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Abstract

In this work we discuss a possible algebraic formulation of classical General Relativity.

The algebraic formulation of classical field theories without gauge freedom is based
on the definition of the Peierls bracket, a manifest covariant Poisson bracket which has
first been introduced by Peierls in [19].

The definition of the Peierls bracket has been extended to classical gauge theories by
DeWitt in [7a].

We examine the properties of the extended Peierls bracket and discuss to which ex-
tent the framework given in [7a] can be applied to classical General Relativity.

Zusammenfassung

In dieser Arbeit diskutieren wir eine mögliche algebraische Formulierung der klassischen
Allgemeinen Relativitätstheorie.

Die algebraische Formulierung klassischer Feldtheorien ohne Eichfreiheit basiert auf
der Definition der Peierlsklammer, einer manifest kovarianten Poissonklammer, welche
zuerst von Peierls in [19] eingeführt wurde.

Die Definition der Peierlsklammer wurde von DeWitt in [7a] auf klasssische Eich-
feldtheorien erweitert.

Wir untersuchen die Eigenschaften der erweiterten Peierlsklammer und diskutieren, in-
wieweit der Formalismus, welcher in [7a] vorgestellt wird, sich auf die klassische Alge-
meine Relativitätstheorie anwenden lässt.



’Da steh ich nun [...]’
—Johann Wolgang von Goethe, Faust I
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Introduction

A common approach to the construction of a Quantum Field Theory based on a classical
field theory is the canonical quantization programme. On the classical level it relies on
the construction of a classical Poisson algebra of observables based on the canonical
Poisson brackets.

The canonical Poisson brackets are constructed using the the definition of the canonical
conjugate momenta and are therefore closely related to the Hamiltonian formula-
tion of the classical theory. The construction of the canonical Poisson brackets requires
the definition of an explicit ’time’ coordinate and a resulting foliation of spacetime into
Cauchy hypersurfaces (see appendix A). We will refer to the resulting dependence
of the definition of the canonical Poisson brackets as the loss of manifest Lorentz
covariance.

When we are dealing with classical gauge theories, the unphysical degrees of free-
dom present in these theories result in a singular Lagrangian. This means that the
relation between the time derivatives of the fields and the corresponding canonical con-
jugate momenta cannot be inverted and therefore the definition of the canonical Poisson
brackets is not possible without further considerations.

Two common approaches to solve this problem are the following:

For some classical gauge theories (e.g. in case of the free Maxwell field) it is possi-
ble to modify the Lagrangian of the theory by adding a gauge invariance breaking
term, resulting in a nonsingular Lagrangian. The resulting Poisson algebra based on
this Lagrangian contains a subalgebra given by the gauge invariant functions on the
phase space. It is, however, not possible to find such a gauge invariance breaking term
for many important physical theories (see e.g. [14]).

Another approach makes use of Dirac’s algorithm for singular Lagrangian systems (see
[8]). In this formalism, the phase space of the theory is extended to allow the definition
of all canonical conjugate momenta. The algebra of observables is obtained by dividing
out the ideals generated by the arising constraints. The treatment of these constraints
in a resulting quantized theory is often a severe difficulty (see e.g. [22]).

In [19], Peierls gave a definition of a Poisson bracket for classical field theories which
is entirely based on the Lagrangian formulation of the classical theory and does not rely
on a foliation of spacetime into Cauchy hypersurfaces and the definition of canonical
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conjugate variables. This poisson bracket is called the Peierls bracket. The Poisson
algebra of observables based on the Peierls bracket has been shown to be isomorphic to
the one based on the canonical Poisson bracket for any Lagrangian field theory which
can be formulated as a Hamiltonian theory without constraints. The Peierls bracket is
used in the algebraic formulation of classical field theory (see [4]).

In [19] the problems occurring when faced with singular Lagrangians in gauge theo-
ries are not adressed and the given method for the construction of the Peierls bracket is
not defined for gauge theories.

There are few publications that pick up the idea of the Peierls bracket. First of all
there are [7a, 7b] by DeWitt where an extension of the definition of the Peierls bracket
for classical gauge theories is given. Marolf discusses further possible extensions in
[17a, 17b].

In this work we are interested in the classical theory of General Relativity. The La-
grangian of General Relativity is singular due to the diffeomorphism invariance of
the theory. A detailed discussion of the application of Dirac’s algorithm for singular
Lagrangian systems to General Relativity can be found in [22].

We want to keep the manifest Lorentz covariance of the theory. Therefore, in this work
we examine to which extent the framework given by DeWitt in [7a] can be applied to
give an algebraic formulation of classical General Relativity.

The outline of this work is the following:

In the first chapter, we give an introduction to the concepts of the algebraic formu-
lation of classical field theory. This includes the definition of the phase space of the
configuration space and phase space of a classical field theory, the linearized field equa-
tions and the original Peierls bracket.

In chapter 2 we discuss the structure of classical gauge theories.

Based on the structures defined in chapter 2, we define the extended Peierls bracket
in the third chapter, where we also examine its properties. To get accustomed to the
framework given in this chapter, we apply it to the classical theory theory of the free
Maxwell field.

In chapter 4, we give a Lagrangian formulation of classical General Relativity in terms
of a Lorentzian metric as dynamical field. We discuss the gauge symmetry of the theory
and derive the linearized field equations. Finally, we apply the gauge fixing procedure
introduced in chapter 3.

In the fifth chapter, a brief introduction to the formulation of classical General Rel-
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ativity formulated in terms of a local connection form and tetrad fields is given. We
present arguments that it is more complicated to apply the framework given in chapter
3 in this formulation of the theory.

In chapter 6, we give an overview on the occurring conceptual problems when applying
the framework given in chapter 3 to General Relativity, including the problem of the
existence of observables in General Relativity.
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1. Algebraic Classical Field Theory

In this work we are exclusively concerned with classical field theory.

Usually classical fields are thought of as taking values in the smooth sections over
a finite dimensional vector bundle E →M over a spacetime M (see appendix B).

For example, the classical real scalar field takes values in the smooth real valued func-
tions on M and the vector potential of classical electrodynamics takes values in the
smooth sections Γ(T ∗M) over the cotangent bundle T ∗M .

In this chapter we always assume the base manifold M to be a globally hyperbolic
spacetime with metric g (see appendix A).

In Quantum Field Theory the notion of a field is generalized. The fields are here thought
of as operator valued distributions which, applied to test functions, yield linear opera-
tors on a Hilbert space. In this work we are working in the algebraic formulation of
classical field theory which gives rise to a similar interpretation of the fields on the
classical level.

In this chapter we introduce the algebraic formulation of classical field theory, following
Brunetti and Fredenhagen in [4].

1.1. The space of smooth sections

We fix a finite dimensional vector bundle E →M over a spacetime M . Our interest lies
in the vector space Γ(E) of smooth sections over E, which provides the configuration
space of the theory. We want to define a notion of smooth functions and a derivative
on the configuration space.

To do so, we first need to endow Γ(E) with a topology. The usual choice is to endow
Γ(E) with a vector topology generated by the following countable family of seminorms:

Definition 1.1.1
Let K := {Ki}i∈I be a countable covering of M by compact subsets. For each K ∈ K
and multiindex k a seminorm on Γ(E) is defined by

‖Φ‖k,K := sup
x∈K

|∂kΦ| ∀Φ ∈ Γ(E) (1.1.1)
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Endowed with this topology, Γ(E) is a nuclear space.

As a topological vector space we can identify Γ(E) with its tangent spaces TΦΓ(E)
at any point Φ ∈ Γ(E). We will do so throughout this work.

In this topology we have that Φi → Φ if and only if ∂kΦi|K → ∂kΦ|K uniformly for
all multiindices k and compact sets K ⊂M .

The subspace Γ0(E) ⊂ Γ(E) of sections with compact support over E will be of special
interest. We endow it with the topology such that Φi → Φ if and only if ∂kΦi → Φ
uniformly for all multiindices k and there exists a compact set K ⊂ M such that⋃
i supp Φi ⊂ K. Endowed with this topology, Γ0(E) is a nuclear space.

Now that we have given topologies on the spaces Γ(E) and Γ0(E), we can define dis-
tributions on these spaces and their tensor products:

Definition 1.1.2 (Distribution)
Let W be a topological vector space. A continuous linear map

D : Γ(E)n → W (1.1.2)

is called a W -valued distribution on Γ(E)k. The vector space of all W -valued distribu-
tions on Γ(E)k, endowed with the weak topology, is denoted by E ′(Ek,W ).

Distributions on Γ0(E)k are defined accordingly. The vector space of all W -valued dis-
tributions on Γ0(E)k endowed with the weak topology is denoted by D′(E,W ).

It is E ′(Ek,W ) ⊂ D′(Ek,W ).

The weak topology is defined such that Di → D exactly if Di[Φ] → D[Φ] ∀Φ ∈ Γ(E)k.

Note: We use square brackets to indicate the arguments of a distribution.

Definition 1.1.3 (Support of a distribution)
Let D ∈ E ′(E,W ). We define

supp D := M\
{⋂

U ⊂M open| supp (ξ ∈ Γ0(E)) ⊂ U ⇒ D[ξ] = 0
}

(1.1.3)

By definition, the support of a distribution D ∈ E ′(E,W ) is compact.

We define functionals on the configuration space:

Definition 1.1.4 (Functional)
Let W be a topological vector space. A continuous map

F : Γ(E) → W (1.1.4)

is called a functional on Γ(E).
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We define the functional derivative on Γ(E):

Definition 1.1.5 (Functional derivative)
Let F be a W -valued functional on Γ(E).

The functional derivative of F at Φ ∈ Γ(E) in the direction of ξ ∈ TΦΓ(E) ' Γ(E)
is defined as the linear map

δF (Φ) : TΦΓ(E) ' Γ(E) → W (1.1.5)

δF (Φ)[ξ] :=
d

dλ
|λ=0F (Φ + λξ) (1.1.6)

if this limit exists.

If the limit exists ∀Φ ∈ Γ(E), ξ ∈ TΦΓ(E) and

δF : Γ(E)× Γ(E) → W (1.1.7)

is continuous, F is called continuously functionally differentiable.

The functional derivative can be iterated in the following sense:

Definition 1.1.6 (Iterated functional derivative)
Let F be a W -valued functional.

The k-fold iterated functional derivative of F is given by the linear map

δkF (Φ) : (TΦΓ(E))k ' Γ(E)k → W (1.1.8)

δkF (Φ)[ξ1, ..., ξk] :=
d

dλ1

|λ1=0 · ... ·
d

dλk
|λk=0F (φ+

k∑
i=1

λiξi) (1.1.9)

if this limit exists.

If this limit exists ∀Φ ∈ Γ(E), ξ ∈ TΦΓ(E)k ' Γ(E)k and

δkF : Γ(E)× Γ(E)n → W (1.1.10)

is continuous, F is called k-fold continuously functionally differentiable.

We are in particular interested in the class of smooth functionals:

Definition 1.1.7 (Smooth functional)
Let F be a W -valued functional on Γ(E).

F is called smooth if it is continuously functionally differentiable in every order.
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We will denote the vector space of smooth W -valued functionals on Γ(E) by F(E,W ).

By definition, the k-fold functional derivative of any smooth functional F ∈ F(E,W )
yields a symmetric distribution δkF (Φ) ∈ E ′(E,W ).

Based on this property, we define the support of a smooth functional:

Definition 1.1.8 (Support of a functional)
Let F ∈ F(E,W ). We define

supp F (Φ) := supp (δF (Φ) ∈ E ′(E,W )) (1.1.11)

The vector space F := F(E,R) of real valued smooth functionals on Γ(E) forms a
commutative, associative algebra via multiplication:

Definition 1.1.9 (Algebra of smooth functionals)
On the space F a multiplication is given by

(F1 · F2)(Φ) := F1(Φ) · F2(Φ) (1.1.12)

The resulting commutative, associative algebra is called the algebra of smooth functionals.

Our goal will be to endow F with an additional Poisson structure given by the Peierls
bracket. The resulting Poisson algebra F , {·, ·} is the essential object in the algebraic
formulation of classical field theory.

1.2. The action principle

In the previous section we endowed the configuration space Γ(E) with a topology and
a differential structure. In this section we use this structure to determine the dynamics
(i.e. the field equations) of a classical field theory based on the definition of an action
functional.

A local action functional is usually defined to be a functional S ∈ F(E,R) which can
be written in the form:

S(Φ) =

∫
M

dnx L(Φ)(x) (1.2.1)

with L being a smooth functional valued in the smooth real scalar densities of rank 1,
such that L(Φ)(x) only depends on the value of Φ and its partial derivatives (up to finite
order) at x. L is called the Lagrangian density of the theory.

Remark: A functional F will be called Φ-jet-dependent if F (Φ) depends only on
the value of Φ and its partial derivatives up to finite order at a given point x ∈M .
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The field equations for Φ are usually given via the stationary point condition

δS(Φ)[ξ] = 0 ∀ξ ∈ Γ0(E) (1.2.2)

However, we have to be more precise here. Due to the form of the action functional as
an integral over a noncompact domain, it is in general not well defined all over Γ(E).

This problem can be avoided by regarding the action as a distribution

S(Φ) : C∞(M,R) → R

Sψ(Φ) := S(Φ)[ψ] :=

∫
M

dnx L(Φ)(x) ψ(x)
(1.2.3)

We then define the functional derivative of S to be the distribution

δS(Φ) ∈ D′(E,R)

δS(Φ)[ξ] := δSψ(Φ)[ξ] with ψ ∈ C∞0 (M,R) : ψ| supp ξ = 1
(1.2.4)

The field equations are again obtained via the stationary point condition

δS(Φ)[ξ] = 0 ∀ξ ∈ Γ0(E) (1.2.5)

The set of stationary points will be referred to as the shell or solution space S. The
solution space provides the phase space of the theory.

The functional derivative of the action functional is iterated in the following sense:

δkS(Φ) ∈ D′(En,R)

δkS(Φ)[ξ1, ..., ξk] := δkSψ(Φ)[ξ1, ..., ξk] for any ψ : ψ = 1 on
k⋂
i=1

supp ξi
(1.2.6)

Due to the local form of the action functional, the iterated functional derivative of the
action can be evaluated even on arguments with noncompact support, as long as the
intersection of the support of all arguments is compact.

1.3. Linearized field theory

In this section we examine the differential structure on the solution space S by deriving
the linearized field equations. We are interested in this structure since the construc-
tion of the Peierls bracket will be based on the definition of the linearized field equations.

We now derive the linearized field equations.
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First of all, consider a smooth curve

Φ : R → Γ(E) smooth

Φ(λ) ∈ S ∀λ ∈ R
(1.3.1)

We expand Φ(λ) in terms of a formal power series:

Φ(λ) ' Φ(0) + λ
d

dλ
|λ=0 Ψ(λ) =: Φ0 + λχ, χ ∈ Γ(E) (1.3.2)

By definition, Φ(λ) satisfies the field equations:

δS(Φ(λ))[ξ] = 0 ∀ξ ∈ Γ0(E) (1.3.3)

The differentiation with respect to the parameter λ of this equation yields

d

dλ
|λ=0 δS(Φ(λ))[ξ] = δ2S(Φ0)[ξ, χ] = 0 ∀ξ ∈ Γ0(E) (1.3.4)

This result motivates the definition of the linearized field equations:

Definition 1.3.1 (Linearized field equation)
The linear partial differential equation for χ ∈ TΦΓ(E) ' Γ(E), given by

δ2S(Φ)[ξ, χ] = 0 ∀ξ ∈ Γ0(E) , (1.3.5)

is called the linearized field equation.

Note: The linearized field equations are defined all over Γ(E), not only on the solution
space S. The existence of solutions to the linearized field equations is in general not
ensured (see e.g. [9] on this problem in Yang Mills theory and General Relativity).

We introduce the notion of the formal adjoint of an operator:

Definition 1.3.2 (Formal adjoint)
Let K : Γ(E∗) → Γ(E) be a continuous linear operator.

If it exists a continuous linear operator

K̃ : Γ(E∗) → Γ(E) (1.3.6)

satisfying∫
M

dnx ξ (K̃χ) =

∫
M

dnx (Kξ) χ ∀ξ, χ ∈ Γ0(E
∗) (1.3.7)

the operator K̃ is called the formal adjoint of K.
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For the definition of the dual bundle E∗ of a vector bundle E, see appendix B.

We define the differential operator induced by the second functional derivative of the
action functional as the formally selfadjoint linear partial differential operator

δ2S(Φ) : Γ(E) → Γ(E∗) (1.3.8)

satisfying∫
M

dnx ξ δ2S(Φ) χ := δ2S(Φ)[ξ, χ] ∀ξ ∈ Γ0(E), χ ∈ Γ(E) (1.3.9)

The operator δ2S(Φ) is called the Jacobian of the theory.

The Jacobian is Φ-jet dependent, where we define an operator P : Γ(E) → Γ(E∗)
to be Φ-jet dependent if all functionals of the form

Aξ(Φ)(x) := (δ2S(Φ) ξ)(x), ξ ∈ Γ(E) (1.3.10)

are Φ-jet dependent.

Using the definition of the Jacobian, we can express the linearized field equations as

δ2S(Φ) χ = 0 (1.3.11)

Solutions to the on-shell linearized field equations will be called Jacobi fields in this
work, as it is done in [7a, 7b].

Remark: Any smooth curve on S yields a Jacobi field. However, the converse is in
general not true. Any on-shell field history satisfying the converse is called lineariza-
tion stable (see e.g. [11] on this subject in General Relativity).

1.4. Green’s operators

In the previous section we derived the linearized field equations and defined the Jacobian.
As we already mentioned, the construction of the Peierls bracket relies on the definition of
the linearized field equations. To be more precise, it is based on the Green’s operators
of the Jacobian.

Definition 1.4.1 (Green’s operator)
Let P : Γ(M,E) → Γ(M,E∗) be a linear partial differential operator.

A continuous linear map G : Γ0(M,E∗) → Γ(M,E) is called a Green’s operator
of P if it satisfies

P ◦G = id| Γ0(M,E∗) (1.4.1)

G ◦ P = id| Γ0(M,E) (1.4.2)
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A special class of Green’s operators is given by the advanced and retarded Green’s
operators:

Definition 1.4.2 (Advanced and retarded Green’s operator)
A Green’s operator G+ is called advanced Green’s operator if

supp G+ξ ⊂ J−(supp ξ) ∀ξ ∈ Γ0(E) (1.4.3)

A Green’s operator G−is called retarded Green’s operator if

supp G−ξ ⊂ J+(supp ξ) ∀ξ ∈ Γ0(E) (1.4.4)

For the definition of the causal future J+ and the causal past J− of a domain, see ap-
pendix A.

Using the linearity and support properties, we can extend the action of the retarded
Green’s operator onto sections of past compact support, and the action of the advanced
Green’s operator onto sections of future compact support.

As we have already mentioned, we are interested in the Green’s operators of the Ja-
cobian. To be more precise, we are interested in the advanced and retarded Green’s
operators of the Jacobian. This rises the question under which conditions these opera-
tors exist. We discuss this now.

An important class of differential operators for which we know about the existence of
unique advanced and retarded Green’s operators are the so called normally hyperbolic
differential operators (see appendix D):

Definition 1.4.3 (Normally hyperbolic differential operator)
Let P : Γ(E) → Γ(E∗) be a linear partial differential operator.

P is called normally hyperbolic if it is of second order and its component in sec-
ond order of the covariant derivative is of the form γ ◦ 2∇, whereby γ : E → E∗ is a
vector bundle isomorphism.

We introduce the characteristic of a linear partial differential operator P : Γ(E) →
Γ(E∗) of finite order. It is defined in the following way:

We take into account the component of P in highest order in the covariant deriva-
tive ∇. For fixed x ∈ M , we replace all occurrences of the covariant derivative in this
object by a covector k ∈ T ∗xM , which yields a map

σP : T ∗M → Hom(V, V ) (1.4.5)

whereby V denotes the fibre manifold of E and E∗. The map σ is called the principal
symbol of P . The nontrivial kernel of this map is called the charakteristic of P and is
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denoted by char P .

In case of a normally hyperbolic operator P of the form given above, we have

σP (x, k ∈ T ∗xM) = γ(x) ◦ gab(x) kakb (1.4.6)

We see that in this case it is char P =
⋃
x∈M(x, V̄x), where V̄x denotes the lightcone in

the cotangent space T ∗xM .

The most basic example of a normally hyperbolic differential operator is of course the
well known d’Alembert operator:√

− det g 2∇ : Γ(M,E) → Γ(M,E∗) (1.4.7)

The Jacobian of the massless Klein-Gordon field is given by the d’Alembert operator.

For normally hyperbolic operators we have the following important theorem:

Theorem 1.4.1 (Corollary 3.4.3 in [1])
Let P : Γ(M,E) → Γ(M,E∗) be a normally hyperbolic differential operator and let M
be globally hyperbolic.

There exist unique advanced and retarded Green’s operators for P .

In case the differential operator P is formally selfadjoint and has unique advanced and
retarded Green’s operators, these are formally adjoint:

G̃+ = G−

G̃− = G+

(1.4.8)

The advanced and retarded Green’s operators are used to define the causal propagator
of the corresponding linear partial differential operator:

Definition 1.4.4 (Causal propagator)
Let P : Γ(M,E) → Γ(M,E∗) be a linear partial differential operator with unique ad-
vanced and retarded Green’s operators G+ and G−.

The causal propagator ∆ of P is defined as the linear operator

∆ := (G+ −G−) : Γ0(M,E∗) → Γ(M,E) (1.4.9)

The causal propagator obviously satisfies

P ◦∆ = 0 |Γ0(M,E∗)

∆ ◦ P = 0 |Γ0(M,E)

(1.4.10)

The use of identity (1.4.8) immediately yields

∆̃ = −∆ (1.4.11)
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We see that the causal propagator is antiselfadjoint.

Since it is defined as a linear combination of the retarded and advanced Green’s op-
erator, the action of the causal propagator can be extended onto sections of future as
well as past compact support.

1.5. The Peierls bracket

In this chapter we introduce the Peierls bracket as it has originally been defined by
Peierls in [19].

To understand the definition of the Peierls bracket, we will have to generalize the action
of the linear operators defined in chapter 1.4 from the space of smooth sections Γ0(E

∗)
to the space of distributions E ′(E,R), identified with their kernels (i.e. generalized sec-
tions over E∗). Since the definition of this extended action requires the introduction of
the wavefront set of distributions in the framework of microlocal analysis, it is given
separately in appendix D.

Peierls’ aim has been the construction of a manifest covariant Poisson bracket on the
algebra of smooth functionals F .

Definition 1.5.1 (Poisson bracket)
Let F be a real associative algebra. A map

{·, ·} : F × F → F (1.5.1)

is called a Poisson bracket on F , if it satisfies

R− linearity : {λA, µB} = λµ {A,B} ∀A,B ∈ F , λ, µ ∈ R (1.5.2)

antisymmetry : {A,B} = −{B,A} (1.5.3)

derivative : {A ·B,C} = A · {B,C}+ {A,C} ·B (1.5.4)

Jacobi identity : {A, {B,C}}+ {B, {C,A}}+ {C, {A,B}} = 0 (1.5.5)

The resulting algebra (F , {·, ·}) is called a Poisson algebra.

Definition 1.5.2 (Peierls bracket)
Let S be a smooth action functional such that the linearized field equations possess unique
advanced and retarded Green’s operators. Let ∆ be the corresponding causal propagator.

The Peierls bracket is defined as the map

{·, ·} : F × F → F
{A,B} := δA [∆ δB]

(1.5.6)
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As stated in the definition, the Peierls bracket is only well defined for theories which
yield linearized field equations with unique advanced and retarded Green’s operators.
This particularly includes theories which yield normally hyperbolic linearized field equa-
tions. Many important classical physical theories, such as gauge theories and General
Relativity, do not satisfy this condition, which is the main problem we will adress in the
following parts of this work.

As we see in appendix D, the map

∆ : E ′(E,R) → Γ(E) (1.5.7)

is not well defined on all distributions. This raises the question which restrictions we
have to impose on the functionals in F to ensure the existence and closure of the result-
ing bracket algebra.

We will restrict the action of the bracket on the set of functionals in F that satisfy
a condition (∗) such that

A,B ∈ F satisfy (∗) ⇒ A ·B satisfies (∗)
A ∈ F satisfies (∗) ⇒ (A→ ∆ δA ∈ Γ(E)) is well defined

A,B ∈ F satisfy (∗) ⇒ {A,B} satisfies (∗)
(1.5.8)

In case that the linearized field equations are normally hyperbolic, such a restriction is
known to be given by the wavefront set condition (see e.g. [4]):

Definition 1.5.3 (Wavefront set condition)
Let A ∈ F . A is said to satisfy the wavefront set condition if

WF (δkA) ∩ (V̄ k
+ ∪ V̄ k

−) = ∅ ∀k ∈ N (1.5.9)

We give a motivation for the wavefront set condition in appendix D.

From now on, by F we will denote the space of smooth real valued functionals sat-
isfying the wavefront set condition.

We verify that the Peierls bracket provides a Poisson bracket on F :

The linearity of the Peierls bracket results from the linearity of the action of the causal
propagator and .

The antisymmetry of the Peierls bracket immediately follows from the fact that the
causal propagator is antiselfadjoint.

The Peierls bracket is a derivative since the functional derivative satisfies the Leibniz rule.
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it has been proven e.g. by Marolf in [17a] that the Peierls bracket satisfies the Jacobi
identity . The proof relies on the symmetry of the functional derivative of the linearized
field equations, i.e. on the symmetry of the third functional derivative of the action func-
tional. We will give a more general proof when examining the properties of the extended
Peierls bracket in section 3.2.

Endowed with the Poisson structure given by the Peierls bracket, F thus is indeed
a Poisson algebra.

We are interested in Poisson ideals of this Poisson algebra.

Definition 1.5.4 (Poisson ideal)
Let (F , {·, ·}) be a Poisson algebra. A Poisson ideal of (F , {·, ·}) is a subspace E ⊂ F ,
such that

{E,A} ∈ E ∀E ∈ E , A ∈ A (1.5.10)

E · A ∈ E ∀E ∈ E , A ∈ A (1.5.11)

The field equations generate a Poisson ideal of F . It is given by the subspace

ES = {F ∈ F : F (Φ) = D(Φ)[δS(Φ)] for a D : Γ(E) → E(E∗,R) smooth} (1.5.12)

We verify this. We have

{D[δS], A} = δ(D[δS])[∆ δA]

= D[δ2S ◦∆ δA] + δD[δS,∆ δA] = δD[δS,∆ δA] ⊂ ES
(1.5.13)

where we used the fact that the causal propagator solves the linearized field equations.

We may divide the ideal E out of F to obtain the Poisson algebra

{·, ·} : F/E × F/E → F/E
{[A], [B]} := [{A,B}]

(1.5.14)

where the squared brackets denote the equivalence class of the argument. This algebra
will be called the on-shell algebra generated by the Peierls bracket.

In [19], Peierls gave a proof that in case of a Hamiltonian theory without constraints,
the on-shell algebra generated by the Peierls bracket is equivalent to the canonical Pois-
son algebra based on the canonical Poisson brackets.

15



2. Gauge Symmetries

In the previous chapter we mentioned that in gauge theories the linearized field equa-
tions possess no Green’s operators and therefore the original Peierls bracket cannot be
defined for these theories. In this chapter we examine the structure of gauge theories in
order to be able to extend the definition of the Peierls bracket to these theories in the
in next chapter.

First of all we will specify which class of theories we refer to by the indication clas-
sical gauge theories. We define a classical gauge theory by the following setting:

Let G be a (in general not finite dimensional) Lie group with Lie algebra Lie(G). Let G
act smoothly and bijectively on Γ(E), such that

(Φ− g · Φ) ∈ Γ0(E) ∀g ∈ G (2.0.1)

The action of G on Γ(E) induces an action of the Lie algebra Lie(G) on Γ(E). We will
assume that we can identify Lie(G) (as a topological vectorspace) with the space Γ0(g)
of test sections over some finite dimensional vector bundle g →M . We will furthermore
assume that G acts locally on Γ(E) in the sense that the induced action of Lie(G) on
Γ(E) is of the form

f : Γ(E) → TΓ(E) ' Γ(E)

f · Φ := Q(Φ)f
(2.0.2)

where

Q(Φ) : Γ(g) → Γ(E) (2.0.3)

is a Φ-jet dependent linear partial differential operator.

Remark: The classical Yang-Mills theories and General Relativity are classical gauge
theories in this sense.

Via the pullback with respect to the action of G on Γ(E), the group G also acts on
the functionals F(E,W ) on Γ(E). The corresponding induced action of Lie(G) on a
functional F ∈ F(E,W ) is given by

f : F(E,W ) → F(E,W )

(f · F )(Φ) := δF (Φ)[Q(Φ)f ]
(2.0.4)

We now can define G-invariants:
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Definition 2.0.5 (G-invariant)
A functional F ∈ F(E,W ) is called a G-invariant if

(f · F )(Φ) = δF (Φ)[Q(Φ)f ] = Q̃ δF [f ] = 0 ∀f ∈ Γ0(g) (2.0.5)

where the action of a linear partial differential operator P on a distribution is defined
in the following way:

P : Γ(E∗) → Γ(g), D ∈ D′(E,W )

(P D)[f ] := D[P̃ f ] ∀f ∈ Γ0(g)
(2.0.6)

Based on this notion, a theory based on an action functional S is called G-invariant
with G being called the gauge group if the action functional is a G-invariant in the
sense that

δS(Φ)[Q(Φ)f ] = Q̃ δS[f ] = 0 ∀f ∈ Γ0(g) (2.0.7)

In case the theory is G-invariant, Q(Φ) is called an invariant flow of the theory.

The functional derivative of identity (2.0.7) yields

δ2S(Φ)[Q(Φ)f, (·)] + δS(Φ)[δQ(Φ)[(·)]f ] = 0 (2.0.8)

This implies that on-shell we have

δ(δS(Φ)[ξ])[Qf ] = δ2S(Φ)[ξ,Q(Φ)f ] = 0 ∀ξ ∈ Γ0(E), f ∈ Γ0(g) (2.0.9)

We see that the field equations are G-invariant. This implies that the action of G on
Γ(E) maps the solution space S onto itself.

The second functional derivative of identity (2.0.7) yields

δ3S(Φ)[Q(Φ)f, (·1), (·2)] + δS(Φ)[δ2Q(Φ)[(·1), (·2)]f ]

+ δ2S(Φ)[δQ[·1]f, (·2)] + δ2S(Φ)[δQ[(·2)]f, (·1)] = 0 ∀f ∈ Γ0(g)
(2.0.10)

The identities (2.0.8) and (2.0.10) are of course valid for any invariant replacing the
action functional.

Using identity (2.0.9), we see that on-shell all tangent vectors of the form

ξ = Q(Φ)f ∈ TΦΓ(E) ' Γ(E), f ∈ Γ(g) (2.0.11)

provide Jacobi fields.

We will call Jacobi fields with past- or future compact support unphysical Jacobi
fields. We will furthermore assume that all unphysical Jacobi fields of the theory are of
the form (2.0.11).
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The presence of unphysical Jacobi fields implies that no advanced and retarded Green’s
operators for the linearized field equations exist.

To verify this, let ξ± ∈ Γ(E) be an unphysical Jacobi field with future resp. past
compact support. Now we assume the existence of advanced- and retarded Green’s
operators of the linearized field equations. Then on-shell we would have

G± ◦ δ2S(Φ) ξ± = G± 0 = 0

G± ◦ δ2S(Φ) ξ± = id ξ = ξ
(2.0.12)

which is clearly contradictory. We see that the existence of unphysical Jacobi fields
implies the nonexistence of advanced and retarded Green’s operators for the linearized
field equations.
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3. The extended Peierls bracket

In this chapter we extend the definition of the Peierls bracket to gauge theories, following
DeWitt in [7a]. In the first section we give a method for the gauge fixing of the
linearized field equations. In the second section we define the extended Peierls bracket
and examine its properties. In the third section we investigate how the extended Peierls
bracket is related to the symplectic formalism for classical field theories.

3.1. Gauge fixing

To extend the definition of the Peierls bracket to gauge theories, we are again concerned
with the Jacobian of the theory:

δ2S(Φ) : Γ(M,E) → Γ(M,E∗) (3.1.1)

As we have seen in the previous chapter, no Green’s operators G for this operator exist
due to the existence of unphysical Jacobi fields generated by the invariant flow. In order
to fix this problem, we have to modify the linearized field equations in a way such that
the modified linearized field equations possess unique advanced and retarded Green’s
operators but preserve the physical structure of the theory. We will see what this means
in detail later on in this section.

Following [7a], we use the following method for gauge fixing the linearized field equations:

We define a Φ-jet dependent linear partial differential operator

P (Φ) : TΦΓ(E) ' Γ(E) → Γ(g∗) (3.1.2)

such that no unphysical Jacobi fields ξ ∈ Γ(E) satisfy the gauge fixing condition

P (Φ) ξ = 0 (3.1.3)

We furthermore define the Φ-jet dependent partial differential operator

F(Φ) := P (Φ) ◦Q(Φ) : Γ(g) → Γ(g∗) (3.1.4)

Since we assumed that all unphysical Jacobi fields are generated by the invariant flow,
it is implied by the definition of P that F possesses no nonvanishing solutions of future
or past compact support.

19



As we have seen in section 1.4, the operator F has this property if it is normally hyper-
bolic. In this case, F possesses unique advanced and retarded Green’s operators G+,G−.
We will restrict our choice to operators P such that F is normally hyperbolic at least in
an open neighborhood UF of the solution space S, so that the causal propagator exists
in this neighborhood and its functional derivative can be defined.

Having chosen an operator P possessing the required properties, we define the linear
partial differential operator

F (Φ) : Γ(M,E∗) → Γ(M,E)

F (Φ) := δ2S(Φ) + P̃ (Φ) ◦K(Φ) ◦ P (Φ)
(3.1.5)

with

K(Φ) : g∗ → g (3.1.6)

being a formally selfadjoint Φ-jet dependent vector bundle isomorphism.

The operator F is selfadjoint by construction.

We will restrict the choice of the operator P such that F (Φ) is normally hyperbolic at
least in an open neighborhood UF of the solution space. This again ensures that F (Φ)
possesses unique advanced and retarded Green’s operators in UF . The intersection of
UF and UF is again an open neighborhood of S and will be denoted by U := UF ∩ UF.

For any choice of P and K satisfying the given conditions, the linear partial differential
equation for ξ ∈ TΦΓ(E) ' Γ(E)

F (Φ) ξ = 0 (3.1.7)

will be called the gauge fixed linearized field equation.

The physical structure of the original and gauge fixed linearized field equations is iden-
tical in the sense that on shell we have that

δ2S(Φ) ξ = 0 ∧ P (Φ) ξ = 0 ⇒ F (Φ) ξ = 0 (3.1.8)

F (Φ) ξ = 0 ∧ P (Φ) ξ = 0 ⇒ δ2S(Φ) ξ = 0 (3.1.9)

We see that the on-shell solutions of F (Φ) and δ2S(Φ) satisfying the gauge fixing con-
dition are identical.

The causal propagator of the gauge fixed linearized field equations is denoted by ∆gf .
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3.2. Definition and properties of the extended Peierls
bracket

Since the gauge fixed linearized field equations possess unique advanced and retarded
Green’s operators at least in an open environment U of the solution space S, we can
define the corresponding causal propagator and, based on this definition, the extended
Peierls bracket:

Definition 3.2.1 (Extended Peierls bracket)
The extended Peierls bracket is given by the map

{·, ·} : F|U ×F|U → F|U
{A,B} := δA[∆gf δB]

(3.2.1)

As we already did in section 1.5 for the original Peierls bracket, we restrict the action
of the extended Peierls bracket to the functionals in F satisfying the wavefront set con-
dition in order to ensure that the action of the bracket is well defined and the bracket
algebra closes.

The form of the gauge fixed linearized field equations depends on the choice of the
operators P and K. Therefore the corresponding causal propagator and the extended
Peierls bracket also depend on this choice. We examine this dependency now.

To do so, we first need to calculate the dependence of the advanced and retarded Green’s
operators of F on the choice of the operators P and K.

A general variation of the operator F yields

F → F + dF, G± → G± + dG±

⇒ F ◦ dG± + dF ◦ G± = 0
(3.2.2)

This equation has the solution

dG± = −G± ◦ dF ◦ G± (3.2.3)

which can easily be checked by insertion in (3.2.2) and the definition of the Green’s
operators. This solution is unique due to the unique support properties of the advanced
and retarded Green’s operators.

The variation of F with respect to variations of P and K is given by

dF = dP̃ ◦K ◦ P + P̃ ◦ dK ◦ P + P̃ ◦K ◦ dP (3.2.4)

Using this in equation (3.2.3) yields

dG± = −G± ◦ dP̃ ◦K ◦ P ◦G±

−G± ◦ P̃ ◦ dK ◦ P ◦G±

−G± ◦ P̃ ◦K ◦ dP ◦G±

(3.2.5)
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In order to simplify this expression, we derive some additional relations in the following.

Using (2.0.8), on-shell or in case of a field independent invariant flow we have

F ◦Q = P̃ ◦K ◦ F (3.2.6)

Acting with G± from the left and with G± from the right yields

Q ◦G± = G± ◦ P̃ ◦K (3.2.7)

Acting with K−1 from the right results in

Q ◦G± ◦K−1 = G± ◦ P̃ (3.2.8)

The formal adjoint of this equation is given by

K−1 ◦G± ◦ Q̃ = P ◦G± (3.2.9)

Remark: The identities (3.2.8) and (3.2.9) are essential and will be used several times in
the following calculations. Therefore, all subsequent calculations are only valid on-shell
or assuming the field independence of the invariant flow.

Using identity (3.2.9), we see that for an invariant A we have

F ◦G± δA = δA

P ◦G± δA = K−1 ◦G± ◦ Q̃ δA = 0

⇒ δ2S ◦G δA = δA

⇒ δ2S ◦∆ δA = 0

(3.2.10)

We see that the action of the causal propagator of F (Φ) on the functional derivative of
an invariant yields a Jacobi field.

Using identities (3.2.8) and (3.2.9) in equation (3.2.5) yields

dG± = −G± ◦ dP̃ ◦K ◦K−1 ◦G± ◦ Q̃
−Q ◦G± ◦K−1 ◦ dK ◦K−1 ◦G± ◦ Q̃
−Q ◦G± ◦K−1 ◦K ◦ dP ◦G±

= −G± ◦ dP̃ ◦G± ◦ Q̃
+Q ◦G± ◦ dK−1 ◦G± ◦ Q̃
−Q ◦G± ◦ dP ◦G±

(3.2.11)

With this result we can calculate the variation of the extended Peierls bracket with
respect to variations of the operators P and K:

d(δA[∆ δB]) = − δA[(G+ ◦ dP̃ ◦G+ −G− ◦ dP̃ ◦G−) ◦ Q̃ δB]

− δA[Q ◦ (G+ ◦ dK−1 ◦G+ −G− ◦ dK−1 ◦G−) ◦ Q̃ δB]

− δA[Q ◦ (G+ ◦ dP ◦G+ −G− ◦ dP ◦G−) δB]

(3.2.12)
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In case that A and B are invariants, this variation vanishes since in each term we have an
invariant flow acting on a functional derivative of an invariant. We see that the Peierls
bracket of two invariants does not depend on the choice of the operators P and K, at
least along differentiable curves P (λ), K(λ).

We will now examine the G-invariance of the extended Peierls bracket.

The functional derivative of the Peierls bracket yields

δ(δA[∆ δB])[(·)]
= δ2A[∆ δB, (·)]− δ2B[∆ δA, (·)] + δA[δ∆[(·)] δB]

= δ2A[∆ δB, (·)]− δ2B[∆ δA, (·)]
− δA[G+ ◦ δF [(·)] ◦G+ δB] + δA[G− ◦ δF [(·)] ◦G−δB]

(3.2.13)

whereby we used expression (3.2.2) to calculate the functional derivative of the causal
propagator.

The functional derivative of F is given by

δF [(·)] = δ(δ2S)[(·)] + δP̃ [(·)] ◦K ◦ P + P̃ ◦K ◦ δP [(·)] + P̃ ◦ δK[(·)] ◦ P (3.2.14)

Acting with G± from the left and the right, we obtain

G± ◦ δF [(·)] ◦G± = G± ◦ δP̃ [(·)] ◦K ◦ P ◦G±

+G± ◦ P̃ ◦K ◦ δP [(·)] ◦G±

+G± ◦ δ(δ2S)[(·)] ◦G±

(3.2.15)

We again apply the identities (3.2.8) and (3.2.9) to obtain

G± ◦ δF [(·)] ◦G± = G± ◦ δP̃ [(·)] ◦K ◦K−1 ◦G± ◦ Q̃
+Q ◦G± ◦K−1 ◦K ◦ δP [(·)] ◦G±

+G± ◦ δ(δ2S)[(·)] ◦G±

= G± ◦ δP̃ [(·)] ◦G± ◦ Q̃
+Q ◦G± ◦ δP [·] ◦G±

+G± ◦ δ(δ2S)[(·)] ◦G±

(3.2.16)

Using this result in (3.2.13), we obtain for A,B being invariants:

δ(δA[∆ δB])[(·)] = δ2A[∆ δB, (·)]− δ2B[∆ δA, (·)]
− δA[G+ ◦ δ(δ2S)[(·)] ◦G+ δB]

+ δA[G− ◦ δ(δ2S)[(·)] ◦G− δB]

= − δA[δQ[∆ δB]f ] + δB[δQ[∆ δA]f ]

− δ3S[G− δA,Qf,G+ δB]

+ δ3S[G+ δA,Qf,G− δB]

(3.2.17)
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In the last step we applied identity (2.0.8) to the first two summands, whereby we as-
sume to be on shell or the invariant flow to be field independent.

Now we can apply identity (2.0.10), again evaluated on-shell or assuming the field inde-
pendence of the invariant flow, to the last two summands to obtain

− δA[δQ[∆ δB]f ] + δB[δQ[∆ δA]f ]

− δ3S[G− δA,Qf,G+ δB]

+ δ3S[G+ δA,Qf,G− δB]

= − δA[δQ[∆ δB]f ] + δB[δQ[∆ δA]f ]

+ δ2S[G− δA, δQ[G+ δB]f ] + δ2S[δQ[G− δA]f,G+ δB]

− δ2S[δQ[G+ δA]f,G− δB]− δ2S[G+ δA, δQ[G− δB]f ]

(3.2.18)

We again use identity (2.0.8) on the last four summands, which yields

− δA[δQ[∆ δB]f ] + δB[δQ[∆ δA]f ]

+ δ2S[G− δA, δQ[G+ δB]f ] + δ2S[δQ[G− δA]f,G+ δB]

− δ2S[δQ[G+ δA]f,G− δB]− δ2S[G+ δA, δQ[G− δB]f ]

= − δA[δQ[∆ δB]f ] + δB[δQ[∆ δA]f ]

+ δA[δQ[G+ δB]f ] + δB[δQ[G− δA]f ]

− δB[δQ[G+ δA]]− δA[δQ[δG− δB]f ]

= − δA[δQ[∆ δB]f ] + δB[δQ[∆ δA]f ]

+ δA[δQ[∆ δB]f ]− δB[δQ[∆ δA]f ]

= 0 ∀f ∈ Γ(g)

(3.2.19)

We see that the Peierls bracket of two invariants again yields an invariant.

We still have to show that the extended Peierls bracket satisfies the Jacobi identity.
As we already mentioned, the corresponding proof for the original Peierls bracket relies
on the symmetry of the functional derivative of the linearized field equation. However,
since it can in general not be derived from an action functional, the functional derivative
of the gauge fixed linearized field equations can not be assumed to be symmetric.

We now examine under which conditions the Jacobi identity holds true for the extended
Peierls bracket.

The iterated Peierls bracket is given by

{{A,B}, C} = δA[δ∆[∆ δC] δB] + δ2A[∆ δB,∆ δC]− δ2B[∆ δC,∆ δA] (3.2.20)

When we add up the last two summands in this expression for all cyclic permutations
of {A,B,C}, it is easily seen that the sum vanishes.
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The first summand of (3.2.20) can be expressed as

δA[δ∆[∆ δC] δB] = − δA[G+ ◦ δF [∆ δC] ◦G+ δB]

+ δA[G− ◦ δF [∆ δC] ◦G− δB]
(3.2.21)

If we assume that F can be derived from an action functional SF such that

F (Φ) = δ2SF (Φ) (3.2.22)

we have that expression (3.2.21) can be written as

δA[δ∆[∆ δC] δB] = − δ3SF [G− δA,G+ δB,∆ δC]

+ δ3SF [G+ δA,G− δB,∆ δC]

= − δ3SF [G− δA,G+ δB,G+ δC]

+ δ3SF [G− δA,G+ δB,G− δC]

+ δ3SF [G+ δA,G− δB,G+ δC]

− δ3SF [G+ δA,G− δB,G− δC]

(3.2.23)

If we add up this expression for all cyclic permutations of {A,B,C}, the sum vanishes
due to the symmetry of the functional derivative of SF .

In case that F cannot be derived from an action functional and that A,B,C are in-
variants, we can use identity (3.2.17) to obtain

δA[δ∆[∆ δC] δB] = − δA[G+ ◦ δ(δ2S)[∆ δC] ◦G+ δB]

+ δA[G− ◦ δ(δ2S)[∆ δC] ◦G− δB]

= − δ3S[G− δA,G+ δB,∆ δC]

+ δ3S[G+ δA,G− δB,∆ δC]

= − δ3S[G− δA,G+ δB,G+ δC]

+ δ3S[G− δA,G+ δB,G− δC]

+ δ3S[G+ δA,G− δB,G+ δC]

− δ3S[G+ δA,G− δB,G− δC]

(3.2.24)

If we add up this expression for all cyclic permutations of {A,B,C}, the sum vanishes
due to the symmetry of the functional derivative of S.

we see that the Peierls bracket satisfies the Jacobi identity if restricted to act on in-
variants or in case the gauge fixed linearized field equations can be derived from an
action functional.

For the original Peierls bracket, the field equations generate a Bracket ideal (see section
1.5). We will now see to which extent this holds true for the extended Peierls bracket.
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We are again considering the set of functionals of the form

ES = {F ∈ F : F (Φ) = D(Φ)[dS(Φ)] for a D : Γ(M,E) → E(M,E∗,R) smooth}
(3.2.25)

Let now A = D[dS] ∈ E , B ∈ F . Then it is

{A,B} = δ(D[dS])[∆ dB] = D[δ2S ◦∆ dB]− δD[dS,∆ dB] (3.2.26)

Using the definition of the operator F we obtain

{A,B} = D[(F − P̃ ◦K ◦ P ) ◦∆ δB]− δD[dS,∆ δB] (3.2.27)

If B is an invariant, the first term vanishes on-shell due to identity (3.2.10). The second
term is contained in ES. Hence if we restrict the bracket algebra to the invariants, the
field equations generate a bracket ideal ES of Finv.

We summarize our results on the properties of the extended Peierls bracket obtained
in this section:

In general, the extended Peierls bracket can only be defined on F|U , where U is an
open neighborhood of the solution space S in Γ(E).

If the gauge fixed operator F can be derived from an action functional SF (Φ), the
restricted bracket algebra (F|U , {·, ·}) is a Poisson algebra.

On-shell, or assuming the field independence of the invariant flow, the invariants Finv|U
form a bracket subalgebra (Finv|U , {·, ·}) which is independent from the choice of the
operators P and K and is a Poisson algebra.

The field equations generate a bracket ideal of (Finv, {·, ·}).

We will now have a closer look at the properties of the extended Peierls bracket in
case that the invariant flow is field independent.

In this case, the operators P and K can be chosen to be field independent and the
gauge fixed linearized field equations can be derived from the gauge fixed action
functional

Sgf(Φ) := S(Φ) +

∫
M

dnx
{

Φ (P̃ ◦K ◦ P Φ)
}

(3.2.28)

Due to this property, the extended Peierls bracket coincides with the original Peierls
bracket constructed with respect to this gauge fixed action functional, which is well
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defined at least in the open neighborhood U of the solution space since in this neighbor-
hood the linearized field equations derived from this action functional are by definition
normally hyperbolic. This implies that the extended Peierls bracket provides a Poisson
bracket all over U . In addition, we have already seen that the invariants generate a
Poisson subalgebra Finv of this Poisson algebra.

The gauge fixed field equations generate another Poisson ideal EF given by

EF = {A ∈ F : A(Φ) = D(Φ)[δSgf(Φ)] for a D : Γ(E) → E(E∗,R) smooth} (3.2.29)

Finally, we introduce the space FP of smooth functionals generated by the gauge fixing
operator P :

FP := {F ∈ F : F (Φ) = D(Φ)[P Φ] for a D : Γ(E) → D′(g∗,R) smooth} (3.2.30)

We examine the properties of FP .

First of all, we see that (FP , {·, ·}) is a subalgebra of (F , {·, ·}). To verify this, let
A,B ∈ FP . We then have

{A,B}(Φ) = {D1(Φ)[P Φ], D2(Φ)[P Φ]}
= δD1(Φ)[P Φ,∆ δB]

+D1(Φ)[P ◦∆ δD2(Φ)[P Φ]]

+D1(Φ)[P ◦∆ ◦ P̃ D2(Φ)]

(3.2.31)

The first two summands are obviously contained in FP . The last term vanishes since

D1(Φ)[P ◦∆ ◦ P̃ D2(Φ)] = D1[K
−1 ◦∆F ◦ Q̃ ◦ P̃ D2(Φ)]

= D1[K
−1 ◦∆F ◦ F D2(Φ)]

= 0

(3.2.32)

Furthermore, the subalgebra Finv stabilizes FP in (F , {·, ·}):

Let A ∈ Finv and B ∈ FP . We then have

{B,A}(Φ) = {D(Φ)[P Φ], A(Φ)}
= D(Φ)[P ◦∆ δA(Φ)]− δA(Φ)[∆ (δD(Φ)[P Φ])]

= − δA(Φ)[∆ (δD(Φ)[P Φ])] ∈ FP
(3.2.33)

Combining these results, we have that FP + Finv forms a Poisson subalgebra of F .

3.3. Relation to the symplectic formalism

In this section we examine the relation between the (extended) Peierls bracket and the
symplectic formalism for classical field theories (see e.g. [6]). This formalism relies on the
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definition of a symplectic form (i.e. a closed nondegenerate 2-form) ω(Φ) on the solution
space S. The formal inverse of the symplectic form then yields a Poisson bracket on the
algebra of smooth functionals on the solution space. In this section we will see how the
extended Peierls bracket can be inverted to construct such a symplectic form.

First of all we define the Wronski operator of a linear partial differential operator:

Definition 3.3.1 (Wronski operator)
Let F : Γ(E) → Γ(E∗) be a linear partial differential operator. A Wronski operator W
of P is any antisymmetrical bidifferential operator

W : Γ(E)× Γ(E) → Γ(TM) (3.3.1)

satisfying∫
U

dnx {ξ (P χ)− χ (P ξ))} =

∫
Ω

dΩµ W
µ[ξ, χ] (3.3.2)

for all ξ, χ ∈ Γ(E) and open sets U ⊂M with smooth orientable boundary Ω = ∂U .

We are interested in the Wronski operator WS(Φ) for the linearized field equations.
Given a Cauchy hypersurface Σ, we use WS(Φ) to define the antisymmetric bilinear
map

ωΣ(Φ) : Γ(E)× Γ(E) → R

ωΣ(Φ)[ξ, χ] :=

∫
Σ

dΣµ W
µ
S (Φ)[ξ, χ]

(3.3.3)

The action of ωΣ(Φ) is in general only well defined if (supp ξ ∩ supp χ ∩Σ) is compact.

In the following, we restrict the action of ωΣ(Φ) to the solutions of the linearized field
equations. We now examine the properties of ωΣ.

First of all, we note that the action of ωΣ(Φ) is independent of the choice of the Cauchy
hypersurface Σ. We verify this:

δ2S(Φ) ξ = δ2S(Φ) χ = 0, {Σ,Σ′} Cauchy hypersurfaces

⇒ ωΣ(Φ)[ξ, χ]− ωΣ′(Φ)[ξ, χ] =

∫ Σ

Σ′
dnx

{
ξ (δ2S χ)− χ (δ2S ξ)

}
= 0

(3.3.4)

We therefore denote ωΣ simply by ω.

A direct consequence of this result is the following:

δ2S(Φ) ξ = δ2S(Φ) χ, (supp χ) future or past compact

⇒ ωΣ(Φ)[ξ, χ] = ωΣ′(Φ)[ξ, χ] = 0
(3.3.5)
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since a Cauchy hypersurface Σ′ exists such that (supp χ ∩ Σ′) = ∅.

We see that ω(Φ) vanishes when acting on at least one solution with past or future
compact support of the linearized field equations.

It follows that in case that such solutions exist, the bilinear map ω(Φ) is degenerate.

If we assume the existence of advanced and retarded Green’s functions (and therefore
the existence of the causal propagator ∆) for the linearized field equations, ω(Φ) is non-
degenerate.

This follows from the fact that it can then be inverted in the following sense:

Let A ∈ F , Σ be an arbitrary Cauchy surface and Σ+,Σ− arbitrary Cauchy surfaces in
the future resp. past of the support of A.

We then have that

ω(Φ)[∆ δA, ξ] = ωΣ(Φ)[G+ δA, ξ]− ωΣ(Φ)[G− δA, ξ]

= ωΣ(Φ)[G+ δA, ξ]− ωΣ+(Φ)[G+ δA, ξ]

− ωΣ(Φ)[G− δA, ξ] + ωΣ−(Φ)[G− δA, ξ]

(3.3.6)

where we used the support properties of the advanced and retarded Green’s functions.

Using the definition of the Wronski operator, we can write this as

−
∫ Σ+

Σ

dnx
{
(G+ δA) (δ2S ξ)− ξ (δ2S ◦G+ δA)

}
−

∫ Σ

Σ−

dnx
{
(G− δA) (δ2S ξ)− ξ (δ2S ◦G− δA)

}
=

∫ Σ+

Σ

dnx
{
ξ (δ2S ◦G+ δA)

}
+

∫ Σ

Σ−

dnx
{
ξ (δ2S ◦G− δA)

}
=

∫ Σ+

Σ

dnx {ξ δA}+

∫ Σ

Σ−

dnx {ξ δA}

=

∫ Σ+

Σ−

dnx {ξ δA} = δA[ξ]

(3.3.7)

We see that the inverse of ω is given by the causal propagator, and that the Wronski
operator solves the initial value problem of the linearized field equations. The map ω(Φ)
for Φ ∈ S is called the symplectic form of the theory.

Using this result, the original Peierls bracket can be expressed as

{A,B} = ω[∆ δA,∆ δB] (3.3.8)
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In case that we are dealing with a gauge theory, we can derive a similar result:

Let A be an invariant and Φ be on-shell. Let furthermore ξ ∈ Γ(E) be a Jacobi field.

We then have

ω[∆gf δA, ξ] =

∫ Σ+

Σ

dnx
{
ξ (δ2S ◦G+ δA)

}
+

∫ Σ

Σ−

dnx
{
ξ (δ2S ◦G− δA)

}
(3.3.9)

where we just performed the same calculation as in (3.3.7).

As we calculated in (3.2.10), on-shell we have

P ◦Ggf δA = 0 (3.3.10)

for A being an invariant. Therefore it is

δ2S ◦Ggf δA = F ◦Ggf δA = δA (3.3.11)

and we have

ω(Φ)[∆gf δA, ξ] = δA[ξ] (3.3.12)

For Φ ∈ S, the map ω(Φ) is called the presymplectic form of the gauge theory, due
to its degeneracy.

Using this result, the on-shell extended Peierls bracket of two invariants A,B can be
expressed as

{A,B} = ω[∆ δA,∆ δB] (3.3.13)

since ∆ δA provides a Jacobi field for A being an invariant (see identity 3.2.10).

3.4. Example: The Free Maxwell field

In this section we apply the construction scheme for the extended Peierls bracket on the
theory of the free Maxwell field. We formulate the theory using the vector potential A
as classical field.

The classical vector potential takes values in the smooth sections over the vector bundle
T ∗M . The covariant derivative on T ∗M is given by the Levi-Civita connection.

The action functional for the vector potential is given by

Sψ =

∫
M

dnx
√
− det g Fab F

ab ψ, F = dA (3.4.1)
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The functional derivative of the action functional yields the Maxwell equations:√
− det g (2∇Aa −∇a∇bA

b) = 0 (3.4.2)

Due to the linearity of the theory, the linearized field equations are again given by the
differential operator

δ2Sa[ξ] :=
√
− det g (2∇ ξa −∇a∇b ξ

b) (3.4.3)

This operator is not normally hyperbolic. It has the invariant flow

Q : C∞(M,R) → Γ(T ∗M)

Qa f := ∇a f
(3.4.4)

We follow the method of gauge fixing described in section (3.1) and make the following
choices:

P ξ :=
√
− det g ∇aξa

⇒ F f = P ◦Q f =
√
− det g 2∇ f

K :=
−1√
− det g

⇒ (P̃ ◦K ◦ P )a[ξ] =
√
− det g ∇a∇bξ

b

⇒ F = δ2S + P̃ ◦K ◦ P =
√
− det g 2∇

(3.4.5)

We see that F, F are clearly normally hyperbolic and are therefore possess unique ad-
vanced and retarded Green’s operators.

The chosen gauge fixing condition corresponds to the well known Lorenz gauge.

Since the invariant flow of the free Maxwell field is field independent, the extended
Peierls bracket possesses the properties discussed at the end of the previous section.

The gauge fixed linearized field equations can be derived from the gauge fixed action
functional

Sgf (A) := −
∫
M

dnx
√
− det g {∇aA

b ∇aAb} (3.4.6)

which provides a basis for the definition of canonical conjugate variables.

The gauge fixed Maxwell equations generate a Poisson ideal FF of the resulting Poisson
algebra. The invariants generate a Poisson subalgebra Finv, which itself has an ideal ES
generated by the field equations. The gauge fixing condition generates a subalgebra FP
stabilized by Finv. In particular, the gauge fixing condition itself Poisson commutes with
all invariants. We verify this:
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Consider a functional of the form

B := D[P A], D ∈ E ′(M × R,R) field independent (3.4.7)

Let C be an invariant. Then it is

{B,C} = δB[∆ δC] = D[P ◦∆ δC] = 0 (3.4.8)

We see that the gauge fixing condition Poisson commutes with all invariants.
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4. Classical General Relativity

The main goal of this work is to which extent the formalism based on the extended Peirels
bracket can be used to given an algebraic formulation of classical General Relativity. In
this chapter, we therefore give a Lagrangian formulation of classical General Relativity
(see e.g. [5, 23]) and derive the linearized Einstein equations to construct the gauge fixed
linearized field equations.

4.1. Lagrangian formulation

A well known formulation of classical General Relativity is using the notion of a smooth
Lorentzian metric g as dynamical field on a smooth (4-dimensional) manifold M . This
approach is background independent in the sense that the causal and metric structure
on M are not given in advance and determined only by the dynamical fields. However,
this formulation still relies on a fixed smooth manifold structure on M .

General Relativity in terms of metric components can be formulated as a Lagrangian
field theory . Using the framework given in chapter 1, we make the following choices:

Let E := Ω2
symm(M,R) be the vector bundle of symmetric (0, 2)-tensors on M . We are

only interested in smooth sections g ∈ Γ(E) which yield a globally hyperbolic Lorentzian
spacetime (M, g). We will denote the subset of Γ(E) satisfying these conditions by
Γgh(E). This space provides the configuration space of the theory.

The configuration space Γgh(E) lies not open in Γ(E). However, we still want to be
able to use the differential structure on Γ(E) given in section 1.1. Therefore we will
only be considering functionals defined at least on an open neighborhood of Γgh(E) in
Γ(E), so that the functional derivatives δkA(g)[ξ1, ..., ξk] are well defined for any such
functional A and g ∈ Γgh(E), ξi ∈ Γ(E).

We will fix the covariant derivative ∇ to be the Levi Civita connection. The Levi
Civita connection is the unique metric compatible and torsion free covariant derivative
corresponding to the metric g. Its connection coefficients are called the Christoffel
symbols and they are, in terms of the metric components, given by

Γabc =
1

2
gad(∂bgcd + ∂cgbd − ∂dgbc) (4.1.1)

The Riemann curvature of the Levi Civita connection is given by

R∇(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z := ed R
d ∇
abc X

b Y c Za (4.1.2)
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which, expressed using the Christoffel symbols, yields

Rd ∇
abc = ∂bΓ

d
ca − ∂cΓ

d
ba + ΓdbeΓ

e
ca − ΓdceΓ

e
ba (4.1.3)

The Ricci curvature tensor is given by the contraction of the Riemann curvature:

R∇
ab := Rc ∇

acb (4.1.4)

Finally, the Ricci scalar is given by the trace of the Ricci curvature:

R∇ := gab R∇
ab (4.1.5)

A possible choice for the action functional is the Einstein Hilbert action:

S(g) :=

∫
M

dnx
√
−g R∇ (4.1.6)

To calculate the functional derivatives of the Einstein Hilbert action, we first derive
some more elementary functional derivatives:

First of all, we will calculate the functional derivative of the inverse metric. We have

gab gbc = δac

⇒ δ(gab gbc)[ξ] = δgab[ξ] gbc + gab δgbc[ξ] = 0

⇒ δgab[ξ] = −gacgbd δgcd[ξ]
(4.1.7)

Using this result, we calculate the functional derivative of the Christoffel symbols:

δΓabc[ξ] = − 1

2
gae gdf (∂bgcd + ∂cgbd − ∂dgbc) ξef

+
1

2
gad (∂bξcd + ∂cξbd − ∂dξbc)

= − gad Γfbc ξdf +
1

2
gad (∂bξcd + ∂cξbd − ∂dξbc)

= − 1

2
gad (Γebc ξde + Γebc ξde + Γedc ξbe − Γedc ξce + Γebd ξce − Γebd ξce)

+
1

2
gad (∂bξcd + ∂cξbd − ∂dξbc)

=
1

2
gad (∇bξcd +∇cξbd −∇dξbc)

(4.1.8)

The calculation of the functional derivative of the Riemann tensor then yields:

δRd ∇
abc [ξ] = ∂bδΓ

d
ac[ξ]− ∂cΓ

d
ab[ξ]

+ Γdbe δΓ
e
ac[ξ] + Γeac δΓ

d
eb[ξ]− Γdec δΓ

e
ab[ξ]− Γeab δΓ

d
ce[ξ]

= ∂bδΓ
d
ac[ξ]− ∂cΓ

d
ab[ξ] + Γebc δΓ

d
ae[ξ]− Γebc δΓ

d
ae[ξ]

+ Γdbe δΓ
e
ac[ξ] + Γeac δΓ

d
eb[ξ]− Γdec δΓ

e
ab[ξ]− Γeab δΓ

d
ce[ξ]

= ∇b(δΓ
d
ac[ξ])−∇c(δΓ

d
ab[ξ])

(4.1.9)
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which allows a straightforward calculation of the functional derivative of the Ricci tensor

δR∇
ac[ξ] = δRd ∇

adc [ξ] = ∇d(δΓ
d
ac[ξ])−∇c(δΓ

d
ad[ξ]) (4.1.10)

and the functional derivative of the Ricci scalar:

δR∇[ξ] = δ(gac R∇
ac)[ξ] = δgac[ξ] R∇

ac + gac δR∇
ac[ξ]

= − gadgce ξde R
∇
ac + gac (∇d(δΓ

d
ac[ξ])−∇c(δΓ

d
ad[ξ]))

(4.1.11)

Using the trace theorem (see e.g. [5], p. 162)

δ(detA) = detA Tr(A−1 δA) (4.1.12)

we can calculate the functional derivative of
√
− det g:

δ
√
− det g[ξ] = − 1

2
√
− det g

det g Tr ξ =
1

2

√
− det g Tr ξ (4.1.13)

Now we can finally calculate the functional derivative of the Einstein Hilbert action:

δS(g)[ξ] =

∫
M

dnx
{
δ(

√
− det g)[ξ] R∇ +

√
− det g δR∇[ξ]

}
=

∫
M

dnx
√
− det g

{
1

2
Tr ξ R∇ − ξde R

de +∇d(g
ac δΓdac[ξ])−∇c(g

ac δΓdad[ξ])

}
(4.1.14)

Since we assume ξ to be of compact support, the last two summands in this expression
yield integrations over the divergence of compactly supported vector fields and therefore
vanish.

We are left with

δS(g)[ξ] =

∫
M

dnx
√
− det g (

1

2
R gab−Rab) ξab =: −

∫
M

dnx
√
− det g Gab ξab (4.1.15)

whereby we use this equation to define the Einstein tensor Gab.

The stationary points of the Einstein Hilbert action are therefore given by the met-
ric configurations satisfying the Einstein equations:√

− det g Gab = 0

⇔ Gab = 0

⇔ Rab = 0

(4.1.16)
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4.2. Gauge symmetry

In this section, we examine the gauge invariance of General Relativity. Our goal is to
find the invariant flows of the theory, so that we are able to use the framework given in
chapter 3 to construct the extended Peierls bracket for General Relativity.

Since the formulation of General Relativity does only depend on the smooth mani-
fold structure given on M , but not on any other tensorial objects on M , except for the
dynamical field itself, it is called a background independent theory.

As a consequence, the theory is invariant under the action of diffeomorphisms φ : M →
M in the following sense:

Given a (compactly supported) diffeomorphism φ : M → M , we let φ act on g via
the pullback:

g → φ∗g (4.2.1)

Since the Einstein Hilbert action is defined in a coordinate independent way and does
not depend on any tensorial objects on M other than g itself, we have that for compactly
supported diffeomorphisms φ : M →M

Sψ(g) = Sψ(φ∗g) ∀ψ : ψ |supp φ= 1 (4.2.2)

We se that in this sense the theory is Diff0(M)-invariant, whereby Diff0(M) denotes the
group of compactly supported diffeomorphisms φ : M →M .

The Lie algebra of Diff0(M) is given by the Lie algebra of smooth compactly supported
vector fields Γ0(TM) (see e.g. [18], p. 35ff).

The induced action of the Lie algebra on the metric field is given by

(X · g)ab := LXgab = ∇aXb +∇bXa ∀X ∈ Γ0(TM) (4.2.3)

Following the framework given in section (3.1), we see that the vector bundle g is in the
case of General Relativity given by the tangent bundle g := TM , and the invariant flow
of the theory is given by the g-jet dependent differential operator

Q(g) : Γ(TM) → TgΓ(E) ' Γ(E)

Q(g)X := LXg
(4.2.4)
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We varify that Q(g) indeed generates invariance transformations. We have

δS(g)[Q(g)X] = −
∫
M

dnx
√
− det g Gab (Q(g)X)ab

= − 2

∫
M

dnx
√
−g Gab (∇aXb +∇bXa)

= 2

∫
M

dnx
√
− det g

{
∇aG

ab Xb +∇bG
ab Xa

}
= 0

(4.2.5)

due to the Bianchi identity (see. e.g. [5, 23]):

∇aG
ab = 0 (4.2.6)

4.3. The linearized theory

In this section we derive the linearized field equations for General Relativity.

The field equations are given by

δS(g) = −
√
− det g Gab = 0 (4.3.1)

so that the linearized field equations are

(δ2S(g) ξ)ab =: −
√
− det g δGab[ξ]− δ

√
− det g[ξ] Gab = 0 (4.3.2)

We calculate the functional derivative of the Einstein tensor:

δGab[ξ] =
1

2

{
δR[ξ] gab +R∇ δgab[ξ]

}
− gacgbd δR∇

cd[ξ]

=
1

2
gab (δgcd[ξ] Rcd + gcd (∇e(δΓ

e
cd[ξ])−∇d(δΓ

e
ce[ξ])))

1

2
δgab[ξ] R∇ − gacgbd (∇e(δΓ

e
cd[ξ])−∇d(δΓ

e
ce[ξ]))

=
1

2
gabgcd (∇e(δΓ

e
cd[ξ])−∇d(δΓ

e
ce[ξ]))

− gacgbd (∇e(δΓ
e
cd[ξ])−∇d(δΓ

e
ce[ξ]))

+
1

2

{
gab δgcd[ξ] Rcd + δgab[ξ] R∇}

(4.3.3)
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We already derived the functional derivative of the Christoffel symbols in equation
(4.1.8). The use of this result yields

δGab[ξ] =
1

2
gab ∇c∇dξcd −

1

4
gab 2∇Tr ξ

− 1

4
gab 2∇Tr ξ − 1

4
gab ∇c∇dξcd +

1

4
gab ∇c∇dξcd

− 1

2
gbc ∇d∇aξcd −

1

2
gac ∇d∇bξcd +

1

2
(2∇ξ)ab

+
1

2
∇b∇aTr ξ +

1

2
gac ∇b∇dξcd −

1

2
gac ∇b∇dξcd

+
1

2

{
gab δgcd[ξ] Rcd + δgab[ξ] R∇}

=
1

2
gab ∇c∇dξcd −

1

2
gab 2∇Tr ξ − 1

2

(
gbc ∇d∇aξcd + gac ∇d∇bξcd

)
+

1

2
(2∇ξ)ab +

1

2
∇b∇aTr ξ

+
1

2

{
gab δgcd[ξ] Rcd + δgab[ξ] R∇}

(4.3.4)

The presymplectic form for the Jacobian of the Einstein Hilbert action has been calcu-
lated by Crnkovic and Witten in [6]. It is given by

ω(g)[ξ1, ξ2] :=

∫
Σ

dΣa W
a[ξ1, ξ2]

W a[ξ1, ξ2] := δΓabc[ξ1] (δgbc[ξ2] +
1

2
gbc Tr ξ2)

− δΓcbc[ξ1] (δgab[ξ2] +
1

2
gab Tr ξ2)− {ξ1 ↔ ξ2}

(4.3.5)

We apply the method for gauge fixing given in section (3.1), and make the choices pro-
posed in [7b], chapter 35.

We choose the gauge fixing operator P (g) given by

Pa(g) ξ :=
√
− det g

{
∇bξba +∇bξab −∇aTr ξ

}
P̃ ab(g) X :=

√
− det g

{
gab ∇cX

c −∇aXb −∇bXa
} (4.3.6)

and the vector bundle isomorphism K given by

Ka b(g) =
1

4
√
− det g

gab (4.3.7)

This yields

Fa(g) X := Pa(g) ◦Q(g) X

=
√
− det g

{
2 ∇c(∇cXa +∇aXc)−∇a(g

bc(∇bXc +∇cXb))
}

= 2
√
− det g

{
2∇Xa +∇b∇aX

b −∇a∇bX
b
}

= 2
√
− det g

{
2∇ +R∇

ab

}
Xb

(4.3.8)
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which is clearly normally hyperbolic and therefore possesses unique advanced and re-
tarded Green’s operators when (M, g) is globally hyperbolic.

We construct the resulting gauge fixed linearized field equations. It is

P̃ (g)ab ◦K ◦ P (g) ξ

=
1

4

√
− det g

{
(gab ∇c − 2 δbc ∇a) (gcd(2 ∇eξde −∇dTr ξ))

}
=

√
− det g

{
1

2
2 gab ∇c∇dξcd −

1

4
gabTr ξ

}
√
− det g

{
−1

2
gbc ∇a∇dξcd −

1

2
gac∇b∇dξcd +

1

2
∇a∇bTr ξ

}
(4.3.9)

which yields

F ab(g) ξ := − δ
√
− det g[ξ] Gab −

√
− det g δGab[ξ] + P̃ ab(g) ◦K(g) ◦ P (g) ξ

= −
√
− det g

{
1

2
(2∇ξ)ab − 1

4
gab2∇Tr ξ

}
− 1

2

√
− det g

{
(gbc ∇a∇d − gbc ∇d∇a + gac∇b ∇d − gac ∇d∇b) ξcd

}
− 1

2

√
− det g

{
gab δgcd[ξ] Rcd + δgab[ξ] R∇}

− δ
√
− det g[ξ] Gab

(4.3.10)

The second line of the last expression can written in terms of the Riemann and Ricci
curvature tensors:

(gbc ∇a∇d − gbc ∇d∇a + gac∇b ∇d − gac ∇d∇b) ξcd

= gbc [∇a,∇d] ξcd + gac [∇b,∇d] ξcd

= gbc (−Re ad
c ξed −Re ad

d ξce) + gac (−Re bd
c ξed −Re bd

d ξce)

= −Rcbad ξcd − gbc Rda ξcd −Rcabd ξcd − gac Rdb ξcd

(4.3.11)

Using this result, the gauge fixed linearized field equations can be written as

F ab(g) ξ = −
√
− det g

{
1

2
(2∇ξ)ab − 1

4
gab2∇Tr ξ

}
1

2

√
− det g

{
Rcbad +Rcabd

}
ξcd

− 1

2

√
− det g

{
gab δgcd[ξ] Rcd + δgab[ξ] R∇ − gbc Rda ξcd − gac Rdb ξcd

}
− δ

√
− det g[ξ] Gab

(4.3.12)
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We examine whether this operator is normally hyperbolic:

The term in second order of the covariant derivative is given by

− 1

2

√
− det g

{
(2∇ξ)ab − 1

2
2∇Tr ξ

}
= − 1

4

√
− det g

{
gac gbd 2∇ ξcd + gbc gad 2∇ξcd − gab gcd 2∇ξcd

}
=: − 1

4

√
− det g γab ◦2∇ ξcd

(4.3.13)

We see that the gauge fixed linearized field equations are normally hyperbolic if the
vector bundle homomorphism given by

γab(ξ) := (gac gbd + gbc gad − gab gcd) ξcd (4.3.14)

is invertable and therefore a vector bundle isomorphism.

This is indeed the case, and the inverse of (4.3.14) is given by

γ−1
cd (ξ) =

1

4
(gac gbd + gbc gad − gab gcd) ξ

ab (4.3.15)

We verify this:

(γ−1 ◦ γ)cd (ξ) =
1

4
(gac gbd + gbc gad −

1

2
gab gcd) (gae gbf + gbe gaf − gab gef ) ξef

=
1

4
(δec δ

f
d + δfc δ

e
d − gcd g

ef + δed δ
f
c + δfd δ

e
c − gdc g

ef ) ξef

− 1

4
(gcd g

ef + gcd g
fe − gcd g

ef Tr g) ξef

= δefcd ξef + (−1

2
− 1

2
+

1

4
Tr g) gcd Tr ξ = δefcd ξef = ξcd

(4.3.16)

We see that γ provides a vector bundle isomorphism and therefore the gauge fixed
linearized field equations are normally hyperbolic. This implies that for (M, g) being
globally hyperbolic, F possesses unique advanced and retarded Green’s operators.

We can, however, not assume that there exists an open neighborhood of the solution
space on which (M, g) is globally hyperbolic. To be more precise, we can not even as-
sume that g provides a Lorentzian metric in such a neighborhood. Therefore, there exist
in general no Green’s functions for the gauge fixed linearized field equations in an open
neighborhood of Γgh(E) in Γ(E). This is a problem which we will address in more detail
in chapter 6, where we will also discuss the problem of existence (resp. the nonexistence)
of invariants in classical General Relativity.
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5. The Palatini Action

In this section we give a brief introduction to the formulation of classical General Rel-
ativity using a local connection form and the tetrad fields as dynamical variables. This
formulation relies on the notion of principal bundles and connections on associated vec-
tor bundles. A short overview on those concepts can be found in appendices B and C,
which are based on [2] by Baum.

In this chapter only we use greek indices to denote the components of tensors with
respect to a coordinate base and latin indices to denote the components with respect to
a noncoordinate base given by the tetrad fields.

5.1. The frame bundle and the tangent bundle

The formulation of classical General Relativity, based on a local connection form, relies
on the definition of the frame bundle:

Definition 5.1.1 (Frame bundle)
Let M be an n-dimensional smooth parallelizable manifold. The set of bases of TxM is
given by

GL(M)x : {ex = {e1, ..., en} : ex is a base of TxM} (5.1.1)

We define

GL(M) :=
⋃̇

x∈M
GL(M)x (5.1.2)

A right action of GL(n,R) on GL(M)x is given by

ex · f → e′x ∈ GL(M)x

e′a := eb f
b
a

(5.1.3)

GL(M) is a principal GL(n,R)-bundle endowed with the following structure:

The projection π is given by

π : GL(M) →M

π(ex ∈ GL(M)x) = x
(5.1.4)
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Global trivialisations φ are given by the choice of a collection e of n smooth global base
vector fields on M :

φ(e′x ∈ GL(M)x) := f ∈ G : vx · f = e(x) (5.1.5)

The smooth section over GL(M) are then given by all collections of n smooth base vector
fields on M .

Smooth manifolds M , which can be equipped with a metric g such that (M, g) yields a
globally hyperbolic spacetime, are always parallelizable. This is implied by the fact that
all globally hyperbolic spacetimes are isomorphic to σ×R with σ being a 3-dimensional
Riemannian manifold (see theorem (A.0.1) in appendix A). Since all 3-dimensional Rie-
mannian manifolds are parallelizable, so is σ × R.

The tensor bundles over M are associated vector bundles of GL(M):

Let ρ(r,s) be the induced representation of GL(n,R) on Rn(r+s)
:

(ρ(r,s)(f) · T )a1,...,ar

b1,...,bs
:= ga1

c1
· ... · gar

cr T
c1,...,cr

d1,...,ds
(g−1)d1b1 · ... · (g

−1)ds
bs

(5.1.6)

The vector bundle T (r,s) of (r, s)-tensors on M is then isomorphic to

T (r,s)(M) ' GL(M)×(GL(n,R),ρ(r,s)) Rn(r+s)

(5.1.7)

In case of the tangent bundle TM , we have

TM ' GL(M)×(GL(n,R),ρ) Rn (5.1.8)

with an isomorphism

Φ : GL(M)×(GL(n,R),ρ) Rn → TM (5.1.9)

Φ([e, V ]) := ea V
a (5.1.10)

which is just the usual decomposition of tangent vectors in base vectors and components.

Given a connection form A on GL(M), we can use theorem (C.0.6) in appendix (C)
to construct a covariant derivative ∇A on TM :

X = [e, V ] ∈ Ω0(M,TM) (5.1.11)

∇AX := [e, dV + ρ∗(A ◦ de) V ] (5.1.12)

In components, this can be written as

(∇AX)µ = ea (∂µV
a + Aaµ b V

b) (5.1.13)

with Aaµ b being the components of the local connection form wit respect to e in the
given induced representation ρ∗ of gl(n,R).
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We introduce local coordinates on M . Thich allows us to define the tetrad fields
eaµ and their inverse eµa , which map the components of vectors with respect to the base
e to the respective components with respect to the coordinate base. Then it is

(∇Aea)(eb) = ec (∂µδ
c
a + Acµ d δ

d
a) e

µ
b = ec A

c
µ a e

µ
b =: ec Γcba (5.1.14)

which defines the coefficients of the spin connection:

Γcab := Acµ b e
µ
a (5.1.15)

This allows us to write equation (5.1.13) as

(∇AT )µ = eσ e
σ
a (∂µ(e

a
ν T

ν) + Aaµ b e
b
ν T

ν)

⇔ (∇AT )σµ = eσa(∂µ(e
a
ν T

ν) + Aaµ b e
b
ν T

ν)

= ∂µT
σ + eσa ∂µe

a
ν T

ν + eσa A
a
µ b e

b
ν T

ν

=: ∂µT
ν + Γσµν T

ν

(5.1.16)

which defines the usual connection coefficients

Γσµν := eσa ∂µe
a
ν + eσa A

a
µ b e

b
ν (5.1.17)

A Lorentzian metric g on M is induced by

gµν := eaµ ηab e
b
ν (5.1.18)

where η denotes the usual Minkowski metric η = diag (−1, 1, 1, 1).

We require the connection to be a metric connection, i.e.

∂(g(X, Y )) = g(∇X, Y ) + g(X,∇Y ) (5.1.19)

We calculate

g(∇X, Y ) + g(X,∇Y )

= (∂Xa + Aac X
c, Y b) ηab Y

b +Xa ηab (∂Y a + Aac Y
c)

= ∂(η(X, Y )) + Aac X
c ηab Y

b +Xaηab A
b
c Y

c

(5.1.20)

so that a metric connection has to satisfy

Γac X
c ηab Y

b +Xaηab A
b
c Y

c = 0

⇒ ηab A
b
c = −ηcb Aba

(5.1.21)

which implies that the connection form is valued in so(3, 1).
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5.2. Lagrangian formulation

We want to give a Lagrangian formulation of classical General Relativity in terms of the
tetrad field and the connection form. To do so, we have to express the curvature of g in
these variables.

The Riemann tensor is given by

R(ea, eb) ec := ∇ea ∇eb
ec −∇eb

∇ea ec −∇[ea,eb]ec

= ∇ea(ed Γdbc)−∇eb
(ed Γdac)− cdab ∇ed

ec

= ea(Γ
d
bc) ed − eb(Γ

d
ac) ed + Γdbc Γead ee + Γdac Γebd ee − cdab Γedc ee

= eµa ∂µ(A
d
ν c e

ν
b ) ed − eµb ∂µ(A

d
ν c e

ν
a) ed

+ Aeµ c A
d
ν e e

µ
b e

ν
a ed − Aeµ c A

d
ν e e

µ
a e

ν
b ed

− (eµa ∂µe
ν
b e

e
ν − eµb ∂µe

ν
a e

e
ν) A

d
ρ c e

ρ
e ed

= ed (eµa ∂µA
d
ν c e

ν
b + eµa A

d
ν c ∂µe

ν
b − eµb ∂µA

d
ν c e

ν
a − eµbA

d
ν c ∂µe

ν
a)

+ ed (Ade ∧ Aec)µν eµa eνb
− ed (eµa ∂µe

ν
b − eµb ∂µe

ν
a) A

d
ν c

= ed (dAdc + Ade ∧ Aec)µν eµa eνb =: ed R
d
cab

(5.2.1)

So in components with respect to the basis e, the Riemann curvature tensor is given by

Rd
cab = (dAdc + Ade ∧ Aec)µν eµa eνb (5.2.2)

which allows us to define

Rd
dµν := (dAdc + Ade ∧ Aec)µν (5.2.3)

which is just the local curvature form of the connection form A.

The torsion of ∇ is given by

T (ea, eb) = ∇eaeb −∇eb
ea − [ea, eb]

= ec Γcab − ec Γcba − ec e
c
ν (eµa ∂µe

ν
b − eµb ∂µe

ν
a)

= ec (Acµ b e
µ
a − Acµ a e

µ
b − eµa ∂µe

ν
b e

c
ν + eµb ∂µe

ν
a e

c
v)

=: ec T
c
ab

(5.2.4)

In coordinate base the torsion is then given by

T cρσ = T cab e
a
ρ e

b
σ

= Acρ b e
b
σ − Acσa

eaρ − ∂ρe
ν
b e

c
ν e

b
σ + ∂σe

ν
a e

c
ν e

a
ρ

= (dec)ρσ + (Acb ∧ eb)ρσ

(5.2.5)

which is the expected result since following (5.1.17) we have

2ecµ Γµ[ρσ] = (dec)ρσ + (Acb ∧ eb)ρσ (5.2.6)
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We can now write the Einstein-Hilbert action in terms of the local connection form and
the tetrad fields:

SEH(A, e) =

∫
M

dnx
√
− det g R∇(A, e) =

∫
M

dnx
√
− det g Ra

b µν e
µ
a e

ν
c η

bc

=

∫
M

dnx
√
− det g (dAab + Aac ∧ Acb)µν eµa eνd ηbd

(5.2.7)

In this form the action is called the Palatini action.

The Palatini action is again Diff0(M)-invariant, where the diffeomorphism group acts
via pullback on the tetrad fields and the connection form.

In addition, the Palatini action is by construction invariant under the action of the
Lie group given by the smooth sections over G := M ×O(3, 1). Γ(G) is a Lie group with

g1, g2 ∈ Γ(G)

(g1 · g2)(x) := g1(x) · g2(x)
(5.2.8)

Γ(G) acts on the tetrad fields via

(g · e)a(x) := eb(x) g
b
a(x) (5.2.9)

The action on the local connections form is, following theorem (C.0.3), given by

(g · A)(x) := Ad(g−1(x)) ◦ A+ g−1(x) ◦ dg(x) (5.2.10)

The functional derivative of the Palatini action vanishes iff the torsion and the Riemann
tensor vanish. Therefore the resulting field equations are given by the usual Einstein
equations and the demand that the covariant derivative ∇ is given by the Levi-Civita
connection.

The derivation of this result can in detail be found for example in [13].

The additional gauge freedom present in this formulation results in the existence of
an additional invariant flow and therefore the requirement to find an additional gauge
fixing condition for the resulting linearized field equations. We conclude that for these
reasons for the algebraic formulation of classical General Relativity the formulation in
terms of metric components is preferable.

The presymplectic form for the Jacobian of the Palatini action has be calculated by
Frauendiener and Sparling in [12].
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6. Conceptual Problems

In this chapter we discuss some of the conceptual difficulties that occur when we attempt
to construct the algebra of obvservables for classical General Relativity based on the
extended Peierls bracket.

6.1. Existence of Green’s operators

As we already mentioned in chapter 4, the space Γlor(E) of smooth Lorentzian metrics
on M is in general not an open subset of the space Γ(E) of smooth symmetric (0, 2)-
tensor fields on M . This can be seen in the following example:

Let gab be a smooth Lorentz metric on a noncompact smooth manifold M . Further-
more, let φ : M → R+ be smooth and surjective. We define the smooth curve

γ : R → Γ(E)

γ(λ) := g − λ · φ · g
(6.1.1)

It is limλ→0 γ(λ) = g with respect to the topology given on Γ(E).

However, for any λ 6= 0 it exists a point pλ ∈ M with φ(pλ) = 1
λ
, so that γ(λ)(pλ) = 0.

We see that for this reason, γ(λ) /∈ Γlor(E) for λ 6= 0 and therefore Γlor(E) lies not
open in Γ(E). This is by extension also true for the space Γgh(E) of smooth globally
hyperbolic metrics on M .

As a consequence, the existence of the advanced and retarded Green’s operators of
the gauge fixed linearized field equations is not guaranteed on an open subset of Γ(E),
so that the functional derivative of the Green’s operators is not defined even on Γgh(E).

In chapter 3, we used the functional derivative of the causal propagator (and there-
fore of the Green’s operators). To be more precise, we used the functional derivative of
quantities of the form

F := δA[∆ δB] (6.1.2)

where A,B are compactly supported functionals defined over a neighborhood of Γgh(E).
we will now see how we can define the functional derivative of a quantity of this form.

On Γgh(E), it is supp F ⊂ (J+(supp A) ∪ J−(supp B)) ∩ (J+(supp B) ∪ J−(supp A)),
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which is compact.

We define

δF (g ∈ Γgh(E))[ξ] := δF (g)[ξ′] ∀ξ ∈ Γ(E), ξ′ ∈ Γ0(E), ξ′|supp F = ξ|supp F (6.1.3)

The functional derivative of the causal propagator along ξ′ can be defined, since for any
χ ∈ Γ0(E) and g ∈ Γgh(E), the curve

γ(λ) := g + λ · χ (6.1.4)

lies in Γgh(E) at least for an open intervall λ ∈ I, 0 ∈ I, due to the boundedness of χ.

6.2. Observables in General Relativity

As we have seen in section 3.2, the classical algebra of observables of a gauge theory,
based on the definition of the extended Peierls bracket, is an algebra of the invariants of
the theory. This rises the question which are invariant quantities in General Relativity.
We discuss this now.

First of all, let us consider local scalar quantities determined only by the metric field. A
basic example is the contraction of the Riemann tensor with itself:

ψp∈M(g) := Rabcd(g)(p) R
abcd(g)(p), g ∈ Γgh(E) (6.2.1)

This is not an invariant quantity with respect to the action of the diffeomorphism group,
since the action of a diffeomorphism φ : M →M on ψ yields

(ψp ◦ φ∗)(g) = Rabcd(φ
∗g)(p) Rabcd(φ∗g)(p) (6.2.2)

which is, for general g ∈ Γgh(E) and φ ∈ Diff0(M), not equal to ψp.

This is by extension true for any functional A with compact nonempty support K ⊂M ,
since the action of any diffeomorphism φ : M → M maps A onto the functional A ◦ φ∗
with support φ−1(K). Constant functionals, however, are of course invariants.

Functionals with noncompact support provide no solution, since they are, as the ac-
tion functional, not well defined over an open subset of Γ(E).

One might consider a setting in which the base manifold itself is compact. In this
case global quantities such as for example∫

M

dnx
√
− det g Rabcd R

abcd (6.2.3)

are well defined and invariant with respect to the action of Diff0(M) = Diff(M).
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However, following theorem (A.0.1) in appendix A, globally hyperbolic spacetimes can
not be compact since they are always diffeomorphic to R×σ, σ being a three dimensional
Riemannian manifold.

Numerous attempts to construct physical observables for General Relativity can be found
in the literature (see e.g. [3] or [21]). In these attempts, the phase space of the theory
is usually modified by the introduction of specific coordinate systems. For example, in
[21], coordinates on the spacetime are induced by the coupling of General Relativity to
a set of 4 test particles, which provide invariant reference points. However, this requires
the specification of a fixed point and directions from and in which the particles emerge,
which again destroys the manifest covariance of the theory in this formulation.

It is not clear how such modifications of the phase space can implemented in the formal-
ism given in chapter 3, which specifically preserves the manifest covariance of the theory.

In conclusion, the construction of a manifest covariant algebra of observables for General
Relativity formulated in terms of a metric field, based on the definition of the extended
Peierls bracket, seems not possible due to the nonexistence of gauge invariant quantities.
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7. Conclusions and Outlook

In this work, we discussed the properties of the extended Peierls bracket, defined by
DeWitt in [7a]. We have see that it can be used to give a manifest covariant algebraic
formulation of classical field theories, including gauge theories.

We have seen that the classical algebra of observables based on the notion of the ex-
tended Peierls bracket is an algebra of invariants, i.e. of gauge invariant quantities.

We examined to which extent this formalism can be applied to classical General Rela-
tivity.

To do so, we gave a Lagranigian formulation of classical General Relativity in terms
of a metric field on a smooth manifold and derived the linearized field equations. Fol-
lowing [7b], we gave a choice for the gauge fixing and obtained the gauge fixed linearized
field equations, which provide the basis for the construction of the extended Peierls
bracket.

In chapter 6, we discussed the conceptual difficulties that result from the structure
of the configuration space of the theory. Furthermore, we saw that the essential prob-
lem, which prevents the construction of an algebra of observables, is the nonexistence
of gauge invariant quantities, at least in our manifest covariant formulation of the theory.

Apart from this crucial problem, there are other aspects which might be worth in-
vestigating.

First of all, although it can not be used to construct a Poisson algebra of observables for
General Relativity, the extended Peierls bracket can be evaluated on functionals which
are not gauge invariant. The resulting algebraic structure is discussed in [17b] and might
be of interest.

Another question is how it it is possible to explicitely construct the Green’s opera-
tors for the gauge fixed linearized field equations. A known method for the construction
of Green’s opeartors is the Hadamard Parametrix construction (see e.g. [1]). How-
ever, this method only allows the construction of the Green’s operator in a geodesically
starshaped neighborhood of any point p ∈M , which is problematic in case of a dynam-
ical background metric.

Finally, the next natural step is to consider the coupling of General Relativity to mat-
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ter fields, which might also be a possible solution to the problem of the existence of
observables (see [21]).
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A. Lorentzian Geometry

In this chapter we summarize some basic concepts of Lorentzian geometry which we
make use of in this work. It is based on section 1.3 of [1].

Throughout this chapter, M denotes a connected timeoriented Lorentzian manifold,
i.e. a Lorentzian spacetime.

Definition A.0.1 (Inextendable curve)
A piecewise C1-curve in M is called inextendable if no piecewise C1-reparametrisation
of the curve can be continuously extended to any of the end points of the parameter
interval.

Definition A.0.2 (causal future and causal past)
The causal future J+(p) ⊂ M of a point p ∈ M is is the set of points that can be
reached from p by future directed causal curves.

The causal past J−(p) ⊂ M of a point p ∈ M is is the set of points that can be
reached from p by past directed causal curves.

Let U ⊂M . The causal future resp. past of U is defined as J±(U) :=
⋃
p∈U J±(p).

Definition A.0.3 (future and past compact)
Let K ⊂M be closed. K is called future compact iff

K ∪ J+(p) is compact ∀p ∈M (A.0.1)

Accordingly, K is called past compact iff

K ∪ J−(p) is compact ∀p ∈M (A.0.2)

Definition A.0.4 (Cauchy hypersurface)
A subset Σ ⊂ M of a Lorentzian spacetime M is a Cauchy hypersurface if each
inextendable timelike curve on M intersects Σ exactly once.

Definition A.0.5 (Globally hyperbolic spacetime)
A Lorentzian spacetime is called globally hyperbolic iff it satisfies the strong causal-
ity condition and ∀p, q ∈M the intersection J+(p) ∩ J−(q) is compact.
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Theorem A.0.1 (Theorem 1.2.10 in [1])
Let M be a Lorentzian spacetime. Then the following are equivalent:

(1): M is globally hyperbolic.

(2): There exists a Cauchy hypersurface in M .

(3): M is isometric to R × Σ with metric −β dt2 + gt, where β is a smooth positive
function, gt is a Riemannian metric on Σ depending smoothly on t ∈ R and each {t}×Σ
is a smooth spacelike Cauchy hypersurface in M .
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B. Fibre bundles

In this chapter we give an introduction to the basic concepts of fibre bundles. This
chapter is based on [2] by Baum.

B.1. Fibre bundles

Definition B.1.1 (Fibre bundle)
Let M be a smooth finite dimensional manifold.

A smooth finite dimensional manifold E is called a fibre bundle over M if it has
the following properties:

(1) It is given a smooth surjective map

π : E →M (B.1.1)

called the projection of the bundle.

(2) All preimages of points x ∈ M with respect to the projections are isomorphic to
a smooth manifold F , which is called the fibre manifold of the bundle:

π−1(x) ' F ∀x ∈M (B.1.2)

(3) It is given a countable covering of M by open subsets Ui∈I ⊂ M and a collection of
smooth isomorphisms satisfying φi∈I

φi : π−1(Ui) → Ui × F, φ(π−1(x)) = {x} × F (B.1.3)

and such that the transition maps

φ−1
i ◦ φj : π−1(Ui ∩ Uj) → π−1(Ui ∩ Uj) (B.1.4)

are smooth isomorphisms ∀i, j ∈ I.

The maps φi are called local trivialisations of E.

We will denote the fibre bundle structure in short by (E, π,M, F ).

A fibre bundle is called trivial if there exists a global trivialisation φ : E →M × F .
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Definition B.1.2 (Smooth section)
Let E be a fibre bundle over M . A smooth section over E is a smooth map γ satisfying

γ : M → E, π ◦ γ = id (B.1.5)

The space of smooth sections over E is denoted by Γ(E).

Definition B.1.3 (Vertical tangent space)
Let E be a fibre bundle over M . The vertical tangent space at p ∈ E is defined as

T vpE := Ker dπ(p) : TpE → Tπ(p)M (B.1.6)

Definition B.1.4 (Horizontal tangent space)
Any vector space T hp E ⊂ TpM satisfying

T hp E ⊕ T vpE = TpE (B.1.7)

is called a horizontal tangent space of E at p ∈ E.

B.2. Vector bundles

Definition B.2.1 (Vector bundle)
A fibre bundle E over M is called a vector bundle if the fibre manifold is a topological
vector space V and the transition maps generate vector space isomorphisms

φi ◦ φ−1
j : π−1(x) ' V → π−1(x) ' V (B.2.1)

that depend smoothly on x ∈ Ui ∩ Uj.

The smooth sections over a vector bundle form a vector space via the addition

(γ1 + γ2)(x) := φ−1
i ◦ (φi ◦ γ1(x) + φi ◦ γ2(x)) ∀x ∈ Ui (B.2.2)

A smooth section over a vector bundle E is said to be of compact support if it φ◦γ(x) 6=
x× 0 only over a compact subset of M . The vector space of smooth sections of compact
support is denoted by Γ0(E).

Definition B.2.2 (Dual bundle)
Let (E, π,M, V ) be a vector bundle. Given a vector space isomorphism ψ : V → V ∗, we
define the the dual vector bundle (E, π,M, V ∗) by replacing the local trivialisations
φi of the original vector bundle by the local trivialisations

φ′i : π−1(Ui) → Ui × V ∗

φ′i(p) := ψ ◦ φi(p) ∀p ∈ π−1(Ui)
(B.2.3)

We will denote the dual vector bundle in short by E∗.

We will always assume the sections over E∗ to be valued in the densities of rank 1, so
that the action of Γ(E) on Γ(E) defined by

(η · γ)(x) := (ψ ◦ η)(x)(φ ◦ γ(x)) ∀η ∈ Γ(E∗), γ ∈ Γ(E) (B.2.4)

yields a smooth scalar density of rank 1 and can therefore by integrated over M .
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B.3. Principal bundles

Definition B.3.1 (Principal bundle)
A fibre bundle E over M is called a principal G-bundle if the fibre manifold is given
by a Lie group G and the transistion maps generate smooth Lie group isomorphisms.

Theorem B.3.1 (Theorem 2.5 in [2])
A principal G-bundle P is trivial exactly if it possesses at least one global section.

The Lie group G acts on E from the right via

Rg · p = p · g := φ−1 ◦ (φ(p) · g) ∀g ∈ G, p ∈ E (B.3.1)

and from the left via

Lg · p = g · p := φ−1 ◦ (g · φ(p)) ∀g ∈ G, p ∈ E (B.3.2)

Theses actions are by definition simply transitive on the fibres, i.e. we have that

π ◦ Lg = π ◦Rg = id ∀p ∈ E, g ∈ G (B.3.3)

Definition B.3.2 (associated vector bundle)
Let (E, π,M,G) be a principal G-bundle. Let W be a vector space carrying a faithful
left representation of G. On P × F we define a right action of G via

(p, w) · g := (p · g, g−1 · w) ∀(p, w) ∈ E ×W (B.3.4)

We define the quotient space

E := (E ×W )/G =: E ×GW (B.3.5)

The equivalence class of (p, w) is denoted by [p, w].

E is a vector bundle with fibre manifold W and projection

π̂([p, v]) := π(p) (B.3.6)

Local trivialisations ψi of E are given by fixing a family of smooth local sections γi : Ui →
π−1(Ui) over E and defining

ψi([p, w]) = v, whereby [p, w] = [γi ◦ π(p), v] (B.3.7)

We see that E is trivial if E is trivial.
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C. Connections on principal bundles

In this chapter we introduce the notion of connections on principal bundles. We see
how the local curvature form and covariant derivatives on asssociated vector bundles are
defined using this definition. This chapter is again based on [2] by Baum.

Throughout this chapter, let (P, π,M,G) be a principal G-bundle over a smooth n-
dimensional manifold, with g being the Lie algebra of G. Let G be k-dimensional.

By the right action Rg on P , a corresponding action of g on P is induced:

X ∈ g : P → TP, u ∈ P → TuP

X · u := X̃(u)
(C.0.1)

The vector field X̃ is called the fundamental vector field of X ∈ g.

Since G acts simply transitive on the fibres of P , the fundamental vector fields span
the vertical tangent space T vuP at any point u ∈ P .

Definition C.0.3 (Connection)
A connection assigns each point u ∈ P a horizontal tangent space

Th : u→ T huP ⊂ TuP (C.0.2)

such that the assignment satisfies the following properties:

complementarity : T hu is a horizontal tangent space (C.0.3)

right invariance : dRg(T
h
uP ) = T h(u·g)P ∀g ∈ G (C.0.4)

smoothness : For all points u ∈ P it exists an open neighborhood (C.0.5)

U ⊂ P and a collection of n smooth tangent (C.0.6)

vector fields Yi ∈ Γ(TP ), such that (C.0.7)

span(Y1(p), ..Yn(p)) = T hp P ∀p ∈ U (C.0.8)

The differential of the projection π

dπ(u) : T huP → Tπ(u)M (C.0.9)

is then a linear isomorphism.
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Definition C.0.4 (Connection form)
A connection form on P is a one-form A ∈ Ω1(P, g) satisfying

A(X̃) = X ∀X ∈ g (C.0.10)

R∗
gA = A ◦ dRg = Ad(g−1) ◦ A ∀g ∈ G (C.0.11)

The set of connection forms will be denoted by C(P ).

Theorem C.0.2 (Theorem 3.1 in [2])
There exists a one-to-one correspondence between the set of connections and C(P ).

Given a connection T h, a connection form on P is given by

A(X̃ ⊕ Y ) := X ∀ X ∈ g, Y ∈ T hP (C.0.12)

Given a connection form A on P , a connection is given by

T h : u→ T huP := Ker A (C.0.13)

Definition C.0.5 (Maurer Cartan form)
The Maurer Cartan form θg ∈ Ω1(G, g) is given by

θg := dLg−1 ∀g ∈ G (C.0.14)

Given a covering of P by local sections (si, Ui) with transition functions gij, we will
define

θij := dLg−1
ij
◦ dgij ∈ Ω1(Ui ∩ Uj, g) (C.0.15)

Definition C.0.6 (Local connection form)
Let A be a connection form on P and (s, U) a local section over P . The one-form

As := A ◦ ds ∈ Ω1(U, g) (C.0.16)

is called the local connection form determined by s.

Theorem C.0.3 (Theorem 3.2 in [2])
Let A be a connection form on P , and let (si, Ui), (sj, Uj) be local sections in P with
transistion function gij : Ui ∩ Uj → G. Then it is

Asi = Ad(g−1
ij ) ◦ Asj + θij (C.0.17)

Given a covering of P by local sections (si, Ui) and a family of one-forms {Ai ∈ Ω1(Ui, g)}
satisfying

Ai = Ad(g−1
ij ) ◦ Aj + θij (C.0.18)

there exists a connection form A on P satisfying Asi = Ai
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We examine some special cases of Theorem (C.0.6):

In case G being a matrix group, the transformation behaviour of local connection forms
is given by

Ai = g−1
ij ◦ Aj ◦ gij + g−1

ij dgij (C.0.19)

In case P being a trivial principal G-bundle, a connection is defined by any global section
s and one-form As ∈ Ω1(M, g).

Definition C.0.7 (Horizontal forms, forms of type ρ)
Let (P, π,M,G) be a principal G-bundle, ρ : G → GL(V ) a representation of G and
E := P ×(G,ρ) V the corresponding associated vector bundle.

A k-form ω ∈ Ωk(P, V ) is called

horizontal if ω(X1, ..., Xk) = 0 if Xi ∈ ThP for any i ∈ k (C.0.20)

of type ρ if ω ◦ dRg = ρ(g−1) ◦ ω ∀g ∈ G (C.0.21)

The set of horizontal k-forms of type ρ will be denoted by Ωk
h(P, V )(G,ρ)

Now consider the space C(P ). For the difference of two connection forms A1, A2 ∈ C(P ),
we have

A1 − A2 ∈ Ω1
h(P, g)(G,Ad) (C.0.22)

The reverse is also true. Assume A ∈ C(P ), ω ∈ Ω1
h(P, g)(G,Ad). Then it is

Ã := A+ ω ∈ C(P ) (C.0.23)

So C(P ) is an affine space with respect to Ω1
h(P, g)(G,Ad).

Theorem C.0.4 (Theorem 3.4 in [2])
The vector spaces Ωk

h(P, V )G,ρ and Ωk(M,E) are isomorphic.

A vectorspace isomorphism is given by

Φ : Ωk
h(P, V )(G,ρ) → Ωk(M,E) (C.0.24)

Φ(ω̄) = ω (C.0.25)

ωx(t1, ..., tk) := [p, ω̄p(X1, ..., X, k)] (C.0.26)

whereby ti = dπp(Xi) is arbitrary.

Definition C.0.8 (Covariant derivative)
A linear map

∇ : Ω0(M,E) → Ω1(M,E) (C.0.27)

is called covariant derivative on E, if

∇(fe) = df ⊗ e+ f∇e ∀f ∈ C∞(M), e ∈ Ω0(M,E) (C.0.28)
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Definition C.0.9 (total differential of a connection)
Let A be a connection form on P . The linear map

DA : Ωk(P, V ) → Ωk+1(P, V ) (C.0.29)

(DAω)p(t1, ..., tk+1) := dω(prh t1, ..., prh tk+1) (C.0.30)

is called the total differential defined by A on P .

Theorem C.0.5 (Theorem 3.9 in [2])
The total differential satisfies

DA : Ωk
h(P, V )(G,ρ) → Ωk+1

h (P, V )(G,ρ) (C.0.31)

Daω = dω + ρ∗(A) ∧ ω ∀ω ∈ Ωk
h(P, V )(G,ρ) (C.0.32)

The total differential DA induces a map dA on Ωk(M,E):

dA : Ωk(M,E) → Ωk+1(M,E) (C.0.33)

dAω := Φ(DAω̄) (C.0.34)

Theorem C.0.6 (Theorem 3.10 in [2])
The induced differential dA defines a covariant derivative ∇A on E via

dA |Ω0(M,E)=: ∇A : Ω0(M,E) → Ω1(M,E) (C.0.35)

Furthermore, let e = [s, v] ∈ Γ(U,E). Then it is

dAe = [s, dv + ρ∗(A
s)v] (C.0.36)

Definition C.0.10 (Curvature of a connection)
The two-form

FA := DAA ∈ Ω2
h(P, g) (C.0.37)

is called curvature form of A.

The local curvature form on M is given by

F s := FA ◦ ds ∈ Ω2(U, g) (C.0.38)

Definition C.0.11 (Commutator of Lie algebra valued sections)
We fix a basis {ai} of g. Assume ω ∈ Ωk(M, g), τ ∈ Ωl(M, g). Then we can write

ω = ωi ai (C.0.39)

τ = τ i ai (C.0.40)

with ωi ∈ Ωk(M,R), τ i ∈ Ωl(M,R).

We can then define

[ω, τ ]∧ := ωi ∧ τ j ⊗ [ai, aj] ∈ Ωk+l(M, g) (C.0.41)

Theorem C.0.7 (Theorem3.13 in [2]) The curvature form satisfies

Cartan structure equation : FA = dA+
1

2
[A,A]∧ (C.0.42)

Bianchi identity : DAF
A = 0 (C.0.43)
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D. Microlocal Analysis

In this chapter, we introduce the wavefront set of distributions, following Hörmander
in [16]. The definition of the wavefront set will allow us to define the action of integral
operators and distributions onto other distributions.

D.1. The wavefront set

Definition D.1.1 (Smooth distribution)
A distribution D ∈ D′(E,R) is called smooth if there exists a smooth section

χD ∈ Γ(E∗) (D.1.1)

such that

D[ξ] =

∫
M

dnx χD(x) ξ(x) ∀ξ ∈ Γ0(E) (D.1.2)

Accordingly, a distribution D ∈ E ′(E,R) is called smooth iff there exists a smooth section

χD ∈ Γ0(E
∗) (D.1.3)

such that

D[ξ] =

∫
M

dnx χD(x) ξ(x) ∀ξ ∈ Γ(E) (D.1.4)

The smooth section χD is called the kernel of D.

For now, let us consider distributions D ∈ D′(Rn × R,R).

Using Theorem 7.3.1 in [16], we know that the Fourier transform of a smooth func-
tion φ ∈ C∞0 (Rn,R) decreases fast, i.e

∀N ∈ N ∃CN ∈ R : |φ̂(k)| ≤ CN(1 + |k|)−N ∀k ∈ Rn (D.1.5)

We use this property to study the singular behaviour of distributions.

We define the formal Fourier transform of such a distribution as

D̂(k) := D[f ], f(x) = eikx (D.1.6)

We see that D is smooth iff its formal Fourier transform satisfies (D.1.5).

We define the cone of singular directions:
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Definition D.1.2 (Cone of singular directions)
Let D ∈ D′(Rn × R,R). The cone of singular directions of D is defined as

Σ(D) := {k ∈ Rn\{0} : @ conal neighborhood V of k, such that (D.1.5) holds on V }
(D.1.7)

We define the composition of distributions D ∈ D′(Rn × R,R) with smooth compactly
supported functions ψ ∈ C∞0 (Rn,R):

D ◦ ψ ∈ D′(Rn × R,R)

(D ◦ ψ)[φ] := D[ψ · φ] ∀ψ ∈ C∞0 (Rn,R), φ ∈ C∞(Rn,R)
(D.1.8)

In [16] is is shown that

Σ(D ◦ ψ) ⊂ Σ(D) ∀ψ ∈ C∞0 (Rn,R) (D.1.9)

For any point x ∈ Rn we define

Σx(D) :=
⋂

ψ∈C∞0 (Rn,R): x∈supp ψ

Σ(D ◦ ψ) (D.1.10)

Now we can define the wavefront set of a distribution:

Definition D.1.3 (Wavefront set)
Let D ∈ D′(Rn × R,R). The wavefront set of D is defined as

WF (D) := {(x, k) ∈ Rn × (Rn\{0}) ' T ∗Rn\{0} : k ∈ Σx(D)} (D.1.11)

In addition, we define

WF ′(D) := {(x, v) : (x,−v) ∈ WF (D)} (D.1.12)

We will now see how the notion of the wavefront set can be extended to distributions
D ∈ D′(M × R,R) over a smooth n-dimensional manifold M .

Let D ∈ D′(M × R,R). We fix a covering of M by bijective coordinate charts

κi : Ui ⊂M → Rn (D.1.13)

and a corresponding decomposition of unity by smooth functions

φi ∈ C∞0 (M,R), supp φi ⊂ Ui,
∑
i

φi = 1|M (D.1.14)

D defines distributions Di ∈ D′(Rn × R,R) via

Di[ψ] := (D ◦ φi)[κ∗iψ] ∀ψ ∈ C∞0 (Rn,R) (D.1.15)
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The inverse construction also works in this setting. Any set of distributionsDi ∈ D′(Rn×
R,R) defines a distribution D ∈ D′(M × R,R) via

D[ψ] :=
∑
i

Di[κ
i
∗(φi · ψ)] (D.1.16)

We define the wavefront set of D as

WF (D) :=
⋃
i

κ∗iWF (Di) (D.1.17)

D is again smooth iff its wavefront set is empty.

Finally we define the wavefront set of a distribution D ∈ D′(E,R), with E being a
finite dimensional vector bundle over M . To do so, we use a similar method as above.

Let D ∈ D′(E,R). We fix a finite C∞-base of Γ0(E), i.e. a finite collection {χk} of
smooth sections in Γ(E) such that

∀ξ ∈ Γ0(E) ∃! {φk} ⊂ C∞0 (M,R) : ξ =
∑
k

φk χk (D.1.18)

D then defines distributions Dk ∈ D′(M × R,R) via

Dk[φ] := D[φ · χk] ∀φ ∈ C∞0 (M,R) (D.1.19)

Again, the inverse construction is also possible. Given a collection of distributions
Dk ∈ D′(M × R,R), a distribution D ∈ D′(E,R) is defined via

D[ξ] = D[
∑
k

φk χk] :=
∑
k

Dk[φk] (D.1.20)

The wavefront set of D is then defined as

WF (D) =
⋃
k

WF (Dk) (D.1.21)

D is again smooth iff its wavefront set is empty.

D.2. Composition of distributions and integral operators

Throughout this section, E denotes a finite dimensional vector bundle over a smooth
n-dimensional manifold M .

Given a continuous linear map

∆ : Γ(E∗) → Γ(E) (D.2.1)
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we can define the associated distributions

D∆ ∈ D′(E∗2,R), D∆χ ∈ D′(E∗,R)

D∆[ξ, χ] := D∆χ[ξ] :=

∫
M

dnx ξ (∆ χ) ∀ξ, χ ∈ Γ0(E
∗)

(D.2.2)

Now let D′
i ∈ E ′(E,R) be a sequence of smooth distributions converging to a (not nec-

essarily smooth) distribution D′ ∈ E ′(E,R). Let χD′i ∈ Γ0(E
∗) be the kernel of D′

i.

We define the distribution

D∆D′ ∈ D′(E∗,R)

D∆D′ [ξ] := lim{D∆χD′
i

[ξ]} ∀ξ ∈ Γ0(E
∗)

(D.2.3)

if the limit exists ∀ξ ∈ Γ0(E
∗).

Following theorem 8.2.13 in [16], this limit exists if

@x ∈M, v ∈ WF ′(D′) : (x, 0)× v ∈ WF (D∆) (D.2.4)

and in this case it is

WF (D∆D′) ⊂ {w ∈ T ∗M | ∃v ∈ WF ′(D′) : w × v ∈ WF (D∆)} (D.2.5)

D.3. Properties of the causal propagator

We are in particular interested in the case in which ∆ is the causal propagator of a
normally hyperbolic partial differential operator F .

First of all, we want to estimate the wavefront set of D∆. Following theorem 8.3.1
in [16], for any linear partial differential operator P have that

WF (D) ⊂ WF (P D) ∪ char P (D.3.1)

Using this result, we can make the following estimation:

WF (D∆) ⊂ WF ((1⊗ F ) D∆) ∪ char (1⊗ F )

= WF (0) ∪
⋃
x∈M

T ∗M × V̄x =
⋃
x∈M

T ∗M × V̄x

WF (D∆) ⊂ WF ((F ⊗ 1) D∆) ∪ char (F ⊗ 1)

= WF (0) ∪
⋃
x∈M

V̄x × T ∗M =
⋃
x∈M

V̄x × T ∗M

⇒ WF (D∆) ⊂
⋃

x∈M, y∈M

V̄x × V̄y

(D.3.2)
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A even better estimation can be made using the propagation of singularities (see
p.e. [20]).

With this result and using (D.2.4) we see that the distribution D∆D′ is well defined
for all distributions D′ ∈ E ′(E,R). In particular, if the wavefront set of D′ does not
intersect the lightcones V̄x, we can use (D.2.5) to see that in this case the wavefront set
of D∆D′ is empty and this distribution is smooth.

We denote the kernel of this smooth distribution by ∆ D′.
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