nondegener-
ate representation of a C∗-algebra can be described as a direct sum of cyclic
sub-representations. Therefore, the discussion of such representations can be
restricted to the investigation of the cyclic ones.

Definition A.18 Let A be a unital C∗-algebra and ω : A → C a linear func-
tional on A, then ω is said to be

(i) hermitian, if ω(A∗) = ω(A) ∀A ∈ A.

(ii) positive, if ω(A) ≥ 0 ∀A ∈ A, A ≥ 0.

(iii) a weight, if ω is positive.

(iv) a state, if ω is positive and normalized, i.e., ω(1) = 1.

(v) a faithful state if ω is a state and ω(A) > 0 for all A ∈ A+, the set of
positive elements of A.

(vi) a trace, if ω(AB) = ω(BA) ∀A,B ∈ A.

(vii) a vector state, if ω(A) ≡ ωΩ(A) :=
(
Ω, π(A)Ω

)
for a non-degenerate

representation (H, π) of A and some vector Ω ∈ H with ‖Ω‖ = 1.

In the case of an abelian C∗-algebra A, ω is a pure state if and only if ω(AB) =
ω(A)ω(B) holds for all A,B ∈ A. If A does not possess a unit 1, then the
norm property (iv) is replaced by the condition ‖ω‖ := sup

{
|ω(A)| | A ∈

A and ‖A‖ = 1
}

= 1.
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Definition A.19 If M is a von Neumann algebra, ω a positive linear functional
on M and ω

(
l.u.b.α(Aα)

)
= l.u.b.α

(
ω(Aα)

)
holds for all increasing bounded nets

(Aα) in M+, where ‘l.u.b.’ denotes the least upper bound, then ω is said to be
normal.

Theorem A.20 Let the von Neumann algebra M operate on the Hilbert space
H and let ω be a state on M, then the next statements are equivalent:

(i) ω is normal.

(ii) ω is σ-weakly continuous.

(iii) There exists a density matrix ρ, i.e., a positive trace-class operator on H
with Tr(ρ) = 1, satisfying ω(A) = Tr(ρA) for all A ∈ A.

Definition A.21 A trace ω on a von Neumann algebra M is said to be semifi-
nite, if the set

Mω
+ :=

{
A ∈ M+| ω(A) <∞

}

is dense in M. A von Neumann algebra M is called semifinite, if there exists a
faithful, normal and semifinite weight on M.

Theorem A.22 The commutant M′ of a semifinite von Neumann algebra M

on a separable Hilbert space is also semifinite.

Definition A.23 Let us consider an involutive Banach algebra A, then P ∈ A

is called a projection if P 2 = P and P ∗ = P . Two projections P,Q ∈ M, where
M is a von Neumann algebra, are said to be equivalent, abbreviated by P ∼ Q,
if there exists a W ∈ M, such that W ∗W = P and WW ∗ = Q. The projection
P is said to be finite if Q ≤ P and Q ∼ P imply Q = P , otherwise it is called
infinite. If there is no nonzero finite projection Q ≤ P , Q ∈ M, then P is called
purely infinite. If ZP 6= 0 is infinite for every central projection Z ∈ M, i.e.,
for every projection on M ∩ M′, then P is called properly infinite. P is said
to be abelian, if PMP is a commutative subalgebra of M. Two projections P1

and P2 are said to be centrally orthogonal, if the smallest central projections
ZP1 and ZP2 majorizing P1 and P2, respectively, are orthogonal.

Every projection P ∈ M can be uniquely described as the sum of two
centrally orthogonal projections P1, P2 ∈ M, such that P1 is finite and P2 is
properly infinite. Since the set spanned by the projections is dense in the von
Neumann algebra M, the property of the projections can be used to characterise
their algebras.

Definition A.24 A von Neumann algebra M is called finite, infinite, properly
infinite or purely infinite if the identity projection 1 possesses these properties.
The von Neumann algebra is said to be of



117

Type I, if every nonzero central projection in M majorises a nonzero
abelian projection in M.

Type II, if M has no nonzero abelian projection and every nonzero central
projection in M majorises a nonzero finite projection in M.

Type II1, if M is of type II and finite.
Type II∞, if M is of type II and has no nonzero central finite projection.
Type III, if M is purely infinite.
L

If M is of type I, II or III, then so is its commutant M′ and contrariwise. For
von Neumann algebras of type II1 and II∞ this statement is in general not
valid. The aforementioned characterisation allows one to decompose all von
Neumann algebras completely in terms of these different types.

Theorem A.25 Every von Neumann algebra M is uniquely decomposable into
the direct sum

M = MI ⊕ MII1 ⊕ MII∞ ⊕ MIII .

A von Neumann algebra is semifinite if and only if the type III part in the
former equation is vanishing.

Definition A.26 A von Neumann algebra M is called a factor, if it possesses
a trivial center, i.e., Z(M) = M ∩ M′ = C1.

Definition A.27 A state ω on a C∗-algebra A is said to be a factor state
or primary state, if πω(A)′′ is a factor, where πω is the corresponding cyclic
representation.

A factor is either of type I, II1, II∞ or III. The table below illustrates the
resulting type of the tensor product M⊗N of two von Neumann algebras M

and N.

M�N In I∞ II1 II∞ III

Im Imn I∞ II1 II∞ III
I∞ I∞ I∞ II∞ II∞ III
II1 II1 II∞ II1 II∞ III
II∞ II∞ II∞ II∞ II∞ III
III III II III III III

Definition A.28 A state ω is said to be pure, if the only positive linear func-
tionals majorised by ω are of the form λω with 0 ≤ λ ≤ 1.
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Pure states are extremal points of the set of states EA on A, which means that
a pure state ω is not describable as a convex linear combination

ω = λω1 + (1 − λ)ω2, 0 < λ < 1,

of different states ω1 and ω2.
To each arbitrary nondegenerate representation of a C∗-algebra and a vector
Ω ∈ H with ‖Ω‖ = 1 one can assign a state, the so-called vector state. The
construction in the opposite direction is ensured by the next

Theorem A.29 For an arbitrary state ω on a C∗-algebra A there exists a (up
to unitary equivalence) unique cyclic representation (Hω, πω,Ωω) of A, the so-
called canonical cyclic representation of A with respect to ω, such that

ω(A) =
(
Ωω, πω(A)Ωω

)

holds for all A ∈ A.

The next theorem ensures that every C∗-algebra can be represented by a C∗-
subalgebra of L(H) leading to the so-called GNS construction.

Theorem A.30 (GNS-; Gelfand, Naimark, Segal) For every C∗-algebra A

there exists a Hilbert space H, such that A is ∗-isomorphic to a C∗-subalgebra
of L(H).

Corollary A.31 Let ω be a state on the unital C∗-algebra, then the following
two statements are equivalent:

(i) The state ω is pure.

(ii) The cyclic representation (Hω, πω,Ωω) with respect to ω is irreducible.

Corollary A.32 For a representation (H, π,Ω) of a C∗-algebra A the next two
conditions are equivalent:

(i) (H, π,Ω) is irreducible.

(ii) π(A) is a factor.

Thus, each pure state is factorial, and, contrariwise, a factorial state is pure
if it is normal, i.e., if it admits, due to Theorem A.20, a cyclic vector in the
representation space.

The following theorem from the theory of n-dimensional complex-valued
functions is used in the proof of the Reeh-Schlieder Theorem 4.22.

Theorem A.33 (Edge of the wedge) Let K :=
{
z ∈ C| |z| < 1

}
be the unit

ball in C, C ⊂ Rn an open convex cone with C ∩ (−C) 6= ∅, and G :=
{
z =

a + ib ∈ K| b ∈ C, a ∈ Rn
}
⊂ Cn. If the in G complex-valued, holomorphic

function f with limC∋b→0 f(a + ib) existing for all open subsets U :=
{
x ∈

Rn| |x| < r
}

⊂ Rn, where the limit is independent of the chosen sequence,
then f is analytically continuable into an open region G ∪ G0, where G0 :=⋃
x∈U

{
z ∈ C| |z − x| < θ · dist(x, ∂U), 0 < θ < 1

}
is a complex neighbourhood

of U and θ is independent of x, r,U and f .
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Free Quantum Fields

Let Hm be the mass hyperboloid in R4 consisting of those p ∈ R4 which satisfy
the equation p·p−m2 = 0, m ≥ 0, where H := L2(Hm, dΩm) is the Hilbert space
of square integrable functions on Hm with respect to the invariant Lebesgue
measure dΩm, and define the symmetric Fock space F(H) over H as

F(H) :=

∞⊕

n=0

H
N

s n with H
N

s n :=

n⊗

k=1

H, H
N

k 0 := C,

where H
N

s n is the so-called n-particle subspace of F(H) and
⊗

s denotes the
symmetric tensor product. With the help of the second quantisation defined by

dΓ(A) := A⊗ 1⊗ · · · ⊗ 1+ 1⊗A⊗ 1⊗ · · · ⊗ 1+ · · · + 1⊗ · · · ⊗ 1⊗A

on DA ∩H
N

s n, where D is the domain of A and

DA :=
{
(ψn)n∈N ∈ F0(H)| ψn ∈

n⊗

k=1

D for each n
}
,

F0(H) :=
{
(ψn)n∈N ∈ F(H)| ψn = 0 for all but finitely many n

}
,

one introduces the Segal operator

ϕS [f ] :=
1√
2

(
A[f ] +A∗[f ]

)
,

where A∗[f ] is the creation operator and

A[f ](ψ1 ⊗ · · · ⊗ ψn) :=
√
N + 1(f, ψ1)(ψ2 ⊗ · · · ⊗ ψn),

Nψ := nψ ∀ψ ∈ H
N

s n,

are the so-called annihilation operator and the number operator, respectively.
Let Γ(U), where U is a unitary operator on the Hilbert space, be the unitary
operator on the Fock space, defined as

Γ(U) :=

{⊗n
k=1 U on H⊗sn for n > 0,

1 on H⊗s0.
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A continuous unitary groups eitA on H is then generated by the second quan-
tisation dΓ(A) and one has the identity:

Γ
(
eitA

)
= eitdΓ(A).

Furthermore, the following statements hold:

(i) Self-adjointness: ϕS [f ] is essentially self-adjoint on the set of finite particle
vectors F0 :=

{
ψ ∈ F(H)| ψ

N

s n = 0 for all but finitely many n
}

for each
f ∈ H.

(ii) Cyclicity of the vacuum: Ω0 := (1, 0, 0, · · · ) is in the domain of all finite
products ϕS [f1] · · ·ϕS [fn] and the set

{
ϕS [f1] · · ·ϕS [fn]Ω0| ∀f ∈ H∀n ∈

N
}

is dense in F(H).

(iii) Commutation relations: For every ψ ∈ F0 and f, g ∈ H one has

(
ϕS [f ]ϕS [g] − ϕS [g]ϕS [f ]

)
ψ = iIm(f, g)Hψ, and

W (f + g) := eiϕS [f+g] = e−
i
2
Im(f,g)HW (f)W (g).

(iv) Continuity: fn −→ f , f, fn ∈ H, implies

W (fn)ψ −→W (f)ψ and ϕS [fn]ψ̃ −→ ϕS [f ]ψ̃

for all ψ ∈ Fs(H), ψ̃ ∈ F0 and n ∈ N.

(v) For each unitary operator U on H, Γ(U) : D(ϕS [f ]) −→ D(ϕS [Uf ]), and
every ψ ∈ D(ϕS [Uf ]) the relation

Γ(U)ϕS [f ]Γ(U)−1ψ = ϕS [Uf ]ψ

holds.

With the aid of the Segal operator we can now introduce the canonical free
scalar field and the canonical conjugate momentum of mass m ≥ 0,

ϕm[f ] := ϕ[Ef ] := ϕS [Ef ],

πm[f ] := π[µEf ] := ϕS [iµEf ],

with Ef(x) :=
√

2πf̂(p), µ := (p2 +m2)1/2,

and in terms of the creation and annihilation operators,

ϕm[f ] =
1√
2

(
A∗[Ef ] +A[Ef ]

)
,

πm[f ] =
i√
2

(
A∗[µEf ] +A[µEf ]

)
.

The fundamental characteristics of the free scalar field and of the conjugate
momentum are inherited from the Segal operator:
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(a) (i) The field ϕm[f ] is essentially self-adjoint on F0 for all f ∈ H.

(ii)
{
ϕm[f ]| f ∈ H

}
is a commuting family of self-adjoint operators.

(iii) Ω0 ∈ H is cyclic for
{
ϕm[f ]| f ∈ H

}
.

(iv) fn −→ f , f, fn ∈ H, implies

eiϕm[fn]ψ −→ eiϕm[f ]ψ and ϕm[fn]ψ̃ −→ ϕm[f ]ψ̃

for all ψ ∈ Fs(H), ψ̃ ∈ F0 and n ∈ N.

(b) The properties given in (a) hold also for the conjugate momentum πm[f ].

(c) For all f, g ∈ H one has

[
ϕm[f ], πm[g]

]
ψ = i(f, g)Hψ ∀ψ ∈ F0 and

eiϕm[f ]eiπm[g] = ei(f,g)Heiπm[g]eiϕm[f ].

Although not relativistically invariant, the framework of free fields and their
conjugate momentum at particular fixed times has turned out to be fruitful.
One deals here with the mappings

S(R4) ∋ f 7→ δ(t− t0)f(x) ∈ S(R3).

In this thesis we will be confronted several times with the so-called time-zero
fields, i.e., maps defined by

S(R3) ∋ f 7→ ϕ
[
δ(t)f(x)

]
and S(R3) ∋ f 7→ π

[
δ(t)f(x)

]
.

Transferring the scalar field and its conjugate momentum from the Fock space
F
(
L2(Hm, dΩm)

)
to that based on the configuration space F

(
L2(R3, dk)

)
, one

gets the following form:

ϕ̃m[f ] =
1√
2

(
A∗[µ−1/2Ef ] +A[µ−1/2Ef ]

)
,

π̃m[f ] =
i√
2

(
A∗[µ1/2Ef ] +A[µ1/2Ef ]

)
.
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Notation

x = (x1, · · · , xn)
ξ = (ξ1, · · · , ξn)
α = (α1, · · · , αn)
|α| = Σn

i=1αi
α! = Πn

i=1αi
xα = Πn

i=1x
αi
i

∂αx = (∂/∂x1)α1 · · · (∂/∂xn)αn

Dα
x = (−1)|α|∂αx

Cl(Ω) vector space of l-times continuously differentiable
functions on Ω

C(Ω) = C0(Ω) continuous functions on Ω
C∞(Ω) = ∩{Cl(Ω)| l ∈ N0}
B(Rn) =

{
f ∈ C∞(Rn)| ∀α ∈ Nn

0 : sup{|Dαf(x)| |x ∈ Rn} <∞
}

E(Ω) = C∞(Ω)
D(Ω) = C∞

0 (Ω)
E ′(Ω) dual space of E(Ω)
D′(Ω) dual space of D(Ω)
S ′(Rn) dual space of D(Rn)

〈u, φ〉 Application of the distribution u on φ ∈ X
(
X ∈ {E(Ω),D(Ω),S(Rn)}

)

(u, φ) = 〈u, φ〉
singsupp(u) singular support of u
û Fourier transform of u

Smρ,δ(R
n) = Smρ,δ vector space of (Kumano-go’s) symbols of order m ∈ R

and of type (ρ, δ)
Sm = Sm0,1
S∞ = ∪{Sm| m ∈ R}
S−∞ = ∩{Sm| m ∈ R}
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S
m
ρ,δ(R

n) = S
m
ρ,δ vector space of (Kumano-go’s) pseudo-differential operators

(PsDO) of order m ∈ R and of type (ρ, δ)
S
m = S

m
0,1

S
∞ = ∪{Sm| m ∈ R}

S
−∞ = ∩{Sm| m ∈ R}
P ≡ p(X,Dx) PsDO generated by the symbol p ∈ Smρ,δ
A ≡ a(X,Dx) FIO generated by the symbol a ∈ Smρ,δ
Sm,m

′

ρ,δ (Rn) = Sm,m
′

ρ,δ vector space of (Kumano-go’s) double symbols

of order (m,m′) and of type (ρ, δ)

Sm,m
′

Sm,m
′

0,1

p(X,X ′,Dx,Dx′) PsDO generated by the double symbol p ∈ Sm,m
′

ρ,δ

Hs(Rn) = Hs Sobolev space
H−∞

⋃{Hs| s ∈ R}
H∞

⋂{Hs| s ∈ R}
of (x0, ξ0) ∈ Rn1 × Rn2

∗

Σ(u) set of the ‘direction with singular property’ of u ∈ E ′

WF (u) wave front set of u ∈ D′

µTr(p) = µTr(P ) micro-support of the symbol p or the PsDO P , respectively

x (x0, x1, x2, x3)
x (x1, x2, x3)
x± := x0 ± |x|
ξα pseudo-orthogonal coordinates α = 0, 1, 2, · · · , d+ 2
ξ± := ξd+2 ± ξd+1

Tαβ conformal transformation
M differentiable manifold
M four-dimensional Minkowski space
Σ Cauchy surface
Oc =

{
x ∈ M| the vector x− y is spacelike for all y ∈ O

}

causal complement of O ⊂ M
WR :=

{
x ∈ M| |x0| < x1

}
right Rindler wedge

WL :=
{
x ∈ M| |x0| < −x1

}
left Rindler wedge

V+ :=
{
x ∈ M| x · x > 0 and x0 > 0

}
forward light cone

V− :=
{
x ∈ M| x · x > 0 and x0 < 0

}
backward light cone

D := V+ ∩ V− double cone
D1 := (V+ − e0) ∩ (V− + e0) double cone with radius one
W, V, D set of wedges, light cones, double cones
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H Hilbert sapce
L(H) set of bounded operators on H
A,B C∗-algebras
M,N von Neumann algebras
A(O) C∗-algebra of local observables localised in O ∈ M
M(O) von Neumann algebra of local observables localised in O ∈ M
Mm(O) local algebra of fields with mass m
F(O) field algebra
△(x1, x2) van Vleck-Morette determinant
σ(x, y) geodesic distance between x and y in M
ωn(f1, · · · , fn) n-point-function, fi ∈ D(M)
Λ(f, g) = ω2(f, g)
H Hilbert space
L(H) set of bounded linear operators on H
EA set of states on A

Kβ set of KMS-states on A

αt, σt, τ t one-parameter groups of automorphisms

Ω ∈ H vacuum vector
(Hω, πω,Ωω) cyclic representation with respect to ω
ωm vacuum state with respect to Mm, m ≥ 0
S, J , ∆ Tomita oerator, modular conjugation, modular operator
σtm(A) := ∆it

mA∆−it
m modular group of automorphisms on M

σtm,0 modular group on Mm(O) with respect to ω0

with respect to the mass m ≥ 0
σωm modular group of automorphisms with respect to

the faithful, normal and semifinite (vacuum) state ωm
Γt Connes’ cocycle

(A,G, α) C∗-dynamical system
δ derivation
δ(A) = limt→0

(
τ t(A) −A

)
infinitesimal generator of τ

δm infinitesimal generator of σtm
δm,0 infinitesimal generator of σtm,0
Pµ, Mµν , D, Kµ infinitesimal generators of translations, Lorentz transformations,

dilations, (special) conformal transformations
P perturbation, P = P ∗ ∈ A

Θ PCT operator
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