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Abstract

We study the quantization of the vector potential in asymptotically flat, globally
hyperbolic spacetimes. To this end, we will extend the notion of general local
covariance to account for the conformal invariance of conformal quantum fields.
Subsequently we discuss the field algebra of a locally conformally covariant quan-
tum field. Moreover, we develop a generalized bulk to boundary correspondence in
asymptotically flat spacetimes for an abstractly defined, conformal quantum field.
Thereby we construct a Hadamard state in the bulk spacetime by pulling-back a
state defined on past null infinity. Equipped with these general results, we quantize
the vector potential as a locally conformally covariant quantum field and, using the
bulk to boundary correspondence, construct a Hadamard state on the field algebra
of the vector potential.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Quantisierung des Vektorpotentials in
asymptotisch flachen, global hyperbolischen Raumzeiten. Zu diesem Zweck wird
der Begriff der allgemeinen lokalen Kovarianz erweitert, um die konforme Kova-
rianz von konformen Quantenfeldern zu berücksichtigen. Anschließend wird die
Feldalgebra eines lokal konform kovarianten Quantenfeldes behandelt. Außerdem
wird eine verallgemeinerte holographische Korrespondenz in asymptotisch flachen
Raumzeiten für ein abstrakt definiertes, konformes Quantenfeld erarbeitet. Da-
mit erhält man einen Hadamardzustand auf der physikalischen Raumzeit durch
Zurückziehen eines Zustandes, der im lichtartig Unendlichen definiert ist. Diese
allgemeinen Resultate ermöglichen eine Quantisierung des Vektorpotentials als
ein lokal konform kovariantes Quantenfeld. Unter Benutzung der holographischen
Korrespondenz wird schließlich ein Hadamardzustand auf der Feldalgebra des
Vektorpotentials konstruiert.
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Introduction

A key ingredient of the usual approach to quantum field theory on Minkowski
spacetime is the symmetry group of Minkowski spacetime, the Poincaré group. In
particular, the Poincaré group is used to select a distinguished state, called the
vacuum, which is the unique state invariant under the action of the Poincaré group
[1]. However, even the slightest perturbation of the background spacetime can
cause this picture to break down. Moreover, in a curved spacetime one may find
surprising effects which cannot be described by standard quantum field theory like
the famous Hawking radiation [2] and the Fulling-Davies-Unruh effect [3, 4, 5].
Hence, it is appropriate to ask ourselves if Minkowskian quantum field theory
is a valid approximation even if quantum effects of gravity are negligible. Since
we don’t question the success of quantum field theory in general, as it confirms
observations with an unprecedented accuracy [6], we strive to improve upon what
quantum field theory has taught us in the past.

Following our argumentation that we should never neglect gravitational effects
but might disregard quantum gravitational effects at least in a first approximation
due to the weakness of the gravitational coupling, this thesis is attributed to
quantum field theory on curved spacetime. In constrast to what a full-fledged theory
of quantum gravity will need to accomplish, the background spacetime in quantum
field theory on curved spacetime is fixed by hand. Since this spacetime will, in
general, not even have a timelike Killing field, we cannot perform the standard
construction to identify a global vacuum state [7]. Therefore, the notion of a
quantum field has to be formulated without referring to a preferred state. This can
be accomplished in the algebraic approach to quantum field theory in which one
starts with an abstract algebra of local observables encoding the dynamics of the
quantum field [1, 7].

Nevertheless, a state is still needed to obtain any concrete results which can
then be understood in the usual probabilty interpretation of quantum theories.
Not all possible states have physically reasonable properties. For a free field
theory one demands that the states are of Hadmard form. Such states mimic the
UV singularities of the Minkowski vacuum and may be renormalized to yield a
finite energy density [8, 9, 10]. It was later found that Hadamard states can
be characterized in terms of their wavefront set [11, 12]. This discovery lead
to an improved understanding of Hadmard states and opened the doors for the
development of a rigorous perturbation theory on curved spacetimes [13, 14, 15,
16].

Although the existence of Hadamard states was proven for various quantum
fields on globally hyperbolic spacetimes using deformation arguments [10, 17, 18],
an explicit construction is often notoriously difficult. In [19] Dappiaggi, Moretti
and Pinamonti suggested a construction which yields a boundary state on the
conformal boundary of asymptotically flat spacetimes that is invariant under the
action of the symmetry group of the boundary manifold, the Bondi-Metzner-Sachs
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group, and thus can be interpreted as an asymptotic vacuum state as shown in [20].
Subsequently it was proven in [21] that pulling back this boundary state to the
bulk spacetime yields indeed a Hadamard state. This construction, called the bulk
to boundary correspondence, was initially done for the conformally coupled massless
scalar field and later also applied to the Dirac field [22, 23]. In this thesis we seek
to apply the bulk to boundary correspondence to the vector potential.

After an introduction into several mathematical topics in Chap. 1, in particular,
category theory, ∗-algebras, differential geometry, distributions and wave equations,
we delve into the subject of quantum field theory on curved spacetimes in Chap. 2.
There, we will review the categorical framework of general local covariance [24]
and an extension more appropriate to conformal quantum fields, namely, general
local conformal covariance, already discussed in similar terms in [25]. Moreover,
we will investigate the (conformal) field algebra of a class of bosonic quantum fields
and recall some properties of Hadamard states. This leads us to the discussion of
the bulk to boundary correspondence and the construction of a Hadamard state for
an abstract conformal quantum field.

Equipped with these notions and results, we start our study of the electromag-
netic field in Chap. 3. On the classical level the electromagnetic field is described
by Maxwell’s equations. If we make certain assumptions on the topology of the
spacetime, namely, that the second Betti number is zero or equivalently that the sec-
ond de Rham cohomology group is trivial, Maxwell’s equations attain a particularly
simple form in terms of the vector potential. Our treatment of the vector potential
follows that of Dimock in [26]. Building on these results and that of [18, 27], we
quantize the vector potential in the language of general local conformal covariance.
Finally, we adjust the general results on the bulk to boundary correspondence
obtained before to the special case of the vector potential to construct a Hadamard
state for the vector potential in asymptotically flat spacetimes.
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1
Mathematical Preliminaries

We will start off by reviewing the necessary notions and structures. Thereby, we
will also introduce the notations and conventions used throughout this thesis. The
style of these preliminaries is rather colloquial and brief. Only those definitions,
propositions, theorems etc. which are non-standard or are of particular importance
are distingushed as such. For a more detailed introduction to the topics studied
below the reader is, as always, encouraged to consult the literature listed in the
Bibliography.

1.1 Category Theory

Many fundamental relationships between mathematical structures can be efficiently
formulated within the language of category theory. In Sect. 2.1 we will use some
basic notions of category theory to introduce the concept of a locally covariant
quantum field theory.

We will not present the most general approach to category theory here. Instead,
we work with what are called small categories. For a thorough introduction to the
theory of categories we refer to the book by Mac Lane [28].

A categeory C consists of a set Obj(C) of objects and a set of arrows HomC(A, B)
(also called morphisms) between any two objects A, B, where each arrow f ∈
HomC(A, B) is represented diagramatically as an arrow

f : A→ B or A
f
// B .

Moreover, to each object A there exists a unique identity arrow idA : A→ A, and
there is a composition of arrows which assigns to each pair of arrows f : A→ B
and g : B → C a composite arrow g ◦ f : A→ C which is associative and respects
the unit law, i.e., we have that the diagrams

A

f
��

g◦ f

''

h◦(g◦ f )=(h◦g)◦ f
// D

B g
//

h◦g

77

C

h

OO
A

f
//

idB ◦ f
##

B
idB

��

g◦idB

##

B g
// C

are both commutative.
The most basic example of a category is the category Set of small sets. It has as

its objects all small sets and as its morphisms functions between them. Another
example of a category is the category Top of small topological spaces. It is the
category whose objects are small topological spaces and whose morphisms are the
continuous maps between these.

Besides categories themselves the second most important concept in category
theory are the morphisms of categories called functors. Given two categories
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1.2. ∗-Algebras

C and C′, a functor F : C → C′ assigns to each object A ∈ Obj(C) an object
F (A) ∈ Obj(C′) and to each arrow f : A→ B an arrow F ( f ) :F (A)→F (B) such
that it is compatible with the identity and the composition, i.e.,

idA = idF (A) and F ( f ◦ g) =F ( f ) ◦F (g)

for all objects A and all composable morphisms f and g of C.
An often appearing functor is the so called forgetful functor which “forgets”

some or all of the structure or properties of the category it is operating upon.
Usually the forgetful functor maps into the category Set.

Another important concept in category is the notion of natural transformations.
Given two functors F ,G : C→ C′, a natural transformation τ between F and G ,
written τ :F→̇G , assigns to each object A∈ Obj(C) an arrow τA :F (A)→G (A)
in C′ such that the diagram

F (A)

F ( f )
��

τA
// G (A)

G ( f )
��

F (B)
τB

// G (B)

is commutative for all arrows f : A→ B of C.
If the functors F and G appearing above are not acting on the same categories,

we may still speak of natural transformations if we can apply forgetful functors to
the source and target categories of both functors such that the categories can be
made equal.

1.2 ∗-Algebras

In the algebraic approach to QFT the algebras of observables play a distinguished
role. Since observables are identified with self-adjoint operators, we want a concept
of operator algebras and a notion of taking adjoints within these algebra. Thus, we
review some basic properties of topological1 ∗-algebras within Sect. 1.2.1 and show
the connection of ∗-algebras and operators on a Hilbert space via the so called GNS
construction in Sect. 1.2.2.

The topics covered here and many more results on unbounded operator algebras
can be found in [29] by Inoue. The treatment of bounded operator algebras, in
particular C∗-algebras, is much more prominent in the literature and there exists
an almost unbounded set of monographs on this topic, e.g. [30] by Bratelli and
Robinson.

1.2.1 Fundamentals

Definition 1.1. A ∗-algebra is an algebra A over C together with an automorphism
∗ : A→ A, x 7→ x∗ called involution which is C-antilinear and involutive, i.e., it
satisfies

1In this and the forthcoming sections we are only concerned with topological algebras and hence
‘algebra’ shall always mean ‘topological algebra’, i.e., a linear associative algebra whose underlying
vector space is a topological vector space such that its algebra multiplication is continuous.
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Chapter 1. Mathematical Preliminaries

(i) (ax + b y)∗ = ax∗ + b y∗,

(ii) (x y)∗ = y∗x∗,

(iii) (x∗)∗ = x
for all x , y ∈A and a, b ∈ C. If, in addition, A has a unit element, denoted 1, we
say that A is a unital ∗-algebra.

Let us also state some nomenclature for elements of (unital) ∗-algebras: Ele-
ments x , y ∈A are called

adjoint if x∗ = y,

self-adjoint if x∗ = x ,

normal if x∗x = x x∗,

unitary if x∗x = 1= x x∗.

A ∗-subalgebra I ⊂ A is called a left (right) ∗-ideal if y x (x y) is in I for all
y ∈ I and x ∈A. A left and right ∗-ideal is just called a ∗-ideal.

The homomorphisms that arise between ∗-algebras, called ∗-homomorphisms,
are those that preserve in addition to the multiplicative also the involutive structure,
i.e., a map α : A→B is a ∗-homomorphisms if α(x∗) = α(x)∗ for all x ∈A. If the
∗-algebras are unital, we also demand that ∗-homomorphisms be unit-preserving.

Often one needs a ∗-algebra with more structure than just an involution. Specifi-
cally, one wants an abstract measure of length, i.e., a norm. In the case of ∗-algebras,
one requires the norm to satisfy an additional property: A norm ‖·‖ : A→ R is said
to be a C∗-norm if

‖x∗x‖= ‖x‖2, ∀x ∈A.

Definition 1.2. A C∗-algebra2 is a ∗-algebra A equipped with a C∗-norm ‖·‖ such
that A is complete with respect to the norm, i.e., (A,‖·‖) is a Banach space.

1.2.2 The GNS Construction

The algebra of observables already tells us a lot about the structure of the theory at
hand. Nevertheless, to give the observables (i.e., the elements of the algebra) any
operational meaning we need a notion of states upon which the observables act.

Definition 1.3. A (algebraic) state ω : A → C is a continuous positive linear
functional on A of norm 1, i.e., ω(1) = 1 and ω(x∗x)≥ 0 for all x ∈A.

The algebraic approach is closely related to the familiar Hilbert space formu-
lation. To make this precise, we invoke the Gel’fand–Naimark–Segal construction,
usually abbreviated as GNS construction. Via this powerful tool we will be able to
manufacture bounded or unbounded ∗-representations of a ∗-algebra on a Hilbert
space. Hence, we first define ∗-representations.

Definition 1.4. A ∗-representation π of a unital ∗-algebra A on a Hilbert space H

is a homomorphism π : A→ L(D) into the linear operators on a dense subspace
D⊂H such that π(1) = id and π(x∗) = π(x)∗ for all x ∈A.

2Pronounced ‘sea star’-algebra, it has, however, nothing to do with the star-shaped animals of the
class Asteroidea.
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1.3. Differential Geometry

Given the definitions above, we are equipped to state and prove the GNS
construction for ∗-algebras.

Theorem 1.1 (GNS construction). Let ω be a state on A. Then there exists a ∗-
representation π : A→ L(D) into the linear operators on a dense subspace D of a
Hilbert space H with inner product (· , ·) and a unit vector Ω ∈D such that

(i) ω(x∗ y) = (π(x)Ω,π(y)Ω) for all x , y ∈A,

(ii) D= {π(x)Ω | x ∈A}.
Furthermore, the set (D,π,Ω), called the GNS triple of ω, is unique up to unitary
equivalence.

Proof. Let x , y ∈ A. By a proof analogous to the Cauchy-Schwarz inequality we
see that

|ω(x∗ y)|2 ≤ω(x∗x)ω(y∗ y).

Hence, the set I= {x ∈A |ω(x∗x) = 0} is a left ideal of A, and we have obtained
a pre-Hilbert space D=A/I with a positive definite inner product

([x], [y]) =ω(x∗ y)

for all [x], [y] ∈D. We denote by H the completion of D. Making the identification
Ω = [1], we define the ∗-representation π : A→ L(D) by

π(x)Ω = [x1] = [x],

i.e., Ω is a cyclic vector, and thus

ω(x∗ y) = (π(x)Ω,π(y)Ω).

Let (D′,π′,Ω′) be another GNS triple to the state ω, and introduce the operator
U : D→ D′, Uπ(x)Ω = π′(x)Ω′. Then, U is an isometry and can be extended
to a unitary operator of H onto H′. Hence, the two representations π and π′ are
unitarily equivalent.

Working with general ∗-algebras, we have not excluded the case of ∗-represen-
tations onto unbounded operators. For that reason we cannot uniquely extend
the representation to the whole Hilbert space, and hence self-adjoint elements
of the algebra may not be represented by self-adjoint operators on the Hilbert
space. These problems could be remedied, however, if we restricted ourselves to
C∗-algebras, i.e., algebras of bounded operators.

1.3 Differential Geometry

The powerful language of differential geometry, specifically that of differentiable
manifolds, has found manifold applications in physics, most prominently the
formulation of General Relativity. Since we are concerned with QFT on curved
spacetimes, we will also need many results from differential geometry and therefore
introduce some basic notions of differential geometry in Sects. 1.3.1 and 1.3.2
and in particular differential forms in Sect. 1.3.3, conformal transformations in
Sect. 1.3.5 and the causal structure of Lorentzian manifolds in Sect. 1.3.4. Our
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Chapter 1. Mathematical Preliminaries

conventions are consistent with those of Abraham, Marsden and Ratiu [31]. The
sections on Pseudo-Riemannian Geometry and Lorentzian Geometry are partly
based on the books by O’Neill [32], and Bär, Ginoux and Pfäffle [33] respectively.
Good references for the topics discussed here are also the books by Besse [34] and
Wald [35].

Within this section M will always mean a smooth, i.e., C∞, Hausdorff and para-
compact, n-dimensional manifold possibly with additional properties as specified
below.

1.3.1 Fundamentals

Let us start by introducing the notions of vector bundles and sections of vector
bundles. A (smooth, finite-dimensional) (K-)3vector bundle

π : E→ M

is a triple (E,π, M), where E is a manifold, called the total space, and π is a smooth,
surjective map, called the bundle projection such that to every point x ∈ M there is
associated a K-vector space Ex = π−1(x), called the fiber of E at x . Moreover, there
exists to every such x an open neighbourhood O ⊂ M with a local trivialization,
i.e., a diffeomorphism φ : π−1(O) → O× Ex such that its projection to the first
factor gives the bundle projection: pr1 ◦φ = π.

To each vector bundle E we can associate the dual bundle π∗ : E∗→ M which
has as its fibers E∗x the dual spaces of the fibers Ex . An inner product on E, i.e., a
non-degenerate symmetric bilinear form

(· , ·) : E × E→K

which is not necessarily positive definite, yields an isomorphism between E and E∗.
A vector bundle homomorphism from a vector bundle π : E → M to a vector

bundle π′ : F → N is a smooth map ψ : E → F which is fiber respecting and a
linear map between fibers, i.e., ψ induces a smooth map ψ′ : M → N between the
base spaces such that ψ �Ex

: Ex → Fψ′(x) is linear.
We introduced vector bundles so that we may define functions which have at

each point of the manifold a value in the corresponding fiber of the vector bundle.
Such functions are called sections. Given a vector bundle E→ M , a smooth section
on O ⊂ M is a smooth function s : O → E such that π ◦ s = idO. The space of
smooth section of a vector bundle E is denoted by Γ(E).

The most prominent and important examples of vector bundles are the tangent
and the cotangent bundle. We denote by T M the tangent bundle and by T ∗M its
dual, the cotangent bundle. The fibers of these bundles at a point x ∈ M are the
tangent space Tx M and the cotangent space T ∗x M respectively. The tangent space
at a point x may be defined as the space of derivations of smooth functions at x .
Hence, we see that the differential d f of a function f ∈ C∞(M) is an element of
the cotangent bundle.

Using the (co-)tangent space, we can introduce some of the basic objects studied
in differential geometry: vectors, covectors and tensors. Elements of Tx M and T ∗x M

3Throughout this work K shall denote the field of real or complex numbers, i.e., K= R or C.
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1.3. Differential Geometry

are called vectors and covectors respectively. A tensor of type (p, q) is an element
of the vector space T p

q (Tx M) constructed by taking the tensor product of p copies
of Tx M and q copies of T ∗x M , i.e.,

T p
q (Tx M)

.
= Tx M⊗p ⊗ T ∗x M⊗q.

A vector field on M is a section of the tangent bundle T M . The set of all smooth
vector fields on M is denoted X(M). Sections of the dual T ∗M are called one-
forms. More generally, sections of the p-th exterior power4 Λp T ∗M of the cotangent
bundle are called p-forms or differential forms. The set of all smooth p-forms on M
is denoted Ωp(M). Those of compact support are denoted by Ωp

0(M). Similar to
tensors, tensor fields of type (p, q) are defined as sections of T p

q (M), where T p
q (M)

is the bundle which has at x ∈ M the fiber T p
q (Tx M). Following common practice,

we will use the term ‘tensor’ as a shorthand for ‘tensor field’.
Given a real vector bundle we can complexify it by tensorizing each fiber with

C. The complexified cotangent bundle for example is given by

T ∗CM
.
=
⋃

x∈M

{x} × T ∗x M ⊗C.

The sections of this bundle are the complex-valued differential forms which will be
denoted by Ωp(M ,C). Analogously, we may define the complex-valued differential
forms by Ωp(M ,C) .

= Ωp(M) ⊗ C. In general, we can directly complexify the
sections of a real vector bundle instead of complexifying the fibers first.

To identify fibers of a vector bundle at different points of the manifold one
introduces the notion of parallel transport using connections. A connection D on a
m-dimensional vector bundle E→ M is a K-linear map

D : Γ(E)→ Γ(E ⊗ T ∗M)

such that the Leibniz rule D( f s) = f Ds + s ⊗ d f holds for all f ∈ C∞(M) and
s ∈ Γ(E).

In a coordinate neighbourhood of M and a local trivialization of E a connection
D applied to a section s can be written as

Ds = D
m
∑

a=1

easa =
m
∑

a=1

ea ⊗ dsa +
m
∑

a,b=1

eb ⊗ωb
asa,

where ω ∈ Γ(End E ⊗ T ∗M) is a 1-form valued matrix called the connection form
and (ea)a is the m-dimensional basis of the fiber in the local trivialization. Thus,
we see that two different connections on a vector bundle differ by a connection
form.

A connection defines a derivative along a vector field X ∈ X(M). Namely, given
a vector bundle E → M with connection D, the covariant derivative along X is
DX (s)

.
= (Ds)(X ) for all s ∈ Γ(E). This leads to the notion of parallel transport

4The exterior algebra Λ(V ) over a vector space V is the antisymmetric quotient of the tensor algebra
T (V ), i.e., it is the quotient algebra Λ(V )

.
= T (V )/I where I is the ideal generated by all x ⊗ x , x ∈ V .

The exterior or wedge product is the product on this algebra: ω∧η=ω⊗η mod I , ω,η ∈ Λ(V ). The
p-th exterior power of a vector space V is the subspace Λp(V ) ⊂ Λ(V ) spanned by the p-fold wedge
product of elements in V , i.e., Λp(V )

.
= V⊗p/J , J = I ∩ V⊗p .
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Chapter 1. Mathematical Preliminaries

along a smooth curve γ : I → M , I ⊂ R: A section s ∈ Γ(E) is called parallel to γ if
Dγ̇s = 0.

Let us also introduce a special type of connections: Given an inner product (· , ·)
on E, we say that D is a metric connection if d(s, t)(X ) = (DX s, t) + (s, DX t) holds
for all s, t ∈ Γ(E). An important example of such a connection is the Levi-Civita
connection which we will define in the next subsection.

We will often make use of smooth mappings ψ : M → M ′ between smooth
manifolds M and M ′. Such a mapping ψ is called a diffeomorphism if its inverse
ψ−1 is also smooth. Using such a smooth map ψ, we can define the pull-back of a
vector bundle E→ M ′: The pull-back bundle ψ∗E is a vector bundle over M whose
fibers are given by (ψ∗E)x

.
= Eψ(x) for each x ∈ M . This also gives us the pull-back

of sections: Given a section s ∈ Γ(M), the pull-back section is defined as ψ∗s
.
= s ◦ψ

and thus a section of ψ∗E.
To define the pull-back of (0, q) tensor fields, we notice that the differential

dψ is a vector bundle homomorphism from T M to ψ∗T M ′. Hence, the pull-back
of a tensor t ∈ T 0

q (M) is defined as

(ψ∗ t)(x)
.
= t(ψ(x)) ◦ dψ(x)⊗q

for each x ∈ M .
If ψ is even a diffeomorphism, the construction above can be repeated for

the inverse ψ−1 to yield the push-forward ψ∗ = (ψ−1)∗ (leading to the notions
of push-forward bundle and push-forward section). In the case where ψ is not
surjective, we can restrict to its range and will speak of ψ−1 and the push-forward
ψ∗ as if ψ were a diffeomorphism.

1.3.2 Pseudo-Riemannian Geometry

For our purposes having just a manifold is not enough. We need to equip the
manifold with additional structure and therefore introduce what is called a metric
tensor, i.e., a smooth, non-degenerate symmetric (0, 2) tensor.5 The metric tensor
gives rise to a metric and hence an inner product gx(· , ·)

.
= g(x)(· , ·) on Tx M :

For every x ∈ M , i.e., gx(· , ·) : Tx M × Tx M → R assigns to each pair (v, w) a real
number gx(v, w).

The maximal dimension of any subspace O ⊂ Tx M on which gx is negative
definite is called the index of gx . Since g is continuous and non-degenerate, the
index of gx is the same for all x and henceforth called the index of g and denoted
Ind(g).

The pair (M , g) is called a pseudo-Riemannian manifold. We will distinguish
two special cases: If Ind(g) = 0, (M , g) is called a Riemannian manifold, and if
Ind(g) = 1 and n≥ 2, we call (M , g) a Lorentzian manifold.

At a point x ∈ M the metric tensor g induces two canonical isomorphisms
between Tx M and T ∗x M . Namely, [ : Tx M → T ∗x M , v 7→ v[ (flat) and its inverse

5At some points we will have to relax this definition and also take into account non-smooth but still
continuous or degenerate metric tensors.
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1.3. Differential Geometry

] : T ∗x M → Tx M , ω 7→ω] (sharp), where

v[(w)
.
= gx(v, w),

ω](η)
.
= g−1

x (ω,η)

for all w ∈ Tx M and η ∈ T ∗x M and the inverse metric tensor g−1 is defined by
g−1(v[, w[)

.
= g(v, w) for all v, w ∈ Tx M .

The canonical isomorphisms ] and [ extend to the respective bundles T M and
T ∗M and more generally to tensor field. Hence, via the isomorphism T p

q (M)→
T q

p (M) we get an inner product on T p
q (M) which we still denote gx(· , ·) or merely

g(· , ·).
A type of mappings between pseudo-Riemannian manifolds stands out: Given

two pseudo-Riemannian manifolds (M , g) and (M ′, g ′), an isometry is a diffeo-
morphism ψ : M → M ′ such that ψ∗g ′ = g, i.e., it preserves the metric tensor or
equivalently the inner product induced by the metric tensor. More generally, if
we relax ‘diffeomorphism’ to ‘smooth injective map’ such that the metric tensor is
preserved within the range ψ(M) we call ψ an isometric embedding.

Isometries preserve symmetries of a pseudo-Riemannian manifold. If ψt : M →
M is a one-parameter group of isometries, then the vector field X ∈ X(M) which
generates the flow, i.e., ψ̇t = X , is called a Killing vector field. Equivalently, a Killing
field is a vector field which satisfies the Killing equation

LX g = 0.

LX is the Lie derivative along X and it is defined as the derivation6 such that

LX f = d f (X ) and LX Y = [X , Y ]

for functions f ∈ C∞(M) and vector fields X , Y ∈ X(M).
Before we go on to study differential forms, we will introduce some of the most

prominent objects studied in pseudo-Riemannian geometry, namely the Levi-Civita
connection and three tensors describing the curvature: the Riemann tensor, the
Ricci tensor and the Ricci scalar.

On the tangent bundle of M there exists a connection ∇ : X(M)→ X(M)⊗
Ω1(M) called the Levi-Civita connection which is singled out by the metric g. It is
the unique connection such that

d g(Y, Z)(X ) = g(∇X Y, Z) + g(Y,∇X Z) (metric connection)

[X , Y ] =∇X Y −∇Y X (torsion-free)

holds for all X , Y, Z ∈ X(M). We extend ∇ to one-forms ω by applying the Leibniz
rule to ω(X ). Taking this result and using ∇X (s⊗ t) = (∇X s)⊗ t + s⊗ (∇X t) for
arbitrary tensor fields s, t, one has defined the Levi-Civita connection for tensors
too.

The Levi-Civita connection facilitates the definition of a geodesic, which is a
smooth curve γ : I → M , I ⊂ R with associated tangent vector field γ̇ that satisfies
the geodesic equation

∇γ̇γ̇= 0, (1.1)

6Remember that as a derivation LX satisfies the Leibniz rule LX (s⊗ t) = LX (s)⊗ t + s⊗LX (t) for
tenors s, t. Thus, the definition can be extended to tensors.
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i.e., geodesics are parallel to their tangent vector field – they are auto-parallel. A
geodesic which satisfies the above equation is said to be affinely parametrized. In-
stead of (1.1) one may also use the equation ∇γ̇γ̇ = αγ̇ with some function α along
the curve. However, it can be shown that every geodesic can be reparametrized to
yield (1.1).

Given the Levi-Civita connection ∇, the (1,3) tensor R : X(M)3→ X(M),

R(X , Y )Z =∇[X ,Y ]Z − [∇X ,∇Y ]Z ,

is called the Riemann curature tensor of M . A pseudo-Riemannian manifold is said
to be flat if R vanishes. Derived from the Riemann curature there exist several
more curvature tensors. The Ricci curvature tensor is defined as the symmetric
(0,2) tensor

Ric(X , Y ) = tr(Z → R(X , Z)Y ),

where tr denotes the trace of the linear map. Pseudo-Riemannian manifolds with
vanishing Ricci curvature are called Ricci-flat. Ricci-flat Lorentzian manifolds have
physical importance as the vacuum solutions of Einstein’s equations. Contracting
the tensor Ric, we obtain the Ricci scalar:

S = trg Ric.

Here the trace depends on the metric since Ric is a (0, 2) tensor while one requires
a (1,1) tensor to take the trace.

1.3.3 Differential Forms

Since we will be concerned mainly with differential forms, we will now review
some operations on forms and important results regarding these. The results of the
first part of this subsection are irrespective of the metric structure of M .

The exterior derivative d p : Ωp(M)→ Ωp+1(M) uniquely extends the notion of a
differential of a (smooth) function to p-forms. Usually, d is written for arbitrary p
instead of d p. Also, remember the following properties of d: It is a ∧-antiderivative,
d ◦ d = 0 and d commutes with pull-backs.

A form ω is called closed if dω = 0 and exact if ω = dη for some form η.
Obviously, all exact forms are closed. The converse, however, is in general false.

Definition 1.5. The p-th de Rham cohomology group Hp(M) of a manifold M is a
device to measures the extent to which closed p-forms are not exact, i.e.,

Hp(M)
.
=
{ω ∈ Ωp(M) |ω closed}
{ω ∈ Ωp(M) |ω exact}

=
kerd p

ranged p−1 .

Analogously, the p-th de Rham cohomology group with compact support Hp
0(M) is

given by

Hp
0(M)

.
=
{ω ∈ Ωp

0(M) |ω closed}
{ω ∈ Ωp

0(M) |ω exact}

Note the important fact that the de Rham cohomology is a homotopy invariant,
and consequently we arrive at the following important result:

11
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Theorem 1.2 (Poincaré lemma). Let ω ∈ Ωp(M) be a closed form. For every x ∈ M
there exists a contractible neighbourhood O⊂ M, i.e., O is homotopy equivalent to a
point, and a form η ∈ Ωp−1(O) such that

ι∗ω= dη,

where ι : O ,→ M is the inclusion map. In particular, if M is contractible, then η exists
globally since we can choose O= M.

Proof. O is homotopy equivalent to a point, and thus the de Rham cohomology
group Hp(O) is isomorphic to that of a point, i.e., Hp(O) = {0}.

For a meaningful theory of integration on manifolds, we also need the notion
of a volume form and the orientation of a manifold. A smooth n-form µ ∈ Ωn(M) is
called a volume form if µ(x) 6= 0 for all x ∈ M . If there exists a volume form µ on
M , M is called orientable. From now on, we shall assume (M , g) to be an orientable,
smooth n-dimensional manifold with a volume form µ. µ assigns an orientation to
M : A basis v1, . . . , vn ∈ Tx M is called positively oriented if µ(v1, . . . , vn)> 0.

This leads to a standard theorem regarding integration of differential forms,
namely Stokes’ theorem, a proof of which can be found e.g. in Chap. 7.2 of [31].

Theorem 1.3 (Stokes’ theorem). Let O ⊂ M be a relatively compact open subset
(i.e., its completion O is compact) and suppose that its boundary ∂O is C1. Further,
let ∂O (and O) have the induced orientation from M, and let ω ∈ Ωn−1(M). Then

∫

O

dω=

∫

∂O

ι∗ω,

where ι : ∂O ,→ M denotes the inclusion map.

For the second part, we will assume M to be an oriented smooth manifold
equipped with a metric tensor g. Under these assumptions, the ambiguity in the
choice of the volume form is eliminated. On (M , g) there exists a unique volume
form µg , called g-volume, such that

µg(x)(v1, . . . , vn) =
p

|det[gx(vi , v j)]|

for a positively oriented basis v1, . . . , vn ∈ Tx M .
Integrating an inner product (· , ·) on a vector bundle E over M using the

g-volume, yields a natural inner product on the sections of E:

Definition 1.6. Given s, t ∈ Γ(E), we define

〈s, t〉(M ,g)
.
=

∫

M

(s, t)µg , (1.2)

whenever the integral exists and omit the index (M , g) if there is no ambiguity on
which pseudo-Riemannian manifold the inner product is to be taken.

12
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In particular, the integral exists whenever s, t are square-integrable and real-
valued, i.e., s, t ∈ L2(E,µg) so that ‖s‖2 and ‖t‖2 are finite, where

‖·‖2
.
=
�

∫

M

|·|2µg

�1/2

and |·| is a norm on E.
We also apply the g-volume µg to introduce the Hodge star operator ∗ on (M , g).

The Hodge star is the unique map ∗ : Ωp(M)→ Ωn−p(M) such that

ω∧ ∗η= g(ω,η)µg (1.3)

holds pointwise for all ω,η ∈ Ωp(M). It has the properties

∗1= µg , ∗µg = (−1)Ind(g),

∗ ∗ω= (−1)Ind(g)+p(n−p)ω,

where ω ∈ Ωp(M).
Using the Hodge operator, we can write the inner product (1.2) for every pair

ω,η ∈ Ωp(M) of differential forms as

〈ω,η〉 =
∫

M

ω∧ ∗η. (1.4)

The Hodge operator facilitates the definition of another product: the interior
product (also called contraction). We define the interior product of a vector field
X ∈ X(M) or a one-form ξ ∈ Ω1(M) with a p-form ω ∈ Ωp(M) as

iXω
.
= (−1)Ind(g) ∗ (X [ ∧ ∗ω),

iξω
.
= (−1)Ind(g) ∗ (ξ∧ ∗ω).

Using the properties of the Hodge operator, one can see that this definition coincides
with the usual one as found e.g. in Chap. 5.1 of [31].

Together with the exterior derivative the Hodge star enables us to define the
differential operator δ, called the codifferential. The codifferential δ : Ωp+1(M)→
Ωp(M) acting on a p+ 1-form ω is defined by

δω
.
= (−1)np+1+Ind(g) ∗ d ∗ω.

This definition makes the codifferential δ the formal adjoint of the exterior deriva-
tive d, i.e., 〈dω,η〉 = 〈ω,δη〉 for all ω ∈ Ωp(M),η ∈ Ωp+1(M) such that suppω∩
suppη is compact.

Note that the codifferential is not a derivation and hence does not satisfy the
Leibniz law, e.g. for f ∈ C∞(M) and ω ∈ Ωp(M) one calculates

δ( fω) = f δω+ (−1)np+1id fω. (1.5)

Furthermore, one can show that for 1-forms η the codifferential satisfies δη =
− tr(∇η]), i.e., it is equal to minus the divergence.
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Analogously to the case of the exterior derivative, a form ω is called coclosed if
δω = 0 and coexact if ω = δη for some form η. Using these notions, the bijectivity
of the Hodge star yields

Hn−p(M)∼=
{ω ∈ Ωp(M) |ω coclosed}
{ω ∈ Ωp(M) |ω coexact}

,

Hn−p
0 (M)∼=

{ω ∈ Ωp
0(M) |ω coclosed}

{ω ∈ Ωp
0(M) |ω coexact}

by applying it to Definition 1.5. We can apply this to obtain a relation between
Hp(M) and Hn−p

0 (M):7

Proposition 1.1. Hp(M)∼= Hn−p
0 (M) if Hp(M) is finite-dimensional.

Proof. If Hp(M) is finite-dimensional, then it is isomorphic to its dual Hp(M)∗. One
can show that 〈· , ·〉 gives a well-defined non-degenerate pairing of Hp(M) and
Hn−p

0 (M) (one says that 〈· , ·〉 is cohomological). Thus, Hn−p
0 (M) is isomorphic to

Hp(M)∗ and hence also to Hp(M).

For future purposes we will also need a linear, second order differential operator
called the Laplace-de Rham operator which is defined as

� .
= d ◦δ+δ ◦ d = (d +δ) ◦ (d +δ). (1.6)

This operator generalizes in a suitable way the usual d’Alembert operator to p-
forms on pseudo-Riemannian manifolds. In a coordinate neighbourhood O⊂ M the
Laplace-de Rham operator acting on a p-form ω ∈ Ωp(M) is given in components
by (cf. Eq. (10.2) of [37] by Lichnerowicz)

(�ω)µ1···µp

.
=−∇ν∇νωµ1 ···µp

+
∑

k

Ricµkν
ωµ1 ···

ν
···µp
+
∑

k 6=l

Rµkνµlλ
ωµ1 ···

ν ···λ
···µp

,

where Einstein summation convention is implied for repeated greek indices. This is
a specific case of the Weitzenböck formula (1.15) which we will present later.

We conclude this subsection with a useful formula for the Laplace-de Rham
operator which follows from Stokes’ theorem:

Corollary 1.1 (Green’s identity for �). Let ω,η ∈ Ωp(M) and O ⊂ M relatively
compact with boundary ∂O. Then,

〈�ω,η〉(O,g) − 〈ω,�η〉(O,g) =

∫

∂O

ι∗
�

ω∧ ∗dη−η∧ ∗dω

+δω∧ ∗η−δη∧ ∗ω
�

.

(1.7)

Applying this identity, we see that � is formally self-adjoint, i.e., 〈�ω,η〉 =
〈ω,�η〉 for all ω,η ∈ Ωp(M) such that suppω∩ suppη is compact.

7This also follows from the more general Poincaré duality, cf. [36].

14



Chapter 1. Mathematical Preliminaries

1.3.4 Lorentzian Geometry

By a spacetime (M , g) we shall mean a connected, oriented and time-oriented,
four-dimensional Lorentzian manifold (M , g). For brevity, we will often write M
for (M , g).

We will now study the causal structure of this spacetime. First, the inner product
induced by g enabled us to distinguish at each point x ∈ M three different regions
in the tangent space: A tangent vector v ∈ Tx M is8

spacelike if g(v, v)> 0,

lightlike or null if g(v, v) = 0,

timelike if g(v, v)< 0,

causal if v is non-spacelike.

This definition can be extended to piecewise C1-curves and to vector fields, e.g. a
C1-curve in M is called spacelike if its tangent vectors are spacelike and a vector
field is called timelike if it is timelike at every point. Replacing vectors with
covectors and vector fields with 1-forms we obtain the same structure on the
cotangent bundle.

Next, the time orientation of M enables us to distinguish between future and
past: Given a time orientation τ, i.e., a smooth timelike vector field τ : M 7→ T M ,
a causal vector v ∈ Tx M is said to be future directed (past directed) if g(τ(x), v)< 0
(g(τ(x), v)> 0). The notions ‘future/past directed’ can be extended to curves and
vector fields as before. Further, we say that a covector ω is future respectively past
directed if the associated vector v =ω] is and write ωÂ 0 respectively ωÃ 0.

Finally, combining these two notions, the causal future J+M (p) (causal past J−M (x))
of a point x ∈ M is defined to be the set of points in M which can be reached from
x by future (past) directed causal curves. More generally, the causal future/past
of a subset O⊂ M is J±M(O)

.
= ∪x∈OJ±M(x). Defining JM(O)

.
= J+M(O)∪ J−M(O), we

say that two subsets O,O′ ⊂ M are causally separated if O′ ⊂ M \ JM(O). A subset
O⊂ M is called future/past compact if O∩ J±M(x) is compact for all x ∈ M .

To solve differential equations in M , we need a suitable surface on which to
specify initial values. This role is played by Cauchy surfaces.

Definition 1.7. A Cauchy surface is a subset Σ ⊂ M which is intersected exactly
once by every inextendible9 timelike curve.

Consequently, a Cauchy surface is met by every inextendible causal curve. A
necessary condition for a spacetime to allow for a Cauchy problem to be posed is
the existence of a Cauchy surface. Thus, we define:

Definition 1.8. A spacetime M is called globally hyperbolic if it admits a Cauchy
surface.

Equivalently, M is globally hyperbolic if it satisfies the strong causality condition,
i.e., there are no almost closed causal curves, and if for all p, q ∈ M the set

8Recall that we defined the signature of a Lorentzian metric tensor g such that Ind(g) = 1.
9A piecewise C1-curve is extendible provided it has a continuous extension to any of the endpoints

of the curves parameter interval. A curve which is not extendible is called inextendible.

15



1.3. Differential Geometry

J+M(p)∩ J−M(q) is compact. It was shown by Bernal and Sanchez [38] that every
globally hyperbolic spacetime manifold M is diffeomorphic to R×Σ and that it is
foliated by smooth Cauchy surfaces.

1.3.5 Conformal Geometry

Let (M , g) and (M , eg) be pseudo-Riemannian manifolds. The two metric tensors g
and eg (and thus the two pseudo-Riemannian manifolds) are said to be conformally
equivalent if there exists a smooth, strictly positive function Ω – the conformal
factor – such that eg = Ω2 g. The conformal rescaling from g to eg is called a
conformal transformation. This invites a generalization of the notions of isometry
and isometric embedding:

Definition 1.9. Let (M , g) and ( eM , eg) be two pseudo-Riemannian manifolds. A
smooth injective map ψ : M ,→ eM such that

ψ∗eg = Ω2 g

is called a conformal embedding. If ψ is even a diffeomorphism, i.e., M and eM are
diffeomorphic, we call it a conformal isometry.

Given a conformal isometry ψ : M → eM , the inner product structure (i.e.,
the causal structure if g is Lorentzian) induced by the metric tensor in the two
pseudo-Riemannian manifolds is identical due to the positivity of the conformal
factor, e.g. for all v ∈ X(M) with g(v, v)> 0 the relation eg(v, v)> 0 holds too.

Let the automorphism ψ : M → M be a conformal isometry between M =
(M , g) and fM = (M , eg) with ψ∗eg = Ω2 g. Also, it is convenient to define Υ

.
=

Ω−1dΩ. Operators with respect to the rescaled metric tensor eg are denoted by a
tilde (∼) symbol.

Many physical fields transform nicely under conformal transformations: They
are conformally invariant. We call a section s ∈ Γ(E) of a vector bundle E → M
conformally invariant if it transforms as

ψ∗s = Ωws.

for some w ∈ R called the conformal weight of s. That is, s can be considered
as a function s = s(x , g) depending also on the metric tensor, and it has the
homogeneity property s(x ,Ω2 g) = Ωws(x , g). Sections of a specific conformal
weight are denoted by a superscript w giving the weight, e.g. Γw(E) denotes
the space of sections of conformal weight w of E, and, similarily, the space of
differential p-forms of conformal weight w is denoted by Ωp,w(M).

In the following, we review the behavior of the differential operators d, δ,
�, cf. Theorem 1.159 of [34], and the geodesic equation subject to conformal
transformations, cf. Appendix D of [35].

Proposition 1.2. Let M be of even dimension and φ ∈ Ωp,0(M). Then,

ψ∗eδφ = Ω−2(δφ − (4− 2p) iΥφ), (1.8)

ψ∗e�φ = Ω−2(�φ − (4− 2p)diΥφ + (8− 4p)Υ∧ iΥφ

−2Υ∧δφ − (2− 2p) iΥdφ).
(1.9)
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Proof. Recall that the exterior derivative d is defined independently from the metric
tensor, i.e., ψ∗ed = d. Hence, to compute the codifferential eδ and the Laplace-de
Rham operator e� on fM , we just need to calculate the transformed Hodge star
operator e∗. It follows from (1.3) that

ψ∗e∗φ = Ω4−2p ∗φ.

Of particular interest will be the operator δd (often termed Maxwell operator)
and the codifferential δ on 1-forms of conformal weight 0 and −2. So we state the
corresponding transformations here explicitly:

Corollary 1.2. Let M be of even dimension, φ ∈ Ω1,0(M) and ϕ ∈ Ω1,−2(M). Then,

ψ∗eδdφ = Ω−2δdφ, (1.10)

ψ∗eδφ = Ω−2(δφ − 2iΥφ) = Ω−2(δφ − 2g(Υ,φ)), (1.11)

ψ∗eδϕ = Ω−4δϕ, (1.12)

i.e., the differential operators δd and δ are conformally invariant on the 1-forms φ
and ϕ respectively.

Proof. While (1.10) and (1.11) are a direct consequence of (1.8), let us work out
the proof of (1.12) in a little more detail. By (1.11), we have

ψ∗eδϕ = Ω−2(δψ∗ϕ− 2iΥψ∗ϕ) = Ω−2(δΩ−2ϕ− 2iΥΩ−2ϕ).

Using (1.5), we obtain

ψ∗eδϕ = Ω−4(δϕ− 2iΥϕ)−Ω−2idΩ−2
ϕ,

which yields the result after applying the chain rule.

The geodesic equation is also not conformally invariant. That is, a geodesic γ
with respect to the metric tensor g is, in general, not a geodesic with respect to the
transformed metric tensor eg. A short calculation [35] yields

ψ∗ e∇γ̇γ̇= 2γ̇ iγ̇Υ− g(γ̇, γ̇)Υ],

where e∇ is the Levi-Civita connection with respect to eg and γ̇ is the tangent vector
field to γ. Nevertheless, in the case that γ is a null geodesic the second term van-
ishes, and one sees that, after a reparametrization, γ satisfies the geodesic equation
according to the arguments after (1.1). Hence, null geodesics are conformally
invariant.

So far we have only considered the conformal transformation behaviour of
sections and operators under conformal isometries ψ : M → M . The generalization
to conformal embeddingsψ : M → eM withψ∗eg = Ω2 g is slightly more complicated.
Let eE→ eM be a vector bundle and E =ψ∗eE the pull-back bundle over M . Further,
let es ∈ Γw(eE) be a section conformal weight w in the sense defined above. Then,
we can define a section s ∈ Γw(E) such that

ψ∗es = Ωws
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holds. Since this case will occur frequently in the following, let us introduce a
conformal pull-back and a conformal push-forward:

s =ψ∗wes
.
= Ω−wψ∗es,

es =ψw
∗ s

.
=ψ∗Ω

ws.

If the conformal factor Ω is defined on eM instead of M , i.e., ψ∗Ω−2
eg = g, we have

instead ψ∗wes =ψ
∗Ω−w

es and ψw
∗ s

.
= Ωwψ∗s.

1.4 Asymptotically Flat Spacetimes

The study of isolated systems is a valueable tool to which one can attribute much of
the progress that has been made in the history of physics. Only by understanding
isolated system can we model the universe by treating various subsystems individu-
ally. Examples are the investigation of isolated mass and charge distributions in
Newtonian gravity and electromagnetism, respectively.

As one could have anticipated, doing the same in general relativity is compli-
cated by the absence of a fixed background with respect to which one would specify
the asymptotic behaviour of the system. Nevertheless, one was able to circumvent
these difficulties by the definition of asymptotically flat spacetimes by Bondi and
subsequent work of Sachs, Newman, Penrose and others.

Our treatment of asymptotically flat spacetimes is based on Chapter 11 of [35],
and we refer to this account and the references listed therein for more information
on this matter. Let us start directly with the (rather involved) definition and
omit any further motivation like the example of the conformal compactification of
Minkowski spacetime which may be found in the literature. The definition which
we introduce here can be found in [21] and is a modification of that in [35] and
[39].

Definition 1.10. A spacetime M = (M , g) is called an asymptotically flat spacetime
at past null and time infinity if there exists a spacetime fM = ( eM , eg), which might
fail to be smooth at the preferred point i− (past time infinity), and a conformal
embedding ψ : M ,→ eM with a conformal factor Ω ∈ C∞( eM) (i.e., Ω �ψ(M)> 0 and
ψ∗Ω−2

eg = g) such that the following conditions are satisfied:

(1) J+
fM
(i−) is closed andψ(M) = J+

fM
(i−)\∂ J+
fM
(i−). We call I − .

= ∂ J+
fM
(i−)\{i−}

past null infinity.

(2) There exists a strongly causal neighbourhood O of ∂ J+
fM
(i−) such that g

satisfies the vacuum equations Ric = 0 within the preimage of O∩ψ(M).

(3) On I − we have Ω = 0 and dΩ 6= 0, whereas on i− we have Ω = 0= dΩ and
a non-degenerate Hessian limi− e∇dΩ = 2eg.

(4) The map of null directions at i− into the integral curves n
.
= dΩe] �I − is a

diffeomorphism. Furthermore, given a function ω ∈ C∞( eM \ {i−}) which is
strictly positive on ψ(M)∪I − and satisfies eδω4dΩ = 0 on I −, the vector
field ω−1n is complete10 on I −.

10A vector field X ∈ X(M) is called complete if for each x ∈ M there exists a curve γ : R→ M such
that γ(0) = x and X �γ= γ̇.
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Here e∇, eδ, e] are the Levi-Civita connection, the codifferential and the canonical
isomorphism sharp with respect to the unphysical metric tensor eg. Note that
condition (2) can be weakened significantly by requiring only that the stress-energy
tensor eT in the unphysical spacetime is such that Ω−2

eT is smooth on I − (cf.
Chapter 11 of [35]).

A spacetime which satisfies the above definition will be called asymptotically
flat for brevity in all that follows. The spacetime M is termed the physical spacetime
while fM is termed the unphysical spacetime.

The main difference of this definition with that in [35] is our use of i− as the
distinguished locus instead of spatial inifnity i0. In [21] future null infinity i+ was
chosen instead of i− but all results found in this thesis can be easily translated to
the other case. Moreover, equivalently to [21], we only have a compactification
into the past such that we only have past null infinity and not future null infinity
too.

As the definition of asymptotically flat spacetimes is rather opaque, let us
give two examples to obtain some intuition: Whereas spatially flat Friedmann-
Lemaître-Robertson-Walker spacetimes are asymptotically flat, Schwarzschild or
Kerr spacetimes are not asymptotically flat in the sense of this definition because
they give rise to a unphysical metric tensor which is singular at i−. Note, however,
that the Schwarzschild spacetime is asymptotically flat in the sense of [35, 39].

One notices that the definition allows for a great freedom in choosing the
unphysical spacetime: A conformal rescaling of the unphysical metric eg by a factor
ω, i.e.,

eg → eg ′ =ω2
eg, n→ n′ =ω−1n

is always possible. This is the conformal gauge freedom in the choice of the unphysi-
cal metric. Now, we can choose ωB =ω such that the null vector field nB =ω−1

B n
satisfies the geodesic equation e∇nB

nB = 0 on I − and nB is complete. Thus, nB is
called the null geodesic generator of I −.

Since I − is the future null-cone of i−, we have that it is diffeomorphic to R×S2.
Then, having fixed ωB and nB, we introduce coordinates in a neighbourhood of
I −. First, we can use Ω itself as a coordinate since dΩ 6= 0 on I −. Secondly, we
can introduce the coordinate u as the affine parameter along the null geodesics
generator nB scaled such that du(nB) = 1 (i.e., nB = ∂u). Last, we use the standard
spherical coordinates (θ ,φ) on the spherical cross section of I −. This yields the
Bondi frame (Ω, u,θ ,φ) in a neighbourhood of I − in the unphysical spacetime
with the Bondi metric tensor

egB �I −=−dΩ⊗ du− du⊗ dΩ+ dθ ⊗ dθ + sin2θ dφ ⊗ dφ.

at the locus I −. Because S2 and C∞
.
= C∪ {∞} are diffeomorphic, we may just as

well work with complex stereographic coodinates ζ= eiφ cotθ/2. These give the
metric tensor the following form:

egB �I −=−dΩ⊗ du− du⊗ dΩ+ 2
dζ⊗ dζ+ dζ⊗ dζ

(1+ ζζ)2
.

As a consequence of the existence of a Bondi frame we have that the structure
at null infinity is universal for all asymptotically spacetimes. This will be of major
importance in our construction of a field theory at I −.
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Thus, let I −1 and I −2 be null infinity with null geodesic generators n1, n2

associated to two arbitrary asymptotically flat spacetimes. Owing to the existence
of a Bondi frame, there exists a conformal isometry ϕ : I −1 →I

−
2 with respect to

the induced (degenerate) metrics such that ϕ∗n2 = ω−1n1.11 The set of all such
diffeomorphisms forms a group called the Bondi-Metzner-Sachs group (abbreviated
BMS group) and denoted BMS.

Let us analyze the structure of the BMS group (cf. [40, 41] by McCarthy). The
conformal automorphisms of the sphere are the Möbius transformations

ζ→ ζ′ =
aζ+ b

cζ+ d
with ad − bc = 1

and a, b, c, d ∈ C. Such a transformation amounts to a conformal transformation
with conformal factor

K(ζ)−1 .
=
(aζ+ b)(aζ+ b) + (cζ+ d)(cζ+ d)

1+ ζζ
.

This implies that the affine parameter u along I − can only transform as

u→ u′ = K(ζ)(u+α(ζ))

with α ∈ C∞(C∞). Accordingly, the BMS group is the infinite-dimensional Lie
group BMS ∼= SO+(1, 3)nC∞(S2), i.e., it is isomorphic to the semidirect product of
the proper, orthochronous Lorentz group (which is isomorphic to the Möbius group)
with the infinite-dimensional Abelian normal subgroup C∞(S2). In particular, BMS
contains the supertranslations

ζ→ ζ′ = ζ, u→ u′ = u+α(ζ),

which are the asymptotic translations of all asymptotically flat spacetime.
This last statement can be made more precise. Namely, given a Killing field X in

the physical spacetime, we obtain a conformal Killing field eX =ψ∗X in ψ(M), i.e.,

L
eX eg = 2Ω−1

egL
eXΩ+Ω

2L
eX (ψ∗g) = 2Ω−1

egL
eXΩ,

which has a smooth extension, also denoted eX , to eM , as proven by Geroch in
[42]. Since Ω = 0 at I −, L

eX eg = 2Ω−1
egL

eXΩ at I −, too. From the smoothness of
Ω−1L

eXΩ it then follows that dΩ(eX ) �I −= 0, i.e., eX satisfies the Killing equation
at I −. Therefore, eX �I − can be defined intrinsically on I − where it gives an
infinitesimal symmetry. And, as BMS is the symmetry group of I −, every such eX
generates a one-parameter subgroup of BMS. An example are the vector fields
α(ζ)n which lead to the supertranslations defined above.

Nevertheless, to construct the full BMS group, these considerations do not
suffice. We also have to take into account so called asymptotic Killing fields (cf.
[35, 21]):

11The degenerate metric on the submanifold I− ,→ M ′ induced by the Bondi metric tensor is
0 · du⊗ du+ 2 (1+ ζζ)−2 (dζ⊗ dζ+ dζ⊗ dζ). The null geodesic generator n = ∂u can be defined
intrinsically on I−.
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Definition 1.11. A vector fields X ∈ X(M) is called an asymptotic Killing field if it
has a smooth extension eX to the unphysical spacetime (eX �ψ(M)=ψ∗X ) such that
eX is tangent to I − and Ω2L

eX (ψ∗g) is smooth and vanishes at I −.

Therefore, eX satisfies the Killing at I − and gives rise to an element of BMS.12

We close the discussion on asymptotically flat spacetimes and the BMS group
by mentioning that, since the BMS group is a subset of the conformal gauge
transformations at I −, a tensor of conformal weight w transforms under a BMS
transformations as it would under a conformal transformation.

1.5 Distributions on Manifolds

Distributions occur distributed throughout various subjects in physics and mathe-
matics. In particular, they appear as propagators and fundamental solutions in QFT
and the theory of partial differential equations. Here, we will need a generalization
of the usual notion of distributions to distributions on manifolds, cf. Chap. 1.1 of
[33], and Chap. 2.8 and Appendix of Friedlander [43].

After familiarizing ourselves with the basic notions of distributions on manifolds
in Sect. 1.5.1, we will review the concept of the wavefront set and its generalization
to distributional sections in Sect. 1.5.2.

For more information on distributions in general and the wavefront set in
particular we refer to the book by Hörmander [44].

1.5.1 Fundamentals

Let (M , g) be an n-dimensional Riemannian manifold13 and consider the K-vector
bundle E→ M with some metric. This gives us a norm | · | on E⊗T ∗M⊗p induced by
the metric tensor g and the metric of E. We denote by Γ0(E) the space of compactly
supported smooth sections of E and call its elements test sections. Further, denote
by D a connection on E and T ∗M and thus also on E ⊗ T ∗M⊗p.

Before we define distributions, we need to define a family of seminorms and
thereby a topology on Γ0(E). For every k ∈ N and every compact subset K ⊂ M

‖ f ‖k,K
.
=
∑

j≤k

sup
x∈K
|D j f (x)|

is a norm on Γ0(E). Hence, we say that a sequence ( fm)m∈N converges to f in
Γ0(E) if there exists a K ⊂ M such that supp fm ⊂ K for all m and ‖ f − fm‖k,K → 0
for each k.

Definition 1.12. Given some Fréchet space V ,14 a continuous linear map u :
Γ0(E)→ V is called a V-valued distributional section of E. The space of V -valued
distributions in E is denoted by Γ0(E, V )′ and if V = K, we write Γ0(E)′. We use

12Here one sees – from a slightly different perspective – why α cannot depend on u: Killing fields
are constant in the direction of the tangent vector fields of geodesics.

13Using a Riemannian manifold here amounts to no restriction on the metric we use later. The
reason for having a Riemannian metric here is the need for a norm on T ∗M .

14Note that, if the fibers of E are complex, V has to be complex and vice versa.
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equivalent notation for compactly supported distributions, which we denote in
general by Γ(E, V )′.15

If we are dealing with with compactly supported real- or complex-valued
differential forms as test sections, we write Ωp

0(M)
′ or Ωp

0(M ,C)′ = Ωp
0(M)

′⊗C for
the distributions.

Note that, since the vector bundle E is by definition finite-dimensional, we have
that Γ0(E)′ ∼= Γ0(M)′ ⊗ E∗. Therefore, given an inner product (· , ·) on E, we can
associate to each u ∈ Γ(E) a distributional section of Γ0(E)′, which we denote by
the same symbol, via

u( f )
.
= 〈u, f 〉 =

∫

M

(u, f )µ,

where f ∈ Γ0(E) and µ is a volume form on M . Sometimes we will also write
〈u, f 〉 if u does not correspond to a smooth section, and then the definition can be
understood in the reverse direction.

Now we can formulate a simple, yet powerful relation between integral maps
and bidistributions (cf. Theorem 5.2.1 of [44]):

Theorem 1.4 (Schwartz kernel theorem). Every bidistribution k ∈ (Γ0(E)⊗Γ0(E))′

defines a linear map K : Γ0(E)→ Γ0(E)′ and vice versa:

k( f ⊗ h) = 〈K f , h〉

for all f , h ∈ Γ0(E). k is called the (Schwartz) kernel of K.

Below we will often use the same symbol for the kernel and the map as is
customary. Some of the linear maps K considered below arise as convolutions with
a distribution. For two smooth functions f , h ∈ C∞0 (R) the convolution f ∗ h is
defined as

( f ∗ h)(x)
.
= 〈 f (y), h(x − y)〉.

This definition extends directly to distributions u ∈ (C∞0 (R))
′. u ∗ f ∈ C∞(R) is

defined by (u(y) ∗ f (y))(x)
.
= u( f (x − y)).

1.5.2 The Wavefront Set

To specify where a distribution is smooth and where it is singular, one introduces
the singular support: sing supp u of a distribution u is the complement of the union
of all open subsets O⊂ M on which u is smooth.

The wavefront has been introduced by Hörmander as a refinement of the
notion of singular support. It is used to characterize the singularity structure of
distributions by studying its Fourier transform at each point. Thereby it not only
gives us information about the location of singularities but also about the directions
in which the singularities occur. In Sect. 2.3 we will use the wavefront set to
introduce the microlocal spectrum condition. Since Γ0(E)′ ∼= Γ0(M)′ ⊗ E∗, we can
first discuss the wavefront set for scalar distributions Γ0(M)′ and generalize to
Γ0(E)′ later.

15We remark that in our notation Γ0(M)′ = D′(M) and Γ(M)′ = E ′(M).
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Let (O,κ) be a coordinate chart of M . We define the Fourier transform bf of a
square-integrable function f ∈ L2(O, dn x) by

bf (ξ)
.
=

∫

Rn

f (κ−1(x)) e−i x ·ξ dn x .

With this choice of normalization Parseval’s identity and the convolution theorem
are as follows:

〈 f , h〉 = (2π)−n〈bf ,bh〉, Öf ∗ h= bf bh and Óf h= (2π)−n
bf ∗ bh

for all f , h ∈ L2(R, d x) and the first equation applies also to f , h ∈ L2(O, dn x).
The Fourier transform can be extended to distributions: For compactly sup-

ported distributions u ∈ Γ(O)′ it is defined by bu(ξ)
.
= uκ(e−i x ·ξ), where uκ ∈

Γ0(Rn)′ is given by uκ( f ◦κ−1) = u( f ) for all f ∈ Γ0(O).
We can now employ the Fourier transform to give a condition on the smoothness

of a compactly supported distribution u ∈ Γ(O)′: u is smooth if and only if for each
N ∈ N0 there exists a constant CN such that

|bu(ξ)| ≤ CN (1+ |ξ|)−N .

We use this bound to identify the directions in which the Fourier transform bu of
some distribution u is not of rapid decay and hence lead to its singularities.

Definition 1.13. We say that ξ ∈ Rn \ {0} is a singular direction of a compactly
supported distribution u ∈ Γ(O)′ if there exists a conical16 neighbourhood V of ξ
and a N ∈ N0 such that (1+ |η|)N |bu(η)| has no bound for η ∈ V . The set of all
singular directions of u is denoted by Σ(u).

Localizing this, we obtain the singular directions of a distribution u ∈ Γ0(M)′

at a point x ∈ M
Σx(u)

.
=
⋂

χ

Σ(χu),

where χ ∈ Γ0(O) for some coordinate neighbourhood O of x such that χ(x) 6= 0.
This leads to the definition of the wavefront set as the set of the singular directions
at all points:

Definition 1.14. The wavefront set WF(u) of a distribution u ∈ Γ0(M)′ is defined
as

WF(u)
.
=
�

(x ,ξ) ∈ T ∗M\0 | ξ ∈ Σx(u)
	

,

where T ∗M\0 is the cotangent bundle with the zero section removed. Note that
WF(u) is independent of the choice of local coordinates, cf. Chap. 8.2 of [44].

We will now give as an example the wavefront sets of two simple but im-
portant distributions (cf. [45] by Strohmaier): The Dirac δ-distribution and the
distributions δ± defined by

δ±( f )
.
= lim
ε↓0

∫

R

f (x)
x ± iε

d x .

16A cone is a subset V such that λV ⊂ V for all λ > 0.
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Example 1.1 (Dirac δ-distribution). For any f ∈ L2(R, d x) we have

df δ = f (0).

Hence, δ has support {0} and does not decay in any direction. We obtain

WF(δ) = {0} × (R \ {0}).

Example 1.2 (δ±-distribution). First we calculate the Fourier transform of 1/(x +
iε) for ε > 0 using the residue theorem17

∫

R

e−i ξx

x + iε
d x =−2πiΘ(ξ) e−ξε.

Taking the limit ε ↓ 0, this gives Óδ+(ξ) = −2πiΘ(ξ). Then, applying the convo-
lution theorem, we obtain the Fourier transform of δ+( f ) for all f ∈ L2(R, d x)
as

Õf δ+ =
1

2π
(bf ∗Óδ+) =−i

ξ
∫

−∞

bf (k) dk.

Since this decays rapidly as ξ → −∞ and does not decay as ξ → ∞ (tends to
−2πi f (0)), we get

WF(δ+) = {0} ×R+

and, by an analogous computation, WF(δ−) = {0} ×R−. Moreover, it follows that

δ+ −δ− =−2πiδ, (1.13)

i.e., the δ-distribution may be split into two parts.

The wavefront set can also be generalized to distributions in vector bundles.
Suppose we have a distribution u ∈ Γ0(E)′ ∼= Γ0(M)′ ⊗ E∗ in a vector bundle
E → M with m-dimensional fibers. Locally u can be written in components
(u1, . . . , um), ui ∈ Γ0(M)′ via a local trivilization. Accordingly, we have

WF(u) =
⋃

i

WF(ui)

independent of the particular trivilization.
Here one notices a possible refinement of the wavefront set to study the individ-

ual compontent, e.g. to identify those components which are singular. This leads
to the so called polarization set introduced by Dencker [46]. Nevertheless, the
information contained in the wavefront set is sufficient for the problems considered
here.

Using the wavefront set of the bidistribution k associated to every linear map
K : Γ0(E)→ Γ0(E)′ via the Schwartz kernel theorem, we can extend the definition
of K to certain distributions u ∈ Γ(E)′ (cf. Theorem 8.2.13 of [44]):

17Θ denotes the Heaviside step-function.
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Proposition 1.3. The map K is defined for every u ∈ Γ(E)′ with

WF(u)∩
�

(y,η) | (x , y, 0,−η) ∈WF(k) for some y ∈ M
	

= ;,

and we have

WF(Ku)⊂
�

(x ,ξ) | (x , y,ξ,−η) ∈WF(k) for some (y,η) ∈WF(u)∪ (M × {0})
	

.

Moreover, formulating the comment following Theorem 8.2.14 in [44] as a
proposition, we get

Proposition 1.4. Let u ∈ (C∞0 (R))
′ be a distribution on R, then the wavefront set of

the Schwartz kernel k associated to the operator u∗, i.e., k( f ⊗ h) = 〈u ∗ f , h〉 for all
f , h ∈ C∞0 (R), is given by

WF(k) = {(x , y,ξ,−ξ) | (x − y,ξ) ∈WF(u)}.

Let us now give two examples of Schwartz kernels and their wavefront sets that
arise as an extension of the two examples considered above.

Example 1.3 (Diagonal distribution δ∆). We define the diagonal distribution

δ∆( f ⊗ h)
.
= 〈 f , h〉

for all f , h ∈ L2(E,µ). The wavefront set can be directly calculated as

WF(δ∆) = {(x , x ,ξ,−ξ) ∈ T ∗(M ×M)\0}.

If f , h ∈ L2(R, d x), we have f = δ ∗ f so that δ∆ can be seen as the Schwartz
kernel associated to the linear operator δ∗.

Example 1.4 (δ±∆-distribution). Similar to δ±, we can define δ±∆ as the positive
and negative frequency part of δ∆:

δ±∆( f ⊗ h)
.
= 〈δ± ∗ f , h〉 = lim

ε↓0
−
∫

R2

f (x)h(y)
x − y ∓ iε

d x d y

for all f , h ∈ L2(R, d x). Applying Proposition 1.4 to the results of Example 1.2, we
obtain

WF(δ±∆) = {(x , x ,ξ,−ξ) ∈ R4 | ±ξ > 0}.

To determine the range of test functions that δ±∆ can be applied to, we calcu-
late the Fourier transform using Parseval’s identity, the convolution theorem and
Example 1.2:

δ±∆( f ⊗ h) = 〈δ± ∗ f , h〉 =−i 〈Θ(ξ) bf (ξ),bh(−ξ)〉. (1.14)

Thus, δ±∆ can be defined as a distribution on L2(R) ⊗ L2(R) by Plancherel’s
theorem and the Schwartz inequality.
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1.6. Wave Equations

1.6 Wave Equations

In the discussion of the quantization of a specific quantum field we will always start
from a dynamical equation, the equation of motion, which describes the behavior
of some classical field in space and time. Therefore, this section is attributed to
the study of a specific yet very important type of equation of motion: the wave
equation. We highly recommend the books [33] and [43] on which most of this
section is based and which cover this subject in great depth.

For the duration of this section let M = (M , g) be a globally hyperbolic space-
time with volume form µg and π : E → M a vector bundle equipped a with an
inner product (· , ·).

A partial differential operator P : Γ(E)→ Γ(E) of order k acting on sections of
the vector bundle E is given locally in each coordinate neighbourhood O⊂ M with
coordinates (x1, . . . , x4) as a polynomial

P = p(x ,∂ ) =
∑

|α|≤k

Aα∂
α,

where Aα ∈ Γ(End E) and ∂ α = ∂ |α|/∂ xα1
1 · · ·∂ xα4

4 for some multi-index α. The
leading term of the polynomial p(x ,ξ) is called the principal symbol σP of P:

σP(x ,ξ)
.
=
∑

|α|=k

Aαξ
α,

where ξ=
∑

µ ξµd xµ ∈ T ∗M and ξα = ξα1
1 · · ·ξ

αn
n . Furthermore, the characteristic

set Char P of P is defined as Char P
.
= kerσP ⊂ T ∗M , the set of zeros of σP .

We may also act with partial differential operators on distributional sections
Γ0(E)′ by introducing the formal adjoint P∗ of P. Given u ∈ Γ0(E)′ and f ∈ Γ0(E),

〈Pu, f 〉 = 〈u, P∗ f 〉 with P∗ =
∑

|α|≤k

(−∂ )αAα.

In the case that P∗ = P we call P formally self-adjoint.

1.6.1 Normally Hyperbolic Operators

We already defined a partial differential operator in (1.6) – the Laplace-de Rham
operator �. It is an example of a normally hyperbolic18 differential operator or wave
operator because its principal symbol is given by the metric tensor, i.e., a partial
differential operator P acting on sections of E→ M is normally hyperbolic if and
only if

σP(x ,ξ) =−gx(ξ,ξ) idEx
,

i.e., Char P = {(x ,ξ) ∈ T ∗M | gx(ξ,ξ) = 0}. In a coordinate neighbourhood of M
with coordinates (x1, . . . , x4) a normally hyperbolic operator P may be written as

P =−gµν
∂ 2

∂ xµ ∂ xν
+ Aµ

∂

∂ xµ
+ B,

18Normally hyperbolic operators are a subset of the hyperbolic differential operators.
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where gµν denotes the matrix of the inverse metric tensor, A ∈ Γ(T M ⊗ End E),
B ∈ Γ(End E) and Einstein summation convention is assumed.

All normally hyperbolic operators on a vector bundle can be associated to a
connection on this bundle. We make this precise by the following proposition which
can be found e.g. in [47] by Baum and Kath:

Proposition 1.5. Let P : Γ(E) → Γ(E) be a normally hyperbolic operator on E.
There exists a uniquely determined connection D : Γ(E) → Γ(E ⊗ T ∗M) and an
endomorphism B ∈ Γ(End E) on E such that the Weitzenböck formula

P = D∗D+ B (1.15)

holds. D∗ : Γ(E ⊗ T ∗M)→ Γ(E) is the formal adjoint of D with respect to the pairing
on E ⊗ T ∗M induced by the inner product on E and the inverse metric tensor.

Using this proposition, we can formulate a Green’s identity for each normally
hyperbolic operator that is associated to a metric connection.

Proposition 1.6 (Green’s identity). Let D be a metric connection on E and P =
D∗D+ B a normally hyperbolic operator. If O⊂ M is a relatively compact subset with
C1 boundary ι : ∂O ,→ O, then

〈Ps, t〉(O,g) − 〈s, P∗ t〉(O,g) =

∫

∂O

ι∗ ∗
�

(Ds, t)− (s, Dt)
�

(1.16)

for all s, t ∈ Γ(E) with supp s ∩ supp t compact.19

Proof. Integrating the condition for metric connections, g(ξ,d(s, t)) = (Ds, t⊗ξ)+
(s⊗ ξ, Dt), yields

〈D∗(s⊗ ξ), t〉(O,g) =−〈Ds, t ⊗ ξ〉(O,g) +

∫

O

ξ∧ ∗d(s, t)

for all ξ ∈ Ω1(M). Therefore, we have

〈D∗Ds, t〉(O,g) =−〈Ds, Dt〉(O,g) +

∫

O

d ∗ω

with ω ∈ Ω1(M) such that ω(X ) = (DX s, t) for all X ∈ X(M). Further, we have by
Stokes’ theorem

∫

O

d ∗ω=
∫

∂O

ι∗ ∗ω.

With these results and P∗ = D∗D+ B∗ , we obtain

〈Ps, t〉(O,g) − 〈s, P∗ t〉(O,g) =

∫

∂O

ι∗ ∗ (ω−η)

with ξ as before and η defined by η(X ) = (s, DX t) for X ∈ X(M).

19(Ds, t) and (s, Dt) are symbolic for the 1-forms defined by (DX s, t) and (s, DX t) for X ∈ X(M) as
described in the proof and ∗ is the Hodge star operator.
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1.6.2 Green’s Operators

Normally hyperbolic operators play a distinguished role in physics since they give
rise to wave equations. It is known that the Cauchy problem for wave equations in
a globally hyperbolic spacetime is well-posed (cf. Chap. 3 of [33] and Chap. 5 of
[43]), and thus we have:

Theorem 1.5 (Green’s operators). Let P be a formally self-adjoint20 normally hyper-
bolic operator and M globally hyperbolic. Then there exist unique advanced (+) and
retarded (−) Green’s operators G± satisfying

(1) G±(Pu) = u,

(2) P (G± f ) = f ,

(3) supp(G± f )⊂ J±M(supp f )

for all u, f ∈ Γ0(E)′ which are past (+) respectively future (−) compact.

Above G± acting on a distributional section has to be understood in the sense
of Proposition 1.3, i.e., in the smeared sense:

〈G± f ,φ〉 = 〈 f , G∓φ〉 = 〈u,φ〉,

where φ ∈ Γ(E) future respectively past compact and supp f ∩ suppφ compact.
Further, note that G± commutes with any partial differential operator Q that
commutes with P since PG±Q f =Q f =QPG± f = PQG± f .

Having found advanced and retarded Green’s operators, let us also introduce
the causal propagator21

G f
.
= (G+ − G−) f

for all past and future compact f ∈ Γ0(E)′. That is, to each such f there exists
a (weak) solution u = G f ∈ Γ0(E)′, supp u = JM(supp f ), of the homogeneous
equation Pu= 0. The opposite direction holds too:

Proposition 1.7. Let u ∈ Γ0(E)′ be such that Pu = 0. Then, there exists past and
future compact f ∈ Γ0(E)′ such that u= G f .

Proof. Let χ ∈ C∞(M) and 1−χ be past and future compact respectively. Therefore,
u= χu+ (1−χ)u and Pχu= P(χ − 1)u= f for some f ∈ Γ0(E)′. We can apply
G+ to Pχu and G− to P(χ − 1)u to see that both Pχu and P(χ − 1)u are past and
future compact due to them being equal. Thus, we obtain

G f = G+Pχu− G−P(χ − 1)u= χu+ (1−χ)u= u.

Another property of the causal propagator which will be used a lot is that it is
not a bijective map and that its kernel is given by

ker G = {Pu | u ∈ Γ0(E)
′ past and future compact} (1.17)

20Many results below have an appropriate generalization to P which are not formally self-adjoint.
Nevertheless, for simplicitly we will only consider the case of formally self-adjoint wave operators.

21In the following we will sometimes add a subscript M to Green’s operators and the causal
propagator to explicitly indicate the spacetime under investigation.
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as a direct consequence of the definition of Green’s operators and the causal
propagator. Moreover, we are often only interested in smooth solutions which are
compactly supported on every Cauchy surface. Such solutions arise from G acting
on elements of Γ0(E).

This observation allows us to construct the phase space of a field theory whose
equation of motion is given by the homogenous wave equation Pu= 0, u ∈ Γ(E)
with formally self-adjoint P. Following Crnković and Witten [48], we identify the
phase space with the space of solutions which is isomorphic to

P .
= Γ0(E)/ker G . (1.18)

There is a canonical way to equip this space with a symplectic structure without
making any preferred choice of initial data (cf. Dimock [49]):

Proposition 1.8. Let (· , ·) be a inner product on E and [ f ], [h] ∈ P with represen-
tatives f , h ∈ Γ0(E). Then

σ([ f ], [h])
.
= G( f ⊗ h)

.
= 〈G f , h〉 (1.19)

is a symplectic form on the vector space P .

Proof. The bilinear form σ(· , ·) is by definition of P well-defined. It is weakly
non-degenerate because (· , ·) is non-degenerate and G f 6= 0 for all [0] 6= [ f ] ∈ S.
It is anti-symmetric because of the formal adjointness of G+ and G−.

The (bi-)distribution G(· ⊗ ·) is called the commutator distribution and it is also
defined for past and future compact f ∈ Γ0(E)′. Among some other properties, the
commutator distribution G is a bisolution of the homogenous wave equation, i.e.,
it solves the wave equation in both factors: (P ⊗ id) ◦ G = 0= (id⊗ P) ◦ G .

We also need some general results on conformally invariant wave operators and
their Greens operators. Let P be a normally hyperbolic wave operator acting on
sections Γw(E) of conformal weight w. If P is conformally invariant, it transforms
as

ψ∗ ◦ eP = Ωw−2 P ◦ψ∗w = Ω
w−2 PΩ−w ◦ψ∗ (1.20)

for all conformal isometries ψ : M → eM with conformal factor Ω and eP is the
corresponding wave operator acting on ψ∗Γw(E).

To establish the conformal transformation behavior of the advanced and re-
tarded Green’s operators and hence also of the causal propagator, we make
use of their definition: Let ÝG± be the Green’s operators associated to eP. From
ψ∗ ◦ÝG±eP =ψ∗ = G±P ◦ψ∗ it follows that

ψ∗ ◦ÝG± = Ωw G± ◦ψ∗w−2 = Ω
w G±Ω2−w ◦ψ∗, (1.21)

i.e., G± acts on sections of conformal weight w − 2. The same transformation
behaviour holds true for the causal propagator.
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1.6.3 Propagation of Singularities

We will not give a full account of the propagation of singularities here nor state
the theorem in all its generality as done by Duistermaat and Hörmander [50]
and Dencker [46]. Instead we will derive a propagation of singularities theorem
for wave operators from the wavefront set of Green’s operators in a coordinate
neighbourhood.

Let P be a formally self-adjoint normally hyperbolic operator acting on distri-
butional sections Γ0(E)′ of a vector bundle π : E → M with inner product (· , ·).
We define Green’s distributions G± ∈ (Γ0(E)⊗Γ0(E))′ as the Schwartz kernels of
Green’s operators

G±( f ⊗ h)
.
= 〈G± f , h〉.

Note that they are also defined for past and future compact f ∈ Γ0(E)′. Further-
more, they are bisolutions of P, namely,

(P ⊗ id)G± = δ∆ = (id⊗P)G±.

We define local Green’s distributions G±
O

on each globally hyperbolic coordinate
neighbourhood O⊂ M as the restriction of G± to (Γ0(π−1 O)⊗Γ0(π−1 O))′. The
local Green’s distributions can be expressed via a sum over Riesz distributions.
Analyzing this sum as in Chap. 4.5 of [45] one obtains the wavefront set of G±

O
.

Proposition 1.9. The wavefront sets of the local Green’s distributions are

WF(G±
O
) =
�

(x , x ,ξ,−ξ) ∈ T ∗(O×O)\0
	

∪
�

(x , y,ξ,−η) ∈ T ∗(O×O)\0 | (x ,ξ)∼ (y,η), y ∈ J±M(x)
	

,
(1.22)

where (x ,ξ) ∼ (y,η) means that there exists a null geodesic γ connecting x and y
such that ξ is cotangent to γ and η is the parallel transport of ξ from x to y along γ.

From this we also see that the wavefront sets of G±
O

and GO contain no elements
of the form (x , y,ξ, 0) since this would already imply that (x , y, 0, 0) is an element.

Let us now prove the following two important results which are localized
generalizations to curved spaces of the corresponding statements in Chap. 11.5 of
[51] by Friedlander and Joshi:

Proposition 1.10. If u ∈ Γ0(E)′, then

WF(u)⊂WF(Pu)∪Char P.

Proof. Suppose (x ,ξ) ∈WF(u) \WF(Pu). Choose a bump function χ ∈ C∞0 (O) in
a globally hyperbolic coordinate neighbourhood O⊂ M such that χ = 1 in a small
neighbourhood of x . Hence, we even have (x ,ξ) ∈WF(χu) \WF(Pχu). Since χu
is compactly supported, we obtain

χu= G+
O

Pχu.

Applying Proposition 1.3, we see from (1.22) that the wavefront at (x ,ξ) must
come from the second part of WF(G+

O
), and thus (x ,ξ) ∈ Char P.

We are now ready to state a special case of the propagation of singularities
theorem:
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Theorem 1.6. (Propagation of singularities) Let u ∈ Γ0(E)′. The wavefront set
WF(u) is invariant under the null geodesic flow in the complement of WF(Pu). That
is, if (x ,ξ) ∈ WF(u) \WF(Pu) and (x ,ξ) ∼ (y,η) with y ∈ supp u, then also
(y,η) ∈WF(u).

Proof. It suffices to prove this theorem locally.
Assume that (x ,ξ) ∈WF(u) \WF(Pu)⊂ Char P. Taking a χ as in the proof of

the last proposition which in addition satisfies suppχu∩ sing supp Pu= ;. Again
we have χu= G±

O
Pχu from which we see that the wavefront at (x ,ξ) must come

from the second part of WF(G±
O
) interacting with WF(Pχu) along the geodesic

defined by (x ,ξ). Hence, there exists a (y,η) ∈WF(Pχu) with (y,η)∼ (x ,ξ) for
some y ∈ suppdχ.

To prove the other direction, let x , y ∈ O∩ supp u be two points lying on a null
geodesic through a globally hyperbolic coordinate neighbourhood O⊂ M , i.e., we
have (x ,ξ)∼ (y,η) for null covectors ξ and η cotangent to the geodesic at x and
y respectively, such that (x ,ξ) /∈ WF(Pu). Choose a bump function χ ∈ C∞0 (O)
with χ = 1 in a small neighbourhood of x and y ∈ suppχu. Now, assume that
(y,η) ∈WF(Pχu). Then, by reversing argument of the previous case, we also have
(x ,ξ) ∈WF(χu)

With the propagation of singularities theorem at hand we immediately obtain
the global version of Proposition 1.9:

Proposition 1.11. Let G± and G be Green’s distributions and the commutator
distribution defined above. Then,

WF(G±) =
�

(x , x ,ξ,−ξ) ∈ T ∗(M ×M)\0
	

∪
�

(x , y,ξ,−η) ∈ T ∗(M ×M)\0 | (x ,ξ)∼ (y,η), y ∈ J±M(x)
	

,

WF(G) =
�

(x , y,ξ,−η) ∈ T ∗(M ×M)\0 | (x ,ξ)∼ (y,η)
	

.
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2
Quantum Field Theory

In this chapter we will give an introduction to the theory of quantum fields on
curved spacetimes and present some results in the framework of general local
covariance. In the first section we introduce the notion of locally covariant quantum
field theories and study the field algebra corresponding to the classical theory with
equations of motion given by a wave operator. The second section then defines
the notion of a locally covariant conformal quantum field theory and adopts the
results developed in the first section to this picture. In the last section we proof the
bulk to boundary correspondence in asymptotically flat spacetimes for an abstractly
defined conformal quantum field theory.

Hence, this chapter will lay down the foundation for the discussion of the vector
potential in the following chapter. Moreover, as we show many results in a very
general context, we will be able to devote the next chapter more to the distinct
properties of the vector potential rather than some general results.

2.1 Locally Covariant Quantization

In their seminal paper [24] Brunetti, Fredenhagen and Verch, inspired by work of
Hollands and Wald [15, 16], introduced the principle of general local covariance
in local QFT using the language of category theory. Within that framework one
can not only rigorously compare quantum field theories on different background
spacetimes but also understand quantum fields as natural transformations between
certain functors.

2.1.1 Fundamentals

Since this framework is based on categories, we start by defining the two essential
categories:

Definition 2.1. Using the unital ∗-algebras (over R or C) as objects and the
injective ∗-homomorphisms as morphisms, we construct a category which we shall
denote ∗-Alg. As usual, composition of morphisms is the composition of maps and
the unit element is the identity map.

Definition 2.2. We denote by GlobHyp the category which has as its objects
globally hyperbolic spacetimes M = (M , g). The morphisms between any two
objects M , M ′ are the isometric embeddings ψ : M ,→ M ′ such that

(i) orientation and time-orientation are preserved and

(ii) the image ψ(M) is an open globally hyperbolic subset of M ′.1

1This is equivalent to demanding that every causal curve in M ′ whose endpoints lie in ψ(M) is
entirely contained in ψ(M).
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The composition of morphisms is the composition of maps and the unit element is
given by the identity map.

Now we can state the main definitions to state the concept of local covariance
and the notion of a quantum field.

Definition 2.3. A locally covariant quantum field theory (abbreviated LCQFT) is a
covariant functorA : GlobHyp→ ∗-Alg, i.e., we have the diagram

M_

A
��

ψ
// M ′
_

A
��

A (M)
A (ψ)
// A (M ′)

for all M , M ′ ∈ Obj(GlobHyp) and all arrows ψ : M → M ′ in GlobHyp.

The functorA is called causal (i.e., it satisfies Einstein causality) if for any two
morphisms ψi ∈ HomGlobHyp(Mi , M), i = 1,2 with causally separated images of
ψi in M one has

�

A (ψ1)(A (M1)),A (ψ2)(A (M2))
�

= {0},

where [A,B] = {x y − y x | x ∈A, y ∈B} for subalgebras A,B⊂ C. Further,A is
said to obey the time-slice axiom if

A (ψ)(A (M)) =A (M ′)

holds for all ψ ∈ HomGlobHyp(M , M ′) such that ψ(M) contains a Cauchy surface
of M ′, i.e., ψ(M) is an open globally hyperbolic neighbourhood of the Cauchy
surface.

Within this formalism quantum fields can be seen as natural transformations
between the functorA that generates the ∗-algebra of the quantum field theory
and a functor D : GlobHyp → Top that assigns to each spacetime a topological
vector space of ‘test functions’, e.g. a set of compactly supported distributional
sections of a vector bundle EM → M . Accordingly,

D(M)⊂ Γ(EM)
′ and D(ψ) .

=ψ∗

for all ψ ∈ HomGlobHyp(M , M ′).

Definition 2.4. A quantum field is a natural transformation Φ in Top between
the functors A and D. That is, given two objects M , M ′ ∈ Obj(GlobHyp), the
morphisms ΦM and ΦM ′ make the diagram

D(M)

ψ∗
��

ΦM
// A (M)

A (ψ)
��

D(M ′)
ΦM′
// A (M ′)

commute for all ψ ∈ HomGlobHyp(M , M ′).

In many cases a quantum field ΦM may be seen as a ∗-algebra-valued distribu-
tion, i.e., an element of D(M)′⊗A (M). In general, however, ΦM may not even be
linear and thus not a distribution.
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Chapter 2. Quantum Field Theory

2.1.2 The Field Algebra

An example of a LCQFT is the functor F 0 : GlobHyp → ∗-Alg generating the
Borchers-Uhlmann algebra F0

M for each spacetime M if D(M) is a complex topo-
logical C-vector space.

Definition 2.5. The Borchers-Uhlmann algebra F0
M is the free unital ∗-algebra

generated by D(M), i.e.,

F0
M

.
= C⊕

∞
⊕

n=1

D(M)⊗n

with only a finite number of terms non-zero. The ∗-operation is defined by

f ∗ =
∞
⊕

n=1

( fn,1 ⊗ fn,2 ⊗ · · · ⊗ fn,n−1 ⊗ fn,n)
∗ =

∞
⊕

n=1

( fn,n ⊗ fn,n−1 ⊗ · · · ⊗ fn,2 ⊗ fn,1),

where fi, j ∈ D(M).2

Proposition 2.1. F 0 : GlobHyp→ ∗-Alg defined by

F 0(M)
.
= F0

M and F 0(ψ)
.
=ψ∗

for each M , M ′ ∈ Obj(GlobHyp) and any arrow ψ ∈ HomGlobHyp(M , M ′) is a
functor and therefore a LCQFT. By abuse of notation, the ∗-algebra homomorphism
ψ∗ applied to F0

M shall mean that the push-forward ψ∗ has to be applied to each
factor of each summand of all elements of F0

M .

Proof. Given another arrow ψ′ ∈ HomGlobHyp(M ′, M ′′), compatibility with compo-
sition follows from ψ∗ ◦ψ′∗ = (ψ ◦ψ′)∗. Moreover, U preserves the unit since the
unit element of F0(M) is 1= 1⊕ 0⊕ · · · regardless of the spacetime M .

Working with Borcher-Uhlmann algebra has the disadvantage of neglecting the
dynamical content of the theory. In particular, it yields a LCQFT which is neither
causal nor does it satisfy the time-slice axiom. To obtain a functor which has
these properties we will equip the Borchers-Uhlmann algebra with two relations
containing the dynamics: A field equation and canonical commutation relations
(abbreviated CCRs).

Let ψ ∈ HomGlobHyp(M , M ′) be an isometry between two arbitrary spacetimes
M , M ′ ∈ Obj(GlobHyp). First, we assign to every spacetime M a vector bundle
EM → M such that ψ∗EM = EM ′ . Secondly, we need an inner product (· , ·)M on
each EM such that ψ∗(· , ·)M ′ = (ψ∗(·),ψ∗(·))M . Last, we set D(M) = Γ0(EM).
Then, for every spacetime M ∈ Obj(GlobHyp) the field equations are given by a
formally self-adjoint wave operator PM acting on a D(M) and the CCRs are given
by the commutator distribution G M which is obtained from the causal propagator
associated to PM (cf. Eq. (1.19)). To have a well-defined locally covariant theory,
we require the wave operator P to be locally covariant, i.e., ψ∗ ◦ PM = PM ′ ◦ψ∗
must hold for all ψ ∈ HomGlobHyp(M , M ′).

2We use boldface characters for elements of the algebra to distinguish them from their individual
summands. Moreover, we will sometimes omit trivial summands, e.g. we identify c ∈ C with c⊕0⊕· · · ∈
F0(M) and f ∈ D(M) with 0⊕ f ⊕ 0⊕ · · · ∈ F0(M).
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2.1. Locally Covariant Quantization

Definition 2.6. The field algebra FM is given by the quotient

FM
.
= F0

M/I,

where I is the closed ∗-ideal generated by

ker G M ∩D(M) and − iG M( f ⊗ h)⊕ f ⊗ h− h⊗ f

for all f , h ∈ D(M).

Note that quotienting by the ∗-ideal generated from the field equations by

ker G M ∩D(M) = {PMu | u ∈ D(M)}

we have that two different test functions to which the causal propagator assigns
the same classical field correspond to the same algebra element (cf. Proposition 1.8
and the discussion which preceeds it).

Proposition 2.2. Let M , M ′ ∈ Obj(GlobHyp) and ψ ∈ HomGlobHyp(M , M ′). De-
note by qM the projection map F0

M → FM . Then F : GlobHyp → ∗-Alg defined
by

F (M) .
= FM and F (ψ) .

= qM ′ ◦ψ∗

is a functor and therefore a LCQFT.

Proof. As a consequence of the local covariance of P and the uniqueness of the
causal propagator we have ψ∗ ◦ G M = G M ′ ◦ψ∗ which then yields

ψ∗G M( f ⊗ h) = G M ′(ψ∗ f ⊗ψ∗h)

for all f , h ∈ D(M). Thus, if we denote by I and Iψ the ∗-ideals such that FM =
F0

M/I and FM ′ ⊃ Fψ(M) = F0
ψ(M)/Iψ, we have ψ∗I = Iψ and consequently qM ′ ◦ψ∗

is a well-defined ∗-algebra homomorphism. Then, the covariance of the functor F
follows from Proposition 2.1 and the injectivity of the projection map.

Having included these abstract relations containing the dynamics of the field in
the definition of F , we can show their physical implications:

Proposition 2.3. The LCQFT F is causal and satisfies the time-slice axiom.

Proof. Let ψi ∈ HomGlobHyp(Mi , M), i = 1, 2 with causally separated images of ψi

in M . Then, using the CCR relation in the field algebra,

[ f , h] = f ⊗ h− h⊗ f = iG M( f ⊗ h) = 0

for all 0⊕ f ⊕ 0⊕ · · · = f ∈ F (ψ1)(FM1
) and 0⊕ h⊕ 0⊕ · · · = h ∈ F (ψ2)(FM2

)
because JM(supp f )∩ supp h= ;. This proves causality.

To see that the time-slice axiom is fulfilled we use a proof similiar to one used
by Sanders [52] for the scalar field (which was adapted from [49]). Consider
ψ ∈ HomGlobHyp(M ′, M) such that O = ψ(M ′) contains a Cauchy surface of M .
Given any f ∈ D(M), we construct

h= (1−χ)G+M f +χG−M f ,
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where χ ∈ C∞(M) with χ �J+M (O)\O= 1 and χ �J−M (O)\O= 0. Then,

f − PMh= PM(χG M f ) with supp(PM(χG M f ))⊂ O, (2.1)

and the result follows by the field equation relation in the field algebra F (M).

We can now find a quantum field Φ in the sense of Definition 2.4 as a natural
transformation between D and F :

Proposition 2.4. There is a quantum field Φ : D→̇F given by

ΦM( f )
.
= qM( f ) with f = 0⊕ f ⊕ 0⊕ · · ·

for each M ∈ Obj(GlobHyp) and any f ∈ D(M).

Proof. Φ has the properties of a natural transformation since

F (ψ)(ΦM( f )) = qM ′(ψ∗qM( f )) = qM ′(qψ(M)(ψ∗ f )) = qM ′(ψ∗ f ) = ΦM ′(ψ∗ f )

for all arrows ψ ∈ HomGlobHyp(M , M ′).

2.2 Locally Covariant Conformal Quantization

In Sect. 2.1 we introduced the notion of locally covariant quantum field theory.
When working with conformally invariant fields like the massless scalar, Dirac and
vector fields, one can extend this concept: Instead of the category GlobHyp we
may also consider a category with a bigger class of morphisms including conformal
embeddings as done by Pinamonti [25]. Note, however, that the definitions found
here differ slightly from those of [25].3

2.2.1 Fundamentals

Definition 2.7. Denote by CGlobHyp the extension of the category GlobHyp (cf.
Definition 2.2) which has as its morphism conformal embeddings ψ : M ,→ eM , such
that

(i) ψ preserves orientation and time-orientation and

(ii) the image ψ(M) is an open globally hyperbolic subset of eM .

That is, GlobHyp is the subcategory of CGlobHyp where all non-isometric
arrows have been removed. A conformal quantum field theory is then defined
analogously to a LCQFT (cf. Definition 2.3):

Definition 2.8. A locally covariant conformal quantum field theory (abbreviated
LCCQFT) is a covariant functor CA : CGlobHyp→ ∗-Alg, i.e., we have

M_

CA
��

ψ
//
fM_

CA
��

CA (M)
CA (ψ)

// CA (fM)

for all M ,fM ∈ Obj(CGlobHyp) and all arrows ψ ∈ HomCGlobHyp(M ,fM).
3In [25] Pinamonti doesn’t consider a possible conformal weight of the inner product on the vector

bundle.
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The introduction of conformal quantum fields needs somewhat more care. First
we define the functor CD : CGlobHyp→ Top similar to D such that it assigns to
each object in CGlobHyp a topological vector space of test functions of a specific
conformal weight. Typically, CD will have as its objects spaces of compactly
supported distributional sections of a specific conformal weight w − 2 and the
morphisms that CD induces are conformal push-forwards.

Therefore, let EM → M be a vector bundle associated to every M such that
ψ∗EM = E
fM for all ψ ∈ HomCGlobHyp(M ,fM). Equip each of these vector bundles

EM with an inner product (· , ·)M such that

ψ∗(· , ·)
fM = Ω

v (ψ∗(·),ψ∗(·))M .

We call v the conformal weight of the inner product. Morveover, we set CD(M)⊂
Γw(EM)′. A conformal quantum field is then defined as follows:

Definition 2.9. A conformal quantum field Φ of conformal weight4 −v−w− 4 is a
linear natural transformation between the functor CD and a LCCQFT CA .

2.2.2 The Field Algebra

Having the notion of a LCCQFT at our disposal, we can now define the field algebra
for a conformal quantum field theory. The resulting definition is very similar to
Definition 2.6.

Let CD(M) = Γw−2
0 (EM). Equations (1.20) and (1.21) show that, if we want

to have a connection between the classical and quantum theory, namely, that
classical and quantum field have equal conformal weight w and that we have a
commutator given by the commutator distribution, (· , ·)M has to be of conformal
weight −2− 2w. If that is the case, the commutator distribution is conformally
invariant, i.e., G M( f ⊗ h) = G

fM(ψ
w−2
∗ f ⊗ψw−2

∗ h) for f , h ∈ Γw−2
0 (EM) and ψ ∈

HomCGlobHyp(M ,fM).

Definition 2.10. The conformal field algebra CFM is given by the quotient

CFM
.
= CF0

M/I with CF0
M

.
= C⊕

∞
⊕

n=1

CD(M)⊗n,

where I is the closed ∗-ideal generated by the elements

ker G M ∩CD(M) and − iG M( f ⊗ h)⊕ f ⊗ h− h⊗ f

for all f , h ∈ CD(M). Moreover, the ∗-operation is given by complex conjugation
and the reversal of order in the tensor products as in Definition 2.5.

Proposition 2.5. The field algebra CFM extends to a LCCQFT CF : CGlobHyp→
∗-Alg via the assignments

CF (M) .
= CFM and CF (ψ) .

= q
fM ◦ψ

w−2
∗

4The conformal weight is choosen such that the conformal weights of the test sections, the inner
product and the measure are cancelled.
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for all ψ ∈ HomCGlobHyp(M ,fM), where we denote by qM the projection map qM :
CF0

M → CFM and, by abuse of notation, ψw−2
∗ applied to an element of CFM means

that ψw−2
∗ has to be applied to each factor of each sum in CFM . Furthermore, CF is

causal and satisfies the time-slice axiom with respect to conformal embeddings.

Proof. Analogous to Proposition 2.2 combined with Proposition 2.3.

Proposition 2.6. There is a conformal quantum field Φ : CD→̇CF of conformal
weight w given by

ΦM( f )
.
= qM( f ) with f = 0⊕ f ⊕ 0⊕ · · ·

for each M ∈ Obj(CGlobHyp) and any f ∈ CD(M).

Proof. Analogous to Proposition 2.4

2.3 Hadamard States

Our motivation for studying the wave front set of distributions on manifolds in
Sect. 1.5.2 was that, as shown by Radzikowski [11] for the scalar field and in
more generality by Sahlmann and Verch [12], a condition on the wave front set
of two-point distributions can be related to the Hadamard condition (cf. [8] by
Wald). The Hadamard condition is believed to be a necessary condition for physical
states of quantum fields on globally hyperbolic spacetimes because Hadamard
states mimic the UV-behaviour of the Minkowski vacuum. Moreover, applying an
appropriate renormalization prescription, Hadamard states can be seen to be states
with finite energy density.

First, we will specify how to associate a two-point distributions to a state and
give some of its properties. Afterwards, we introduce the microlocal spectrum
condition to single out the two-point distributions of Hadamard form.

Let M be a globally hyperbolic spacetime andA a locally covariant (conformal)
quantum field theory with test functions D and (conformal) quantum field Φ. We
can associate to a state ω onA (M) a hierarchy of n-point distributions {ωn}n∈N,
ωn : D(M)⊗n→ C via

ωn( f1 ⊗ . . .⊗ fn)
.
=ω(ΦM( f1)⊗ · · · ⊗ΦM( fn)).

Definition 2.11. We say that the state ω is quasi-free if all its odd n-point distribu-
tions vanish while the even n-point distributions can be expressed using only the
two-point distribution ω2:

ωn( f1 ⊗ . . .⊗ fn) =
∑

σ

ω2( fσ(1) ⊗ fσ(2)) · · ·ω2( fσ(n−1) ⊗ fσ(n)),

where the sum is over all ordered pairings, that is, over all permutations σ of
{1, . . . , n} such that σ(1)< σ(3)< · · ·< σ(n−1) and σ(1)< σ(2), . . . ,σ(n−1)<
σ(n). Hence, a quasi-free state is determined entirely by its two-point distribution.

Equivalently, a quasi-free state can be defined as a state ω on A (M) with
quantum field ΦM which satisfies

ω(eiΦM ( f )) = e−
1
2
ω( f⊗ f ) (2.2)
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with f ∈ D(M) in the sense that all the identities (the n-point distributions) which
can be obtained from (2.2) by functional differentiation must be satisfied. Hence,
the right-hand side may be understood as the generating functional of the n-point
distributions.

The two-point distribution ω2 to a state ω on a (conformal) field algebra
F (M) with wave operator PM and commutator distribution G M has the following
properties:

(1) Positivity, ω2( f ⊗ f )≥ 0;

(2) Field equations, ω2(PM f ⊗ h) = 0=ω2( f ⊗ PMh);

(3) CCRs, ω2( f ⊗ h)−ω2(h⊗ f ) = i G M( f ⊗ h).
for any f , h ∈ D(M). Property (1) follows from the positivity of the state ω
whereas properties (2) and (3) follow from the relations imposed on the field
algebra defined in Definition 2.6 (respectively Definition 2.10).

We are interested in states that satisfy an appropriate generalization of the
spectrum condition from axiomatic QFT on Minkowski spacetime.5 It is not possible
to formulate such a condition globally on arbitrary spacetimes due to the absence
of a timelike Killing field. Nevertheless, a microlocal approach can be taken:

Definition 2.12. A two-point distribution ω2 satisfies the microlocal spectrum
condition if

WF(ω2) =
�

(x , y,ξ,−η) ∈ T ∗(M ×M)\0 | (x ,ξ)∼ (y,η), ξÂ 0
	

,

where ∼ has the meaning described in Proposition 1.9 above.

Using the microlocal spectrum condition, the following can be shown (cf. [11]
and [12]):

Theorem 2.1. Let ω be a quasi-free state on a field algebra. If the associated two-
point distribution ω2 satisfies the microlocal spectrum condition, ω is a Hadamard
state and we say that ω2 is of Hadamard form.

2.4 Bulk to Boundary Correspondence

In QFT on Minkowski spacetime we can use the Poincaré group to select a distin-
guished state: The vacuum state is the unique state which is invariant under the
action of the Poincaré group [1]. In QFT on curved spacetimes we will have, in
general, not enough symmetries to have the standard notion of a vacuum state.
Nevertheless, if the spacetime under consideration is asymptotically flat, one can
do slightly better due to the presence of asymptotic symmetries which give rise
to the BMS group. Quantum field theory on asymptotically flat spacetimes was
already considered in [54, 55] by Frovlov and Ashtekar respectively. In this section,
however, we will describe a construction, introduced by Dappiaggi, Moretti and
Pinamonti in [19] and elaborated by Moretti in [20, 21], which yields asymptotic
vacuum states, i.e., states which are invariant under the action of supertranslations.
In [19, 20, 21] only the scalar field was considered, and in [22] by Dappiaggi,

5The spectrum condition requires that the eigenvalues of the energy-momentum operator are
future-directed and causal, cf. Streater and Wightman [53].
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Hack and Pinamonti and the PhD thesis of Hack [23] the bulk to boundary corre-
spondence was extended to the Dirac field. Here we develop the bulk to boundary
correspondence in a more abstract setting already including the scalar field. This
will allow us to extend the bulk to boundary construction to the vector potential
with only little extra effort in Sect. 3.3.

Let us recall some facts about asymptotically flat spacetimes from Sect. 1.4:
All asymptotically flat spacetimes are, by definition, equipped with a universal
conformal boundary I − called past null infinity. By a choice of Bondi coordinates
(u,ζ), I − can be treated as an intrinsic manifold with degenerate metric tensor

gI −
.
= 2 (1+ ζζ)−2 (dζ⊗ dζ+ dζ⊗ dζ) (2.3)

and induced volume form

µI −(u,ζ)
.
= du∧µS2(ζ) =−2i du∧

dζ∧ dζ

(1+ ζζ)2
= sin2θ du∧ dθ ∧ dφ,

where ζ= eiφ cotθ/2. Note that when we integrate over I − ∼= R× S2 ∼= R×C∞
with respect to the volume form µI −(u,ζ), i.e., in a coordinate chart with the point
∞ of C∞ removed, then the integral is still understood as a Lebesgue integral with
the integration over C∼= R2 performed as an integration over the plane, treating
the real and complex part as independet real variables.

Under a BMS transformation, i.e., a transformation from a Bondi frame (u,ζ)
into another one with coordinates (u′,ζ′), where

ζ→ ζ′ =
aζ+ b

cζ+ d
with ad − bc = 1,

u→ u′ = K(ζ)(u+α(ζ)) with α ∈ C∞(C∞),

K(ζ)−1 =
|aζ+ b|2 + |cζ+ d|2

1+ |ζ|2
,

we have µI −(u′,ζ′) = K(ζ)3µI −(u,ζ) for the volume form.

2.4.1 The Boundary Algebra

The universality of past null infinity I − allows us to study quantities at null infinity
which correspond to all asymptotically flat spacetimes. Here, we are going to define
a boundary algebra defined intrinsically on I − which contains all field algebras on
asymptotically flat spacetimes of a conformal quantum field.

Therefore, let CF be the locally covariant conformal quantum field theory
defined in Proposition 2.5 which maps each spacetime to the conformal field al-
gebra CFM constructed from the C-vector bundle EM → M on which we have an
inner product (· , ·)M of conformal weight −2− 2w, compactly-supported sections
Γw−2

0 (EM ) of conformal weight w−2, a connection DM such that PM = D∗M DM+BM

with BM ∈ Γ(End EM) is a formally self-adjoint and conformally invariant wave
operator acting on Γw(E) and a causal propagator G M for PM (cf. Definition 2.10).
Further, denote by ΦM : Γw−2

0 (EM) → CFM the conformal quantum field con-
structed as in Proposition 2.6.
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For the remainder of this section we also make the following choices: We denote
by M ∈ Obj(CGlobHyp) an arbitrary asymptotically flat spacetime conformally
embedded into the unphysical spacetime ( eM , eg) = fM ∈ Obj(CGlobHyp) via ψ :
M ,→ eM with conformal factor Ω defined on eM . We choose Bondi coordinates
(u,ζ) on I − and define the conformal embedding ι : I − ,→ eM with conformal
factor ωB.

Before we construct the algebra on I −, let us develop a ‘classical’ theory on
the boundary, i.e., we want to find a natural phase space with a sympletic product.
The playground is set by the following:

Proposition 2.7. The pull-back bundle EI −
.
= ι∗E
fM is universal for all asymptotically

flat spacetimes. It is equipped with the induced inner product (· , ·)I − defined by

ι∗(· , ·)
fM

.
=ω−2−2w

B (ι∗(·), ι∗(·))I −

Proof. Let fM ′ be another unphysical spacetime for an arbitrary globally hyperbolic
asymptotically flat spacetime. Then, we have another conformal embedding ι′ :
I − ,→ eM ′. Composing ι and ι′, we obtain the conformal isometry ι−1◦ι′ : eM ′ �I −→
eM �I − . This proves the universality of EI − and (· , ·)I − .

With the inner product just defined, we can introduce yet another pairing:

〈 f , h〉I −
.
=

∫

I −

( f , h)I − µI −

for all f , h ∈ Γ(EI −) such that the integral is well-defined. Using this, we can define
a phase space on the boundary:

Proposition 2.8. The bilinear form

ς( f , h)
.
= 2 〈 f ,∂uh〉I −

defines a BMS-invariant symplectic product on the boundary phase space

B .
= { f ∈ Γw(EI −) | f ,∂u f ∈ L2(EI − ,µI −)}

of smooth sections of conformal weight w which are square-integrable and have
square-integrable derivative in u-direction.

Proof. Since the smoothness in combination with the square-integrability implies
limu→±∞ f = 0, we can use integration by parts to see that ς(· , ·) is antisymmetric.
Moreover, this bilinear form is weakly non-degenerate because (· , ·)I − is non-
degenerate and ker∂u ∩B = {0}.

Consider a BMS transformation (u,ζ) 7→ (u′,ζ′) with conformal factor K(ζ)−1

and supertranslation α(ζ). This yields the transformation

〈∂u f , h〉I − 7→ 〈∂u′ f
′, h′〉I − =

∫

I −

K−2−2w(Kw f , K−1∂uKwh)I − K3µI − = 〈 f ,∂uh〉I − ,

where f = f (u,ζ), h= h(u,ζ), µI − = µI −(u,ζ) and f ′ = f (u′,ζ′), h′ = h(u′,ζ′),
because the integral is translation invariant. It follows that the symplectic form is
invariant under the action of the BMS group.
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Chapter 2. Quantum Field Theory

If we make additional assumptions on the normally hyperbolic operator respec-
tively the metric connection DM , we can show that the phase space (B ,ς(· , ·))
is intimately related to the phase space P (M) = Γw−2

0 (EM)/ker G M in the bulk
spacetime, as defined in (1.18), equipped with the symplectic product σ(· , ·) given
by the commutator distribution G M .

Proposition 2.9. The bulk to boundary map

b
.
= ι∗w ◦ G−
fM
◦ψw−2

∗

is a symplectomorphism from the bulk phase space into the boundary phase space if

ι∗(D
fM G−
fM
ψw−2
∗ f )(∂u) = ∂uω

w
B b( f )

is satisfied for all f ∈ P (M).

Proof. Let [ f ], [h] ∈ P (M) with representatives f , h ∈ Γw−2
0 (EM). Further, set

ef = ψw−2
∗ f and eh = ψw−2

∗ h. The bulk to boundary map is independent of the
chosen representative because

ψw−2
∗ ker G M ⊂ ker G

fM and ι∗ ◦ G
fM ◦ψ

w−2
∗ = ι∗ ◦ G−

fM
◦ψw−2

∗ .

As J−
fM
(suppψ∗ f ) ∩ J+

fM
(i−) is compact, we see that supp G−

fM
ψ∗ f ∩ (I − ∪ {i−})

is compact too. Hence, we must have that ωB b( f ) and ω−1
B ∂u b( f ) are square

integrable with respect to the volume form µI − and, because ωB is bounded and
non-zero even that b( f ),∂u b( f ) ∈ L2(EI − ,µI −). It follows that b( f ) ∈B .

Since the commutator distribution is conformally invariant, we obtain

G M( f ⊗ h) = G
fM(ef ⊗eh) = G

fM(ef ⊗ P
fM G−
fM
eh).

Applying Green’s identity (1.16), gives6

G M( f ⊗ h) =

∫

I −

ι∗e∗
�

(G−
fM
ef , D
fM G−
fM
eh)
fM − (DfM G−
fM
ef , G−
fM
eh)
fM

�

=

∫

I −

ω−2−2w
B

�

(ωw
B b( f ),ω−1

B ∂uω
w
B b(h))I −

−(ω−1
B ∂uω

w
B b( f ),ωw

B b(h))I −
�

ω3
B µI − ,

where e∗ is the Hodge operator with respect to the unphysical metric eg. Then, the
derivative of ωw

B cancels due to the asymmetry, and an integration by parts gives
the equality of the symplectic products, i.e.,

G M( f ⊗ h) = 〈b( f ),∂u b(h)〉I − − 〈∂u b( f ), b(h)〉I − = ς(b( f ), b(h)).

Henceforth, we always assume that the connection D is such that it satisfies
the condition in Proposition 2.9. Having constructed the classical theory on the
boundary, we are now ready to define the boundary algebra which is an algebra
that is universal for all asymptotically flat spacetimes.

6Note that the locus i− has measure zero.
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2.4. Bulk to Boundary Correspondence

Definition 2.13. The boundary algebra B is the quotient of the free unital ∗-algebra
B0 by the ∗-ideal I imposing the commutation relations:

B
.
=B0/I with B0 .

= C⊕
∞
⊕

n=1

B⊗n,

where I is generated by elements of the form

−iς( f , h)⊕ f ⊗ h− h⊗ f with f , h ∈B .

The ∗-operation is given by complex conjugation and the reversal of order in the
tensor products as in Definition 2.5.

Just as the bulk to boundary map gives a map between the bulk and the
boundary phase space, there exists an injective ∗-algebra homomorphism between
the field algebra in the bulk spacetime and the boundary algebra.

Proposition 2.10. The bulk to boundary map b induces an injective ∗-algebra homo-
morphism b : CFM →B defined by

b(ΦM( f )) = ΦM(b( f ))

for all f ∈ Γw
0 (EM).

Proof. Since the bulk to boundary map is a symplectomorphism, this is an immedi-
ate consequence of Definition 2.13.

2.4.2 The Boundary State

Having constructed a boundary algebra, we can consider states on this algebra. To
obtain a positive state using the methods we do below, we have to make another
assumption: From now on we shall assume that the inner product (· , ·)I − is positive
definite for all real-valued f ∈B .

Proposition 2.11. The two-point distribution

β2( f ⊗ h)
.
= lim
ε↓0

1

π

∫

R2×C

( f (u,ζ), h(u′,ζ))I −
(u− u′ − iε)2

du du′µS2(ζ) (2.4)

with f , h ∈B uniquely determines a quasi-free state β on the boundary algebra B.

Proof. The two-point distribution β2 is well-defined as can be seen from Exam-
ple 1.4, because f (u,ζ) and ∂u′h(u′,ζ) are square-integrable with respect to µI − .
Furthermore, the state is uniquely defined via (2.2).

To see that positivity is satisfied, we employ a (component-wise) Fourier trans-
formation in u-direction to obtain (cf. Eq. (1.14))

β2( f ⊗ h) =
1

π

∫

R×C

kΘ(k) (bf (k,ζ),bh(−k,ζ))I − dkµS2(ζ). (2.5)
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Chapter 2. Quantum Field Theory

Thus, we have

β2( f ⊗ f ) =
1

π

∫

R×C

kΘ(k) (bf (k,ζ), bf (k,ζ))I − dkµS2(ζ),

which proves the positiviy of β2 by the properties of the inner product (· , ·)I − .
To see that the state also satisfies the commutation relations, we calculate

β2(h⊗ f ) = lim
ε↓0

1

π

∫

R2×C

( f (u,ζ), h(u′,ζ))I −
(u′ − u− iε)2

du du′µS2(ζ)

= lim
ε↓0

1

π

∫

R2×C

( f (u,ζ), h(u′,ζ))I −
(u− u′ + iε)2

du du′µS2(ζ).

Doing an integration by parts, we get

β2( f ⊗ h) = lim
ε↓0
−

1

π

∫

R2×C

( f (u,ζ),∂u′h(u′,ζ))I −
u− u′ − iε

du du′µS2(ζ),

and thus it follows from (1.13) combined with Example 1.4 that β2( f ⊗h)−β2(h⊗
f ) = iς( f , h).

The proof of the last proposition shows the construction of the boundary state
in reverse: One starts with the symplectic form (2.8) and rewrites it to take the
form

iς( f , h) = 2iδ∆( f ⊗ ∂uh),

where ∂u is here symbolically for the derivative along the R-coordinate. Then, one
uses the splitting of the diagonal distribution into δ±∆ (cf. (1.13) and Example 1.4)
in the ‘u-direction’ and calls the δ+∆-term β2( f ⊗h). This construction is equivalent
to explicitly selecting the part of iς( f , h) which has positive frequency in u-direction
by employing a Fourier transform to obtain (2.5).

Since the symplectic form is invariant under BMS transformations, we immedi-
ately have a similar statement for the state β . B being the free ∗-algebra generated
byB (up to the quotient by the commutation relations), we obtain a natural repre-
sentation ρ of the BMS group by ∗-automorphisms on B: Any a ∈ BMS induces
per definition a conformal isometry α : I −→I −. Therefore, the representation ρ
is given by α∗ acting on the generating spaceB , i.e., by α∗ acting on each factor in
each component of the direct sum.

Proposition 2.12. The boundary state β is invariant under the action of the BMS
group, i.e., β ◦ρ = β .

Proof. We only have to show that the two-point distribution is invariant under
BMS transformations. Starting in the Bondi frame (u,ζ), take an arbitrary BMS
transformation (u,ζ) 7→ (u′,ζ′) with supertranslation α(ζ) and conformal factor
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2.4. Bulk to Boundary Correspondence

K(ζ)−1. Suppressing the coordinate dependence of K , the transformation gives

lim
ε↓0

1

π

∫

R2×C

( f (u,ζ), h(u′,ζ))I −
(u− u′ − iε)2

du du′µS2(ζ)

7→ lim
ε↓0

1

π

∫

R2×C

K−2−2w(Kw f (u,ζ), Kwh(u′,ζ))I −
(Ku− Ku′ − iε)2

K4 du du′µS2(ζ)

= lim
ε′↓0

1

π

∫

R2×C

( f (u,ζ), h(u′,ζ))I −
(u− u′ − iε′)2

du du′µS2(ζ)

because the integral is translation invariant.

2.4.3 The Bulk State

We can now use the state β constructed on the boundary and the injective ∗-algebra
homomorphism b to define a state on the field algebra CFM in the bulk spacetime
M . In this subsection we are going to prove the following important result:

Theorem 2.2. The pulled-back state

ω
.
= β ◦ b

of the conformal field algebra CFM satisfies the Hadamard condition.

ω is by definition of the ∗-homomorphism b a state on the conformal field
algebra CFM and its two-point distribution is given by

ω2( f ⊗ h) = β2(b( f )⊗ b(h))

for f , h ∈ Γw−2
0 (EM ). We will prove that ω is a Hadamard state by showing that ω2

satisfies the microlocal spectrum condition. The proof will utilize the propagation
of singularities to show that the microlocal spectrum condition for ω2 is equivalent
to showing that β2 has the following wavefront set:

Lemma 2.1. The two-point distribution β2 has the wavefront set

WF(β2) =
�

(x , x ,ξ,−ξ) ∈ T ∗(I − ×I −)\0 | ξ(∂u)> 0
	

.

Proof. Reviewing Example 1.2, it is clear that δ± and ∂xδ
± have the same wave

front set.7 Then, the result is a consequence of the wavefront sets of δ∆ and δ+∆

determined in Example 1.3 and Example 1.4 respectively.

According to the propagation of singularities theorem, the singularities of a
solution to a wave operator propagate along null geodesics. Hence, we will also
need a result on null geodesics propagating to I −.

Lemma 2.2. There is no null geodesic joining any x ∈ψ(M) with i− (cf. Lemma 4.3
of [21]).

7This is also a consequence of the microlocal elliptic regularity theorem found e.g. in Theorem
8.3.1 of [44].
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Proof. Past null infinity I − is given by I − = ∂ J+
fM
(i−) \ {i−}. Hence, if there was a

geodesic γ connecting x to i−, then there would exist a point y ∈ I − such that γ
is contained in I − in the past of y and contained in ψ(M) in the future of y. In
the past of y , however, we have that γ is cotangent to dΩ and, by the uniqueness
of solutions to the geodesic equation, it follows that γ is one of the integral curve
generating I −. Since all the null geodesics generating I − are complete, such a
point y cannot exist.

From this lemma it follows that a null geodesics γ crossing I − intersects I − at
only one point x ∈ I − and that the cotangent vector of γ at x is proportional to
du.

Proof of Theorem 2.2. Instead of working with ω2 we will work with eω2 defined
by

eω2( f ⊗ h)
.
= β2(ι

∗
wG−
fM

f ⊗ ι∗wG−
fM

h)

for f , h ∈ Γw−2
0 ( eM) with {i−} /∈ supp f ∪supp h. Since

�

J−
fM
(supp f )∪ J−

fM
(supp h)

�

∩
J+
fM
(i−) is compact, this is indeed well-defined. Moreover, from the support of the

retarded propagator G−
fM

we see that supp eω2 = J+
fM
(i−) \ {i−}.

Before we can apply the propagation of singularities theorem we calculate

eω2(PfM f ⊗ P
fMh) = β2(ι

∗
w f ⊗ ι∗wh).

Therefore, the wavefront set of (P
fM ⊗ P
fM) eω2 is given by the wavefront set of β2,

and we have

WF((P
fM ⊗ P
fM) eω2) =

�

(x , x ,ξ,−ξ) ∈ T ∗( eM × eM)\0 | x ∈ I −, ξ(∂u)> 0
	

.

Moreover, it holds true that

WF((P
fM ⊗ id) eω2)⊃WF((P

fM ⊗ P
fM) eω2)⊂WF((id⊗P

fM) eω2).

Hence, applying the propagation of singularities theorem, we obtain

WF( eω2) =
�

(x , y,ξ,−η) ∈ T ∗( eM × eM)\0 | ∃ z ∈ I −, ζ ∈ T ∗z eM s.t.

x , y ∈ J+
fM
(i−) \ {i−}, (x ,ξ)∼ (y,η)∼ (z,ζ), ζ(∂u)> 0

	

.

Restricting again to test functions with support contained in ψ(M) and using the
conformal invariance of null geodesics, we get

WF(ω2) =
�

(x , y,ξ,−η) ∈ T ∗(M ×M)\0 | (x ,ξ)∼ (y,η), ξÂ 0
	

by Lemma 2.2 and the fact that ζ(∂u)> 0 implies that ζ is future directed.

As the boundary state β is BMS invariant and the boundary symmetries corre-
spond to asymptotic symmetries of the bulk, we can prove that the bulk state ω is
invariant under all isometries of the bulk spacetime (cf. Proposition 3.4 of [21]).

Proposition 2.13. Let {ϕt}t∈R be the one-parameter group of asymptotic symmetries
ϕt : M → M generated by the flow given by a complete asymptotic Killing field. Then,

b ◦ (ϕt)∗ = (αt)∗ ◦ b

for a one-parameter group {αt}t∈R of conformal isometries αt : I −→I − induced
by a one-parameter subgroup {at}t∈R ⊂ BMS.
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Proof. This is an immediate consequence of the discussion at the end of Sect. 1.4,
i.e., the asymptotic Killing field in M yields a Killing field at (the locus) I − and
hence induces a one-parameter subgroup of BMS transformation on (the manifold)
I − in a specific Bondi frame.

Corollary 2.1. The bulk state ω is invariant under each one-parameter group of
∗-automorphism {ρt}t∈R, ρt : CFM → CFM induced by a one-parameter group of
asymptotic symmetries {ϕt}t∈R, ϕt : M → M via push-forwards, i.e., ρt ◦ ΦM =
ΦM ◦ (ϕt)∗.
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3
The Electromagnetic Field

Classical electromagnetism is described by Maxwell’s well known field equations.
In non-relativistic physics one usually finds Maxwell’s equations written in terms
of the electric field and the magnetic field together with the charge density and
the current density. But in relativistic physics, we see, e.g. by applying Lorentz
transformations, that the electric and magnetic field and are deeply intertwined.
This motivates an arguably more fundamental formulation of Maxwell’s equations
in terms of a two-form F , the electromagnetic field strength tensor, which combines
the electric and magnetic field. Thus, we write Maxwell’s equations as

dF = 0 and δF =− j, (3.1)

where j, the source one-form, combines charge and current density.
The electric and magnetic field, as measured by an observer travelling with

a four-velocity v, can be recovered from F as the spatial compontents of the
respective one-forms

E
.
= iv F and B

.
= iv ∗ F,

cf. Proposition 8.3.1 of [31] and Chapter 4.2 of [35].
The form of Maxwell’s equations as given in (3.1) generalizes to arbitrary space-

times without modification. Therefore, we will take an Occam’s razor approach
and conjecture that Maxwell’s equations as stated here remain a valid description
of physics in non-flat and non-trivial spacetimes under the approximation that the
background metric remains non-dynamical.

Maxwell’s equations have an even simpler formulation in terms of a potential.
If the second de Rham cohomology H2(M) is trivial, the equation dF = 0 implies
that there exists globally a one-form A, traditionally called the vector potential or
also electromagnetic potential, such that

F = dA. (3.2)

In terms of the vector potential A, Maxwell’s equations (3.1) thus reduce to

δdA=− j. (3.3)

However, the potential A is not uniquely defined by F . We see from (3.2) that
A is only determined up to a gauge, i.e., A can be replaced by A′ = A+Λ with Λ
closed. Two such vector potentials A and A′ are called gauge equivalent, in symbols
A∼ A′, and hence, to each A corresponds a gauge equivalence class [A] of vector
potentials differing by closed one-forms.

It is common to remove the gauge freedom at least partially by gauge fixing,
i.e., by implementing a so called gauge condition on A. We introduce only one such
condition here: The Lorenz gauge condition δA= 0.
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In all that follows, we will be concerned solely with the homogeneous Maxwell
equations, i.e., j = 0, and use instead of (3.1) or (3.3)

δdA= 0, (3.4)

which we will call “Maxwell’s equation”. This equation is conformally invariant on
1-forms of conformal weight 0 because of (1.10).

Although we acknowledge that, starting from (3.1), the restriction H2(M) = {0}
has to be made to arrive at (3.4), we will in the next sections consider the vector
potential described by this dynamical equation in its own right. We justify this by
the following observation: Seeing F as a representative of H2(M), every solution F
of (3.1) can be written as

F = f + dA,

where f ∈ Ω2(M) is not exact (or zero) and A ∈ Ω1(M). Now, f has purely
topological origin and may be understood via Stokes’ theorem as the effect of a
magnetic topological charge (cf. [56] by Misner and Wheeler). A discussion of the
quantization of the electromagnetic field which rests on the field strength tensor
instead can be found in the diploma thesis of Lang [57] and his joint work with
Dappiaggi [58].

3.1 Classical Phase Space

Within this section we will construct a phase space for the vector potential on a
globally hyperbolic spacetime M . To achieve this goal, we will need a suitable
vector space with a symplectic form on it. The approach presented here is based
on results by Dimock [26] and, more recently, Pfenning [27].

The naïve choice for a phase space is the space of solutions to Maxwell’s
equation which are compactly supported on every Cauchy surface. This space
would, however, exclude non-compactly supported gauge transformations and
make no reference to the possible gauge equivalence of different solutions. Before
we can make a more educated choice we need some additional results. From now
on, G± and G will always denote Green’s operators and the causal propagator of
the Laplace-de Rham operator �.

Definition 3.1. The space of (co-)closed p-forms will be denoted by Ωp
d(M) and

Ωp
δ(M), i.e.,

Ωp
d(M)

.
= { f ∈ Ωp(M) | d f = 0},

Ωp
δ(M)

.
= { f ∈ Ωp(M) | δ f = 0}.

Lemma 3.1. Let a past (+) or future (−) compact A ∈ Ω1(M) satisfy δdA = f for
some f ∈ Ω1

δ(M). Then
A∼ G± f .

Proof. There exists λ ∈ Ω0(M), given by λ = G±δA, such that �λ = δdλ = δA.
Thus, A= G± f + dλ∼ G± f .

This enables us to show that each solution of Maxwell’s equations is gauge
related to a Lorenz solution, i.e., a solution A of �A= 0 which satisfies the Lorenz
condition δA= 0 and thus also solves Maxwell’s equation δdA= 0.
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Proposition 3.1. δdA= 0 for A∈ Ω1(M) if and only if

A∼ G f

for some f ∈ Ω1
δ(M) which is past and future compact.

Proof. Let f ∈ Ω1
δ(M) past and future compact. Then A= G f solves �A= 0 and

furthermore δA= δG f = Gδ f = 0.
Conversely, let δdA= 0. Choose χ+ ∈ C∞(M) past and χ− ∈ C∞(M) future

compact with χ+ + χ− = 1 and set A± = χ±A. Applying Lemma 3.1 to A+ and
A− with δdA+ = −δdA− = f ∈ Ω1

δ(M) past and future compact, we obtain
A± ∼±G± f and hence A∼ G f .

We finish the investigation of Lorenz solutions with the following proposition
(cf. the similar Prop. A.3 of Fewster and Pfenning [18]) which shows the relation
imposed on the test forms of two gauge equivalent Lorenz solutions.

Proposition 3.2. Let f , f ′ ∈ Ω1
δ(M) be past and future compact. G f ∼ G f ′ if and

only if
f − f ′ = δλ (3.5)

for some λ ∈ Ω2
d(M).

Proof. Assume that G f ∼ G f ′. Then f − f ′ = h for some past and future compact
h ∈ Ω1

δ(M) with dGh= Gdh= 0. It follows, that there exists λ ∈ Ω2(M) such that

dh=�λ.

Taking coderivatives, we obtain �(h− δλ) = 0, which gives h= δλ by applying
G+. Hence, f − f ′ = δλ. On the other hand, taking the exterior derivate yields
�dλ= 0, which implies dλ= 0 by the same argument as before.

Conversely, let f , f ′ ∈ Ω1
δ(M) be past and future compact and λ ∈ Ω2

d(M)
such that f − f ′ = δλ. This implies d( f − f ′) = �λ. Applying G , we see that
G f ∼ G f ′.

Corollary 3.1. Let f ∈ Ω1
δ(M) be past and future compact. Any past and future

compact f ′ ∈ Ω1
δ(M) such that G f ∼ G f ′ is cohomologous to f , i.e., f and f ′ are in

the same equivalence class of ∗H3(M).

If H1(M) = {0} or H2(M) = {0}, the results above have the following special
form:

Proposition 3.3. Let f , f ′ ∈ Ω1
δ(M) be past and future compact and H1(M) = {0}

or H2(M) = {0}. Then, G f ∼ G f ′ implies

f − f ′ = δdλ and G f − G f ′ = dΛ (3.6)

for some λ ∈ Ω1(M) which is past and future compact and Λ ∈ Ω0(M).

Proof. If H1(M) = {0}, then we have to every closed 1-form an exact 0-form so
that

G( f − f ′) = dΛ.
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Since δdΛ = 0, we have Λ = Gη for some past and future compact η ∈ Ω0(M).
This yields

f − f ′ = dη−�λ= δdλ,

because δ( f − f ′) = 0 implies η = δλ as can be seen by applying G+ to the
right-hand side.

If, on the other hand, H2(M) = {0}, there exists to every closed 2-form an exact
1-form so that the first statement follows immediately from (3.5). Applying G and
subtracting �λ ∈ ker G , we get

G( f − f ′) = G(δdλ−�λ) = Gdδλ.

Setting Λ = Gδλ we have shown the second statement too.

Thus, regarding the residual gauge freedom of Lorenz solutions, the cases
H1(M) = {0} and H2(M) = {0} behave alike. These results allow us to write down
a phase spaceM (M) for the vector potential on a globally hyperbolic spacetime
M:

M (M) .
= Ω1

0,δ(M)/δΩ
2
0,d(M)

and in the case that H1(M) = {0} or H2(M) = {0}

M (M) = Ω1
0,δ(M)/δdΩ1

0(M).

This space is isomorphic to the space of gauge equivalence classes of solutions to
Maxwell’s equation which are gauge related to a Lorenz solution with compact
support on every Cauchy surface. Also note that the elements of M (M) are of
conformal weight −2 due to (1.8) and that Ω1,−2

0,δ (M), i.e., the space of compactly
supported coclosed 1-forms of conformal weight −2, is a conformally covariant
space by (1.12).

Now we need to find a symplectic form onM (M). This task is accomplished
using Proposition 1.8:

Proposition 3.4. Let [ f ], [h] ∈M (M) with representatives f , h ∈ Ω1
0,δ(M). Then,

σ([ f ], [h])
.
= G( f ⊗ h)

.
= 〈G f , h〉 (3.7)

is a non-degenerate symplectic form on the vector spaceM (M) if H1(M) = {0} or
H2(M) = {0}.

Proof. All we have to show is that two elements from the same equivalence class
have vanishing symplectic product. Suppose that [ f ] = [h], i.e., h= f +δdλ, then

〈G f , h〉 = 〈G f ,δdλ〉 = 〈δdG f ,λ〉 = 0

by the properties of the causal propagator.

It comes to no surprise, thanks to (1.21), that the symplectic form (3.7) is
conformally invariant due to the conformal invariance of Maxwell’s equation.

What we did not consider is the general case where neither H1(M) = {0}
nor H2(M) = {0}. To show that the symplectic form is well-defined we used the
results of Proposition 3.3. In particular, to have a well-defined symplectic structure
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on M (M) given by (3.7), we need the conditions given in (3.6) to be satisfied.
Judging from the proof made in Proposition 3.3 it seems highly doubtful that these
conditions hold in the general case.

We will now use Green’s identity to write down the symplectic form on a fixed
but arbitrary Cauchy surface:

Corollary 3.2. Choosing a Cauchy surface Σ ⊂ M with inclusion map ι : Σ ,→ M,
we can write (3.7) as

σ([ f ], [h]) =

∫

Σ

ι∗
�

Gh∧ ∗dG f − G f ∧ ∗dGh
�

. (3.8)

Proof. To see the equivalence of (3.7) and (3.8), define Σ±
.
= J±M(Σ) \Σ. Then,

〈G f , h〉(Σ∓,g) = 〈G f ,δdG±h〉(Σ∓,g)

=±
∫

Σ

ι∗
�

G±h∧ ∗dG f − G f ∧ ∗dG±h
�

,

where we used the properties of Green’s operators (cf. Theorem 1.5) in the first and
Green’s identity for � in the second equality (the sign difference is a consequence
of the orientation of M). Adding the two results, we obtain (3.8).

Taking two solutions A and A′ of Maxwell’s equation which are compactly
supported on Σ, (3.8) takes a form which might be more familiar to some readers,
namely,

∫

Σ

ι∗
�

A′ ∧ ∗ F − A∧ ∗ F ′
�

,

where F = dA and F ′ = dA′.

3.2 Quantization

In this section we will discuss the quantization of the vector potential in the frame-
work of locally covariant conformal quantization introduced in Sect. 2.2. Moreover,
we will discuss the relation of this quantization scheme with the indefinite metric
approach by Gupta [59] and Bleuler [60] known from quantum field theory on
Minkowski spacetime.

3.2.1 Locally Covariant Conformal Quantization

As we want to construct the field algebra for the vector potential using the symplec-
tic form (3.7), we have no choice but to restrict the space of admissible spacetimes.

Definition 3.2. Denote by CGlobHyp′ the subcategory of CGlobHyp which con-
tains only the objects M ∈ CGlobHyp such that either H1(M) = {0} or H2(M) =
{0}.

Having made this restriction, we can formulate a field algebra for the vector
potential. The resulting definition is very similar to that of the conformal field
algebra in Definition 2.10.
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Definition 3.3. The field algebra AM of the vector potential in the spacetime M ∈
Obj(CGlobHyp′) is given by the quotient

AM
.
=A0

M/I with A0
M

.
= C⊕

∞
⊕

n=1

Ω1,−2
0,δ (M ,C)⊗n,

where I is the closed ∗-ideal generated by the elements

δdΩ1,0
0 (M ,C) and − iG M( f ⊗ h)⊕ f ⊗ h− h⊗ f

for all f , h ∈ Ω1,−2
0,δ (M ,C). As in Definition 2.5, the ∗-operation is given by complex

conjugation.

Note the difference to the formulation of Definition 2.6 and Definition 2.10:
Instead of quotienting only by G M ∩Ω

1,−2
0,δ (M ,C) we also quotient by δdΩ1,0

0 (M ,C)
to take care of the residual gauge freedom of Lorenz solutions (cf. Proposition 3.2
and the discussion thereafter). Since the latter set already includes the former, we
need only to quotient by the latter.

Then, a proof analogous to that of Proposition 2.2 combined with Proposi-
tion 2.3 shows the following:

Corollary 3.3. The field algebra AM defines a locally covariant conformal quantum
field theory of the vector potentialA : CGlobHyp′→ ∗-Alg via the assignments

A (M) .
=AM and A (ψ) .

= q
fM ◦ψ

−2
∗

for all ψ ∈ HomCGlobHyp′(M ,fM) and qM is the projection map A0
M → AM . Fur-

thermore, A is causal and satisfies the time-slice axiom with respect to conformal
embeddings.

Thus, we can introduce the quantum field of the eletromagnetic potential as a
special case of Proposition 2.6.

Corollary 3.4. The conformal quantum field (of conformal weight 0) of the vector
potential is the natural transformation A given by

AM( f )
.
= qM( f ) with f = 0⊕ f ⊕ 0⊕ · · ·

for each M ∈ Obj(CGlobHyp′) and any f ∈ Ω1,−2
0,δ (M ,C).

Equivalently, one may define the conformal quantum field A as the natural
transformation such that AM :M (M)⊗C→AM with AM ([ f ]) = 0⊕ [ f ]⊕0⊕· · ·
and [ f ] ∈ M (M)⊗C if we considerMC as the functor of test functions taking
M ∈ Obj(CGlobHyp′) toM (M)⊗C with conformal push-forwards (of weight −2)
as morphisms.

3.2.2 The Gupta-Bleuler Formalism

The Gupta-Bleuler formalism [59, 60] is discussed in several introductory books
on quantum field theory and is usually one of the first subjects to be teached when
introducing quantum electrodynamics. Problems with the naïve quantization of
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the vector potential arise already at a fundamental level as shown by Strocchi in
[61, 62]. Namely, Maxwell’s equations cannot be satisfied as operator identities
if one treats the vector potential as a local quantum field. These problems can be
(partially) solved in the Gupta-Bleuler approach.

Since these early papers, the Gupta-Bleuler formalism was also treated at an
algebraic level as local constraints on a C∗-algebra in [63] by Grundling and
Lledó and applied to the vector potential on ultrastatic spacetimes by Furlani in
[64]. Going over to arbitrary globally hyperbolic spacetimes, we can, however, not
straightforwardly apply the Gupta-Bleuler formalism as it is bound to a notion of
positive frequency and to the representation of the algebra of observables of the
1-form wave equation on a complete indefinite inner product space (a so called Krein
space). A few comments on this can also be found in Chap. IV D of [18]. Let us
therefore reformulate the Gupta-Bleuler procedure in language more appropriate
for our needs.

In the Gupta-Bleuler formalism one starts by adding a gauge breaking term to
the Lagrangian or directly to the equations of motions. That is, instead of Maxwell’s
equation (3.4) we consider the equation

�φ −λdδφ = 0,

where φ ∈ Ω1(M) and λ ∈ R plays the role of a gauge parameter. Choosing the
Feynman gauge λ= 0, we obtain the 1-form wave equation �φ = 0.

We then define the field algebra of the 1-form field φ in accordance with
Definition 2.6 as the quotient algebra

FM
.
= F0

M/I with F0
M

.
= C⊕

∞
⊕

n=1

Ω1
0(M ,C)⊗n,

where I is the closed ∗-ideal generated by the elements

�Ω1
0(M ,C) and − iG M( f ⊗ h)⊕ f ⊗ h− h⊗ f

for all f , h ∈ Ω1
0(M ,C) and M ∈ Obj(CGlobHyp′)

Now, consider a quasi-free indefinite state ω on F, i.e., a continuous linear
functional on F such that ω(1) = 1 which is completely determined by the 2-point
distribution ω2 ∈ (Ω1

0(M ,C)⊗Ω1
0(M ,C))′. Using this indefinite state, we could,

in principle, perform a procedure analogous to the GNS construction to obtain a
Krein space.

Here, we will, however, stick to the algebraic picture. Hence, we define the
quantum field

Φ : Ω1
0(M ,C)→ FM

as described in Proposition 2.4. Furthermore, suppose that ω is a Hadamard state.
This enables us to write the Gupta-Bleuler condition as

ω(a⊗Φ(dh)⊗ b) = 0,

where a, b ∈ FM and h ∈ C∞0 (M ,C). The connection to the usual condition, i.e.,
the Lorentz gauge condition on the annihilation operator, becomes clear if we
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write (formally) Φ(dh) = δΦ(h). Since ω is quasi-free, it suffices to consider the
condition

ω2( f ⊗ dh) = 0 (3.9)

for f ∈ Ω1
0(M ,C). That is, to obtain the physical space of observables respectively

the physical space of test forms, we need to find the subspace of Ω1
0(M ,C) such

that (3.9) is satisfied.
Using the Schwartz kernel theorem, condition (3.9) yields

ω2( f ⊗ dh) = 〈ω2 f ,dh〉M = 〈δω2 f , h〉M = 0.

Therefore, we recover Dimock’s condition δ f = 0 on the space of test forms and
thus also the field algebra defined in Definition 3.3 if the codifferential δ commutes
with the linear operator ω2. This is the case for the Minkowski vacuum and
also for the state that we will construct below. Nevertheless, the Gupta-Bleuler
formalism cannot be applied for the bulk to boundary construction because � is
not a conformally invariant operator.

In the usual Gupta-Bleuler procedure for the quantization of the vector potential
on Minkowski spacetime we find that the inner product on subset of the original
Krein space which satisfies the Gupta-Bleuler condition is positive semi-definite.
There is no obvious way to proof an analogous statement in this algebraic approach
if no concrete state is chosen.

3.3 Bulk to Boundary Correspondence

We already laid down the foundation for the bulk to boundary correspondence in
asymptotically flat spacetimes in Sect. 2.4. Several aspects of the vector potential,
however, call for a special treatment. We will see in this section that some of the
assumptions that we made for the general case do not seem to be satisfied for the
vector potential.

Let (M , g) = M ∈ Obj(CGlobHyp′) be an asymptotically flat spacetime embed-
ded into the unphysical spacetime ( eM , eg) =fM ∈ Obj(CGlobHyp′) via the confor-
mal embedding ψ : M ,→ eM with conformal factor Ω. Denote by ι : I − ,→ eM the
conformal embedding of past null infinity into the unpyhsical spacetime in a Bondi
frame (u,ζ).

If we followed the general course of Sect. 2.4, we would first define a vector
bundle with an inner product on I −. The induced inner product on the pull-back
bundle ι∗T ∗ eM is, however, indefinite because it is given by the pull-back of the
inverse unphysical metric tensor. To deal with this problem, we will study the
vector potential at past null infinity and find some properties that allow us to
circumnavigate these problems.

Proposition 3.5. Let f ∈ Ω1,−2
0,δ (M). Then,

eg(dΩ, G±
fM
ψ−2
∗ f ) = 0. (3.10)

Proof. As f is coclosed, so are ψ−2
∗ f and G±

fM
ψ−2
∗ f by (1.12). Furthermore, by

the conformal invariance of the vector potential we have ψ∗G±
fM
ψ−2
∗ f = G±M f and,

56



Chapter 3. The Electromagnetic Field

applying the codifferential,

0= eδG±
fM
ψ−2
∗ f =−2Ω−3ψ∗g(ψ

∗dΩ,ψ∗G±
fM
ψ−2
∗ f ) =−2Ω−5

eg(dΩ, G±
fM
ψ−2
∗ f )

by (1.11) and eδ denotes the codifferential with respect to the unphysical metric eg.
Since Ω extends smoothly to the whole unphysical spacetime, we obtain (3.10).

Hence, for a Lorenz solution at most the 3 components conormal to dΩ are
non-zero. This has grave consequences for the remaining gauge freedom at I −:
There is none! Let us define the map

b′ = ι∗ ◦ G−
fM
◦ψ−2

∗

as a preliminary bulk to boundary map so as to simplify notation.

Proposition 3.6. If f , f ′ ∈ Ω1,−2
0,δ (M) such that [ f ] = [ f ′], then

b′ f = b′ f ′.

Proof. [ f ] = [ f ′] implies that G−
fM
ψ−2
∗ ( f − f ′) = G−

fM
ψ−2
∗ δdλ = dΛ for some

λ ∈ Ω1,0
0 ( eM) according to Proposition 3.3. For eg(dΩ,dΛ) = 0 to be satisfied this

requires that ι∗Λ is independent of u and thus constant along the null geodesic
generator along I −. This is only possible if Λ = 0 because J−

fM
(suppψ∗λ)∩ J+

fM
(i−)

and hence suppdΛ∩ (I − ∪ {i−}) are compact.

Proposition 3.5 also simplifies the symplectic form of the vector potential written
on I − via Green’s identity considerably.

Proposition 3.7. Let [ f ], [h] ∈ M (M) with representatives f , h ∈ Ω1,−2
0,δ (M). On

the null surface I − we can write the symplectic product (3.7) of the vector potential
as

σ([ f ], [h]) = 2

∫

I −

gI −(b
′ f ,∂u b′h)µI − , (3.11)

where gI −(· , ·) denotes the contraction of the angular components with respect to the
metric (2.3).

Proof. Using Green’s identity for � and the conformal invariance of G±, we have

〈G M f , h〉M = 〈GfMψ
−2
∗ f , eδdG−
fM
ψ−2
∗ h〉
fM

=

∫

I −

ι∗
�

G−
fM
ψ−2
∗ h∧ ∗dG−
fM
ψ−2
∗ f − G−
fM
ψ−2
∗ f ∧ ∗dG−

fM
ψ−2
∗ h
�

=

∫

I −

ι∗e∗
�

eg(G−
fM
ψ−2
∗ f , e∇G−
fM
ψ−2
∗ h)− eg(e∇G−

fM
ψ−2
∗ f , G−
fM
ψ−2
∗ h)

�

,

where eδ, e∇ and e∗ denote the codifferential, the Levi-Civita connection and the
Hodge operator with respect to eg. Since eg(dΩ, G−

fM
ψ−2
∗ f ) = 0= eg(dΩ, G−

fM
ψ−2
∗ h),

this gives (3.11) after an integration by parts.
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Using the non-degenerateness of the symplectic form, we can now study the
remaining non-zero component that is conormal to the S2-part (i.e., conormal to
dζ and dζ) of a Lorenz solution at I −.

Corollary 3.5. If f , h ∈ Ω1,−2
0,δ (M) such that

gI −(dζ, b′ f ) = gI −(dζ, b′h) and gI −(dζ, b′ f ) = gI −(dζ, b′h),

then f = h. That is, ι∗eg(du, G−
fM
ψ−2
∗ f ) is completely determined by gI −(dζ, b′ f )

and gI −(dζ, b′ f ).

Proof. Assume that f 6= h satisfy the condition above. Then, σ([ f −h], ·) = 0. This
leads to a contradiction as the symplectic product is non-degenerate.

Putting all these results together, we obtain at I − effectively the gauge condi-
tions

ι∗eg(dΩ, G−
fM
ψ−2
∗ f ) = 0 and ι∗eg(du, G−

fM
ψ−2
∗ f ) = 0,

which were enforced in [54, 55] explicitly.1 With only two independent degrees of
freedom remaining, we (heuristically) recover the two polarization states of the
photon.

We can now define a vector bundle equipped with a positive definite inner
product intrinsically on I −.

Definition 3.4. We define on I − the vector bundle

E
.
=

⋃

(u,θ ,φ)∈I −
{(u,θ ,φ)} × T ∗(θ ,φ)S

2 ⊗C,

and equip it with the positive definite (on real-valued elements) inner product
gI −(· , ·).2 Moreover, denote by κ : ι∗T ∗C eM → E the canonical vector bundle
epimorphism from the pull-back of the complexified unphysical cotangent bundle
to I − into E.

Accordingly, we have a symplectic product

ς( f , h)
.
= 2

∫

I −

gI −( f ,∂uh)µI − ,

cf. Proposition 2.8, on the boundary phase space

B .
= { f ∈ Γ0(E) | f ,∂u f ∈ L2(E,µI −)}.

Therefore, we can now establish a result analogous to Proposition 2.9, i.e., we find
a map from the bulk phase space into the boundary phase space:

1While the second equality is satisfied in [54, 55], here we only have that the component tangent
to du carries no physical information.

2Note that gI− is also a section in E∗ ⊗ E∗.
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Proposition 3.8. The bulk to boundary map

b
.
= κ ◦ b′ = κ ◦ ι∗ ◦ G−

fM
◦ψ∗

is a symplectomorphism from the complexified bulk phase space (M (M)⊗C,σ(· , ·))
into the boundary phase space (B ,ς(· , ·)).

Proof. By Proposition 3.6, Corollary 3.5 and Proposition 2.9 we know that b is
well-defined and injective. Furthermore, since gI −(κ(·),κ(·)) = gI −(· , ·), we have
by Proposition 3.7 that b is a symplectomorphism.

This finishes the discussion of the classical theory on the boundary. The bound-
ary algebra is the one defined in Definition 2.13. As in the general case, we can
then define a ∗-algebra monomorphism from the bulk field algebra AM into the
boundary algebra B. Similar to Proposition 2.10 we obtain:

Corollary 3.6. The bulk to boundary map b induces an injective ∗-algebra homomor-
phism b : AM →B defined by

b(AM( f )) = AM(b( f ))

for all f ∈ Ω1,−2
0 (M).

Defining the quasifree state β on B according to Proposition 2.11 via its two-
point distribution

β2( f ⊗ h)
.
= lim
ε↓0

1

π

∫

R2×C

gI −( f (u,ζ), h(u′,ζ))
(u− u′ − iε)2

du du′µS2(ζ)

with f , h ∈B , it can be pulled back to AM using the ∗-algebra homomorphism b
to yield the quasifree Hadmard state ω= β ◦ b. Let us put this result, proven for
the general case in Theorem 2.2, into the following form:

Corollary 3.7. The pulled-back state

ω
.
= β ◦ b

of the field algebra AM satisfies the Hadamard condition and it is uniquely determined
by its two-point distribution

ω2( f ⊗ h)
.
= lim
ε↓0

1

π

∫

R2×C

gI −(b( f )(u,ζ), b(h)(u′,ζ))
(u− u′ − iε)2

du du′µS2(ζ).

That is, we found for all asymptotically flat spacetimes a quasi-free Hadamard
state ω on the (conformal) field algebra AM of the vector potential defined in
Definition 3.3 which is induced by a quasi-free state β defined on the boundary
algebra B. Furthermore, this state is invariant under all asymptotic symmetries
(generated by a complete asymptotic Killing field) including all isometries of the
physical spacetimes as shown in Proposition 2.13 and Corollary 2.1. Therefore, ω
can be understood as an asymptotic vacuum state of the vector potential.
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Conclusions

In Chap. 1 we laid down the mathematical foundation of this thesis. It includes
no novel results but might offer a partly different perspective on some of the
mentioned definitions and propositions.

Chap. 2 discusses several aspects of quantum field theory on curved spacetimes
in the algebraic approach. In Sect. 2.1 we introduced the notion of general local
covariance and studied the field algebra of bosonic quantum fields as a locally
covariant quantum field theory. This departs from the existing literature only
in as much that the field algebra and its properties are often only presented for
the scalar field. We extended these results in Sect. 2.1 to conformal embeddings
instead of isometric embeddings which yielded the notion of general local coformal
covariance and investigated the field algebra as a locally conformally covariant
quantum field theory. Similar results had already been obtained for the conformally
coupled massless scalar field. After a short introduction of Hadamard states in
Sect. 2.3, we presented in Sect. 2.4 one of the main results of this thesis: the bulk to
boundary correspondence in asymptotically flat spacetimes for an abstractly defined
bosonic quantum field. In particular, we showed the ‘holographic’ construction of a
Hadamard state which can be interpreted as an asymptotic vacuum state employing
the correspondence of the quantum field theory in the bulk and a quantum field
theory on the boundary of the asymptotically flat spacetime. The proof for the
Hadamard property found in this thesis, while relying on the same properties of
I −, differs from that in the literature and is arguably more intuitive and generic.

In Chap. 3 we addressed the main goal of this thesis, namely, the quantization
of the vector potential in asymptotically flat spacetimes. To that end, we first
investigated the classical phase space of the vector potential in globally hyperbolic
spacetimes in Sect. 3.1, slightly improving on the results already present in the
literature. In particular, we found a well-defined symplectic product for the vector
potential whenever the first or the second de Rham cohomology group is trivial.
Using this symplectic product, we quantized the vector potential in Sect. 3.2 as a
locally conformally covariant quantum field by restricting the category of admissible
spacetimes to those satisfying either H1(M) = {0} or H2(M) = {0}. Moreover, we
discussed the relation of this quantization with the Gupta-Bleuler approach. In
Sect. 3.3 we finally studied the vector potential in asymptotically flat spacetimes. A
straightforward application of the bulk to boundary correspondence was, however,
not possible since the induced symmetric bilinear form on null infinity given by
the Bondi metric is not positive definite. Nevertheless, using some special features
of the vector potential at past null infinity, we were able to amend the method
developed in Sect. 2.4 appropriately to obtain a Hadmard state for the vector
potential.

There are many problems which were not covered in this thesis. It is possible,
for example, to construct KMS states on the boundary I − which can then be
pulled-back to the bulk to yield Hadamard states there. These states have a natural
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interpretation as asymptotic equilibrium states [65]. In the context of the vector
potential these states could be useful for the discussion of the cosmic microwave
background. Furthermore, we did not study Wick polynomials and renormalization.
For example, one could calculate the expectation value of the renormalized stress-
energy tensor and then consider cosmological applications via the semiclassical
Einstein equation [23]. Another point requiring further investigation are the
problems that arise for both the field strength tensor and the vector potential in
spacetimes of non-trivial topology [57, 58].

Concerning the general results of this thesis obtained in Sect. 2.4, it seems
desirable to generalize these even further to horizons different from I − e.g. the
Schwarzschild horizon of a spacetime with a black hole [66]. In particular, an
extension of the categorical formulation of general local covariance might allow
for a fundamental discussion of the relation of bulk and boundary quantum field
theories.

We hope to come back to these matters in the near future.
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