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Abstract:

Several two dimensional quantum field theory models have more than one vac-

uum state. An investigation of super selection sectors in two dimensions from an

axiomatic point of view suggests that there should be also states, called soliton or

kink states, which interpolate different vacua.

Familiar quantum field theory models, for which the existence of kink states

have been proven, are the Sine-Gordon and the �4
2

-model. In order to establish the

existence of kink states for a larger class of models, we investigate the following

question:

Which are sufficient conditions a pair of vacuum states has to fulfill, such that

an interpolating kink state can be constructed?

We discuss the problem in the framework of algebraic quantum field theory

which includes, for example, the P (�)
2

-models. We identify a large class of vac-

uum states, including the vacua of theP (�)
2

-models, the Yukawa
2

-like models and

special types of Wess-Zumino models, for which there is a natural way to construct

an interpolating kink state.

In two space-time dimensions, massive particle states are kink states. We apply

the Haag-Ruelle collision theory to kink sectors in order to analyze the asymptotic

scattering states. We show that for special configurations of n kinks the scattering

states describe n freely moving non interacting particles.



Zusammenfassung:

Einige Modelle für Quantenfeldtheorien in zwei Raumzeitdimensionen besitzen

mehr als ein Vakuum. Untersucht man im Rahmen der algebraischen Quanten-

feldtheorie Superauswahlsektoren in 1+1 Dimensionen, dann zeigt sich, daß Kink-

Zustände, die unterschiedliche Vakua interpolieren, in natürlicher Weise auftreten.

Bekannte Beispiele für zweidimensionale Modelle, in denen die Existenz von

Kink-Zuständen bewiesen wurde, sind das Sinus-Gordon- und das �4
2

-Modell. Um

die Existenz von Kink Zuständen für eine möglichst große Klasse von Modellen

nachzuweisen, wird die folgende Fragestellung vom Standpunkt der algebraischen

Quantenfeldtheorie aus diskutiert:

Welche Bedingungen sind hinreichend, um aus den Vakua des zu untersuchen-

den Modelles interpolierende Kink-Zustände konstruieren zu können?

Wir entwickeln ein allgemeines Konstruktionsverfahren für Kink-Zustände, welches

auf operatoralgebraischen Methoden beruht. Ferner zeigen wir, daß sich unser Ver-

fahren auf eine große Klasse von Modellen anwenden läßt, die unter anderem alle

P (�)

2

-Modelle, Yukawa
2

- und spezielle Typen von Wess-Zumino-Modellen enthält.

In zweidimensionalen Quantenfeldtheorien sind massive Einteilchen-Zustände

auch Kink-Zustände. Wir wenden die Haag-Ruelle-Streutheorieauf Kink-Sektoren

an. Dabei zeigt sich, daß spezielle Konfigurationen von nKinks sich asymptotisch

wie n freie massive Teilchen verhalten.
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Introduction and Overview

1
1.1 Introduction

In the early sixties, Rudolf Haag and Daniel Kastler proposed an algebraic ap-

proach to quantum field theory [45]. The purpose of this program was to under-

stand the basic principles of quantum field theory in a mathematically rigorous

way. The starting point of this approach, which can be seen in contrast to approaches

based on classical Lagrangians, is an axiomatic formulation of a general quan-

tum field theory by employing only the fundamental concepts of special relativity

and quantum mechanics. This axiomatic approach is a successful tool to investi-

gate general properties shared by different quantum field theories and it is a useful

guideline for investigating and analyzing quantum field theories which have al-

ready been constructed.

On the other hand, the algebraic approach to quantum field theory seems to be

less practicable for constructing concrete models. For the purpose to construct ex-

amples of quantum field theories explicitly, the Lagrangian approach (canonical

quantization, functional integral) is more adequate, but it is always accompanied

by serious mathematical problems. One is faced with many technical difficulties in

order to prove that the investigated model exists and is compatible with the princi-

ples of special relativity and quantum mechanics. Nevertheless, approaches based

on classical Lagrangians play an important role in high energy physics and they

have successfully been applied for phenomenological purposes.

Besides the free field, many examples for interacting quantum field theories,

fitting into the framework of algebraic quantum field theory, are known in two

space-time dimensions, let us mention the P (�)
2

and Yukawa
2

-like models. There

are also some non-trivial examples in three space-time dimensions, for instance the

11



12 Introduction and Overview

�

4

3

and the Yukawa
3

model. It is still an open problem whether there are interacting

quantum field theory models in four space-time dimensions.

There are different purposes for investigating low dimensional quantum field

theories. Among them are, for instance, the following:

(i) Since there is a large set of different quantum field theories in two space

time dimensions, these models can be viewed as ”theoretical laboratories”

in which the concepts of general quantum field theory can be tested.

(ii) In some cases, low dimensional quantum field theory models play a role as

effective theories in solid state physics.

The concept of kinks appears naturally in the investigation of two-dimensional

quantum field theories. We shall see later that the occurrence of kinks can be ver-

ified for a large class of quantum field theory models.

In Section 1.1.1, we make some preliminary remarks on algebraic quantum

field theory. We do not give a complete survey in this field, we only give the defi-

nitions and notions which will be used later to carry through our analysis.

For a detailed treatment of local quantum physics and its mathematical descrip-

tion from an algebraic point of view, we refer to Haag’s book [43] and references,

given there. Introductory articles with the emphasis on the theory of super selec-

tion sectors can also be found in [54].

We briefly motivate and illustrate the concept of kinks in Section 1.1.2 and give

a review of some well-known results in Section 1.1.3 and Section 1.1.4. During

the last twenty years, many different approaches have been developed in order to

analyze kinks in quantum field theory. We shall give a brief description of those

examples which are nearest related to our analysis.

1.1.1 Preliminary Remarks on Local Quantum Physics

Haag-Kastler nets and superselection sectors: The frameworkof algebraic quan-

tum field theory has turned out to be a successful formalism to describe physi-

cal concepts like observables, states , superselection sectors (charges) and statis-

tics. These notions can appropriately be described by mathematical concepts like

C*-algebras, positive linear functionals and equivalence classes of representations.

For the convenience of the reader, we shall state the relevant definitions and as-

sumptions here.

LetO � R

1;s be a region in space-time. We denote byA(O) the algebra gener-

ated by all observables which can be measured withinO. For technical reasons we
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always suppose that A(O) is a C*-algebra and O is a double cone, i.e. a bounded

and causally complete region. Motivated by physical principles, we make the fol-

lowing assumptions:

(1) The assignment

A : O

-

A(O)

is an isotonous net of C*-algebras, i.e. ifO
1

is contained inO
2

, then A(O
1

)

is a C*-sub-algebra ofA(O
2

). The isotony encodes the fact that each observ-

able which can be measured within O can also be measured in every larger

region. Furthermore, the C*-inductive limit

C

�

(A)

of the net A can be constructed since the set of double cones is directed. We

refer to [69] for this notion.

(2) Two local operations which take place in space-like separated regions should

not influence each other. The principle of locality is formulated as follows:

If the regionsO
1

andO
2

are space-like separated, then the elements ofA(O
1

)

commute with those of A(O
2

).

(3) Each operator a which is localized in a region O should have an equivalent

counterpart which is localized in the translated regionO+x. The principle of

translation symmetry is encoded by the existence of an automorphism group

f�

x

;x 2 R

1;s

gwhich acts on the C*-algebraC�

(A) such that�
x

mapsA(O)

onto A(O+ x).

A net of C*-algebras which fulfills the conditions (1) to (3) is called a transla-

tionally covariant Haag-Kastler net.

In order to discuss particle-like concepts, we select an appropriate class S of

normalized positive linear functionals, called states, ofC�

(A). We require that the

states ! 2 S fulfill the conditions:

(1) There exists a strongly continuous unitary representation of the translation

group U : x 7! U(x) on the GNS1-Hilbert space H which implements the

translations in the GNS-representation �, i.e.

�(�

x

a) = U(x)�(a)U(�x)

1Given a state ! 2 S, we obtain via GNS-construction a Hilbert space H, a *-representation �

of C�

(A) on H and a vector 
 2 H such that h
; �(a)
i = !(a) for each a 2 C

�

(A). The triple

(H; �;
) is called the GNS-triple of !.
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for each a 2 C�

(A).

(2) The stability of a physical system is encoded in the spectrum condition (posi-

tivity of the energy), i.e. the spectrum (of the generator) ofU(x) is contained

in the closed forward light cone.

These conditions are also known as the Borchers criterion. States which satisfy the

Borchers criterion and which are, in addition, translationally invariant are called

vacuum states.

We denote byR the set of *-representations� such that� is the GNS-representation

of some state ! 2 S. Unitary equivalence classes [�] of *-representations � 2 R,

which we shall call sectors2, are used to investigate quantum numbers or charges.

More precisely, the quantum numbers or charges of the physical system under con-

sideration are labeled by the set of irreducible sectors.

In order to illustrate these notions we shall summarize some aspects of the the-

ory of DHR super selection sectors here. For the analysis of quantum field theories

with short range forces, the following selection criterion for physical representa-

tions, which is known as the DHR criterion, has been proposed by S. Doplicher,

R. Haag and J. Roberts [16, 17, 18, 19]: The representations are unitarily equiva-

lent to a given vacuum representation �
0

when being restricted to the C*-algebra

C

�

(A;O

0

). 3

If Haag duality, a maximality condition for local observables, holds in the vac-

uum representation �
0

�

0

(A(O))

00

= �

0

(C

�

(A;O

0

))

0

then it follows that for each representation �, which fulfills the DHR criterion,

there exists an endomorphism � of C�

(A) such that � is unitarily equivalent to

�

0

��. The endomorphism � can be chosen in such a way that it acts trivially on ob-

servables which are localized in the space-like complement of a given double cone

O, and � is interpreted as a charge [�
0

� �] which is localized within the regionO.

The main feature of these endomorphisms is that they can be used to define the

composition of sectors. Given two representations �
1

= �

0

� �

1

and �
2

= �

0

� �

2

the product of the sectors �
1

= [�

1

] and �
2

= [�

2

] is given by

�

1

�

2

= [�

0

� �

1

�

2

] :

2For our purpose it is more convenient to use the notion sector also for non-primary representa-

tions. Furthermore, if � is an irreducible representation, then we shall call [�] an irreducible sector.
3For an unbounded region G we denote by C

�

(A; G) the C*-sub-algebra of C�

(A) which is

generated by all local algebras A(O) withO � G.
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The sector �
1

�

2

is independent on the particular choice of endomorphisms, it only

depends on the sectors �
1

and �
2

. The composition of irreducible sectors is inter-

preted as the fusion of quantum numbers. Furthermore, for each pair of DHR endo-

morphisms �
1

; �

2

there exists a canonical unitary operator �(�
1

; �

2

), called statis-

tics operator, such that

�

1

(�)�(�

1

; �

2

) = �(�

1

; �

2

)�

2

(�) :

As a consequence, the fusion of DHR sectors is commutative, i.e.:

�

1

�

2

= �

2

�

1

:

Assuming that � has finite statistics (see [18, 19, 57, 58]), it could be shown

that for each irreducible DHR sector � there exists a conjugate �

�, representing the

anti-charge of �. It is determined uniquely by the property that the sector

�

�

� =

�

��

contains the vacuum sector [�
0

] precisely once. Moreover, the product of two irre-

ducible sectors �
1

and �
2

can be decomposed into a finite direct sum of irreducible

sectors:

�

1

�

2

=

M

�

n

�

�

1

�

2

�

where the natural numbersn�
�

1

�

2

count the multiplicity of the sector � in the product

�

1

�

2

; they are called fusion coefficients.

An investigation which concerns charges, localized in space-like cones, has

been carried out by D. Buchholz and K. Fredenhagen [10]. The sectors which have

been studied by them are called BF sectors and they generalize the concept of DHR

sectors.

The time-slice formulation in two dimensions: In two space-time dimensions, there

are, besides the free field, many interacting quantum field theory models. In order

to place their analysis into the framework of algebraic quantum field theory, it is

convenient to work with the time-slice formulation which we briefly describe here.

The time slice formulation has two main aspects:
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Aspect 1: The Cauchy data with respect to a space-like plane � (the initial con-

ditions at time t = 0) are given by an isotonous net

M : I

-

M(I)

which assigns to each bounded subset I � � a C*-algebraM(I). It is assumed

that the space-like translations act as an automorphism group f�
x

: x 2 Rg on

the C*-inductive limit C�

(M) in such a way that �
x

mapsM(I) ontoM(I + x).

Moreover, locality holds, i.e. if the intersection of two intervals I
1

;I

2

is empty,

then the elements inM(I

1

) commute with those inM(I

2

).

Aspect 2: The dynamics, which describes the time evolution of a physical sys-

tem, is given by a one-parameter automorphism group

� = f�

t

: t 2 Rg of C�

(M).

Motivated by physical principles, � should satisfy the following list of axioms:

(i) The automorphisms �
t

commute with the spatial translations �
x

.

(ii) The propagation speed, which is induced by the automorphism group �, is

not faster than the speed of light, i.e. if an operator a is localized in the region

I , then the operator �
t

(a) localized in I
jtj

:= I + (�jtj; jtj).

In Chapter 2, we shall describe how a translationally covariant Haag-Kastler

netA
�

can be constructed from a given net of Cauchy data and a given dynamics �.

Furthermore, we shall give a brief introduction into P (�)
2

- and Yukawa
2

models

there.

1.1.2 The Concept of Kinks

Kinks already appear in classical field theories and the typical systems in which

they occur are 1+1-dimensional. Familiar examples are the Sine-Gordon and the

�

4

2

-model. We briefly describe the latter:

The Lagrangian density of the model is given by

L(�; x) =

1

2

@

�

�(x)@

�

�(x)� U(�(x))
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where the potential U is given by

U(z) := �=2 (z

2

� a)

2

:

The energy of a classical field configuration � is

E(�) =

Z

dx

�

1

2

(@

0

�(0;x))

2

+

1

2

(@

1

�(0;x))

2

+ U(�(0;x))

�

:

With the choice of U , given above, the absolute minimum value of U is zero and

thus the energy functional E : � 7! E(�) is positive.

There are two configurations �
�

with zero energy E(�
�

) = 0:

�

�

: (t;x)

-

� a :

These configurations are invariant under space-time translations and represent the

vacua of the classical system.

There are two further configurations �
s

; �

�s

which are stationary points of the

energy functional E. They are given by

�

s

: (t;x)

-

a tanh(

p

�ax ) and �

�s

: (t;x)

-

� a tanh(

p

�ax ) :

These configurations represent the kinks of the classical system which interpolate

the vacua �
�

. Indeed, we have for the kink �
s

lim

x!�1

�

s

(t;x) = �

�

(t;x) = �a : (1.1)

The configuration �
�s

, which interpolates the vacua �
�

in the opposite direction,

represents the anti-kink of �
s

. Both of them have the same energy, namely

E(�

s

) = E(�

�s

) =

4

3

p

�a

3

:

From the classical example above, we see that the crucial properties of a kink

are to interpolate vacuum configurations as well as to be a configuration of finite

energy. Motivated by these properties, in quantum field theory a kink state ! is

defined as follows:

The interpolation property: For each observable a, the limits

lim

x!�1

!(�

(t;x)

(a)) = !

�

(a) (1.2)

exist and !
�

are vacuum states. Note that equation (1.2) is the quantum version of

the interpolation property (1.1).
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Positivity of the energy: ! fulfills the Borchers criterion.

In the literature the concept of kink as described above is often called soliton

(see [31, 32]) or more seldom lump (see [13]). In the subsequent, we shall use the

word kink.

a

1

a

2

a

3

Figure 1.1: The figure shows an interaction potential U whose minima a
1

; � � � ; a

3

are not related by a symmetry of the Lagrangian.

We close this section by mentioning the following: The above Lagrangian L

is invariant under the Z
2

-symmetry � 7! �� and the vacuum configurations are

related by this spontaneously broken symmetry. We can also imagine a situation

where more than one vacuum is present but where there are no symmetries which

connect different vacua. To illustrate this, we replace U(z) = �=2(z

2

� a)

2 by a

polynomial with local minima at fa
1

; � � � ; a

n

g all of the hight zero, i.e.

U(a

1

) = � � � = U(a

n

) = 0 :

Hence we obtain n-distinct vacuum configurations

�

j

: (t;x)

-

�

j

(t;x) = a

j

; j = 1; � � � ; n :

The minima can be placed in such a way, see Figure 1.1, such that there is no sym-

metry of the Lagrangian L which maps fa
1

; � � � ; a

n

g onto fa
1

; � � � ; a

n

g and we

conclude that the vacuum configurations �
j

are not related by a symmetry of the

Lagrangian.
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1.1.3 Kinks in Quantum Field Theory Models: Models with �4

2

-

like Interactions

During the 70s, examples for interacting quantum field theory models were con-

structed. It was proven by J. Glimm, A. Jaffe and T. Spencer that two-dimensional

models with P (�)
2

- interaction exist, and their vacuum states satisfy the Wight-

man axioms [37, 41]. Interactions between fermions and bosons have also been

studied, in particular the Yukawa
2

interactions [37, 38, 74, 75]. Furthermore, an

investigation of the Sine-Gordon model has been carried out by J. Fröhlich an E.

Seiler [35].

A few years later, a great deal of attention has been paid to the construction of

new superselection sectors which are different from vacuum sectors. In 1976, the

existence of kink sectors for the (� � �)2
2

- and the Sine-Gordon model was estab-

lished by J. Fröhlich [31]. To illustrate the ideas and techniques which have been

used in [31], we give a short review of the construction of the kink sectors of the

(� � �)

2

2

-model.

The Cauchy data on a space-like plane � are represented by the W*-algebras

M : I

-

M(I) :=

�

e

i�(f

1

)+i�(f

2

)

�

�

�

�

f

j

2 S(�;R

2

); supp(f

j

) � I

�

00

where � = (�

1

;�

2

) is a massive free two-component Bose field and � its canoni-

cally conjugate, acting as operator valued distributions on the Fock spaceH
0

. The

infrared regularized Hamiltonian of the model is

H(g) = H

0

+

Z

�

dx g(x)

�

� : (� � �)(x)

2

: + �

1

: �

1

(x)

2

: + �

2

: �

2

(x)

2

:

�

�E(g)1

whereH
0

is the free Hamiltonian and g is an appropriate test function with compact

support. The constantE(g) is chosen in such a way thatH(g) is a positive operator.

The O(2) invariance of H(g) is explicitly broken unless �
1

= �

2

. It remains a Z
2

symmetry which is given by � 7! ��.

The basic ingredients for the construction of kink sectors of the (� ��)2
2

-model

have been taken from the work of J. Glimm, A. Jaffe and T. Spencer [37] which

contains the following results:

(i) The uniform limit

�

t

(a) := lim

g!1

e

itH(g)

a e

�itH(g)
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exists for each local operator a and defines a dynamics � with propagation

speed less or equal than one.

(ii) Since H(g) is invariant under the Z
2

action � 7! ��, the automorphism

� : exp(i�(f

1

) + i�(f

2

))

-

exp(�i�(f

1

)� i�(f

2

))

commutes with the dynamics �, i.e.:

�

t

� � = � � �

t

:

For appropriate values �
1

; �

2

< 0, �
1

6= �

2

and sufficiently small coupling

constant �, there are precisely two inequivalent vacuum states !
�

which are

related by the symmetry �:

!

+

� � = !

�

:

The existence of the vacuum sectors and the properties of the dynamics of the

(� � �)

2

2

-model can be used to construct interpolating kink sectors. It has been

proven by J. Fröhlich [31] that besides the two vacuum sectors there are two kink

sectors, a kink and its corresponding anti-kink. We summarize the main steps of

his construction here.

Step 1: Let s be a smooth test function with the property: There exists a bounded

interval I � � such that

s(x) =

(

� if x 2 I
RR

0 if x 2 I
LL

where I
RR

is the right andI
LL

is the left complement of I . The graph of s is shown

by Figure 1.2. The O(2)-valued function

g

s

: x

-

g

s

(x) =

 

cos(s(x)) sin(s(x))

� sin(s(x)) cos(s(x))

!

2 O(2)

induces a Bogoliubov automorphism �

s

which is defined on the Weyl operators by

�

s

: exp(i�(f

1

) + i�(f

2

))

-

exp(i�(g

s

f

1

) + i�(g

s

f

2

)) :

Since

g

s

(x) =

(

�1

2

if x 2 I
RR

1

2

if x 2 I
LL

;
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I

LL

II

RR

Figure 1.2: The figure shows the graph of the kink function s.

the automorphism �

s

acts trivially on operators which are localized in I
LL

and as

the symmetry � on those which are localized in I
RR

.

Obviously, the states !
s

:= !

�

��

s

and �!

s

:= !

+

��

�1

s

fulfill the interpolation

condition for kink states.

Step 2: The explicit knowledge of the dynamics � can be used to prove the ex-

istence of a strongly continuous function

 : (t;x)

-

(t;x)

where (t;x) is a unitary operator, localized in a sufficiently large interval I
(t;x)

.

It implements the automorphism

�

(t;x)

� �

s

� �

(�t;�x)

� �

�1

s

= Ad((t;x))

and satisfies the cocycle condition:

(t

1

+ t;x

1

+ x) = �

(t;x)

((t

1

;x

1

))(t;x) : (1.3)

The operators (t;x) describe the translation by (t;x) of the kink charge [!
�

��

s

].

It follows from the properties of  that !
s

is translationally covariant and satisfies

the spectrum condition. The same holds for the state �!

s

:= !

+

��

�1

s

. This implies

that !
s

and �!

s

are kink states.

It is well known that the Bogoliubov automorphism �

r

is implemented by a

unitary operator u
r

which is localized in supp(r) if the function r is smooth with

compact support. This fact can be used to show that the set of sectors, consisting of
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the vacua e
�

:= [!

�

] and the kink sectors � := [!

s

];

�

� := [�!

s

] is closed under fu-

sion. In the same manner as DHR endomorphisms [18, 19, 43], the automorphisms

�

s

can be used to describe the fusion of kink sectors. We consider functions s
1

; s

2

such that the state !
s

1

belongs to the sector � and the state �!

s

2

belongs to the sector
�

�. The fusion of the sectors � and �

� is

�

�

� := [!

�

� �

s

1

�

�1

s

2

] = [!

�

� �

s

1

�s

2

] = e

�

:

Here the fact that r = s

1

�s

2

has compact support is used. Analogously, we obtain

�

�� = e

+

which justifies the interpretation that �� is the anti-kink sector with respect to �. Fur-

thermore, we have the remaining combinations:

�� := [!

�

� �

s

1

�

s

2

] = e

�

and �

�

�

� := [!

+

� �

�1

s

1

�

�1

s

2

] = e

+

: (1.4)

As we shall see later, the combinations (1.4) do not correspond to the proper fusion

of kink sectors.

In 1977 J. Fröhlich proved the existence of the kink states of the one- compo-

nent �4
2

-model [32] by using, in comparison to [31], an alternative method. The

technical difficulties which arise here are due to the fact that one has to deal with a

one-component Bose field. Therefore, there is no a priori choice for a Bogoliubov

transformation �
s

. We shall give a brief summary of the results of [32] to illustrate

the main differences to the construction of the (� � �)2
2

-kinks.

The construction of the vacuum sectors of the �4
2

-model, which is presented

in [32], uses the methods of Euclidean field theory. The vacuum states of the �4
2

-

model can be obtained from two measures�
�

onS0(R2

)which satisfy the Osterwalder-

Schrader axioms. We briefly explain how the measures �
�

are constructed as lim-

its of perturbations of the Gaussian measure �
0

.

Step I: Let �
0

be the Gaussian measure on the space of tempered distributions

S

0

(R

2

) with mean zero and covariance C where the integral kernel of C is

C(x� y) =

Z

d

2

p (p

2

�m

2

)

�1

e

ip(x�y)

:

The regularized interaction part of the Euclidean action is

S

1

(g; �) =

Z

d

2

x g(x) ( � : �(x)

4

:

�

0

� � : �(x)

2

:

�

0

)
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T

L

1

Localization region of boundary term �(g

j;+

).

Localization region of boundary term �(g

j;�

).

0

L

Figure 1.3: The finite volume region.

where : � :
�

0

is the normal ordering with respect to the Gaussian measure �
0

and

g is a smooth test function. The action S
1

(g; �) is invariant under the substitution

� 7! ��. To approximate one of the measures �
�

the Z
2

symmetry has to be

broken explicitly by introducing appropriate boundary terms.

The test function g can be chosen in such a way that it is one in the region

I

T

� I

L

and zero outside a slightly larger region. Here the interval I
s

is defined by

I

s

:= (�s=2; s=2). For L
1

< L the region I
L

nI

L

1

has two connected components

I

�

and there are two possibilities (corresponding to �
+

or �
�

) to choose bound-

ary conditions with respect to each of the regions I
T

� I

�

(See Figure 1.3 for an

illustration). This gives four different boundary terms

f�S

j;�

(�) = �(g

j;�

) + c

j;�

; j = �g
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where g
j;�

are suitable test functions which have support in a neighborhood of

I

T

� I

�

and c
j;�

are appropriate constants. The regularized interaction part of the

Euclidean action with boundary terms is

S

ij

(g; �) = S

1

(g; �) + �S

i;+

(�) + �S

j;�

(�) :

Step II: To approximate the measure �
�

, we perturb �
0

by a positiveL
1

-function

d�

T;L;�

(�) := Z(T;L;�) d�

0

(�) exp( �S

��

(g; �) )

where the constant Z(T;L;�) is for normalization. According to J. Glimm, A.

Jaffe and T. Spencer [41], the limits

Z

d�

�

(�) exp(�(f)) = lim

L!1

lim

T!1

Z

d�

T;L;�

(�) exp(�(f)) ;

which determine the measures�
�

, exist for each test functionf . Since the different

choices for the boundary terms are related by the the map � 7! ��, i.e.

�(g

+;�

) = ��(g

�;�

) ;

the measures �
+

and �
�

satisfy the relation

d�

+

(��) = d�

�

(�) :

Step III: There are four Hamilton operators fH
ij

(L); i; j = �g acting on the

Fock space H
0

of the massive free scalar field. They are related to the unnormal-

ized measures

d�

T;L;ij

(�) := d�

0

(�) exp( �S

ij

(g; �) )

by Nelson’s Feynman-Kac formula:

Z

d�

T;L;ij

(�) = h


0

; exp( �TH

ij

(L) )


0

i :

Here 


0

is the bare vacuum vector in H
0

. Let M : I 7! M(I) be the net of

Cauchy data for the massive free scalar field. The dynamics of the �4
2

-model can

be obtained by the prescription

�

t

(a) := lim

L!1

e

itH

ij

(L)

a e

�itH

ij

(L)
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where the limit is independent of the choice of the boundary conditions. Finally,

by using the Osterwalder-Schrader reconstruction theorem, two vacuum states !
�

with respect to the dynamics � can be constructed from the measures �
�

.

As for the (� ��)2
2

-model, the construction of the kink states for the �4
2

-model

is placed into the framework of algebraic quantum field theory. In comparison to

[31], the main difference is that the cocycle,  : (t;x) 7! (t;x) (equation (1.3))

is constructed first. According to the results of J. Roberts [64], the total informa-

tion of a kink sector is contained in its corresponding charge transporters. In other

words, the kink sector can be reconstructed if the cocycle  is given.

The crucial property which allows us to carry through the analysis of [32] is the

following: Let I be a bounded interval, then the observables which are localized

in the left complement I
LL

of I are statistically independent of those which are

localized in the right complement I
RR

. This means, formulated in the language of

operator algebras, that the W*-tensor product

M(I

LL

) 
M(I

RR

)

is unitarily isomorphic to the W*-algebra

M(I

LL

) _M(I

RR

) :

Here the W*-algebrasM(J ), which belong to half lines J , are defined by

M(J ) = C

�

(M;J )

00

:

The statistical independence for half-line algebras can be proven by using the anal-

ysis which has been carried out in [8]. For the convenience of the reader, we give

a complete proof in Appendix A. We now describe the main steps of the construc-

tion of the kink sectors of the �4
2

-model.

Step 1: According to [15, 20], the statistical independence ofM(I

LL

) andM(I

RR

)

implies the existence of a unitary operator u
I

which has the following properties:

Let a and b be operators which are localized in I
LL

and I
RR

respectively. Then

the relations

u

I

a u

�

I

= a and u

I

b u

�

I

= �(b) hold.

Here � is the Bogoliubov automorphism which is induced by the map � 7! ��.



26 Introduction and Overview

Step 2: According to the results of [31], it can be shown that for each t the limit



0

(t) := lim

L!1

exp( itH

++

(L) )u

I

exp( �itH

�+

(L) )u

�

I

exists and that the operator 0(t) is localized in a sufficiently large interval I
t

.

Note that the HamiltonianH
�+

(L) belongs to the following interpolating bound-

ary conditions: The left boundary term is chosen with respect to the boundary con-

ditions for the vacuum !

�

and the right boundary term is chosen with respect to

the boundary conditions for the vacuum !

+

. Finally, the charge transporters are

given by

(t;x) := �

x

(

0

(t)u

I

)u

�

I

and the corresponding interpolating automorphism � can be obtained from  by

the uniform limit

�(a) = lim

x!�1

(t;x) a (t;x)

�

:

It follows from its construction that � acts trivially on the observables which are

localized in I
LL

and acts as the symmetry � on those which are localized in I
RR

.

The kink sector and its anti-kink sector are

� = [!

+

� �] and �

� = [!

+

� �

�1

] respectively.

This result is in complete analogy to the result for the (� ��)2
2

-model, i.e. in both

models the same four irreducible sectors appear.

We finally mention some further treatments of kink sectors:

(i) In [31, Chapter 5], the existence of kink states in general P (�)
2

-models is

discussed. However, this construction leads only to kink states which inter-

polate vacua which are connected by the internal symmetry transformation

� 7! ��. We shall see later that we achieve a generalization of this result.

(ii) In the late 80s, J. Fröhlich and P.A Marchetti developed a quantization of

kinks in terms of Euclidean functional integrals which has been applied to

several lattice field theories [33, 61, 34].

(iii) Recently, a construction of kink sectors for a lattice version of the XY-model

has been carried out by H. Araki [1]. We also refer to [52].
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1.1.4 On the Axiomatic Characterization of Kink Sectors

An axiomatic characterization of kink sectors, which is placed into the framework

of algebraic quantum field theory, has firstly been given in [31, Chapter 6]. Kink

sectors are described there by equivalence classes of interpolating automorphisms.

It is required for them to be translationally covariant and to satisfy appropriate in-

terpolation conditions, more precisely, they act trivially on observables which are

localized in a left space-like complement of a double cone O and as an internal

symmetry on those which are localized in the right space-like complement of O.

We postpone a detailed description of interpolating automorphisms until Chapter

4, we only make a few remarks on this issue here.

(i) To determine a kink sector one has to choose a vacuum sector in addition to

a given equivalence class of interpolating automorphisms.

(ii) The kink sectors which can be obtained from interpolating automorphisms

have a special property. They interpolate vacua which are related by an in-

ternal symmetry transformation. However, there are candidates for models,

possessing more than one vacuum sector, in which different vacuum sectors

can not be related by an internal symmetry (see Section 1.1.2).

The investigation of massive one-particle states motivates to look for a more

general analysis of kink sectors. Massive one-particle states in general d > 1+ 1-

dimensional quantum field theories have been studied by D. Buchholz and K. Fre-

denhagen [10]. One of their main results states that each massive one-particle state

is an excitation of a unique vacuum within a space-like cone. In other words, the

GNS-representation of a massive one particle state is unitarily equivalent to a vac-

uum representation when being restricted to an algebra which belongs to the causal

complement of a space-like cone. In 1 + 1-dimensional quantum field theories,

massive one-particle states have kink properties, i.e. two vacuum states correspond

to each massive one-particle state. This is due to the fact that the space-like com-

plement of a bounded region in two-dimensional Minkowski space has two con-

nected components [22, 23, 71].

In 1994, an adequate representation of kink sectors was developed by K. Fre-

denhagen [23]. It is given in terms of algebra homomorphisms, called kink homo-

morphisms, which are generalizations of DHR and BF endomorphisms. To point

out the relations between kink homomorphisms, interpolating automorphisms and

DHR (BF) endomorphisms, we summarize some of the main properties of kink

homomorphisms here.
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(i) Kink homomorphisms are C*-algebra homomorphisms � which map a C*-

algebraB
e

2

, depending on the right (left) vacuum e

2

, into a C*-algebraB
e

1

,

depending on the left (right) vacuum and e
1

. The composition of two kink

homomorphisms corresponds to the composition of kink sectors. In the par-

ticular case e = e

1

= e

2

the algebraB
e

is mapped into itself and � is nothing

else but a BF endomorphism [10].

(ii) Conversely, DHR and BF endomorphisms are particular kink homomorphisms.

They correspond to trivial kink sectors which interpolate a vacuum sector e

with itself.

(iii) To each kink sector, a kink homomorphism can be related, no matter whether

the vacua under consideration are related by a symmetry or not. In partic-

ular, for each pair which consists of an interpolating automorphism � and

a vacuum sector e, there exists a unique kink homomorphism �

e

, which is,

however, an extension of �.

A general analysis of kink sectors has been carried out in [71]. Here kink ho-

momorphisms are used as a tool to discuss direct sums subobjects and conjugation

of kink sectors. A review of these results is given in Chapter 3.

1.2 Overview

The purpose of this section is to give an overview of new results. The reader can

find here a summary of Chapter 4 and Chapter 5 in which we establish sufficient

conditions for the existence of kink sectors. Moreover, we briefly summarize Chap-

ter 6 where we apply the Haag-Ruelle collision theory to kinks.

1.2.1 A Review of Recent Results

Studying 1+1-dimensional quantum field theories from an axiomatic point of view

shows that kink sectors naturally appear in the theory of superselection sectors.

This motivates the following question:

Question: If we consider any quantum field theory model in 1 + 1 dimensions

which possesses more than one vacuum state, which conditions for a pair of vac-

uum states will be sufficient such that an interpolating kink state can be constructed?
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In Chapter 4, we give an answer to this question by developing a construction

scheme for kink states which is based on general principles. In order to make the

comprehension of the subsequent chapters easier we shall state the main ideas here.

The construction of an interpolating kink state is based on a simple physical

idea: Let A be a Haag-Kastler net of W*-algebras. Each double cone O splits our

system into two infinitely extended laboratories, namely the laboratory which be-

longs to the left space-like complement O
LL

, and the laboratory O
RR

which be-

longs the right space-like complement O
RR

. In order to prepare an interpolating

kink state, we wish to prepare one vacuum state !
1

in the left laboratoryO
LL

, and

another vacuum state !
2

in the right laboratory O
RR

. This can only be done if

the preparation of !
1

does not disturb the preparation procedure of !
2

. In other

words, the physical operations which take place in the laboratory on the left side

O

LL

should be statistically independent of those which take place in O
RR

. Note

that in [32] the corresponding condition is needed for the Cauchy data.

Therefore, we require that there exists a vacuum representation �
0

such that the

W*-tensor product

A

�

0

(O

LL

) 
 A

�

0

(O

RR

)

is unitarily isomorphic to the von Neumann algebra

A

�

0

(O

LL

) _ A

�

0

(O

RR

)

whereA
�

0

is the net in the vacuum representation�
0

. 4 This condition is equivalent

to the existence of a type I factor N which sits between A
�

0

(O

RR

) and A
�

0

(O

R

):

A

�

0

(O

RR

) � N � A

�

0

(O

R

) :

Here O
R

is the space-like complement of O
LL

. In other words, the inclusion

A

�

0

(O

RR

) � A

�

0

(O

R

) (1.5)

is split.

A detailed investigation of standard split inclusions of W*-algebras has been

carried out by S. Doplicher and R. Longo [20]. We also refer to the results of D.

Buchholz [8], C. D’Antoni and R. Longo [15] and C. D’Antoni and K. Freden-

hagen [14].

4for an unbounded region U , A
�

0

(U) denotes the von Neumann algebra which is generated by

all local algebras A
�

0

(O) withO � U .
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Let !
1

and !
2

be two inequivalent vacuum states whose restrictions to each

local algebra A(O) are normal. Using the isomorphy

A

�

0

(O

LL

) 
 A

�

0

(O

RR

)

�

=

A

�

0

(O

LL

) _ A

�

0

(O

RR

)

we conclude that the map

ab

-

!

1

(a)!

2

(b) , a is localized in O
LL

and b is localized in O
RR

,

defines a state of the algebraC�

(A;O

LL

[O

RR

) which, by the Hahn-Banach theo-

rem, can be extended to a state ! of the C*-algebra of all observables. The state !

interpolates the vacua !
1

and !
2

correctly, but for an explicit construction of an in-

terpolating state which satisfies the Borchers criterion, some technical difficulties

have to be overcome.

The condition that the inclusion (1.5) is split is sufficient to develop a general

construction scheme for interpolating kink states. We shall give a brief description

of it here.

Step 1: We consider the W*-tensor product of the net A with itself:

A 
 A : O

-

A(O) 
 A(O)

The map �
F

which is given by interchanging the tensor factors,

�

F

: a

1


 a

2

-

a

2


 a

1

is called the flip automorphism. Since the inclusion (1.5) is split, the flip automor-

phism is unitarily implemented onA
�

0


A

�

0

(O

RR

) by a unitary operator � which

is contained in A
�

0


 A

�

0

(O

R

) [15]. The adjoint action of � induces an automor-

phism

� := (�

0


 �

0

)

�1

�Ad(�) � �

0


 �

0

which maps local algebras into local algebras. For each observable a which is lo-

calized in the left space-like complement of O we have �(a) = a, and for each

observable b which is localized in the right space-like complement of O we have

�(b) = �

F

(b). Note that � may depend on the choice of the vacuum representation

�

0

.
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Step 2: It is obvious that the state

! := !

1


 !

2

� �j

C

�

(A)
1

interpolates !
1

and !
2

. Let �
1

and �
2

be the GNS-representations of !
1

and !
2

respectively. Then the GNS-representation

� = �

1


 �

2

� �j

C

�

(A
1)

of ! is translationally covariant because the automorphism

�

x

� � � �

�x

� �

is implemented by a cocycle (x) of local operators inC�

(A). The positivity of the

energy can be proven by showing the additivity of the energy-momentum spectrum

for automorphisms like �. This together implies that ! is an interpolating kink

state.

In comparison to [31, 32], our construction scheme has the following advan-

tages:

� It is independent of specific details of the considered model because the split

property (1.5), which is the crucial condition for applying the construction

scheme, can be motivated by general principles.

� It can be applied to pairs of vacuum sectors which are not related by a sym-

metry transformation.

Unfortunately, there is one disadvantage which is the price we have to pay for

using a model independent analysis.

	 The split property for wedge algebras (1.5) has to be proven for the vacuum

states of the model under consideration if we want to apply our construction

scheme to it. It is believed that the vacuum states of theP (�)
2

- and Yukawa
2

models fulfill this condition, but a rigorous proof is only known for the mas-

sive free Bose and Fermi field [14, 8, 78].

In Chapter 5, we investigate an alternative construction of kink states which

can directly be applied to models. It is convenient to formulate our setup in the

time slice formulation of a quantum field theory. We fix a space-like plane� � R

2

and consider a net of Cauchy data M which is faithfully represented on a Hilbert
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spaceH
0

. The Cauchy data of the P (�)
2

- and the Yukawa
2

model are given by the

nets of the corresponding free fields at time t = 0. For these Cauchy data it can be

proven that the inclusion

M(I

RR

) �M(I

R

)

is split [8, 78, 72].

Let us briefly explain how kink states can be constructed if the following con-

ditions are assumed:

(i) The dynamics of the model satisfies an appropriate extendibility condition

which we shall explain later.

(ii) The vacuum states are local Fock states which is automatically satisfied for

P (�)

2

and Yukawa
2

models [37, 75].

Step 1’: We consider the twofold net

M 
M : I

-

M(I) 
M(I) :

Like in Step 1 of our previous construction scheme, the split property implies that

onM(I

RR

)
M(I

RR

), the flip automorphism is implemented by a unitary opera-

tor �
I

[15]. The adjoint action of �
I

is an automorphism �

I which has the follow-

ing properties:

(i) The automorphism �

I acts trivially on observables which are localized in

the left complement of I and it acts like the flip on observables which are

localized in the right complement of I .

(ii) The automorphism �

I maps local algebras into local algebras.

Note that the automorphism �

I does not depend on the dynamics �.

Step 2’: Let !
1

, !
2

be two vacuum states with respect to a given dynamics �.

The state

! := !

1


 !

2

� �

I

j

C

�

(M)
C1

interpolates the vacua !
1

and !
2

. Moreover, it is covariant under spatial transla-

tions since for each x the operator

(0;x) = (�

x


 �

x

)(�

I

)�

I
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is localized in a sufficiently large bounded interval. Indeed, the unitary operators

U(0;x) := (U

1

(0;x)
 U

2

(0;x)) (�

1


 �

2

)((0;�x))

implement the spatial translations in the GNS-representation of ! where U
1

and

U

2

implement the translations in the GNS-representations �
1

; �

2

of !
1

and !
2

re-

spectively.

Step 3’: It remains to be proven that ! is translationally covariant with respect

to the dynamics �. For this purpose, we wish to construct a cocycle (0; t) such

that the operators

U(t; 0) := (U

1

(t; 0)
 U

2

(t; 0)) (�

1


 �

2

)((�t; 0))

implement the dynamics � in the GNS-representation of !. The operator

(t; 0) := (�

t


 �

t

)(�

I

)�

I

is a formal solution. Unfortunately, the flip implementer �
I

is not contained in any

local algebra and the term (�

t


�

t

)(�

I

) has no mathematical meaning unless � is

the free dynamics. However, it can be given a meaning in some cases. We shall

see that for an interacting dynamics there exists a suitable cocycle of the opera-

tors (t; 0) such that (t; 0) is localized in a bounded interval whose size depends

linearly on jtj.

In order to formulate a sufficient condition for the existence of (t; 0), we con-

struct an extension of the net M 
M. We define ^

M(I) to be the von Neumann

algebra which is generated byM(I) 
M(I) and the operator �
I

. The net

^

M : I

-
^

M(I)

is an extension of M 
M which does not fulfill locality. This is due to the non-

trivial implementation properties of �
I

. We shall call a dynamics � extendible if

there exists a dynamics �̂ of ^

M which is an extension of �
 �. Indeed,

t

-

(t; 0) := �̂

t

(�

I

)�

I

is a cocycle which has the desired properties. Finally, we conclude like in Step 3

of our previous construction scheme that the state

! := !

1


 !

2

� �

I

j

C

�

(M)
C1
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is a kink state where !
1

; !

2

are vacuum states with respect to the dynamics �.

Since the extendibility condition is very technical one might bother that it is

only fulfilled for few exceptional cases. Fortunately, this is not true. There is a

large class of quantum field theory models whose dynamics are extendible. In

Chapter 5, we shall prove that the extendibility holds for the following models:

(i) P (�)
2

-models.

(ii) Yukawa
2

models.

(iii) Special types of Wess-Zumino models.

Note that a Dirac spinor field contributes to the field content of the Yukawa
2

and

Wess-Zumino models, and the nets of Cauchy data fulfill twisted duality instead

of Haag duality [78]. According to recent results which have been established by

M. Müger [62], our results remain true for these cases also.

Wess-Zumino models have been studied in several papers. We refer to the work

of A. Jaffe, A. Lesniewski, J. Weitsman and S. Janowsky [47, 50, 51, 48, 49]. It

has been proven in [48] that some Wess-Zumino models possess more than one

vacuum sector. An application of our construction scheme proves the existence of

kink states for these models.

1.2.2 Some Consequences and Miscellaneous Results

As one can see from the previous section, our construction scheme leads to kink

states of the form:

! = !

1


 !

2

� �j

C

�

(A)
1

(1.6)

where � is a suitable interpolating automorphism and !
1

; !

2

are vacuum states.

The homomorphism

� := �j

C

�

(A)
1

: C

�

(A)

-

C

�

(A 
 A)

may be interpreted as a co-product which induces a product on the set of locally

normal linear functionals of C�

(A). We shall call it interpolating product. It can

be used to compute the composition of kink sectors in a very convenient way which

we illustrate by the following example: Let !
1

; !

2

and !
3

be vacuum states. The

composition of the kink sectors �
1

= [!

1


 !

2

��] and �
2

= [!

2


 !

3

��] can
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be defined since the right vacuum of �
1

coincides with the left vacuum of �
2

. We

shall prove in Section 4.2.2 that the sector

[(!

1


 !

2


 !

3

) � (id
�) ��]

is nothing else but the product sector �
1

�

2

. We refer to Chapter 3 and [22, 23, 70]

where a precise definition of the composition of kink sectors is given.

It is not hard to show that the kink state, which is given by equation (1.6), is

not a pure state. Its GNS-representation is

� = �

1


 �

2

��

where �
1

and �
2

are the GNS-representations of !
1

and !
2

respectively. We are

interested in irreducible sub-representations of �. It is not obvious whether � pos-

sesses any irreducible subrepresentation which will not be the case if the von Neu-

mann algebra �(C�

(A))

00 is, for example, type III.

To show reducibility we are faced with the problem to prove that the von Neu-

mann algebra �(C�

(A))

00 is type I. Unfortunately, the investigation of the type of

the von Neumann algebra �(C�

(A))

00 turns out to be difficult.

On the other hand, there are kink sectors induced by interpolating automor-

phisms for which the algebra �(C�

(A))

00 is, in fact, type I. Such examples arise

naturally in the investigation of the question how large the class of kink sectors is

which can be obtained by applying our construction scheme.

We shall prove in Section 4.4.1 that this class contains simple kink sectors which

are characterized by fulfilling wedge duality. Let � be a kink representation which

belongs to a simple kink sector and let us assume that the split property holds for

wedge algebras in the representation �. Then there exists an appropriate interpo-

lating automorphism � such that the representation

�̂ := �

1


 �

2

� �j

C

�

(A)
1

is unitarily equivalent to the countably infinite multiple of �; as a consequence, the

algebra �̂(C�

(A))

00 is type I.

In Section 4.4.2, we shall establish a lower bound for the mass of those kinks

which can be obtained via our construction scheme.

1.2.3 Kink Fields and Collision Theory

In Chapter 6, the Haag-Ruelle collision theory [44, 68] is applied to kink sectors.

In comparison to [70], our analysis leads to an improved treatment of kink scat-

tering. We refer to the work of S. Doplicher, R. Haag and J. Roberts [18, 19] and



36 Introduction and Overview

D. Buchholz and K. Fredenhagen [10] where the Haag-Ruelle collision theory has

been applied to DHR and BF superselection sectors in four space-time dimensions.

Scattering of plektons (particles with braid group statistics in three space-time di-

mensions) has been investigated by K. Fredenhagen, M.R. Garberdiel und S.M.

Rüger [28].

For the construction of kink collision states, it is useful to develop an adequate

field bundle formalism [18, 19, 10] which can be applied to kink sectors. We shall

see that such a formalism needs rather technical methods since, in contrast to DHR

and BF sectors, kink sectors can not be composed arbitrarily.

To illustrate the concept of kink fields, we consider the following situation: The

Hilbert space of all physical states splits into a direct sum of Hilbert spaces such

that each of them carries an irreducible representation of the observable algebra:

H =

�

M

e

H

e

�

�

�

M

�

H

�

�

:

The first sum runs over all vacuum sectors ewhereas the second sum is taken over

all irreducible kink sectors �. Given two irreducible kink sectors �
1

and �
2

such that

the left vacuum of �
2

coincides with the right vacuum of �
1

, then their composition

�

1

�

2

is well defined. We assume that the product sector �
1

�

2

can be decomposed

into a finite direct sum of irreducible sectors:

�

1

�

2

=

M

�

n

�

�

1

�

2

� :

Moreover, to be not too complicated, we let the fusion coefficients n�
�

1

�

2

be either

one or zero. The Hilbert space which belongs to the sector �
1

�

2

is

H

�

1

�

2

:=

M

�

n

�

�

1

�

2

H

�

� H :

Within this situation, there are two different types of charge carrying field op-

erators. This kind of doubling appears here since a kink can be interpreted either

as an excitation of its left or as an excitation of its right vacuum. We now describe

the two different types of kink fields, carrying a kink charge �, more precisely.

(1) Kink fields with orientation + are linear operators (a+(�);D+

(�)) with do-

mains

D

+

(�) :=

M

�

1

:��

1

well defined

H

�

1

where a+(�) mapsH
�

1

into H
��

1

.
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(2) Kink fields with orientation� are linear operators (a�(�);D�

(�)) with do-

mains

D

�

(�) :=

M

�

2

:�

2

� well defined

H

�

2

where a�(�) mapsH
�

2

into H
�

2

�

.

As we shall see later, the orientation is related to the localization properties of a

kink field: The localization region of a kink field with positive orientation is a right

wedge region and vice versa. Such a structure, which is the main reason for tech-

nical difficulties, does not arise in the DHR and BF case where any two sectors can

be composed in any order.

In order to give an idea how kink fields can be multiplied, we discuss a simple

example. Let us consider five kink sectors �
2

; � � � ; �

0

; � � � ; �

�2

such that the prod-

uct sector � = �

2

�

1

�

0

�

�1

�

�2

is well defined. There are six ways in which the field

operators a�(�
�2

);a

�

(�

�1

) can be composed on H
�

0

:

a

(++��)

= a

+

(�

2

)a

+

(�

1

)a

�

(�

�2

)a

�

(�

�1

)

a

(+�+�)

= a

+

(�

2

)a

�

(�

�2

)a

+

(�

1

)a

�

(�

�1

)

a

(+��+)

= a

+

(�

2

)a

�

(�

�2

)a

�

(�

�1

)a

+

(�

1

)

a

(�++�)

= a

�

(�

�2

)a

+

(�

2

)a

+

(�

1

)a

�

(�

�1

)

a

(�+�+)

= a

�

(�

�2

)a

+

(�

2

)a

�

(�

�1

)a

+

(�

1

)

a

(��++)

= a

�

(�

�2

)a

�

(�

�1

)a

+

(�

2

)a

+

(�

1

)

Each of the composed operators a
(��� )

is a well defined linear map from H

�

0

into

H

�

. We see from this example that factors of a product of kink fields, supposed

to be defined, can be exchanged if their orientations are different. If in addition

the localizing regions of two exchangeable field operators are space-like separated,

then the exchange of them is induced by a unitary operator, called quasi-statistics

operator. For example, assuming that a+(�
2

) and a�(�
�2

) are localized in space-

like separated regions, then there exists a unitary operator �
(�+�+j��++)

such that

a

(�+�+)

 = �

(�+�+j��++)

a

(��++)
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for each  2 H

�

0

. These operators are the analogues of the statistics operators

within the DHR and BF situation. The crucial difference is that the DHR and BF

statistics operators are related to arbitrary permutations of factors in a product of

field operators, whereas the quasi-statistics operators are related to pairs of finite

Z

2

= f+;�g-valued sequences, in our example it is the pair (�+�+j��++). To

point out these differences, we use the word quasi. A detailed analysis of quasi-

statistics relations between kink field operators is carried out in Section 6.2. We

also refer to [70].

The Hilbert spaceH carries a unitary and strongly continuous representation of

the translation groupU which implements the translation of observables and which

fulfills the spectrum condition. We assume that the kink superselection sectors un-

der consideration are massive one-particle states which means that the spectrum of

the translation group being restricted to an irreducible kink sector

U

�

(x) = U(x)j

H

�

consists of an isolated mass shell H
m

= fpjp

2

= m

2

; p

0

� 0g and a subset of the

set C
�+m

= fpjp

2

� (m + �)

2

; p

0

� 0g. The one-particle subspace, the space

of all vectors inH
�

whose spectral support is contained inH
m

, will be denoted by

H

1

�

.

Following the DHR and BF analysis, it is possible to construct one-kink op-

erators, i.e. kink field operators which map a particular vacuum vector 

e

2 H

e

into a one-particle space H1

�

. If the kink field operator has orientation +, then the

vacuum e is the left vacuum of �, otherwise, if the orientation is �, then it is the

right vacuum of �.

The one-kink creation operators a(f; t) depend on a energy-momentum distri-

bution f in which the velocity of the created kink is encoded, and it depends in

addition on a time parameter t which compares, in a certain sense, the free motion

of a kink with its motion when interaction is present. Let us suppose there is one

kink alone in the world, then there is nothing else which can interact with it. There-

fore, for a one-kink state there is no difference between the free and the interacting

case. This means that applying a(f; t) to the corresponding vacuum vector

e

, the

vector

 (f) = a(f; t)


e

is independent of t.

A multi-kink state can be obtained by an application of multiple one-kink cre-

ation operators to a vacuum 


e

 (t) = a(f

1

; t) � � �a(f

n

; t)


e
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as long as we respect the composition rules for kink fields. Note that the expres-

sion (t) above may contain kink fields with different orientation. The vector (t)

describes a configuration of n kinks at time t after scattering.

For large twe expect that the kinks decouple and behave like n non-interacting

freely moving particles. This is indeed the case for a special class of kink config-

urations. It seems to be necessary to assume that

(i) the interpolated vacua are related by an internal symmetry which gives us the

possibility to assign to each one-kink creation operator a(f
j

; t) a bounded

interpolation region O
j

(t), which is, roughly speaking, the region in which

the interpolation of the vacua takes place.

(ii) Another crucial property is the velocity ordering in order to ensure that the

space-like distances between the interpolation regions increase to infinity

when t tends also to infinity.

In Chapter 6, we shall present a detailed discussion on the assumptions which have

to be made such that the strong limit

 

out

= s� lim

t!1

a(f

1

; t) � � �a(f

n

; t)


e

exists and depends only on the one-particle vectors 
j

= a(f

j

; t)


e

j

. Here 

e

j

are

suitable vacuum vectors. Furthermore, we shall prove that the norm of the scatter-

ing state  out is

jj 

out

jj =

n

Y

j=1

jj 

j

jj :

This implies that the assignment

n

O

j=1

H

1

�

j

-

H :

n

O

j=1

 

j

-

 

out

is an isometry where H1

�

j

are suitable one-particle spaces. As expected, the vec-

tor  out represents a configuration of n non-interacting freely moving kinks. The

asymptotic in-states can be obtained analogously.
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Axiomatic Quantum Field

Theory and Models in

1 + 1-Dimensions2
2.1 The Time-Slice Formulation of a Quantum Field

Theory

As already mentioned in the introduction, for the analysis of quantum field theory

models it is convenient to work with the time-slice formulation. In order to keep

the present chapter self-contained, we repeat the main aspects of it. In addition to

that, we describe how a Haag-Kastler net can be constructed from the Cauchy data

and a given dynamics.

2.1.1 Cauchy Data and Dynamics of a Quantum Field Theory

Let us consider Cauchy data of a quantum field theory which are faithfully rep-

resented on a Hilbert space H
0

, i.e. the Cauchy data are given by a net of von

Neumann algebras

M := fM(I) � B(H

0

); I is a bounded interval in �g

This net satisfy the conditions:

(1) Isotony: If I
1

� I

2

, thenM(I

1

) �M(I

2

).

(2) Locality: If I
1

\ I

2

= ;, thenM(I

1

) �M(I

2

)

0.

(3) The group of spatial translations in� �

=

R is represented unitarily and strongly

continuous on H
0

U : R

-

U(H

0

) ; x

-

U(x)

41
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such that the automorphism �

x

:= Ad(U(x)) mapsM(I) ontoM(I + x).

The time evolution is described by the notion of dynamics. For convenience,

we repeat its definition here.

Definiton 2.1.1 : A one-parameter group of automorphisms

� = f�

t

2 Aut(M); t 2 Rg is called a dynamics of the net M if the following

conditions are fulfilled:

(1) The automorphism group � has propagation speed ps(�) � 1, where ps(�)

is defined by:

ps(�) := inff�

0

j�

t

M(I) �M(I

�

0

jtj

);8t;Ig :

Here I
s

:= I + (�s; s) denotes the interval, enlarged by s > 0.

(2) The automorphisms f�
t

2 Aut(M); t 2 Rg commute with the automor-

phism group of spatial translations f�
x

2 Aut(M);x 2 Rg, i.e.:

�

t

� �

x

= �

x

� �

t

; 8x; t :

The set of all dynamics ofM is denoted by dyn(M).

Note that in many cases it is possible to choose the same net of Cauchy data

for different models. For instance, the Cauchy data of the P (�)
2

-models can be

chosen by the time-zero algebras of the massive free Bose field [37].

2.1.2 Haag-Kastler Nets for Cauchy Data

To distinguish different theories, we have to compare different dynamics. For this

purpose, we shall construct a universal Haag-Kastler net with respect to a given

net M of Cauchy data.

Let U(M) be the group of unitary operators inC�

(M) and we defineG(R;M)

to be the group which is generated by the set

f(t; u)j t 2 R and u 2 U(M) g

modulo the following relations:

(1) We require for each u
1

; u

2

2 U(M) and for each t 2 R:

(t; u

1

)(t; u

2

) = (t; u

1

u

2

) and (t;1) = 1 :
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(2) If u
1

2 M(I

1

) and u
2

2 M(I

2

) such that I
1

� (I

2

)

c

jtj

, then we require for

each t
1

2 R:

(t

1

+ t; u

1

)(t

1

; u

2

) = (t

1

; u

2

)(t

1

+ t; u

1

) :

We conclude from relation (1) that (t; u) is the inverse of (t; u�).

We see from the construction above that a localization region in R�� can be

assigned to each element in G(R;M): A generator (t; u), u 2 M(I) is localized

in O � R� � if ftg � I � O. We denote by G(O) the subgroup of G(R;M)

which is generated by the elements which are localized in the double cone O. We

easily observe that relation (2) implies that group elements commute if they are

localized in space-like separated regions.

The translation group in R2 is naturally represented by group automorphisms

of G(R;M). They are defined by

(t;x)

-

�

(t;x)

(t

1

; u) := (t+ t

1

; �

x

u)

and the subgroup G(O) is mapped onto G(O + (t;x)) by �
(t;x)

.

In order to construct the universal Haag-Kastler net, we build the group C*-

algebra B(O) with respect to G(O) (compare also [56]). For convenience, we

shall describe the construction ofB(O) briefly.

In the first step we build the *-algebraB
0

(O) which is generated by all com-

plex valued functions a on G(O), such that

a(u) = 0 for almost each u 2 G(O) :

We write such a function symbolically as a formal sum

a =

X

u

a(u) u :

The product and the *-relation are given as follows:

ab =

X

u

a(u) u �

X

u

0

b(u

0

) u

0

=

X

u

0

�

X

u

a(u)b(u

�1

u

0

)

�

u

0

a

�

=

X

u

�a(u

�1

) u

It is well known, that the algebraB
0

(O) has a C*-norm which is given by

jjajj := sup

�

jj�(a)jj

�
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where the supremum is taken over all *-representations � of B
0

(O). Finally, we

defineB(O) as the closure ofB
0

(O) with respect to this norm.

By construction, the group isomorphisms �
(t;x)

induce a representation of the

translation group by automorphisms of the C*-inductive limit C�

(B) of the net

B : O

-

B(O)

and we conclude thatB is a translationally covariant Haag-Kastler net.

Proposition 2.1.2 : Each dynamics � 2 dyn(M) induces a C*-homomorphism

�

�

: C

�

(B)

-

C

�

(M)

such that for each (t;x) 2 R

2,

�

�

� �

(t;x)

= �

(t;x)

� �

�

:

In particular,

A

�

: O

-

A

�

(O) := �

�

(B(O))

00

is a translationally covariant Haag-Kastler net.

Proof. Let � be a dynamics of M, then we conclude from ps(�) � 1 that the

prescription

(t; u)

-

�

t

u

defines a C*-homomorphism

�

�

: C

�

(B)

-

C

�

(M) :

In particular, �
�

is a representation ofB on the Hilbert spaceH
0

. These statements

can be verified by using the following relations:

(a)

�

�

((t; u

1

)(t; u

2

)) = �

t

u

1

�

t

u

2

= �

t

(u

1

u

2

) = �

�

(t; u

1

u

2

)

(b) If (t
1

; u

1

) and (t

1

+ t; u

2

) are localized in space-like separated regions, then

we conclude from ps(�) � 1:

[�

�

(t

1

; u

1

); �

�

(t

1

+ t; u

2

)] = �

t

1

[u

1

; �

t

u

2

] = 0



2.2 Quantum Field Theory Models in 1 + 1-Dimensions 45

(c)

�

�

(�

(t;x)

(t

1

; u)) = �

�

(t+ t

1

; �

x

u) = �

(t;x)

�

t

1

u

�

In general, we expect that for a given dynamics � the representation �
�

is not

faithful. Hence each dynamics defines a two-sided ideal

J(�) := �

�1

�

(0) 2 C

�

(B)

in C�

(B) which we call the dynamical ideal with respect to � and the algebras

B(O)=J(�)

�

=

A

�

(O)

may depend on the dynamics �. Indeed, if O is a double cone whose base is not

contained in�, then, in general, for different dynamics �
1

; �

2

the algebrasA
�

1

(O)

and A
�

2

(O) are different. On the other hand, if the base of O is contained in �,

then we conclude from the fact that the dynamics � has finite propagation speed

and from Proposition 2.1.2:

Corollary 2.1.3 : If I � � is the base of the double cone O, then the algebra

A

�

(O) is independent of �. In particular,

C

�

(M) = C

�

(A

�

) :

2.2 Quantum Field Theory Models in 1+1-Dimensions

A few remarks on non-trivial quantum field theory models are given in this section.

We give a short description of the Cauchy data and the dynamics of P (�)
2

- and

Yukawa
2

models.

2.2.1 P (�)

2

-Models

We denote by H
s

the symmetrized Fock space over the Hilbert space L
2

(R) of

complex-valued and square integrable functions, i.e.

H

s

:=

1

M

n=0

L

2

(R)




s

n
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where s stands for the symmetrization of the tensor product. The massive free

Bose field � and its canonically conjugate � act as operator valued and tempered

distributions on H
s

, fulfilling canonical commutation relations (CCR). The net of

Cauchy data of the P (�)
2

models is given by the CCR-algebras

M

s

: I

-

M

s

(I) :=

�

e

i(�(f

1

)+�(f

2

))

�

�

�

�

f

j

2 S

R

(R) ; supp(f

j

) � I

�

00

:

According to J.Glimm and A.Jaffe [37], the Wick monomials : �n : of the time

zero field exist. They are well defined operator valued distributions. The interact-

ing part of a P (�)
2

Hamiltonian, regularized by an IR-cutoff c > 0, is given by

H

1

(c) :=

Z

dx : P (�(x)) : �

c

(x)

where P is a polynomial of even degree deg(P ) = 2n and �
c

is a smooth test

function with the property:

�

c

(x) =

(

1 if x 2 (�c; c)

0 if x 2 (�c� �; c+ �)nR

:

It is well known that H
1

(c) is a self-adjoint operator which has a joint core with

the free HamiltonianH
0

.

The family of operators fH
1

(c); c > 0g induces a dynamics �
1

2 dyn(M

s

)

with zero propagation speed [37]. If c
1

> c and I � (�c; c), then we have for

each a 2M
s

(I) and for each t 2 R:

e

itH

1

(c)

a e

�itH

1

(c)

= e

itH

1

(c

1

)

a e

�itH

1

(c

1

)

:

Thus we may define �
1

by the uniform limit

a

-

�

1;t

(a) := lim

c!1

e

itH

1

(c)

a e

�itH

1

(c)

: (2.1)

SinceH
1

(c) has a joint core with the free HamiltonianH
0

, we are able to define

the Trotter product of the automorphism groups �
0

and �
1

which is given for each

local operator a 2M
s

(I) by the strong limit

�

t

(a) := (�

0

� �

1

)

t

(a) = s� lim

n!1

(�

0;t=n

� �

1;t=n

)

n

(a) :

Furthermore, the propagation speed is sub-additive with respect to the Trotter prod-

uct [37], i.e.

ps(�

0

� �

1

) � ps(�

0

) + ps(�

1

)
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and we conclude that � 2 dyn(M

s

) is a dynamics ofM
s

.

It has been shown by Glimm and Jaffe [37] that there exist vacuum states !

with respect to the interacting dynamics �. Due to Haag’s Theorem (compare also

[12]) there is no vector  in the Fock space H
s

such that the linear functional

!

 

: a

-

h ; a i

is a vacuum state with respect to an interacting dynamics. But the vacuum states

! can be approximated by states which are induced by vectors inH
s

. The closure

of the operator H
0

+ H

1

(c) is self-adjoint and bounded from below. Let E(c) be

the infimum of the spectrum of (H
0

+H

1

(c))

��, then

H(c) := (H

0

+H

1

(c))

��

�E(c)1

is a positive operator. According to [37], there exists a sequence

f
(c

n

) 2 ker(H(c

n

));n 2 Ng ; lim

n

c

n

=1

such that the weak* limit

! := w

�

� lim

n!1

h
(c

n

); (�)
(c

n

)i (2.2)

is a vacuum state with respect to the interacting dynamics �.

2.2.2 Yukawa
2

Models

Let us consider the Fock space

H

a

:=

1

M

n=0

L

2

(R;C

2

)




a

n

where a stands for anti-symmetrization of the tensor product and L
2

(R; C

2

) is the

Hilbert space of C 2 -valued and square integrable functions. The free Dirac spinor

field  and its canonically conjugate �

 act as operator valued tempered distribu-

tions on H
a

, fulfilling canonical anti-commutation relations (CAR).

The field content of the Yukawa
2

model consists of one Bose field � and one

Dirac spinor field  . The net of Cauchy data of this model is given by the W*-

tensor product

M : I

-

M(I) =M

s

(I) 
M

a

(I)
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where the netM
a

is given by the CAR-algebras

M

a

: I

-

M

a

(I) :=

�

 (f

1

);

�

 (f

2

)

�

�

�

�

supp(f

j

) � I

�

00

:

The unrenormalized Hamiltonian with IR-cutoff c > 0 is

H

un

(c) := H

0

+

Z

dx :

�

	(x)	(x) : �(x) �

c

(x)

where H
0

is the free Hamiltonian and the fields � and 	 are given by

� := �
 1

H

a

and 	 := 1

H

s


  :

The HamiltonianH
un

(c) is defined in the sense of bilinear forms onD�D, where

D is a dense subspace in H
0

:= H

s


H

a

.

According to [37], the renormalized Hamiltonian can be constructed by intro-

ducing an UV-cutoff and adding appropriate counterterms. Then the UV-cutoff can

be removed and we obtain an positive operator H(c), depending on the IR-cutoff

c > 0.

The dynamics �Y of the Yukawa
2

model can be constructed from the family of

Hamiltonians fH(c); c > 0g. It is given by

a

-

�

Y

t

(a) := lim

c!1

e

itH(c)

a e

�itH(c)

:

However, the construction of the Yukawa
2

dynamics is more complicated than

the construction of P (�)
2

-dynamics and we postpone a detailed description of �Y

until Chapter 5 where more technical details are needed. The additional difficulties

which arise here are due to the fact that�Y can not be written as the Trotter product

of the free dynamics�
0

and an interacting part�
1

with propagation speed ps(�
1

) =

0.

Vacuum states with respect to the Yukawa
2

dynamics, whose existence have

firstly been established by R. Schrader [75], can be obtained in the same manner

as described for the P (�)
2

models (equation (2.2)).



Axiomatic Characterization of

Kink States3
3.1 Mathematical Description of Kinks

In this section, we give a precise definition of kink sectors in the framework of

algebraic quantum field theory. Furthermore, we describe the construction of kink

homomorphisms which are generalizations of the DHR and BF endomorphisms.

3.1.1 Kink Sectors

Let A be a translationally covariant Haag-Kastler net and � be a representation of

A, belonging to a sector � 2 sec(A). We define the restriction �j
B

of � to a C*-

sub-algebraB � C

�

(A) as the unitary equivalence class of the restricted repre-

sentation �j
B

, i.e.

�j

B

:= [�j

B

] :

Definiton 3.1.1 : A sector � of A is called a kink sector, which interpolates the

vacuum sectors e
1

; e

2

, if it satisfies the conditions:

(a) � fulfills the Borchers criterion (positivity of the energy). We refer to Section

1.1.1 for this notion.

(b) There is a left wedge region W
1

2 W

�

and a right wedge regionW
2

2 W

+

such that:

�j

C

�

(A;W

1

)

= e

1

j

C

�

(A;W

1

)

(3.1)

�j

C

�

(A;W

2

)

= e

2

j

C

�

(A;W

2

)

(3.2)

49
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A state (representation) is called a kink state (representation) if it belongs to a kink

sector.

Of course, since a kink sector � is translationally invariant, we conclude that

the relation (3.1) holds for every left wedge region. Analogously, (3.2) holds for

every right wedge region.

Notation: We denote the set of kink states, kink representations and kink sectors

byS(e
1

; e

2

), �(e

1

; e

2

) and sec(e
1

; e

2

) respectively. Furthermore, we shall call the

right vacuum the source and the left vacuum the range.

We shall show that the existence of a kink sector � 2 sec(e

1

; e

2

) implies that

the vacuum representations �
1

and �
2

, which belong to the sectors e
1

and e
2

re-

spectively, are locally unitarily equivalent.

Proposition 3.1.2 : Let � 2 sec(e

1

; e

2

) be a kink sector. Then for each bounded

double cone O,

�j

A(O)

= e

1

j

A(O)

= e

2

j

A(O)

:

Proof. Each double cone O can be written as an intersectionO = O

R

\O

L

of a

left wedge region O
L

and a right wedge region O
R

. Let � 2 sec(e

1

; e

2

) be a kink

sector, then we obtain from equation (3.1) and (3.2):

�j

C

�

(A;O

L

)

= e

1

j

C

�

(A;O

L

)

and �j

C

�

(A;O

R

)

= e

2

j

C

�

(A;O

R

)

: (3.3)

Since A(O) � C

�

(A;O

L

) \ C

�

(A;O

R

), we have:

�j

A(O)

= e

1

j

A(O)

= e

2

j

A(O)

:

The double cone O can be chosen arbitrarily which implies the result. �

Remark: Proposition 3.1.2 states that local unitary equivalence of two vacuum

representations �
1

and �
2

is a necessary condition for the existence of an interpo-

lating kink state. Without loss of generality, we may assume the following condi-

tions:

(i) The local algebras A(O) are W*-algebras.
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(ii) The states ! 2 S(A) under consideration are locally normal, i.e. their re-

strictions

!j

A(O)

are normal states of A(O) for each double cone O.

Proposition 3.1.3 : Let � 2 �(e

1

; e

2

) be a kink representation. Then each sub-

representation �̂ � � is a kink representation in �(e

1

; e

2

).

Proof. We choose a projectionE which is contained in the commutant of�(C�

(A))

and we consider the sub-representation �̂ which is given by

�̂(a) := �(a)E :

We conclude from equation (3.1) that there is a vacuum representation �
1

with

[�

1

] = e

1

and

�j

C

�

(A;W )

= �

1

j

C

�

(A;W )

:

SinceE is contained in the commutant of�(C�

(A)), we conclude thatE 2 A

�

1

(W

0

).

According to [21], the algebra A
�

1

(W ) is a type III factor which implies that each

sub-representation of �
1

j

C

�

(A;W )

is unitarily equivalent to �
1

j

C

�

(A;W )

itself. This

yields:

�̂j

C

�

(A;W )

= E�

1

j

C

�

(A;W )

�

=

�

1

j

C

�

(A;W )

:

Analogously we show that

�̂j

C

�

(A;W

0

)

= E�

2

j

C

�

(A;W

0

)

�

=

�

2

j

C

�

(A;W

0

)

for a suitable vacuum representation �
2

with [�

2

] = e

2

.

It remains to be proven that �̂ satisfies the Borchers criterion. By a result of

Borchers [3], the operatorsU(x) which implement the translations in the represen-

tation � can be chosen in such a way that U(x) is contained in �(C�

(A))

00. Since

the projection E is contained in �(C�

(A))

0, we conclude that
^

U : x 7!

^

U(x) := U(x)E is a unitary and strongly continuous representation

which implements the translations in the representation �̂. In particular the spec-

trum of ^

U is also contained in the closed forward light cone. �
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3.1.2 Kink (Soliton) Homomorphisms

A generalization of DHR and BF endomorphisms has been invented by K. Freden-

hagen [23] in order to define the composition of kink sectors. We shall see that a

kink sector, which interpolates vacuum sectors e
1

; e

2

, can be represented by two

different types of C*-algebra homomorphisms

� : C

�

(A

+

e

1

)

-

C

�

(A

+

e

2

) and �

0

: C

�

(A

�

e

2

)

-

C

�

(A

�

e

1

)

where C�

(A

�

e

) are extensions of the C*-algebra C�

(A), depending on a vacuum

sector e 2 sec

0

(A) and one of the space-like directions �-infinity. We briefly de-

scribe how kink homomorphisms can be constructed from a given kink sector.

Step 1: In the first step, we construct extensions of the C*-algebra C�

(A). Let

! 2 S

0

(A) be a vacuum state and W a wedge region. Then we denote by

A

[!]

(W ) (3.4)

the closure of the C*-algebra C�

(A;W ) with respect to the topology which is in-

duced by semi norms:

jjajj

T

!

= jtr(T�(a))j :

Here (H; �;
) is the GNS triple of ! and T a trace class operator on H with trace

tr(T ) = 1.

Obviously, the algebras A
[!]

(W ) depend only on the sector e = [!]. The net

A

�

e

:W

�

3 W

-

A

e

(W )

is canonically isomorphic to the net

A

�

�

:W

�

3 W

-

A

�

(W ) = �(C

�

(A;W ))

00

where W
�

denotes the set of right (left) wedge regions. Since the sets W
�

are

directed, the C*-inductive limits C�

(A

�

e

) and C�

(A

�

�

) can be constructed. It has

been proven in [23, 70, 71] that the following statements hold:

(1) Each vacuum representation �
e

, which belongs to the vacuum sector e, has

unique extensions ��
e

to the algebras C�

(A

�

e

). Moreover, if we assume that

�

e

is faithful, then

�

�

e

: C

�

(A

�

e

)

-

C

�

(A

�

�

e

)

are C*-algebra isomorphisms.
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(2) If � is a kink sector with source e
2

and range e
1

, then each representation

�, which belongs to the sector �, has extensions �+ to C�

(A

+

e

2

) and �� to

C

�

(A

�

e

1

).

(3) If we assume that Haag duality holds in each vacuum sector e, then for each

double cone O the intersection

A

e

(O

L

) \ A

e

(O

R

) = A(O)

is independent of e.

Step 2: Let us consider a kink representation (H; �) 2 �(e

1

; e

2

) which interpo-

lates the vacua e
1

and e
2

. We choose vacuum representations (H
1

; �

1

) and (H
2

; �

2

)

with [�

1

] = e

1

and [�

2

] = e

2

. Then for each right wedge region W 2 W

+

there

exist unitary operators vW
1

: H !H

1

and vW
2

: H ! H

2

such that:

Ad(v

W

1

) � �j

C

�

(A;W

0

)

= �

1

j

C

�

(A;W

0

)

and Ad(v

W

2

) � �j

C

�

(A;W )

= �

2

j

C

�

(A;W )

:

We obtain representations

~� := Ad(v

W

1

) � �

+

: C

�

(A

+

e

2

)

-

B(H

1

)

~�

0

:= Ad(v

W

2

) � �

�

: C

�

(A

�

e

1

)

-

B(H

2

)

which are unitarily equivalent to �. It has been proven [23] that

~�(C

�

(A

+

e

2

)) � C

�

(A

+

�

1

) and ~�

0

(C

�

(A

�

e

1

)) � C

�

(A

�

�

2

)

and we finally define the kink homomorphisms:

� := (�

+

1

)

�1

� ~� : C

�

(A

+

e

2

)

-

C

�

(A

+

e

1

)

�

0

:= (�

�

2

)

�1

� ~�

0

: C

�

(A

�

e

1

)

-

C

�

(A

�

e

2

) :

Remark: As mentioned above, we can associate two different types of kink ho-

momorphisms to each kink sector � 2 sec(e

1

; e

2

), namely

(a) kink homomorphisms � which are localized in right wedge regions

W 2 W

+

, i.e.

�j

C

�

(A;W

0

)

= id

C

�

(A;W

0

)
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(b) and kink homomorphisms �0 which are localized in left wedge regions

W

0

2 W

�

, i.e.

�

0

j

C

�

(A;W )

= id

C

�

(A;W )

:

Notation:

(i) We denote the set of all kink homomorphisms, which interpolate the vacua

e

1

; e

2

, by �(q; e

1

; e

2

). The value q 2 Z
2

is called the orientation of a kink

homomorphism where we set q = 1 for kink homomorphisms which are

localized in right wedge regions and q = �1 for those which are localized

in left wedge regions.

(ii) For each kink homomorphism � we choose one wedge region supp(�) in

which � is localized.

3.2 Fusion, Subobjects, Direct Sums and Conjuga-

tion

The kink homomorphisms, which are discussed in the previous section, can be

used to build the composition, direct sums and the conjugation of kink sectors. We

shall see that the set of kink sectors is closed under these operations.

3.2.1 Composition of Kink Sectors

Let � 2 sec(e

1

; e

2

) and ^

� 2 sec(e

2

; e

3

) be kink sectors. Then we can choose either

kink homomorphisms with orientation q = 1 or q = �1 to define their product.

(a) Let � 2 �(1; e

1

; e

2

) and �̂ 2 �(1; e

2

; e

3

) be kink homomorphisms such that

[�

+

1

� �] = � and [�

+

2

� �̂] =

^

�. Then we define:

� �

(r)

^

� := [�

+

1

� ��̂] : (3.5)

(b) On the other hand, let �0 2 �(�1; e

1

; e

2

) and �̂0 2 �(�1; e

2

; e

3

) be kink

homomorphisms with [�

�

2

� �

0

] = � and [�

�

3

� �̂

0

] =

^

�. Then we define the

product by:

� �

(l)

^

� := [�

�

3

� �̂

0

�

0

] : (3.6)
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Proposition 3.2.1 : Let �; ^� be kink sectors. If the source s(^�) of ^� and the range

r(�) of � coincide, then the following statements hold.

(1) The products, which are given by equation (3.5) and (3.6), coincide and de-

pend only on the sectors � and ^

�, i.e.:

�

^

� := � �

(r)

^

� = � �

(l)

^

� :

(2) The product �^� is a kink sector with source

s(�

^

�) = s(

^

�) and range r(�

^

�) = r(�) :

Proof. The proof can be found in [23, 71]. �

Remark:

(i) For the investigation of the fusion rules for kink sectors, it is sufficient, ac-

cording to Proposition 3.2.1, to consider products of kink homomorphisms

with orientation q = 1.

(ii) The product of two kink sectors can only be defined if the source of one of

the sectors coincides with the range of the other. This is different in the DHR

case where any two sectors can be composed.

3.2.2 Subobjects and Direct Sums

In order to discuss subobjects and direct sums, we mention some important prop-

erties of operators which intertwine kink representations.

Remark:

(i) Let � 2 �(e

1

; e

2

) and �̂ 2 �(e

0

1

; e

0

2

) be two kink representations. Then we

conclude from Proposition 3.1.3, that, if e
1

6= e

0

1

or e
2

6= e

0

2

, then � and �̂

are disjoint.

(ii) Let �; �̂ 2 �(1; e

1

; e

2

) be kink homomorphisms, localized in W , and let

�

1

be a vacuum representation, belonging to the sector e
1

. Then each inter-

twiner ~v

~v �

+

1

� �j

C

�

(A)

(�) = �

+

1

� �̂j

C

�

(A)

(�) ~v
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is contained in A
�

1

(W ). Hence v := (�

+

1

)

�1

(~v) 2 A

e

1

(W ) intertwines �

and �̂, i.e.:

v �(�) = �̂(�) v : (3.7)

Thus it is sufficient to consider operators which intertwine kink homomorphisms

to investigate reduction schemes for kink representations.

Notation: The vector space of operators, which intertwine the kink homomor-

phisms � and �̂ (equation (3.7)), is denoted by (�̂j�).

Subobjects: A kink homomorphism �

1

is called a subobject of a kink homomor-

phism �, if there is an isometry v 2 (�j�

1

) and we write �
1

� �.

Direct Sums: Conversely, we are able to define the direct sum �

1

��

2

for each pair

of kink homomorphisms �
1

; �

2

with s(�
1

) = s(�

2

) and r(�
1

) = r(�

2

). According

to [6] we can find two isometries v
1

; v

2

2 A

e

(W ) with complementary range and

we define �
1

� �

2

as follows:

�(a) = (�

1

� �

2

)(a) := v

1

�

1

(a)v

�

1

+ v

2

�

2

(a)v

�

2

: (3.8)

IfW contains the localization regions of �
1

and �
2

, then � is a kink homomor-

phism which is also localized inW . Note that the homomorphism �

1

��

2

depends

on the choice of v
1

; v

2

, whereas the sector [�
1

� �

2

] does not.

Proposition 3.2.2 : The set of kink homomorphisms with orientation q is closed

under multiplication, taking direct sums and subobjects.

Proof. The statement of the proposition follows immediately from the discussion

above. �

Remark:

(i) The set of kink homomorphisms possesses a category structure. The ob-

jects are vacuum sectors e
1

; e

2

and the arrows are kink homomorphisms � 2

�(1; e

1

; e

2

). The composition of arrows is given by the product of kink ho-

momorphisms. The trivial arrow in �(1; e; e) is the identity id+
e

ofC�

(A

+

e

).
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(ii) On the other hand, there is a second category structure, namely the objects

are kink homomorphisms �; �
1

2 �(1; e

1

; e

2

) and the arrows are intertwiner

v 2 (�

1

j�).

Such a structure is also known as a 2-C�-category. See [66] for this notion.

Given arrows �
1

; �

2

2 �(1; e

1

; e

2

), � 2 �(1; e

2

; e

3

) and �̂ 2 �(1; e

0

; e

1

), then

the following distributive laws are fulfilled:

(�

1

� �

2

)�

�

=

�

1

�� �

2

� and �̂(�

1

� �

2

)

�

=

�̂�

1

� �̂�

2

:

Moreover, the sets of arrows �(1; e

1

; e

2

) possesses a partial order relation by the

definition of subobjects.

3.2.3 Conjugation of Kink Sectors

A criterion for the existence of anti-kinks has been established in [71]. We briefly

review the main facts which have been worked out there.

Theorem 3.2.3 : Let � 2 sec(e

1

; e

2

) be a kink sector. If there exists a kink sector
�

� 2 sec(e

2

; e

1

) such that

(a) ��� � e

1

and �

�� � e

2

,

then the following statements are true:

(1) �

� is uniquely determined by (a) and the map

j : � 2 sec(e

1

; e

2

)

-

j(�) =

�

� 2 sec(e

2

; e

1

)

is a cofunctor.

(2) j is an involution which respects direct sums and subobjects:

(i) j � j = id

(ii) j(�
1

� �

2

) = j(�

1

)� j(�

2

)

(iii) If �
1

� �, then j(�

1

) � j(�).

(3) Denote by sp(�) the spectrum of the implementation of the translation group

in a kink representation which belongs to �. Then

sp(�) = sp(j(�)) :
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Proof. The proof of the theorem can be found in [71]. The main tools are taken

from the mathematical theory of sectors, which has been developed by R. Longo

[57, 58] �

Remark:

(i) A kink sector � 2 sec(e

1

; e

2

) fulfills condition (a) if and only if the index of

the W*-inclusion

�(A

e

2

(W )) � A

e

1

(W )

is finite. Here � 2 �(1; e

1

; e

2

) is a kink homomorphism which represents �

and which is localized in W . We refer to [57, 58, 71] for these notions.

(ii) Given two irreducible kink sectors �
1

2 sec(e

1

; e

2

) and �
2

2 sec(e

2

; e

3

)

which fulfill condition (a). Then their product is a finite direct sum of irre-

ducible kink sectors, i.e.:

�

1

�

2

=

M

�

n

�

�

1

;�

2

� :

Here n�
�

1

;�

2

are natural numbers, called fusion coefficients, which are differ-

ent from zero only for a finite number of irreducible kink sectors

� 2 sec(e

1

; e

3

). We conclude from (1) and (2) that the conjugation respects

the fusion rules.

(iii) The statement (3) may be physically interpreted as the fact that the mass of

a kink and its corresponding anti-kink coincide.

The anti-kink sector can be constructed by using the modular data of the wedge

algebra A
e

(W

+

) where the wedge regions W
�

are given by fxjjx0j � �x

1

g. Let

(H

e

; �

e

;


e

) be the GNS-triple of a vacuum state which belongs to e. Then we

denote by (J

e

;�

e

) the modular data with respect to the pair (A
�

e

(W );


e

). For

technical reasons, let us assume that the net A possesses a PCT symmetry which

is implemented in each vacuum representation �
e

by the modular conjugation J
e

.

Assumption: There is an anti-automorphism j : C

�

(A)! C

�

(A) which reflects

the translations, i.e. j � �
x

= �

�x

� j, and which maps A(O) onto A(�O). It
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is implemented in each vacuum representation �
e

by the modular conjugation J
e

,

i.e.:

�

e

(j(a)) = J

e

�

e

(a)J

e

:

We easily observe that for each vacuum sector e there are extensions j�
e

of j:

j

�

e

:= (�

�

e

)

�1

�Ad(J

e

) � �

�

e

: C

�

(A

�

e

)

-

C

�

(A

�

e

) :

Let �0 2 �(�1; e

1

; e

2

) be a kink homomorphism which belongs to the sector

� 2 sec(e

1

; e

2

). According to [71], a kink homomorphism �� 2 �(1; e

2

; e

1

), which

represents the conjugate sector j(�) (Theorem 3.2.3), is given by

�� := j

�

e

2

� �

0

� j

+

e

1

2 �(1; e

2

; e

1

) : (3.9)

Remark:

(i) The map �0 -

��, which is given by equation (3.9), is the PCT transforma-

tion of the kink homomorphism �

0. If �0 is localized in a left wedge region

W

0, then �� is localized in the PT-reflected region �W 0. In particular, the

PCT transformation changes the orientation of a kink homomorphism.

(ii) Let � be a kink homomorphism, localized in a right wedge regionW . We can

choose a kink homomorphism �

0 which belongs to the same sector as � and

which is localized in the PT-reflected region�W . Then the PCT transforma-

tion �� of �0 is a conjugate kink homomorphism for � which is also localized

in W . The correspondence � -

�

0 may be interpreted as a PT operation

and thus � -

�� is the composition of a PT and a PCT operation which is

nothing else but the charge conjugation.



60 Axiomatic Characterization of Kink States



When Does a Theory Possess

Kink States?4
4.1 Interpolating Automorphisms

Interpolating automorphisms, which are also called soliton automorphisms, have

been introduced by J. Fröhlich [31, Chapter 6] with the aim to give an axiomatic

characterization of soliton sectors in the framework of algebraic quantum field the-

ory. We shall give a precise definition of interpolating automorphisms in Section

4.1.1. In Section 4.1.2, we shall prove that a kink state corresponds to each pair

which consists of a vacuum state and an interpolating automorphism.

4.1.1 Definitions and Notations

Let us consider a quantum field theory in two dimensions which is given by a trans-

lationally covariant Haag-Kastler net A of W*-algebras.

Definiton 4.1.1 : An automorphism � 2 Aut(C

�

(A)) is called a symmetry of the

net A if it preserves the net structure and commutes with the translations:

(1) �(A(O)) = A(O) for each double cone O.

(2) � � �
x

= �

x

� � for each x 2 R2.

We shall denote the group of symmetries by Sym(A).

Definiton 4.1.2 : Given a symmetry � 2 Sym(A), an automorphism � of C�

(A)

is called �-interpolating if it fulfills the conditions, listed below.

61
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(1) There exists a bounded double cone O, such that the relations

�j

C

�

(A;O

LL

)

= id

C

�

(A;O

LL

)

and �j

C

�

(A;O

RR

)

= �j

C

�

(A;O

RR

)

(4.1)

hold.

(2) There exists a strongly continuous map 
�

: R

2

! C

�

(A) which fulfill the

conditions:

(i)

Ad(

�

(x)) = �

x

� � � �

�x

� �

�1

: (4.2)

(ii) The operators fulfill the cocycle condition:



�

(x+ y) = �

x

(

�

(y))

�

(x) : (4.3)

Two interpolating automorphisms �
1

; �

2

are called equivalent if �
1

�

�1

2

is C�

(A)-

inner.

Notation:

(i) The set of all �-interpolating automorphisms is denoted by Aut(�;A). For

each automorphism � 2 Aut(�;A) we choose one double cone supp

I

(�)

which satisfies equation (4.1). We shall call supp
I

(�) the interpolation re-

gion of �.

(ii) We denote by sec(�;A) the set of equivalence classes of �- interpolating au-

tomorphisms and we shall call the elements of sec(�;A) interpolating sec-

tors.

(iii) A function 
�

which fulfills (4.2) and (4.3) is called a cocycle of �.

In [31], an additional property is assumed for the set of interpolating automor-

phisms Aut(�;A). It is demanded that for a given symmetry �, the set sec(�;A)

contains only one equivalence class.
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4.1.2 Kink States, Induced by Interpolating Automorphisms

Proposition 4.1.3 : Let � 2 Sym(A) be a symmetry and let !
0

2 S

0

(A) be a

vacuum state. For each automorphism � 2 Aut(�;A), the state !
0

� � is a kink

state inS([!
0

]; [!

0

� �]).

We postpone the proof of the proposition above since we need some further

results for preparation.

Observation: We observe that the GNS-representation�
0

�� of the state!
0

�� has

the correct interpolation property. Indeed, for each interpolating automorphism

� 2 Aut(�;A) with supp

I

(�) � O, the representation �
�

:= �

0

� � fulfills the

relations:

�

�

j

C

�

(A;O

LL

)

= �

0

j

C

�

(A;O

LL

)

and �

�

j

C

�

(A;O

RR

)

�

=

�

�

j

C

�

(A;O

RR

)

(4.4)

where �
�

denotes the GNS-representation of !
0

� �.

Thus it remains to be proven that !
0

�� fulfills the Borchers criterion (positivity

of the energy), which follows by applying the statement of [31, Theorem 7]. Since

a detailed proof of [31, Theorem 7] is not given there, we shall present a complete

proof of Proposition 4.1.3. In comparison to [31], we use methods of a completely

model-independent analysis [18, 19].

Preparation of the Proof: In the first step, we shall prove that the representation

�

�

is translationally covariant.

Proposition 4.1.4 : For each translationally covariant representation (H; �), the

representation � � � is translationally covariant.

Proof. Let 
�

be a cocycle of � and U be a strongly continuous unitary represen-

tation which implements the translations in the representation �. Using equation

(4.3), we obtain by a straight forward computation [18, 19]:

� � � � �

x

= Ad( U(x)�(

�

(�x)) ) � � � � (4.5)

Thus

x

-

U(x)�(

�

(�x)) (4.6)

is a strongly continuous unitary representation of the translation group, implement-

ing the translations in the representation � � �. �
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Notation: Let (H
0

; �

0

) be a vacuum representation and let � be an interpolating

automorphism. We define

U

�

(x) := U

0

(x)�

0

(

�

(�x)) (4.7)

and denote the spectrum (of the generator) ofU
�

by S(�) whereU
0

implements the

translations in the representation �
0

.

In order to establish the statement of Proposition 4.1.3, we shall prove thatS(�)

is contained in the closed forward light cone. For this purpose, we prove the addi-

tivity of the energy-momentum spectrum.

Lemma 4.1.5 : Let f�
j

2 Aut(�

j

;A); j = 1; 2g be a pair of interpolating auto-

morphisms, then the additivity of the energy-momentum spectrum holds:

S(�

1

) + S(�

2

) � S(�

1

�

2

) :

Proof. The proof is standard and we can apply the methods which are used for

the treatment of the DHR-framework [18, 19]. We also refer to [31]. The only

difference which appears here consists of the fact that the representations �
j

are

localized in wedge regions and not in double cones. But for the proof it is sufficient

that �
j

acts as a symmetry on those observables which are localized in the right

space-like complement of supp
I

(�).

Let f
j

, j = 1; 2, be test functions with supp

~

f

j

� S(�

j

) and let a 2 A(O) be a

local operator. Then the operators

a

j

:=

Z

dx f

j

(x)

j

(x)�

x

a

have energy-momentum transfer in supp

~

f

j

where 
j

is a cocycle of �
j

.

This implies that

	

1

:= �

0

(a

1

)


0

2 H

0

has energy-momentum support in supp

~

f

1

and that

	

2

:= �

0

(�

1

(a

2

))


0

2 H

0

has energy-momentum support in supp

~

f

2

. Moreover,

	 := �

0

(�

1

(a

2

)a

1

)


0
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has energy-momentum support in supp

~

f

1

+ supp

~

f

2

which remains also true for

	

y

:= �

0

(�

1

(a

2

))U

�

1

(y)�

0

(a

1

)


0

:

Using the cluster theorem and the fact that a
1

and a
2

are almost local operators

we conclude that

lim

y

1

�jy

0

j!�1

jj	

y

jj

2

= lim

y

1

�jy

0

j!�1

h


0

; �

0

( a

�

1

�

1

(�

�y

(a

�

2

a

2

)) a

1

)


0

i

= lim

y

1

�jy

0

j!�1

h


0

; �

0

( a

�

1

�

�y

�

1

(a

�

2

a

2

) a

1

)


0

i

= lim

y

1

�jy

0

j!�1

h


0

; �

0

(a

�

1

a

1

)�

0

(�

�y

�

1

(a

�

2

a

2

))


0

i

= lim

y

1

�jy

0

j!�1

h


0

; �

0

(a

�

1

a

1

)U

0

(�y)�

0

(�

1

(a

�

2

a

2

))


0

i

= h


0

; �

0

(a

�

1

a

1

)


0

ih


0

; �

0

(�

1

(a

�

2

a

2

))


0

i

= jj	

1

jj

2

jj	

2

jj

2

:

We conclude that for jj	
j

jj 6= 0 there exists at least one y 2 R2 such that

	

y

6= 0. The lemma follows since the vector 	
y

is a non-zero vector in the repre-

sentation Hilbert space of �
1

�

2

with spectral support in S(�
1

) + S(�

2

). �

According to Section 3.2.3 (Theorem 3.2.3), there exists a conjugate

�� 2 Aut(�

�1

;A) for � which is given by

�� := j � �

�1

� � � j (4.8)

where we have assumed the existence of a PCT-symmetry j for technical reasons.

Lemma 4.1.6 : The interpolating automorphisms ��1 and �� are equivalent. In

particular, S(�) = S(�

�1

).

Proof. Since � is an automorphism, we conclude from Theorem 3.2.3 and

[36, 58, 71] that �
�

� �

�1 and �
�

� �� are unitarily equivalent for each symmetry �,

i.e.

[�

�

� �

�1

] = [�

�

� ��] :
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This implies

S(�

�1

) = S(��) = S(�)

and the proof is completed. �

Proposition 4.1.7 : For each automorphism � 2 Aut(�;A), the representation

�

0

� �

is a positive energy representation.

Proof. Using the additivity of energy-momentum spectrum (Lemma 4.1.5), we

conclude that S(�) + S(�

�1

) � S(�

0

). Since S(�) = S(�

�1

) (Lemma 4.1.6), we

finally obtain:

S(�) �

�

V

+

: (4.9)

�

Proof of Proposition 4.1.3: For each automorphism � 2 Aut(�;A), we conclude

from Proposition 4.1.7 and equation (4.4) that �
0

� � is a positive energy represen-

tation which satisfies the required interpolation property. �

We close this section by discussing the relation between interpolating automor-

phisms and kink homomorphisms. For this purpose, we repeat some notions of

Chapter 3.

For each vacuum sector e 2 sec

0

(A), we consider the nets

A

�

e

:W 2 W

�

-

A

e

(W )

where A
e

(W ) is the W*-completion of the C*-algebra C�

(A;W ), defined in Sec-

tion 3.1.2. The corresponding C*-inductive limits C�

(A

�

e

) are extensions of the

C*-algebra C�

(A). Furthermore, we denoted by id

�

e

the identity of C�

(A

�

e

). Let

�

0

be a vacuum representation which belongs to e, then we denote by e
�

the vac-

uum sector [�
0

� �].

Proposition 4.1.8 : Let � 2 Aut(�;A) be an interpolating automorphism and

let e 2 sec

0

(A) be a vacuum sector. Then there exists a unique kink homomorphism

�

(e;e

�

)

: C

�

(A

+

e

�

)

-

C

�

(A

+

e

)
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such that

�

(e;e

�

)

j

C

�

(A)

= � : (4.10)

Moreover, for each unitary operator v 2 C�

(A) one has:

(Ad(v) � �)

(e;e

�

)

= Ad(v) � �

(e;e

�

)

: (4.11)

Proof. Using the interpolation property (equation (4.1)) and the translation co-

variance of the representation �
0

� � (Proposition 4.1.4), we conclude that there

exist unique extensions (�
0

� �)

+ and (�

0

� �)

� of the representation �
0

� � to the

C*-algebrasC�

(A

+

e

�

) andC�

(A

�

e

) respectively. According to Chapter 3, we obtain

the desired C*-algebra homomorphism:

�

(e;e

�

)

:= (�

+

0

)

�1

� (�

0

� �)

+

:

Here �+
0

denotes the extension of �
0

to the algebra C�

(A

+

e

). Equation (4.11) is

obviously fulfilled. �

4.2 A General Construction Scheme

In Section 4.2.1, we establish sufficient conditions for the existence of kink sectors.

We use a general construction scheme which can also be applied if any two vacuum

sectors are not related by a symmetry. Hence the results of the subsequent analysis

go beyond those which have been presented in [31, 32].

We shall describe in Section 4.2.2 in which manner a multiple application of

our construction scheme leads to states which can be interpreted as multi-kinks.

4.2.1 An Existence Criterion

We consider a Haag-Kastler net A of W*-algebras which possesses at least two

inequivalent vacuum states.

Notation: We denote by A
 A the net which is given by the twofold W*-tensor

product of A, i.e.:

A 
 A : O

-

(A 
 A)(O) := A(O) 
 A(O) (4.12)
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Theorem 4.2.1 : If there exists an interpolating automorphism� 2 Aut(�

F

;A
A),

then for each pair of vacuum sectors e
1

; e

2

2 sec

0

(A) there exists a kink state

! 2 S(e

1

; e

2

).

Proof. It is obvious that the flip automorphism�

F

, which is given by exchanging

the tensor factors, is a symmetry of A
 A. Let !
1

; !

2

2 S

0

(A) be vacuum states

and let � 2 Aut(�

F

;A
A) be an �
F

-interpolating automorphism. We denote by

(H

j

; �

j

;


j

) the GNS-triple of !
j

(j = 1; 2).

According to Proposition 4.1.7,

�

�

:= �

1


 �

2

� �j

C

�

(A)
1

is a positive energy representation. Using the Theorem of Reeh and Schlieder, we

conclude that

�

�

(C

�

(A;O

LL

[ O

RR

))


1





2

= �

1

(C

�

(A;O

LL

))


1


 �

2

(C

�

(A;O

RR

))


2

is dense in H
1


H

2

. Thus the representation �
�

is cyclic and therefore unitarily

equivalent to the GNS-representation of the state

! = !

1


 !

2

� �j

C

�

(A)
1

: (4.13)

We derive from the properties of � the relations:

�

�

j

C

�

(A;O

LL

)

�

=

�

1


 1

H

2

j

C

�

(A;O

LL

)

�

=

quasi

�

1

j

C

�

(A;O

LL

)

�

�

j

C

�

(A;O

RR

)

�

=

1

H

1


 �

2

j

C

�

(A;O

LL

)

�

=

quasi

�

2

j

C

�

(A;O

RR

)

where the symbol�
=

quasi

means quasi equivalent. Using the fact that for each wedge

region W the von Neumann algebras A
�

j

(W ), j = 1; 2, are type III factors [21],

we conclude by using standard arguments:

�

�

j

C

�

(A;O

LL

)

�

=

�

1

j

C

�

(A;O

LL

)

and �

�

j

C

�

(A;O

RR

)

�

=

�

2

j

C

�

(A;O

RR

)

:

This implies that !, given by equation (4.13), is a kink state which interpolates

the vacua e
1

= [!

1

] and e
2

= [!

2

]. �
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4.2.2 Multi-Kink States

Motivated by the result of the previous section, we introduce the notion of the in-

terpolating product which turns out to be of practical advantage for the discussion

of multi-kink states.

Definiton 4.2.2 :

(1) Let � 2 Aut(�

F

;A 
 A) be an interpolating automorphism. We shall call

the homomorphism

� := �j

C

�

(A)
1

: C

�

(A)

-

C

�

(A 
 A) (4.14)

the interpolating co-product with respect to �.

(2) Let !
1

; !

2

2 S(A) be locally normal states. The state

�

�

(!

1


 !

2

) := !

1


 !

2

�� (4.15)

is called the �-interpolating product of !
1

and !
2

. Analogously, we define

the �-interpolating product of two representations �
1

; �

2

.

Observation: We easily observe, that the sector [�
�

(!

1


 !

2

)] depends only on

the sectors [!
1

]; [!

2

] and the interpolating sector [�] 2 sec(�

F

;A
 A). Hence we

obtain a well defined map

� : sec(�

F

;A 
 A)� sec(A)� sec(A)

-

sec(A) (4.16)

which is given by

(�; �

1

; �

2

)

-

�

�

(�

1


 �

2

) := [�

�

(!

1


 !

2

)] (4.17)

with �
j

= [!

j

] and � = [�].

Furthermore, we conclude from Proposition 4.1.4 that �
�

(�

1


 �

2

) is transla-

tionally covariant if both, �
1

and �
2

, are translationally covariant.

According to the proofs of Proposition 4.1.3 and Theorem 4.2.1, we easily de-

rive the following generalization:
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Corollary 4.2.3 : Let ! 2 S(e

1

; e

2

) and !̂ 2 S(ê

1

; ê

2

) be kink states and let �

be an �
F

-interpolating automorphism. Then the �-interpolating product

�

�

(! 
 !̂) (4.18)

is a kink state inS(e
1

; ê

2

). In particular, let e
1

; � � � ; e

3

be vacuum sectors and let

�

1

; �

2

be �
F

-interpolating sectors. Then

�

�

1

(e

1


 �

�

2

(e

2


 e

3

)) (4.19)

is a kink sector in sec(e

1

; e

3

).

Since the right vacuum (source) of �
�

1

(e

1


 e

2

) and the left vacuum (range) of

�

�

2

(e

2


 e

3

) coincide, i.e.

s(�

�

1

(e

1


 e

2

)) = r(�

�

2

(e

2


 e

3

)) = e

2

; (4.20)

we can build the fusion (see Section 3.2.1):

�

�

1

(e

1


 e

2

)�

�

2

(e

2


 e

3

) 2 sec(e

1

; e

3

) : (4.21)

We shall prove that the kink sector, which is given by equation (4.19), is noth-

ing else but the product sector (equation (4.21)).

Theorem 4.2.4 : Let e
1

; � � � ; e

3

be vacuum sectors and let �
1

; �

2

be�
F

-interpolating

sectors. Then

�

�

1

(e

1


 �

�

2

(e

2


 e

3

)) = �

�

1

(e

1


 e

2

)�

�

2

(e

2


 e

3

) : (4.22)

Let us establish another useful result, before we turn to the proof of

Theorem 4.2.4.

Lemma 4.2.5 : Let e
1

; e

2

; e

3

2 sec

0

(A) be vacuum sectors, let � 2 �(1; e

2

; e

3

)

be a kink homomorphism and let � 2 Aut(�

F

;A 
 A) be an interpolating au-

tomorphism. If the interpolation region supp

I

(�) is contained in the space-like

complement of supp(�), then

(id

+

e

1


 �) � � = �

(e

1


e

2

;e

2


e

1

)

� (�
 id

+

e

1

) :

Here �
(e

1


e

2

;e

2


e

1

)

is the extension of � which is given due to Proposition 4.1.8.
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Proof. Since supp

I

(�) and supp(�) are space-like separated, we can choose a

right wedge regionW 2 W

+

such that

�j

C

�

(A 
 A;W )

= �

F

j

C

�

(A 
 A;W )

and �j

C

�

(A;W

0

)

= id

C

�

(A;W

0

)

:

Let O be a double cone. Using the translation covariance of � and �, there are

unitary intertwiners 
�

2 C

�

(A

+

e

2

) and 
�

2 C

�

(A 
 A) such that the homomor-

phisms

�̂ := Ad(

�

�

) � � and ^

� := Ad(

�

�

) � �

have the localizing properties:

^

�j

C

�

(A 
 A;O

RR

)

= �

F

j

C

�

(A 
 A;O

RR

)

and �̂j

C

�

(A;O

LL

)

= id

C

�

(A;O

LL

)

:

This implies for each a 2 (A 
 A)(O):

(id

+

e

1


 �) � �(a) = Ad(1
 

�

) � (id

+

e

1


 �̂) � �(a)

= Ad(1
 

�

) � �(a)

= Ad((1
 

�

)

�

) �

^

�(a)

= Ad((1
 

�

)

�

)(�

F

(a))

Keeping in mind that 
�

intertwines also the extensions �
(e

1


e

2

;e

2


e

1

)

and ^

�

(e

1


e

2

;e

2


e

1

)

(Proposition 4.1.8), we obtain on the other hand:

�

(e

1


e

2

;e

2


e

1

)

� (�
 id

+

e

1

)(a) = Ad(

�

) �

^

�

(e

1


e

2

;e

2


e

1

)

� (�
 id

+

e

1

)(a)

= Ad(

�

) � (id

+

e

1


 �)(�

F

(a))

= Ad(

�

(1
 

�

))(�

F

(a)) :

If the double cone O is large enough, i.e. O
RR

� W and O � supp

I

(�), then 
�

is contained in A
e

2

(W ) and 
�

is contained in C�

(A 
 A;W

0

). Thus 1 
 

�

and



�

commute. Since O can be chosen arbitrarily large, the result follows. �
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Proof of Theorem 4.2.4: Let � be an interpolating automorphism and let

f�

j

; j = 1; 2; 3g be vacuum representations, such that [�] = �

1

and [�

j

] = e

j

.

We choose a kink homomorphism � 2 �(1; e

2

; e

3

) with [�] = �

�

2

(e

2


 e

3

) and

supp(�) � supp

I

(�)

0. We conclude from Lemma 4.2.5:

(�

1


 (�

+

2

� �)) � � = (�

1


 �

2

)

+

� �

(e

1


e

2

;e

2


e

1

)

� (�
 id

+

e

1

)

Let �
�

(�

1


 �

2

)

+ be the extension of the kink representation �
�

(�

1


 �

2

) to the

algebra C�

(A

+

e

2

), then we obtain:

(�

1


 (�

+

2

� �)) � �j

C

�

(A)
1

= �

�

(�

1


 �

2

)

+

� �j

C

�

(A)

:

Finally, we get:

�

�

1

(e

1


 �

�

2

(e

2


 e

3

)) = [�

�

(�

1


 �

2

)

+

� �j

C

�

(A)

]

= �

�

1

(e

1


 e

2

)�

�

2

(e

2


 e

3

) :

�

According to Theorem 4.2.4, multiple products of kink sectors can be com-

puted in a very convenient manner. To illustrate this, we choose a family of inter-

polating automorphisms

�

1

; � � � ; �

n

2 Aut(�

F

;A 
 A)

and vacuum states

!

1

; � � � ; !

n+1

2 S

0

(A)

such that supp
I

(�

j

) � supp

I

(�

j+1

)

LL

, i.e. the double cone supp
I

(�

j

) is placed in

the left space-like complement of supp
I

(�

j+1

). We conclude from Theorem 4.2.4

that the product sector

^

� := [�

�

1

(!

1


 !

2

)][�

�

2

(!

2


 !

3

)] � � � [�

�

n

(!

n


 !

n+1

)]

can be represented by the state

!̂ := �

�

1

(!

1


 �

�

2

(!

2


 � � ��

�

n

(!

n


 !

n+1

) � � � ))

which describes a configuration of n space-like separated kinks. To justify this

interpretation, we shall prove the corollary below.

Corollary 4.2.6 : Let !̂ be the product state, defined above. Then

8a 2 A(supp

I

(�

j

)

RR

\ supp

I

(�

j+1

)

LL

) : !̂(a) = !

j

(a) : (4.23)
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Proof. We express !̂ in terms of the interpolating co-products

f�

j

= �

j

j

C

�

(A)
1

; j = 1; � � � ; ng:

!̂ = (!

1


 � � � 
 !

n+1

) � (id


n�1


�

n

) � � � � � (id
�

2

) ��

1

(4.24)

Let a be an observable which is localized in supp

I

(�

j

)

RR

\ supp

I

(�

j+1

)

LL

, then

we obtain:

(id


n�1


�

n

) � � � � � (id
�

2

) ��

1

(a)

= (id


n�1


�

n

) � � � � � (id
�

2

)(1
 a)

= (id


n�1


�

n

) � � � � � (id


j�1


�

j

)(1


(j�1)


 a)

= (id


n�1


�

n

) � � � � � (id


j


�

j+1

)(1


(j�1)


 a
 1)

= 1


(j�1)


 a
 1


(n�j�1)

:

Hence we have:

!̂(a) = !

j

(a) : (4.25)

�

4.3 Construction of Kink States via Universal Local-

izing Maps

In the previous section, the existence of an interpolating automorphisms is the cru-

cial condition in order to construct kink states (Theorem 4.2.1). But how can we

conclude whether the set of interpolating automorphisms is empty or not? It seems

to be very difficult to decide this question by only assuming the Haag-Kastler ax-

ioms for the net A.

In order to formulate additional conditions for the netAwe give a brief discus-

sion of standard split inclusions in Section 4.3.1. Assuming the conditions, formu-

lated in Section 4.3.1, we prove in Section 4.3.2 the existence of interpolating auto-

morphisms which implies the main result of this section: For each pair of vacuum

states there exists an interpolating kink state (Corollary 4.3.7).
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4.3.1 Standard Split Inclusions and Universal Localizing Map

We now describe a concept, invented by S. Doplicher and R. Longo [20], which

will play a crucial role for our subsequent analysis.

We consider a pair of W*-algebrasA;B which are faithfully represented on a

separable Hilbert space H.

Definiton 4.3.1 :

(a) If A is a sub-algebra of B, i.e. A � B, we call the pair (A;B) of W*-

algebras a W*-inclusion. A vector  2 H is called a standard vector for

the inclusion (A;B) if  is cyclic and separating for A;B and A0

^ B.

(b) A W*-inclusion (A;B) is called split if there exists a type I factor N such

that A � N � B. If  2 H is a standard vector for (A;B), the triple

(A;B; ) is called a standard split inclusion.

Remark: We note that the group U(H) of unitary operators on H acts on the set

of all standard split inclusions � = (A;B; ). Indeed, let u 2 U(H) be a unitary

operator, then u� := (uAu

�

; uBu

�

; u ) is also a standard split inclusion.

Proposition 4.3.2 : Let � = (A;B; ) be a standard split inclusion. Then the

following statements hold:

(1) There exists a unitary operatorw
�

: H
H ! H such that the W*-isomorphism

	

�

:= Ad(w

�

) satisfies the relation:

	

�

(b

0


 a) = b

0

a for each b0 2 B0 and for each a 2 A

(2) There exists a canonical type I factor N
�

between A and B, which is given

by

A � 	

�

(1

H


B(H)) = N

�

� B :

(3) Let u be a unitary operator in U(H). Then

	

u�

= Ad(u) �	

�

�Ad(u

�


 u

�

) :
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Proof. The proof is standard and can be obtained from [20, 9]. For reasons of

convenience, we cite the main steps of it here.

(1) Since � is a split inclusion, there is a (canonical) product vector �
�

2 H,

such that

h�

�

; b

0

a�

�

i = h ; b

0

 i � h ; a i for each b0 2 B0 and for each a 2 A

and �
�

is cyclic for B0

_A. Hence

w

�

(b

0

a�

�

) := b

0

 
 a 

defines a unitary operator with the desired property.

(2) We conclude from the construction of w
�

:

A = 	

�

(1

H


 A) = w

�

(1

H


 A)w

�

�

B

0

= 	

�

(B

0


 1

H

) = w

�

(B

0


 1

H

)w

�

�

and therefore

A � 	

�

(1

H


B(H)) � B :

(3) By a straight forward computation, we obtain

uw

�

(u

�


 u

�

) = w

u�

which implies the result.

�

Notation: We shall call the W*-isomorphism	

�

, which is given above, the uni-

versal localizing map of the standard split inclusion �.

Let A be a translationally covariant Haag-Kastler net. Each pair (!;O) which

consists of a state ! and a double cone O, can be identified with a W*-inclusion:

(!;O)

-

(A

�

(O

RR

);A

�

(O

R

))

where � is the GNS-representation of !. 1

1Alternatively, we can also choose the inclusion (A

�

(O

LL

);A

�

(O

L

)). For our purpose, it is

sufficient to consider one of both possibilities.
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Definiton 4.3.3 : Let ! 2 S(A) be a state and O be a double cone. We denote

by (H; �;
) the GNS-triple of !. We shall call the pair (!;O) a standard split

inclusion if

� := (A

�

(O

RR

);A

�

(O

R

);
)

is a standard split inclusion. Furthermore, we write 	
(!;O)

for the universal local-

izing map of the inclusion �.

An application of Proposition 4.3.2 gives:

Corollary 4.3.4 : Let ! 2 S(A) be a translationally covariant state and let O

be a double cone. If � = (!;O) is a standard split inclusion, then the statements

below hold.

(1) 8x 2 R2: �(x) := (! � �

x

;O + x) is a standard split inclusion.

(2) LetU be the implementation of the translation group in the GNS-representation

� of !. Then the universal localizing map 	

(!;O)

is translationally covari-

ant:

	

�(x)

= Ad(U(x)) �	

�

�Ad(U(�x)
 U(�x)) :

Proposition 4.3.5 : Let !; !
1

; !

2

2 S

0

(A) be vacuum states. Then the state-

ments, listed below, are true.

(1) Let O �

^

O be an inclusion of double cones. If � = (!;O) is a standard

split inclusion, then ^

� = (!;

^

O) is a standard split inclusion.

(2) If �
1

= (!

1

;O

1

) and �

2

= (!

2

;O

2

) are standard split inclusions, then the

tensor product

�

1


 �

2

:= (!

1


 !

2

;O

1

[ O

2

)

is a standard split inclusion.

Proof. Let (H; �;
) and (H

j

; �

j

;


j

) be the GNS-triples of ! and !
j

; j = 1; 2

respectively.
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(1) Using the Reeh-Schlieder property of the GNS-vector 
, we conclude that

for each double cone O, 
 is a standard vector for the inclusion

(A

�

(O

RR

);A

�

(O

R

)) :

If the inclusion (A
�

(O

RR

);A

�

(O

R

)) is split, then the inclusion (A
�

(

^

O

RR

);A

�

(

^

O

R

))

is split for O �

^

O. Thus ^

� is a standard split inclusion which implies (1).

(2) By (1), it is sufficient to prove (2) for the case O
1

= O

2

. If �
1

= (!

1

;O)

and �

2

= (!

2

;O) are standard split inclusions, then we conclude from

[20, capter 9] that the tensor product �
1


 �

2

= (!

1


 !

2

;O) is also a

standard split inclusion which implies (2). Note that the relation

(A

�

1


 A

�

2

)(W ) = A

�

1

(W ) 
 A

�

2

(W ) holds for each wedge regionW .

�

4.3.2 Construction of Interpolating Automorphisms and Kink

States

The results of the previous section can be used to formulate conditions for the ex-

istence of interpolating kink states. First, we shall prove the following result:

Theorem 4.3.6 : Let � 2 Sym(A) be a symmetry, let ! 2 S

0

(A) be a vacuum

state and let O be a double cone such that:

(a) The vacuum ! is �-invariant: ! � � = !.

(b) The pair � = (!;O) is a standard split inclusion.

Then there exists a canonical�-interpolating automorphism�

�

2 Aut(�;A)which

depends on the inclusion �.

Before we prepare the proof, we want to discuss some consequences and ap-

plications of Theorem 4.3.6.

The statement of Theorem 4.2.1 tells us that the existence of an�
F

-interpolating

automorphism � 2 Aut(�

F

;A 
 A) of the twofold theory A 
 A is a sufficient

condition for the existence of interpolating kink states. We conclude from Theo-

rem 4.3.6:

Corollary 4.3.7 : If there exists a vacuum state!
0

2 S

0

(A) such that� = (!

0

;O)

is a standard split inclusion for a double cone O, then for each pair of vacuum

states !
1

; !

2

2 S

0

(A) there exists a kink state ! 2 S(!
1

; !

2

) .
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Proof. Let us suppose that � = (!

0

;O) is a standard split inclusion. Since the

state !
0


 !

0

is �
F

-invariant and �
 � is a standard split inclusion (Proposition

4.3.5), the conditions (a) and (b) of Theorem 4.3.6 are fulfilled. Hence there is a

canonical �
F

-interpolating automorphism

�

�

= �

�
�

F

2 Aut(�

F

;A 
 A)

associated with �. Finally, we conclude from Theorem 4.2.1 that the interpolating

product

�

�

�(!

1


 !

2

) 2 S(!

1

; !

2

)

is a kink state for each pair of vacuum states !
1

; !

2

2 S

0

(A). �

Preparation of the proof of Theorem 4.3.6: We assume that ! is a �-invariant

vacuum state and that there is a double cone O such that � = (!;O) is a standard

split inclusion. First, we shall show that the pair (�;�) induces an automorphism

�

� of the C*-algebra C�

(A).

Observation: Since ! is �-invariant, there is a unitary operator u which imple-

ments � in the GNS-representation � of !, i.e.:

� � � = Ad(u) � � (4.26)

Let 	
�

be the universal localizing map which corresponds to the standard split

inclusion � = (!;O), then

u

�

:= 	

�

(1

H


 u) (4.27)

is a unitary operator which is contained in A
�

(O

R

). Moreover, we have for each

a 2 C

�

(A;O

RR

) and for each a0 2 C�

(A;O

LL

):

u

�

�(a) = �(�(a))u

�

and u

�

�(a

0

) = �(a

0

)u

�

: (4.28)

Lemma 4.3.8 : Let u
�

be the unitary operator, given above. If the double cone ^

O

contains O, then

Ad(u

�

)(A(

^

O)) � A

�

(

^

O) :
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Proof. We choose an operator b 2 C�

(A;

^

O

RR

) and we obtain by using equation

(4.28):

u

�

�(a)u

�

�

�(b) = u

�

�(a�(b))u

�

�

= u

�

�(�(b)a)u

�

�

= �(b)u

�

�(a)u

�

�

This implies that the operator

u

�

�(a)u

�

�

is contained in A
�

(

^

O

RR

)

0

= A

�

(

^

O

L

). On the other hand, u
�

�(a)u

�

�

is also con-

tained in A
�

(

^

O

R

). By using Haag duality for the net A
�

, we finally conclude that

u

�

�(a)u

�

�

2 A

�

(

^

O

R

) ^ A

�

(

^

O

L

) = A

�

(O)

which completes the proof. �

Observation: According to Lemma 4.3.8, the automorphism Ad(u

�

) maps lo-

cal algebras into local algebras. Since � is a faithful representation of C�

(A), it

follows that

�

�

: a

-

�

�1

(u

�

�(a)u

�

�

)

is a well defined automorphism of C�

(A).

Lemma 4.3.9 : Let �� be the automorphism, given above. Then there exists a

strongly continuous map 
�

: R

2

! C

�

(A) with the properties:

(1)

Ad(

�

(x)) = �

x

� �

�

� �

�x

� (�

�

)

�1

: (4.29)

(2) The operators 
�

(x) fulfill the cocycle condition:



�

(x+ y) = �

x

(

�

(y))

�

(x) : (4.30)

Proof. The translation covariance of the universal localizing map implies

u

�(x)

= U(x)u

�

U(�x), where U implements the translations in the vacuum rep-

resentation �. This implies for O
RR

� O

RR

+ x and a 2 C�

(A;O

RR

+ x):

�(�(a)) = u

�

�(a)u

�

�

= u

�(x)

�(a)u

�

�(x)

:
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Hence u
�(x)

u

�

�

is contained inA
�

(O

L

+x). On the other hand u
�(x)

u

�

�

is contained

in A
�

(O

R

) and we obtain by using Haag duality:

u

�(x)

u

�

�

2 A

�

(O

R

\ (O

L

+ x)) :

For the case O
RR

� O

RR

+ x, we obtain analogously:

u

�(x)

u

�

�

2 A

�

((O

R

+ x) \ O

L

) :

Writing x 2 R2 as a sum of space-like vectors x = x

1

+ x

2

, x
1

2 W

+

and

x

2

2 W

�

, we conclude that for each x the operatoru
�(x)

u

�

�

is contained inA
�

(O

x

),

where O
x

is a sufficiently large double cone. For each x we define the unitary op-

erator



�

(x) := �

�1

(u

�(x)

u

�

�

) 2 A(O

x

) : (4.31)

This implies the relation

�

x

� �

�

� �

�x

� (�

�

)

�1

= �

�1

�Ad(u

�(x)

u

�

�

) � � = Ad(

�

(x)) :

It remains to be proven that 
�

fulfills the cocycle condition:



�

(x+ y) = �

�1

(u

�(x+y)

u

�

�

)

= �

�1

(u

�(x+y)

u

�

�(x)

u

�(x)

u

�

�

)

= �

�1

(U(x)u

�(y)

u

�

�

U(�x)u

�(x)

u

�

�

)

= �

�1

(U(x)u

�(y)

u

�

�

U(�x))�

�1

(u

�(x)

u

�

�

)

= �

x

(

�

(y))

�

(x)

which completes the proof. �

Proof of Theorem 4.3.6. According to Lemma 4.3.8 and Lemma 4.3.9, we con-

clude that �� is a �-interpolating automorphism whose interpolation region is lo-

calized in O, i.e.

�

�

j

C

�

(A;O

RR

)

= �j

C

�

(A;O

RR

)

and �

�

j

C

�

(A;O

LL

)

= id

C

�

(A;O

LL

)

:

�
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4.4 Miscellaneous Results

In the present section, we investigate the question how large the class of kink sec-

tors is which can be obtained via our construction scheme. Furthermore, assuming

that the constructed kink representations contain massive one-particle representa-

tions, we establish a lower bound for the corresponding kink masses.

4.4.1 A Completeness Theorem for Simple Kink Sectors

According to Theorem 4.2.1, a kink sector can be constructed if a pair of vacuum

sectors and an �
F

-interpolating automorphism is given. But how large is the set

of kink sectors which can be obtained in such a way? We shall see that this set

contains, for instance, simple kink sectors (see Definition 4.4.2 below).

First, let us establish a preliminary result. We consider a standard split inclu-

sion � = (A;B;
) on a Hilbert space H and denote by 	

�
�

the universal lo-

calizing map with respect to the inclusion �
�. Moreover, let u
F

be the unitary

operator, acting on H
H by exchanging the factors in the tensor product, i.e.:

u

F

:  

1


  

2

-

 

2


  

1

:

The unitary operator

�

�

:= 	

�
�

(1
 u

F

) (4.32)

is contained in B 
 B and implements the flip on A 
 A.

Lemma 4.4.1 : Let �
�

be the unitary operator, given by equation (4.32). Then

B

0


 A � �

�

(B(H)
 1)�

�

� A

0


 B :

Proof. If c 2 B(H), a 2 A and b0 2 B0, then we have

�

�

(c
 1)�

�

(a
 b

0

) = �

�

(c
 ab

0

)�

�

= (a
 b

0

) �

�

(c
 1)�

�

which implies:

�

�

(B(H)
 1)�

�

� A

0


 B :

On the other hand, we obtain analogously:

�

�

(1
B(H))�

�

� B 
 A

0
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This finally gives:

B

0


 A � [�

�

(1
B(H))�

�

]

0

= �

�

(B(H) 
 1)�

�

:

�

Definiton 4.4.2 : We shall call a kink sector � 2 sec(e

1

; e

2

) simple if wedge du-

ality holds in a kink representation � which belongs to �.

Theorem 4.4.3 : Let ! 2 S(e

1

; e

2

) be a kink state which belongs to a simple

sector. If � = (!;O) is a standard split inclusion for a double cone O, then there

exists an �
F

-interpolating sector � 2 sec(�

F

;A 
 A) such that the interpolating

product

�

�

(e

1


 e

2

)

is a countably infinite multiple of [!].

Proof. Let (H; �;
) be the GNS triple of ! and defineA := A

�

(O

RR

) andB :=

A

�

(O

R

). According to Lemma 4.4.1, we obtain:

�

�

(�(a)
 1)�

�

2 A

�

(O

L

) 
 A

�

(O

R

) :

Since duality holds in the representation �, we conclude that

� := (� 
 �)

�1

�Ad(�

�

) � (� 
 �)

is a well defined �
F

-interpolating automorphism (compare also Theorem 4.3.6).

We can choose unitary operators v
1

and v
2

, such that

Ad(v

1

) � �j

C

�

(A;O

L

)

= �

1

j

C

�

(A;O

L

)

and Ad(v

2

) � �j

C

�

(A;O

R

)

= �

2

j

C

�

(A;O

R

)

and we obtain by a straight forward computation:

Ad(�

�

(v

�

1


 v

�

2

)) � �

�

(�

1


 �

2

) = � 
 1

H

:

�
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4.4.2 A Lower Bound Estimate for the Kink Mass

In order to discuss the mass of kink (soliton) states, we consider theories, given by

a Haag-Kastler net A, which possess massive vacuum states. Furthermore, we as-

sume the existence of at least one�
F

-interpolating automorphism� 2 Aut(�

F

;A
A).

We briefly give the definition of massive vacuum and massive one-particle states

here (see also Figure 4.1 for illustration).

Let ! be a translationally covariant state and denote by U an implementation

of the translation group in the GNS-representation of !.

(1) The state! is called a massive vacuum state if the spectrum of (the generator

of) U consists of f0g and a subset of C
�

:= fp 2 R

2

: p

2

> �

2

; p

0

� 0g

where � > 0 is a positive real number, called the mass gap of !. We denote

the set of all massive vacuum states with mass gap � by S
0

(�).

(2) If the spectrum of (the generator of) U consists of the mass shell H
m

:=

fp 2 R

2

: p

2

= m

2

; p

0

� 0g and a subset of C
�+m

, then we call ! a massive

one-particle state with mass m > 0.

�

m

Figure 4.1: The left picture shows the spectrum of a massive vacuum state and the

picture on the right side shows the spectrum of a massive one-particle state.

It has been shown [10, 23, 70], that for each massive one-particle state ! (in

two space-time dimensions), there exist two massive vacuum states !
1

; !

2

, such

that ! interpolates !
1

2 S

0

(�

1

) and !
2

2 S

0

(�

2

).

Conversely, if two inequivalent massive vacuum states !
1

2 S

0

(�

1

) and !
2

2

S

0

(�

2

) are given, then there exists a kink state ! which interpolates !
1

and !
2

,

namely

! = �

�

(!

1


 !

2

) :
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We denote by S(�) the spectrum of U
�

(x), where U
�

is a strongly continuous

representation of the translation group which implements�
x

in the GNS-representation

� of !. Note that, if the vacuum states !
1

and !
2

are inequivalent, then it follows

that 0 =2 S(�).

From Proposition 4.1.7, we conclude that S(�) is a subset of the closed forward

light cone which does not contain the point k = 0. Hence we have

S(�) �

1

2

(S(�

1

) + S(�

2

)) (4.33)

and obtain the estimate:

inf(S(�)) �

1

2

min(�

1

; �

2

) : (4.34)

Here the infimum inf(S(�)) is defined as the the infimum of the spectrum of the

mass operator M = (P

�

P

�

)

1=2, where P is the generator of the translation group

U

�

.

Finally, we conclude that, if the kink sector [�
�

(!

1


 !

2

)] contains a massive

one-particle sector, then its corresponding mass m fulfills the lower bound esti-

mate:

m �

1

2

min(�

1

; �

2

) :



Kink States in Quantum Field

Theory Models5
5.1 Interpolating Automorphisms in Quantum Field

Theory Models

As we can see from the discussion of Chapter 4, interpolating automorphisms are

a key tool in order to construct kink states. In this section we establish sufficient

conditions for the existence of interpolating automorphisms for a concrete quan-

tum field theory model.

5.1.1 Preliminary Results

Let us consider a net of Cauchy dataMwhich is represented on a separable Hilbert

space H
0

(see Section 2.1). According Proposition 2.1.2, a translationally covari-

ant Haag-Kastler net, which we shall denote by A
�

, can be constructed from a

given net of Cauchy dataM and a dynamics � 2 dyn(M).

Definiton 5.1.1 : We denote byG(M) the group of unitary operators u 2 B(H

0

)

whose adjoint actions �
u

:= Ad(u) commute with the spatial translations, i.e.:

�

u

� �

x

= �

x

� �

u

:

Let � 2 dyn(M) be a dynamics of the netM. Then we define the following sub-

group of G(M):

G(�;M) := fu 2 G(M)j�

u

� �

t

= �

t

� �

u

for each t 2 R.g

85
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Remark: Each operator u 2 G(�;M) induces a symmetry of the Haag-Kastler

net A
�

.

We make the following assumptions for the net of Cauchy dataM:

Assumption:

(a) The net M fulfills duality, i.e.

M(I)

0

=M(I

LL

) _M(I

RR

) (5.1)

(b) There exists a dynamics �
0

and a normalized vector 

0

in H
0

, such that

!

0

= h


0

; (�)


0

i

is a vacuum state with respect to the dynamics �
0

.

(c) For each bounded interval I , the inclusion

(M(I

RR

);M(I

R

))

is split.

According to our assumption, we conclude form the Theorem of Reeh and Schlieder

that 

0

is a standard vector for the inclusion (M(I

RR

);M(I

R

)) which implies that

�(I) := (M(I

RR

);M(I

R

);


0

) (5.2)

is a standard split inclusion for each interval I . We denote by 	

I

the universal

localizing map of the inclusion �(I).

Remark: We shall make a few remarks on the assumptions given above.

(i) The results, which we shall establish in the following, remain to be correct

if the net of Cauchy data fulfills twisted duality instead of duality [62, 78].

(ii) For the application of our analysis to quantum field theory models, likeP (�)
2

-

or Yukawa
2

models, we can choose as Cauchy data tensor products of the

time-zero algebras of the massive free Bose or Fermi field. The time-zero

algebras of the massive free Bose field fulfill the assumptions (a) [63] and

(b) and we shall proof in Appendix A (compare also [8]) that (c) is also ful-

filled. Replacing duality by twisted duality, the assumptions (a) to (c) hold

for the massive free Fermi field, too [78].
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(iii) The state !
0

plays the role of a free massive vacuum state, called the bare

vacuum.

Proposition 5.1.2 : Let u 2 G(M) be an operator and let I be a bounded inter-

val. Then there exists a canonical automorphism �

I

u

with the properties:

(1) The relations

�

I

u

j

C

�

(M;I

LL

)

= id

C

�

(M;I

LL

)

and �

I

u

j

C

�

(M;I

RR

)

= �

u

j

C

�

(M;I

RR

)

(5.3)

hold.

(2) There exists a strongly continuous map 1
(u;I)

: �! C

�

(M) such that:

(i)

Ad(

1

(u;I)

(x)) = �

x

� �

I

u

� �

�x

� (�

I

u

)

�1

:

(ii) The cocycle condition is fulfilled:



1

(u;I)

(x+ y) = �

x

(

1

(u;I)

(y))

1

(u;I)

(x) :

Proof.

(1) In the same manner as in the proof of Lemma 4.3.8, we show that

Ad(	

I

(1
 u))(M(

^

I)) �M(

^

I)

if the interval ^I contains I . This implies that

�

I

u

:= Ad(	

I

(1
 u))

is a well defined automorphism of C�

(M). By using the properties of the

universal localizing map 	

I

, we conclude that �I
u

fulfills equation (5.3).

(2) Using the proof of Lemma 4.3.9, we conclude that the statement (2) holds

where 1
(u;I)

(x) is given by:



1

(u;I)

(x) = 	

I+x

(1
 u)	

I

(1
 u

�

) :

�
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5.1.2 A Non-Local Extension of the Net of Cauchy Data

The automorphisms�I
u

, which have been constructed in the previous section, seem

to be good candidates for �
u

-interpolating automorphisms. To decide whether �I
u

is an interpolating automorphism, we have to investigate how �

I

u

is transformed

under the action of a dynamics �.

Let � be a dynamics and G � G(�;M) be a finite subgroup. By using the

universal localizing map 	

I

, we obtain for each bounded interval I a unitary rep-

resentation of G

U

I

: G 3 g

-

U

I

(g) := 	

I

(1
 g) 2M(I

R

) :

In the previous section it has been shown that U
I

(g) implements an automor-

phism �

I

g

which is covariant under spatial translations (Proposition 5.1.2). For a

dynamics � 2 dyn(M), we wish to construct a cocycle 
(g;I)

in order to show that

�

I

g

is an interpolating automorphism. The formal operator



(g;I)

(t;x) := �

(t;x)

(U

I

(g))U

I

(g)

�

seems to be a useful Ansatz since it formally implements the automorphism

�

(t;x)

� �

I

g

� �

(�t;�x)

� (�

I

g

)

�1

:

Unfortunately, the operators U
I

(g) are not contained in C�

(M) and the term

�

(t;x)

(U

I

(g)) has no well defined mathematical meaning. To get a well defined

solution for 
(g;I)

, we construct an extension of the netM which contains the op-

erators U
I

(g) (compare also [62]).

Definiton 5.1.3 : Let G � G(M) be a compact sub-group. The net M o G is

defined by the assignment

M oG : I 7! (M oG)(I) :=M(I) _ U

I

(G)

00

:

To investigate the properties of the net M o G, we briefly explain the notion

of crossed products of von Neumann algebras by compact groups. A detailed de-

scription can be found in text books, for example [7]. We also refer to [46].

(i) Let us consider a W*-algebraA, represented on a separable Hilbert spaceH,

and a compact group G, acting by automorphisms �
g

2 Aut(A) on A. We
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denote by K(G;H) the vector space of all H-valued continuous functions

on G. Consider the inner product

h�j�i :=

Z

d�(g) h�(g); �(g)i

where � and � are functions inK(G;H) and � denotes the normalized Haar

measure on G. We denote by L
2

(G;H) the completion of K(G;H) with

respect to the inner product h�j�i.

(ii) On the Hilbert space L
2

(G;H) we define representations � of A and U ofG

as follows:

(�(a)�)(g) := �

�1

g

(a)�(g) ; a 2 A

(U(g

1

)�)(g) := �(g

�1

1

g)

Denote by 1 the unit of G and by 1 the unit of A. Obviously, U(1) = �(1)

is the identity operator on L
2

(G;H). The crossed productAoG of A byG

is the von Neumann algebra on L
2

(G;H) which is generated by �(A) and

U(G).

For a compact subgroup G � G(M) and a bounded interval I , G acts by au-

tomorphisms onM(I) via the group homomorphism

�

I

: G 3 g

-

�

I

g

2 Aut(M(I))

and we can construct the crossed productM(I)oG.

Proposition 5.1.4 : Let I be a bounded interval, then the map

�

I

:M(I) oG 3 a � g

-

a U

I

(g) 2M(I) _ U

I

(G)

00

is a faithful representation of the crossed productM(I)oG.

Proof. First, we easily observe that �I is a well defined representation of

M(I)o G. According to [46, Theorem 2.2, Corollary 2.3], we conclude that the

crossed product M(I) o G is isomorphic to the von Neumann algebra M(I) _

U

I

(G)

00 and �I is a W*-isomorphism. �
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Definiton 5.1.5 : A one parameter automorphism group�, which satisfies the con-

ditions, listed below, is called a G-dynamics of the extended net MoG.

(a) � is a dynamics of the netM oG (Definition 2.1.1).

(b) The automorphisms �
t

commute with the automorphisms �
g

, i.e.

�

t

� �

g

= �

g

� �

t

; for each t 2 R and for each g 2 G.

The set of all G-dynamics ofMoG is denoted by dyn

G

(M oG).

Proposition 5.1.6 : Let � 2 dyn

G

(MoG) be aG-dynamics and I be a bounded

interval. Then the operator



0

(g;I)

(t) := �

t

(U

I

(g))U

I

(g)

�

is contained inM(I

jtj

) where I
jtj

denotes the enlarged interval I +(�jtj; jtj) and

the operator



(g;I)

(t;x) := �

(t;x)

(U

I

(g))U

I

(g)

�

fulfills the cocycle condition of Definition 4.1.2.

Proof. For a 2 C�

(M;I

jtj;RR

), the operator �
�t

(a) is contained in C�

(M;I

RR

)

which implies

a �

t

(U

I

(g))U

I

(g)

�

= �

t

(�

�t

(a)U

I

(g))U

I

(g)

�

= �

t

(U

I

(g)�

g

�

�t

(a))U

I

(g)

�

= �

t

(U

I

(g)�

�t

�

g

(a))U

I

(g)

�

= �

t

(U

I

(g))�

g

(a)U

I

(g)

�

= �

t

(U

I

(g))U

I

(g)

�

a

and we conclude:

�

t

(U

I

(g))U

I

(g)

�

2 C

�

(M;I

jtj;RR

)

0

=M(I

jtj;L

)

By a similar argument,�
t

(U

I

(g))U

I

(g)

� is contained inM(I

jtj;R

) and we conclude

from duality that it is contained inM(I

jtj

). The cocycle condition for 
(g;I)

is ob-

viously fulfilled and the proposition follows. �
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5.1.3 A Criterion for the Existence of Interpolating Automor-

phisms

Definiton 5.1.7 : Let � 2 dyn(M) be a dynamics and G � G(M) be a com-

pact subgroup. We shall call � G-extendible if there exists a G-dynamics �̂ of the

extended netM oG, such that

�̂

t

j

C

�

(M)

= �

t

for each t 2 R.

We are now prepared to formulate a criterion for the existence of interpolating

automorphisms.

Theorem 5.1.8 : If � 2 dyn(M) is a G-extendible dynamics, then the automor-

phism�

I

g

, which can be constructed by Proposition 5.1.2, is a �
g

-interpolating au-

tomorphism of A
�

.

Proof. As postulated, there exists an extension �̂ 2 dyn

G

(M o G) of �. We

show that for each g 2 G the operator



0

(g;I)

(t) := �̂

t

(U

I

(g))U

I

(g)

�

implements the automorphism

�

t

� �

I

g

� �

�t

� (�

I

g

)

�1

on C�

(M). Indeed, we have for each a 2 C�

(M):

Ad(

0

(g;I)

(t))a = �̂

t

(U

I

(g))U

I

(g)

�

a U

I

(g)�̂

t

(U

I

(g))

�

= �̂

t

(U

I

(g)) (�

I

g

)

�1

(a) �̂

t

(U

I

(g))

�

= �̂

t

�

U

I

(g)�

�t

�

(�

I

g

)

�1

(a)

�

U

I

(g)

�

�

= �

t

�

U

I

(g)�

�t

�

(�

I

g

)

�1

(a)

�

U

I

(g)

�

�

= �

t

� �

I

g

� �

�t

� (�

I

g

)

�1

(a)
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Finally we conclude from Proposition 5.1.6 that �I
g

is a �
g

-interpolating automor-

phism. �

The dynamics � of P (�)
2

- and Yukawa
2

models are locally implementable by

unitary operators. More precisely, for each bounded interval I and for each posi-

tive number � > 0, there exists a unitary operator u(I; � jt) with the properties:

(1) If jt
1

j; jt

2

j; jt

1

+ t

2

j < � , then we have

u(I; � jt

1

+ t

2

) = u(I; � jt

1

)u(I; � jt

2

) :

(2) For jtj < � , the operator u(I; � jt) implements �
t

on M(I), i.e.:

�

t

(a) = u(I; � jt) a u(I; � jt)

�

; for each a 2M(I). (5.4)

LetG � G(�;M) be a compact sub-group. In order to show that� isG-extendible,

it is sufficient to prove that the operators

u(I

1

; � jt)U

I

(g)u(I

1

; � jt)

�

;

which are the obvious candidates for �̂(U
I

(g)), are independent of I
1

for I
1

� I

and jtj � � .

Lemma 5.1.9 : If for each I � I

1

, for each � < �

1

and for each g 2 G the

equation

u(I; � jt)U

I

(g)u(I; � jt)

�

= u(I

1

; �

1

jt)U

I

(g)u(I

1

; �

1

jt)

� (5.5)

holds, then the dynamics � is G-extendible. Here u(I; � jt) are unitary operators

which fulfill equation (5.4).

Proof. Let (I
n

; �

n

)

n2N

be a sequence, such that lim
n

I

n

= R and lim

n

�

n

= 1.

We conclude from our assumption (equation (5.5)) that the uniform limit

�̂

t

(a) := lim

n!1

Ad(u(I

n

; �

n

jt))(a)

exists. Thus �̂ : t

-

�̂

t

is a well defined one-parameter automorphism group,

extending the dynamics �. It remains to be proven that �̂ has propagation speed
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ps(�̂) � 1. Since �̂ is an extension of � and ps(�) � 1, we conclude for each

a 2 C

�

(M;I

jtj;RR

) and for each b 2 C�

(M;I

jtj;LL

):

ab �̂

t

(U

I

(g)) = �̂

t

(�

�t

(a)�

�t

(b)U

I

(g))

= �̂

t

(U

I

(g)�

�t

�

g

(a)�

�t

(b))

= �̂

t

(U

I

(g)) �

g

(a)b

Thus the operator �̂
t

(U

I

(g)) is contained in M(I

jtj;R

) and implements �
g

on

M(I

jtj;RR

). This finally implies:

�̂

t

(U

I

(g))U

I

jtj

(g)

�

2M(I

jtj

)

and the lemma follows. �

5.1.4 A Criterion for the Existence of Interpolating Kink States

Let us consider the twofold W*-tensor product of the net of Cauchy data, i.e.:

M 
M : I

-

M(I) 
M(I)

Observation:

(i) If the net M fulfills the conditions (a) to (c) of Section 5.1.1, then the net

M 
M fulfills them, too.

(ii) Let � 2 dyn(M) be a dynamics ofM, then �
2 is a dynamics ofM 
M.

Note that the flip operator u
F

, which is given by

u

F

: H

0


H

0

-

H

0


H

0

;  

1


  

2

-

 

2


  

1

is contained in G(�
2;M 
 M). Hence u
F

induces an embedding of Z
2

intoG(�
2;M 
M).

(iii) According to Section 5.1.2, we can construct a non-local extension

^

M := (M 
M)oZ

2
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of the twofold net M 
M. Let 	
I

be the universal localizing map of the

standard split inclusion

�(I)
 �(I) = (M(I

RR

)


 2

;M(I

R

)


 2

;


0


 


0

)

and define �
I

:= 	

I

(1
 u

F

). Then the algebra ^

M(I) is simply given by

^

M(I) = ((M 
M)oZ

2

)(I) = (M(I) 
M(I)) _ f�

I

g

00

:

(iv) By Proposition 5.1.2, there exists a canonical automorphism

�

I

:= Ad(�

I

) ; (5.6)

associated with the pair (u
F

;I).

Notation: Let � be a dynamics ofM. In the sequel, we shall call � extendible if

�


2 is Z
2

-extendible.

Theorem 5.1.10 : Let� 2 dyn(M) be an extendible dynamics, then for each pair

of vacuum states !
1

; !

2

2 S

0

(A

�

), the state

! = �

�

I(!

1


 !

2

)

is a kink state.

Proof. We conclude from an application of Theorem 5.1.8 that�I (equation (5.6))

is an�
F

-interpolatingautomorphism and the statement follows from Theorem 4.2.1.

�

5.2 Application to Quantum Field Theory Models

We show that a sufficient condition for the existence of interpolating automorphisms,

i.e. the extendibility of the dynamics, is satisfied for the P (�)
2

, the Yukawa
2

and

special types of Wess-Zumino models.
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5.2.1 Kink States in P (�)
2

-Models

We shall show that the dynamics of P (�)
2

-models are extendible. As described in

Section 2.2 the dynamics of a P (�)
2

-model consists of two parts.

(1) The first part is given by the free dynamics �
0

, with propagation speed

ps(�

0

) = 1,

�

0;t

(a) = e

iH

0

t

ae

�iH

0

t

where (H
0

;D(H

0

)) is the free Hamiltonian which is a self-adjoint operator

on the domain D(H

0

) � H

0

.

(2) The second part is a dynamics �
1

with propagation speed ps(�

1

) = 0, i.e. �
1;t

maps each local algebra M(I) onto itself. The interaction part of the full

Hamiltonian is given by a Wick polynomial of the time-zero field �:

H

1

(I) = H

1

(�

I

) =

Z

dx : P (�(x)) : �

I

(x)

where�
I

is a smooth test function which is one on I and zero on the comple-

ment of a slightly lager region ^

I � I . The unitary operator exp(itH
1

(I))

implements the dynamics �
1

locally, i.e. for each a 2M(I) we have:

�

1;t

(a) := e

iH

1

(I)t

ae

�iH

1

(I)t

:

Definiton 5.2.1 : An operator valued distribution v : S(R)! L(H

0

) is called an

ultra local interaction, if the following conditions are fulfilled:

(1) For each real valued test function f 2 S(R), v(f) is self-adjoint and has a

common core with H
0

.

(2) Let f 2 S(R) be a real valued test function with support in a bounded inter-

val I , then the spectral projections of v(f) are contained inM(I).

(3) For each pair of test functions f
1

; f

2

2 S(R), the spectral projections of

v(f

1

) commute with the spectral projections of v(f
2

).

Remark: It has been proven in [37], that the Wick polynomials of the time zero

fields are ultra local interactions. Furthermore, each ultra local interaction v in-

duces a dynamics �v 2 dyn(M) with propagation speed ps(�

v

) = 0. Let I be a

bounded interval and let �
I

2 S(R) be a positive test function with �
I

(x) = 1 for
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each x 2 I . Indeed, by an application of J. Glimm’s and A. Jaffe’s analysis [37],

we conclude that the automorphisms

�

v

t

:M(I)

-

M(I) ; a

-

Ad( exp(itv(�

I

)) )a

define a dynamics with zero propagation speed. In the sequel, we shall call a dy-

namics �v ultra local if it is induced by an ultra local interaction v.

In order to prove that a dynamics �, which is given by the Trotter product

� = �

0

� �

v

of a free and an ultra local dynamics, is extendible, we show that each part of the

dynamics can be extended separately.

Since the free part of the dynamics can be extended to the algebraB(H

0

) of all

bounded operators on the Fock space H
0

, it is obvious that �
0

is extendible. Thus

it remains to be proven the following:

Lemma 5.2.2 : Each ultra local dynamics �v 2 dyn(M) is extendible.

Proof. Let us consider any ultra local interaction v. For each test function

f 2 S(R), we introduce the unitary operator

u(f jt) := e

itv(f)


 e

itv(f)

:

Let I be a bounded interval and denote by I
�

, � > 0, the enlarged interval

I + (��; �). We choose test functions �(I;�)

2 S(R) such that

�

(I;�)

(x) =

(

1 x 2 I

0 x 2 I

c

�

= I

�

nR

:

For an interval ^I � I

�

, the region ^

I

�

nI

�

consists of two connected components

(

^

I

�

nI

�

)

�

and there exist test functions �� 2 S(R) with

supp(�

�

) � (

^

I

�

nI

�

)

�

� I

LL

supp(�

+

) � (

^

I

�

nI

�

)

+

� I

RR

�

(

^

I;�)

� �

(I;�)

= �

+

+ �

�

:

Let us write

u(I; �jt) := u(�

(I;�)

jt) and u

�

(t) := u(�

�

jt).
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Since we have [u(f
1

jt); u(f

2

jt)] = 0 for any pair of test functions f
1

; f

2

2 S(R),

we obtain for each � > 0 and for I
�

�

^

I:

u(

^

I; �jt) = u(I; �jt)u

�

(t)u

+

(t) (5.7)

If we make use of the fact that u
+

(t) is �
F

-invariant and localized in I
RR

, we con-

clude that �
I

and u
�

(t) commute. Thus we obtain

Ad(u(

^

I; �jt))�

I

= Ad(u(I; �jt))�

I

(5.8)

which depends only of the localization interval I since � > 0 can be chosen arbi-

trarily small. According to Lemma 5.1.9, the automorphisms

�̂

v

t

:

^

M(I) 3 a

-

Ad(u(I; �jt))a 2

^

M(I)

define a dynamics of ^

M whose restriction to M 
M is �v 
 �

v . Thus �v is ex-

tendible. �

If �̂
0

denotes the natural extension of the free dynamics �
2
0

to ^

M and let �̂v be

the extension of the ultra local dynamics�v
�v then, by using the Trotter product,

we conclude that the dynamics

�̂ := �̂

0

� �̂

v

is an extension of the dynamics (�
0

� �

v

)


2 to ^

M. This leads to the following

result:

Proposition 5.2.3 : Each dynamics of a P (�)
2

-model is extendible.

Proof. The statement follows from Lemma 5.2.2 and from the fact that each dy-

namics of a P (�)
2

-model is a Trotter product of the free dynamics �
0

and an ultra

local dynamics �
1

. �

The existence of interpolating kink states in P (�)
2

-models is an immediate

consequence of Proposition 5.2.3.

Corollary 5.2.4 : Let � 2 dyn(M) be a dynamics of a P (�)
2

-model. Then for

each pair of vacuum states !
1

; !

2

2 S

0

(�;M) there exists an interpolating kink

state ! 2 S(!
1

; !

2

).
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Proof. By Proposition 5.2.3 each dynamics of a P (�)
2

-model is extendible and

we can apply Theorem 5.1.8 which implies the result. �

5.2.2 The Dynamics of the Yukawa
2

Model

Since the dynamics of a Yukawa
2

-like model can not be written as a Trotter product

which consists of a free and an ultra local dynamics, it is a bit more complicated

to show that these dynamics are extendible. We briefly summarize here the con-

struction of the Yukawa
2

dynamics which has been carried out by J. Glimm and A.

Jaffe [37]. We also refer to the work of R. Schrader [74, 75].

Let M
s

and M
a

be the nets of Cauchy data for the free Bose and Fermi field,

represented on the Fock spaces H
s

and H
a

respectively. The Cauchy data of the

Yukawa
2

model are given by the W*-tensor productM :=M

s


M

a

of the nets

M

s

andM
a

. Moreover, we set H
0

:= H

s


H

a

.

Step 1: In the first step, a Hamiltonian, which is regularized by an UV-cutoff c
0

>

0 and an IR-cutoff c
1

> 1, c
0

<< c

1

, is constructed. For this purpose, one chooses

test functions �
c

0

; �

c

1

2 S(R)with the properties:

(a)

supp(�

c

0

) � (�c

0

; c

0

) and

Z

dx �

c

0

(x) = 1

(b)

supp(�

c

1

) � (�c

1

� 1; c

1

+ 1) and �

c

1

(x) = 1 for each x 2 (�c

1

; c

1

).

The UV-regularized fields are given by

�(c

0

;x) := (� � �

c

0

)(x) and  (c

0

;x) := ( � �

c

0

)(x) (5.9)

where � is a massive free Bose field and  a free Dirac spinor field at t = 0. The

fields, defined by equation (5.9), act on H
0

via the operators

�(c

0

;x) := �(c

0

;x)
 1

H

a

and 	(c

0

;x) := 1

H

s


  (c

0

;x) :

The regularized HamiltonianH(c

0

; c

1

) can be written as a sum of three parts:
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(1) The free Hamiltonian H
0

which is given by

H

0

= H

0;s


 1

H

a

+ 1

H

s


H

0;a

where H
0;s

and H
0;a

are the free Hamilton operators of the Bose and the

Fermi field respectively.

(2) The regularized Yukawa interaction term:

H

Y

(c

0

; c

1

) =

Z

dx �

c

1

(x) �(c

0

;x) :

�

	(c

0

;x)	(c

0

;x) :

(3) The counterterms:

H

C

(c

0

; c

1

) =

N

X

n=0

z

n

(c

0

)

Z

dx �

c

1

(x) : �(x)

n

:

where z
n

(c

0

) are suitable renormalization constants.

The following statement has been established by J.Glimm and A.Jaffe [37, 39]:

Theorem 5.2.5 : The counterterms H
C

(c

0

; c

1

) can be chosen in such a way that

(1) the cutoff Hamiltonian H(c

0

; c

1

) = (H

0

+H

Y

(c

0

; c

1

) + H

C

(c

0

; c

1

))

�� is a

positive and self adjoint operator with domain D(H

0

).

(2) The uniform limit

R(c

1

; �) = lim

c

0

!0

(H(c

0

; c

1

)� �)

�1

is the resolvent of a self adjoint operator H(c

1

).

(3) H(c

1

) is the limit of H(c

0

; c

1

) in the strong graph topology.

Notation: In the sequel, we shall use the following notation:

u(c

0

; c

1

; t) := exp(itH(c

0

; c

1

)) and u(c

1

; t) := exp(itH(c

1

)) .



100 Kink States in Quantum Field Theory Models

Remark: The aim is to show thatH(c

1

) induces a dynamics ofM, given locally

by the equation

�

t

j

M(I)

= Ad( u(c

1

; t) ) for I
jtj

:= I + (�jtj; jtj) � (�c

1

; c

1

).

However, in comparison to the P (�)
2

-models, there are some more technical dif-

ficulties which have to be overcome.

(i) The HamiltonianH(c

1

) is only defined as a limit of the HamiltoniansH(c

0

; c

1

)

and it has no mathematical meaning when written as a sum

H

0

+H

Y

(c

1

) +H

C

(c

1

) :

Thus the construction scheme for a dynamics, as it has been used for P (�)
2

-

models, does not apply.

(ii) On the other hand, one might try to apply P (�)
2

-like methods to the Hamil-

tonian H(c

0

; c

1

), for which the UV-cutoff is not removed. For this purpose,

one wishes to write H(c

0

; c

1

) as a sum H(c

0

; c

1

) = H

1

(c

0

; c

1

) +H

2

(c

0

; c

1

)

whereH
1

(c

0

; c

1

) induces a dynamics �
1

with propagation speed ps(�
1

) � 1

and H
2

(c

0

; c

1

) induces a dynamics �
2

with propagation speed ps(�

2

) = 0.

The difficulty with writing such a decomposition for H(c

0

; c

1

) arises from

the fact that the Yukawa interaction term H

Y

(c

0

; c

1

) induces an automor-

phism group with infinite propagation speed.

Step 2: In the next step, one introduces test functions �
(I;s;c

0

)

(see Figure 5.1),

depending on a bounded interval I , a real number s > 0 and the UV-cutoff c
0

,

fulfilling the conditions

supp(�

(I;s;c

0

)

) � I

2c

0

+jsj+�

nI

jsj��

and

�

(I;s;c

0

)

(x) = 1 if x 2 I
2c

0

+jsj

nI

jsj

.

(5.10)

Here � << c

0

is any sufficiently small positive number. The HamiltonianH(c

0

; c

1

)

is replaced by the operator

H(I; s; c

0

; c

1

) := H

0

+H

C

(c

0

; c

1

) +H

Y

(I; s; c

0

; c

1

) (5.11)
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I

1

jsjjsj 2c

0

2c

0

Figure 5.1: The figure shows the graph of the function �
(I;s;c

0

)

.

depending additionally on I and s, where H
Y

(I; s; c

0

; c

1

) is given by

H

Y

(I; s; c

0

; c

1

) :=

Z

dx �(c

0

;x) :

�

	(c

0

;x)	(c

0

;x) : ( �

c

1

(x)� �

(I;s;c

0

)

(x) ) :

In order to construct from these data a c
1

-independent approximation of the

dynamics which mapsM(I) ontoM(I

jtj

), one defines the unitary operators

w(I; c

0

; c

1

; t) :=

n

Y

j=1

exp

�

i

t

n

H( I; (n� j)n

�1

t; c

0

; c

1

)

�

where n is equal to the integral part of jc�1
0

tj. The lemma, given below, has been

established in [37].

Lemma 5.2.6 : [37, Lemma 9.1.2] The adjoint action ofw(I; c
0

; c

1

; t) induces an

automorphism

�

(I;c

0

)

t

:= Ad(w(I; c

0

; c

1

; t)) :M(I)

-

M(I

jtj

)

which is independent of c
1

.

Step 3: For technical reasons, to control convergence as c
0

tends to zero, the length

of time propagation is scaled, and one defines for � 2 [0; 1] the c
1

-independent au-

tomorphism

�

(I;c

0

;�)

t

:= Ad(w(I; c

0

; c

1

; �; t)) :M(I)

-

M(I

jtj

)



102 Kink States in Quantum Field Theory Models

where w(I; c
0

; c

1

; �; t) is given by

w(I; c

0

; c

1

; �; t) :=

n

Y

j=1

exp

�

i

� � t

n

H(I; (n� j)n

�1

t; c

0

; c

1

)

�

:

The final approximation is given by averaging over �:

�

(I;c

0

;`)

t

(a) :=

Z

d� f

`

(�) �

(I;c

0

;�)

t

(a)

where f
`

is a positive continuous function such that
Z

d� f

`

(�) = 1 and supp(f

`

) � [1� `; 1], ` � 1.

Finally, J. Glimm and A. Jaffe have established the result:

Theorem 5.2.7 : [37, Theorem 9.1.3] There exists a function c : ` 7! c

`

with

lim

`!0

c

`

= 0 such that

�

Y

t

(a) := w � lim

`!0

�

(I;c

`

;`)

t

(a) = u(c

1

; t) a u(c

1

; t)

� (5.12)

for each a 2M(I) and for each sufficiently large c
1

.

5.2.3 Kink States in Models with Yukawa
2

Interaction

We shall use an analogous strategy as above (step 1- step 3) in order to show that

the dynamics �Y , which is given due to Theorem 5.2.7 is extendible.

Theorem 5.2.8 : The dynamics �Y of the Yukawa
2

model is extendible.

Let us prepare the proof. First, we give a few comments on the notation to be

used.

Notation:

(a) In the sequel, we write ŵ(� � � ) = w(� � � )


2 and û(� � � ) = u(� � � )


2 for the

corresponding quantities of the twofold theory. As in step 3 above, we also

define the automorphism

�̂

(I;c

0

;�)

t

:= Ad(ŵ(I; c

0

; c

1

; �; t))

and the average

�̂

(I;c

0

;`)

t

(a) =

Z

d� f

`

(�) �̂

(I;c

0

;�)

t

(a) :
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(b) Let !
0

be the vacuum state with respect to the free dynamics which is in-

duced byH
0

. We denote by 	

I

the universal localizing map of the standard

split inclusion �(I)
�(I) and we define �
I

:= 	

I

(1
 u

F

).

Lemma 5.2.9 : The adjoint action of ŵ(I; c
0

; c

1

; t) induces an automorphism

�̂

(I;c

0

)

t

:

^

M(I)

-
^

M(I

jtj

)

which is independent of c
1

.

Proof. By Lemma 5.2.6, it is sufficient to prove that

Ad(ŵ(I; c

0

; c

1

; t))�

I

is c
1

-independent. Indeed, following the arguments in the proof of Proposition

5.2.3, we conclude that

�

0

I

:= exp(i�H(I; s; c

0

; c

1

))


2

�

I

exp(�i�H(I; s; c

0

; c

1

))


2

is c
1

-independent for j� j � c

0

and that �0
I

is contained in ^

M(I

jsj+j� j

). Composing

n such maps, we obtain the lemma. �

In complete analogy to Theorem 5.2.7 we have:

Lemma 5.2.10 :

�̂

Y

(a) := w � lim

`!0

�̂

(I;c

`

;`)

t

(a) = û(c

1

; t) a û(c

1

; t)

�

For each a 2 ^

M(I) and for each sufficiently large c
1

.

Proof. By Theorem 5.2.7, we conclude that the lemma holds for each a 2M(I)
M(I).

Hence it remains to be proven that

w � lim

`!0

�̂

(I;c

`

;`)

t

(�

I

) = û(c

1

; t) �

I

û(c

1

; t)

� .

The Corollary 9.1.9 of [37] states:

w � lim

`!0

Z

d� ( ŵ(I; c

`

; c

1

; �; t) � û(c

`

; c

1

; �t) )f

`

(�) = 0 :
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We define

�

I

(`; t) := �̂

(I;c

`

;`)

t

(�

I

) and �

�

I

(`; t) :=

Z

d� f

`

(�) Ad( û(c

`

; c

1

; �t) )�

I

:

The Schwarz’s inequality implies for each  2 H
0


H

0

:

jh ; �

I

(`; t)�

�

�

I

(`; t) ij

� 2jj jj �

�

R

d� f

`

(�) jj( ŵ(I; c

`

; c

1

; �; t) � û(c

`

; c

1

; �t) ) jj

2

�

1=2

Since jj(v � u) jj

2

= 2 � Re(h(v � u) ; u i), we obtain:

jh ; �

I

(`; t)�

�

�

I

(`; t) ij

� 4jj jj �

�

R

d� f

`

(�) Re

�

(ŵ(I; c

`

; c

1

; �; t) � û(c

`

; c

1

; �t) ) ; û(c

`

; c

1

; �t) 

��

1=2

In order to conclude the proof we establish the following sublemma:

Sublemma: Let u
`

: � 7! u

`

(�) and w
`

: � 7! w

`

(�), ` > 0, be strongly

continuous functions with values in the group of unitary operators onH
0

such that

w � lim

`!0

Z

d� f

`

(�) (w

`

(�) � u

`

(�)) = 0 (5.13)

and

s� lim

`!0

u

`

(1) = u :

Then we have

lim

`!0

�

�

�

�

Z

d� f

`

(�) h (w

`

(�)� u

`

(�)) ; u

`

(�) i

�

�

�

�

= 0 :

Proof of Sublemma. Sinceu
`

is strongly continuous and f
`

has support in [1�`; 1]

we conclude that for each � > 0 there is a number l > 0 such that for each ` < l

we have:
�

�

�

�

Z

d� f

`

(�) h (w

`

(�) � u

`

(�)) ; (u

`

(�)� u

`

(1)) i

�

�

�

�

<

�

4

and
�

�

�

�

Z

d� f

`

(�) h (w

`

(�)� u

`

(�)) ; (u

`

(1)� u) i

�

�

�

�

<

�

4
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which implies:

�

�

�

�

Z

d� f

`

(�) h (w

`

(�)� u

`

(�)) ; (u

`

(�)� u) i

�

�

�

�

<

�

2

:

According to equation (5.13), we obtain on the other hand:

�

�

�

�

Z

d� f

`

(�) h (w

`

(�) � u

`

(�)) ; u i

�

�

�

�

<

�

2

:

This implies finally the desired result:

�

�

�

�

Z

d� f

`

(�) h (w

`

(�) � u

`

(�)) ; u

`

(�) i

�

�

�

�

< � :

�

An application of the sublemma gives:

lim

`!0

jh ; �

I

(`; t)�

�

�

I

(`; t) ij = 0

which proves the lemma. �

Proof of Theorem 5.2.8: We conclude from Lemma 5.2.10 and Lemma 5.1.9 that

the automorphism group �̂Y is a dynamics of the extended net ^

Mwhose restriction

toM 
M is �Y 
 �

Y . Thus �Y is extendible. �

Remark: According to [75], each dynamics�Y +P of a quantum field theory model

with Yukawa
2

plus P (�)
2

boson self-interaction is extendible.

Finally, we conclude from Theorem 5.2.8:

Corollary 5.2.11 : Let �Y +P be a dynamics of a quantum field theory model with

Yukawa
2

plus P (�)
2

boson self-interaction. For each pair !
1

; !

2

of vacuum states

with respect to �Y+P , there exists a kink state ! inS([!
1

]; [!

2

]).

5.2.4 Wess-Zumino Models

One interesting class of quantum field theory models which possess more than one

vacuum sector are the N = 2 Wess-Zumino models in two-dimensional space-

time. Their properties have been studied in several papers [47, 50, 51, 48, 49] and
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we summarize the main results which are established there in order to setup our

subsequent analysis.

The field content of these models with a finite volume cutoff c > 0 consists of

one complex Bose field �
c

and one Dirac spinor field  
c

, acting as operator valued

distributions on the Fock spaces

H

a

(c) :=

1

M

n=0

L

2

(T

c

; C

2

)




a

H

s

(c) :=

1

M

n=0

L

2

(T

c

; C )




s

where a; s stands for symmetrization or anti-symmetrization of the tensor product

and L
2

(T

c

; C

k

) (k = 1; 2) denotes the Hilbert space of C k -valued and square inte-

grable functions, living on the circle T
c

of length c. The net of Cauchy data for the

finite volume theory is given by

M

c

: (�c; c) � I

-

M

c

(I) =M

c;s

(I) 
M

c;a

(I)

where the netsM
c;s

andM
c;a

are defined by the assignments:

M

c;s

: (�c; c) � I

-

M

c;s

(I) :=

�

e

i(�

c

(f

1

)+�

c

(f

2

))

�

�

�

�

supp(f

j

) � I

�

00

M

c;a

: (�c; c) � I

-

M

c;a

(I) :=

�

 

c

(f

1

);

�

 

c

(f

2

)

�

�

�

�

supp(f

j

) � I

�

00

where �
c

is the canonically conjugate of �
c

.

Let M := M

c=1

be the net of Cauchy data in the infinite volume limit, then

the map

�

c

:

 

�(f

11

) �(f

12

)

 (f

21

)

�

 (f

22

)

!

-

 

�

c

(f

11

) �

c

(f

12

)

 

c

(f

21

)

�

 

c

(f

22

)

!

; supp(f

ij

) � (�c; c)

is a W*-isomorphism which identifies the netsM andM
c

for those regionsI which

are contained in (�c; c).

The interaction part of the formal Hamiltonian consists of two parts.

(a) A P (�)

2

-like part:

H

P

(v; c) =

Z

T

c

dx : jv

0

(�

c

)j

2

: � : j�

c

j

2

:
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(b) A Yukawa
2

-like part:

H

Y

(v; c) :=

Z

T

c

dx :

�

	

c

 

v

00

(�

c

)� 1 0

0 v

00

(�

c

)

�

� 1

!

	

c

:

where v is a polynomial of degree deg(v) = n, called superpotential, and the fields

�

c

and 	

c

are given by

�

c

:= �

c


 1

H

a

(c)

and 	

c

:= 1

H

s

(c)


  

c

:

According to the results of [47, 49, 50, 51], it has been shown that, there is a

self-adjoint Fredholm operator Q(v; c), called supersymmetry generator, on

H

0

(c) := H

s

(c)
H

a

(c). The Fredholm index of Q(v; c)

ind(Q(v; c)) = dim ker(Q(v; c))� dim coker(Q(v; c))

has been computed in [50]. The result is

jind(Q(v; c))j = deg(v)� 1 :

The spaceH
0

(c)may be decomposedH
0

(c) = H

+

(c)�H

�

(c) into the eigenspaces

of the fermion parity operator � := (�1)

N

a , where N
a

is the fermion number op-

erator. With respect to this decomposition, the operator Q(v; c) has the form

Q(v; c) =

 

0 Q

+

(v; c)

Q

�

(v; c) 0

!

:

The full Hamiltonian of the finite volume model is given by

H(v; c) = Q(v; c)

2

which implies:

dim ker(H(v; c)) = jdim ker(Q

+

(v; c))� dim ker(Q

�

(v; c))j = deg(v)� 1

The HamiltonianH(v; c) induces a dynamics �(v;c) of the finite volume model

and we conclude from the results of [47]:

Theorem 5.2.12 : [47, Theorem 1] There exists at least deg(v)�1 vacuum sectors

with respect to the dynamics �v := �

(v;c=1) of the model in the infinite volume

limit.
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5.2.5 Kink States in Wess-Zumino Models

In order to prove the existence of kink sectors, we now apply the results which

have been established in Section 5.2.1 and Section 5.2.3 to N = 2 Wess-Zumino

Models.

The case deg(v) = 3: Let us have a closer look at the simplest non-trivial case

deg(v) = 3. We let

v

0

(z) = �

2

z

2

+ �

1

z + �

0

:

As in the previous sections (equation (5.9)), we introduce the UV-regularized fields:

�(c

0

;x) := (� � �

c

0

)(x) and 	(c

0

;x) := (	 � �

c

0

)(x)

where �
c

0

is a smooth test function with support in (�c

0

; c

0

). We obtain for the

P (�)

2

-like part of the regularized interaction Hamiltonian

H

P

(v; c

0

; c

1

) =

Z

dx �

c

1

(x) (: j�

2

�(c

0

;x)

2

+ �

1

�(c

0

;x) + �

0

j

2

: � : j�(c

0

;x)j

2

:)

and for the Yukawa
2

-like part:

H

Y

(v; c

0

; c

1

) =

Z

dx �

c

1

(x)

�

:

�

	(c

0

;x)

 

2�

2

�(c

0

;x) + �

1

� 1 0

0 2

�

�

2

�(c

0

;x)

�

+

�

�

1

� 1

!

	(c

0

;x) :

�

Using the same techniques as in Section 5.2.1 and Section 5.2.3, we obtain the

corollary (see also Corollary 5.2.11):

Corollary 5.2.13 : Let v be a superpotential of degree deg(v) = 3. Then the

following statements are true:

(1) The dynamics �v 2 dyn(M) of the model in the infinite volume limit is ex-

tendible.

(2) There exists two different vacuum sectors e
1

; e

2

2 sec

0

(�

v

;M) and two dif-

ferent kink sectors � 2 sec(e

1

; e

2

), �� 2 sec(e

2

; e

1

).
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The case deg(v) > 3: We close this section by discussing the remaining case.

In order to show the extendibility of �v 2 dyn(M), we can try to proceed in

the same manner as for the case deg(v) = 3. According to Section 5.2.3 (Step 2

and Step 3), we construct an approximation

M(I) 
M(I) 3 a

-

�̂

(v;I;c

0

;`)

t

(a) :=

Z

d� f

`

(�) �̂

(v;I;c

0

;�)

t

(a)

of the dynamics �v 
 �

v of the twofold theory. Provided that the corresponding

result of Lemma 5.2.9 is true for the case deg(v) > 3 also, the linear maps �̂
(v;I;c

0

;`)

t

can be extended to the algebra ^

M(I).

For the generalization of Theorem 5.2.8, it seems that the most difficult part is

to show that there exists a function c : ` 7! c

`

with lim

`!0

c

`

= 0 such that

�

v

t

(a) := w � lim

`!0

�

(v;I;c

`

;`)

t

(a) : (5.14)

The regularized Yukawa-like part of the Hamilton density contains terms of the

form

: 	

(i)

(c

0

;x)	

(j)

(c

0

;x) : : �(c

0

;x)

k

: ; i; j 2 f0; 1g, i 6= j and k � deg(v)� 2,

where 	(j) denotes the j-component of the Dirac spinor field 	. Since there are

contributions with k > 1, the proof of Theorem 5.2.7 does not directly apply.

Provided that for each superpotential v the dynamics �v is extendible, we con-

clude that for each pair of vacuum sectors e
1

; e

2

2 sec

0

(�

v

;M) there exists a kink

state ! 2 S(e
1

; e

2

). Then the model possesses at least deg(v)(deg(v)� 1) differ-

ent non-trivial kink sectors.
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Collision Theory for Kinks

and Solitons6
6.1 Technical Preliminaries

This section is destined to introduce technical notions which are needed for the

construction and analysis of kink fields. In order to investigate multi-kink rep-

resentations and statistics relations, we briefly repeat the notion of one-kink sec-

tors and introduce a method to compose kink representations which generalizes the

composition of kink homomorphisms, given in Section 3.2.1.

6.1.1 One-Kink Sectors

The properties of massive one-particle sectors are closely related to the proper-

ties of kinks. As already mentioned in Section 4.4.2, for each massive one-particle

state !, there are vacuum sectors e
1

; e

2

2 sec

0

(A) such that ! is a kink state which

interpolates e
1

and e
2

[10, 22, 71].

Notation: In the sequel, we shall call a state (sector) one-kink state (sector) if it

is a pure massive one-particle state (irreducible massive one-particle sector). The

corresponding kink homomorphisms are called one-kink homomorphisms and we

shall denote by �

1

(q; e

1

; e

2

) the set of all one-kink homomorphisms which inter-

polate the vacua e
1

; e

2

2 sec

0

(A) and have orientation q.

111
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6.1.2 From One-Kink Homomorphisms to Multi-Kink Repre-

sentations

Definiton 6.1.1 :

(a) Let n 2 N be a natural number. We shall write n for the set f1; � � � ; ng. We

call a subset u � n connected if it is of the form

u = fk; k + 1; k + 2; � � � ; k + lg :

(b) Let P
l

(n) be the set of all partitions � of n into l connected non-empty sub-

sets

� = (�(1) � � � �(l)) .

(c) Let e = (e

�m

; � � � ; e

0

; � � � ; e

n

), n;m 2 N ,be a family of n+m+1 vacuum

sectors. We denote by T (n;m; e) the set of all families of one-kink homo-

morphisms

� := (�

j

; �

i

)

i2m

j2n

such that and �
j

2 �

1

(1; e

j�1

; e

j

) and �i 2 �

1

(�1; e

�i

; e

�i+1

).

Definiton 6.1.2 : Let � 2 T (n;m; e) be a family of one-kink homomorphisms.

We define for each pair of partitions

� = (�

+

; �

�

) 2 P

l

(n)� P

l

(m)

a representation �
�

in the following way:

(1) We parameterize the partitions �
k

, k = �:

�

k

= (f1; � � � ; �

k

(1)g; f�

k

(1) + 1; � � � ; �

k

(2)g; � � �

� � � ; f�

k

(l � 1) + 1; � � � ; �

k

(l)g)

(6.1)

(2) The representation �
�

is defined by

�

�

:=

�

� � �

���

�

e

0

� �

1

� � � �

�

+

(1)

j

�

�

�

1

� � � �

�

�

(1)

j

�

+

�

�

+

(1)+1

� � � �

�

+

(2)

j

�

�

� � � �

�

+

(l�1)+1

� � � �

�

+

(l)

j

�

�

�

�

�

(l�1)+1

� � � �

�

�

(l)

j
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where the vertical bar j denotes the restriction to the algebra C�

(A) and the

symbol � denotes the extension to the algebra C�

(A

�

e

) where e is a suitable

vacuum sector.

(3) We denote by �(e; f ; e

0

) the set of all kink representations �
�

which corre-

spond to a family � 2 T (n;m; e) with e
�m

= e, e
n

= f , and partitions

� = (�

+

; �

�

) 2 P

l

(n) � P

l

(m).

Example: In order to illustrate the definitions above, we compute �
�

for a simple

example. Consider a family

� = (�

1

; �

2

; �

1

; �

2

) 2 T (2; 2; e

�2

; e

�1

; e

0

; e

1

; e

2

)

of kink homomorphisms and a pair of partitions � = (�

+

; �

�

)

�

+

= �

�

= (f1g; f2g) 2 P

2

(2) :

The representation

�

�

1

:= (�

e

0

� �

1

j)

�

maps C�

(A

�

e

0

) intoB(H

e

0

) and

�

2

:= �

�

1

� �

1

j

is a well defined kink representation whose left vacuum is e
�1

and whose right vac-

uum is e
1

. Thus the representation �+
2

maps C�

(A

+

e

1

) into B(H

e

0

) and we obtain

a further kink representation:

�

3

:= �

+

2

� �

2

j :

Since the left vacuum of�
3

is e
�1

, the representation��
3

mapsC�

(A

�

e

�1

) intoB(H

e

0

)

and we obtain finally:

�

�

= �

�

3

� �

2

j :
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Remark:

(i) We easily verify that for a family � 2 T (n;m; e) of kink representations

and for a pair of partitions �, the sector [�
�

] is contained in sec(e

�m

; e

n

).

The representation �
�

describes the creation of n + m kink charges out of

the vacuum e

0

. The partitions � = (�

+

; �

�

) describe the order in which the

n + m kink charges are created and we shall call a pair � = (�

+

; �

�

) an

arrangement.

(ii) The set T (n; 0; e) contains only families of one-kink homomorphisms with

orientation q = 1 and T (0;m; e) contains only families of one-kink homo-

morphisms with orientation q = �1. For a family of kink homomorphisms

� 2 T (n; 0; e) there is only one possibility to build a product representation,

namely

�

+

e

0

� �

1

� � � �

n

j : (6.2)

The same holds for a family of kink homomorphisms � 2 T (0;m; e). Here

we obtain the representation:

�

�

e

0

� �

1

� � ��

m

j : (6.3)

We shall call a kink representation oriented if it is of the form (6.2) or (6.3).

(iii) Let � 2 �(e; f ; g) be a kink representation. Then � can be composed with

oriented kink representations � 2 �(e

1

; e; e) and � 2 �(f; f

1

; f):

�

#

� := �

+

� (�

+

f

)

�1

� �j 2 �(e; f

1

; g)

�

#

� := �

�

� (�

�

e

)

�1

� �j 2 �(e

1

; f ; g) :

(iv) Each kink representation � 2 �(e; f ; g) is a finite composition of oriented

kink representations �
j

2 �(f

j�1

; f

j

; f

j�1

) and �
j

2 �(e

j

; e

j�1

; e

j�1

), j 2

n, with e
0

= f

0

= g, e
n

= e and f
n

= f :

� = �

1

#

�

1

#

�

2

#

�

2

� � � �

n

#

�

n

: (6.4)

(v) To each representation of the form �

�

, a finite Z
2

-valued sequence can be

associated, namely:

�

�

-

(+

1

� � �+

�

+

(1)

;�

1

� � � �

�

�

(1)

;+

�

+

(1)+1

� � �+

�

+

(2)

; � � �

� � �+

�

+

(l�1)+1

� � �+

�

+

(l)

;�

�

�

(l�1)+1

� � � �

�

�

(l)

) :
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6.2 Quasi-Statistics, Kink Fields and Cluster Prop-

erties

In order to prove the existence of multi-kink collision states and to analyze their

properties, we discuss in this section the statistics properties of kinks and develop

an adequate field bundle formalism. Furthermore, we establish some useful cluster

properties for correlation functions of kink fields.

6.2.1 Quasi-Statistics

In the DHR case [18, 19], the notion of statistics is related to the exchange of the

order of factors in a product of charged DHR endomorphisms. If we consider DHR

endomorphisms (�
1

; � � � ; �

n

), then for each permutation p 2 S

n

there exists a

unitary intertwiner �
p

(�

1

; � � � ; �

n

), called statistics operator, which intertwines the

product representations �
1

� � � �

n

and �
p(1)

� � � �

p(n)

.

In case of kink representations the situation is more complicated which is due to

the fact that kink representations can not arbitrarily be composed. Let us consider

one-kink homomorphisms �
1

2 �(1; e

00

; e) and �
2

2 �(1; e; e

0

). Then the product

�

1

�

2

is well defined, but for e00 6= e

0 the expression �
2

�

1

has no mathematical mean-

ing. On the other hand, we shall see that for a representation � 2 �(e

1

; e

2

; e

0

) and

oriented representations � 2 �(e

2

; e

0

2

; e

2

), � 2 �(e

0

1

; e

1

; e

1

), the representations

�

#

�

#

� and �#�#� (see equation (6.4)) are unitarily equivalent.

These facts lead to the notion of quasi-statistics where the word quasi empha-

sizes the fact that the exchange of two one-kink representations within a product

only makes sense if their orientations are different. In comparison to the DHR and

BF situation, we are faced with substituting the permutation group by the set of

pairs

G(n;m) := P (n;m)� P (n;m) .

This can be justified by the following statement:

Theorem 6.2.1 : Let � 2 T (n;m; e) be a family of one-kink homomorphisms.

For each pair of arrangements (�; �̂) 2 G(n;m), there exists a unitary operator

�

(�;�̂)

(�), called quasi-statistics operator, which intertwines the representations �
�

and �
�̂

:

�

�

(a) �

(�;�̂)

(�) = �

(�;�̂)

(�) �

�̂

(a) 8a 2 C

�

(A). (6.5)
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The intertwiner �
(�;�̂)

(�) is defined in terms of auxiliary kink homomorphisms an

charge transporters, but does not depend on their choice.

Proof. The proof of the theorem is rather technical and therefore placed in Ap-

pendix B.2. �

Remark: To illustrate the statement of Theorem 6.2.1, we compare it with the

DHR situation. Given a family � = (�

1

; � � � ; �

n

) of DHR endomorphisms and an

element of the permutation group p 2 S
n

. We define

�

p

:= �

p(1)

� � � �

p(n)

:

By using the statistics operator �
p

(�

1

� � � �

n

), we obtain:

�

p

= Ad(�

p

(�)) � �

id

= Ad(�

p

(�)�

q

(�)

�

) � �

q

We conclude that, in the DHR case, the analogue of the quasi-statistics relation

(6.5) is given by

�

p

= Ad(�

(p;q)

(�)) � �

q

where �
(p;q)

(�) = �

p

(�)�

q

(�)

� is a product of ordinary statistics operators.

6.2.2 Kink Field Operators

Each kink representation � 2 �(e

1

; e

2

; e

0

) is a representation of the observable

algebra C�

(A) on the Hilbert space H
e

0

. To each pair

 := f�;  

�

g 2 �(e

1

; e

2

; e

0

)�H

e

0

;

a state !
 

can be associated, i.e.:

!

 

(a) := jj 

�

jj

�2

� h 

�

; � (a) 

�

i :

Thus each pair  := f�;  

�

g represents a state in the sector [� ]. Instead of  :=

f�;  

�

g we can choose another pair ^

 = f�̂ ;  

�̂

g which also induces !
 

. Let u be

a unitary operator which intertwines � and �̂ . Then the vectors u := f�̂ ; u 

�

g

and  induce the same state.
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The idea is to describe a kink field by a map

 = f�;  

�

g

-
^

 = f�

#

�;

^

 

�

#

�

g .

We shall introduce here an appropriate field bundle formalism for kinks which

generalizes the field bundle formalism used for the treatment of DHR and BF sec-

tors [18, 19, 10].

Definiton 6.2.2 : The state bundle is defined by

H :=

[

e

0

;e

1

;e

2

�(e

1

; e

2

; e

0

)�H

e

0

where the union is taken over all vacuum sectors e
0

; e

1

; e

2

. Let � 2 �(e

1

; e

2

; e

0

)

be a kink representation, then we denote by

H

�

:= f�g �H

e

0

the fiber space over � .

We have to distinguish different types of actions on H.

The action of observables onH: Given an operator a 2 C�

(A) and a vector  =

f�;  

�

g 2 H. Then a acts on  as follows:

a := f�; � (a) 

�

g :

The action of the translation group: Since each kink representation � is transla-

tionally covariant we define a representation of the translation group on the bundle

H, namely

x

-

U(x) :  

-

U(x) := f�; U

�

(x) 

�

g

where U
�

implements the translation group in the representation � .

The action of intertwiners: Each operator v, which intertwines kink representa-

tions � and �̂ , induces a linear map between the fiber spaces H
�

and H
�̂

.

v :  2 H

�

-

v = f�̂ ; v 

�

g 2 H

�̂

:

We shall denote the set of all these maps by (�̂ j� ).
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The action of kink fields: Let � 2 �

1

(q; e

1

; e

2

) be a one-kink homomorphism.

Then the vector space of one-kink fields F (q; �) with respect to � is given by

F (1; �) := f�g � C

�

(A

+

e

1

)

F (�1; �) := f�g � C

�

(A

�

e

2

)

Given two one-kink fields a 2 F (1; �), � 2 �

1

(1; e

1

; ê

1

), and b 2 F (�1; �),

� 2 �

1

(�1; ê

2

; e

2

). Then their action is defined on

H(e

1

; e

2

; e

0

) := �(e

1

; e

2

; e

0

)�H

e

0

� H

in the following way:

a = (�; a)f�;  

�

g := f�

+

�; �

+

(a) 

�

g

b = (�; b)f�;  

�

g := f�

�

�; �

�

(b) 

�

g

Indeed, the action of one-kink fields can be interpreted as the creation of an addi-

tional kink charge.

Remark: Let �̂; � 2 �

1

(q; e

1

; e

2

) be one-kink homomorphisms. Then each in-

tertwiner v 2 (�̂j�) induces a linear map from F (q; �) to F (q; �̂), i.e.

v : a = (�; a) 2 F (q; �)

-

va := (�̂; va) 2 F (q; �̂) (6.6)

To compute correlation functions of kink fields, we are interested in vectors

 2 H which can be obtained by a multiple application of one-kink fields to a

vacuum vector

e

= f�

e

;


e

g. It can be seen from the definition of one-kink fields

that their action is not defined on each fiber of H. This makes the situation more

complicated as in the DHR and BF case [18, 19, 10]. For this purpose, we introduce

special families of one-kink fields.

Definiton 6.2.3 : Let � 2 T (n;m; e) be a family of one-kink homomorphisms.

We denote by F (n;m; �) the vector space

F (n;m; �) :=

�

O

j2n

F (1; �

j

)

�




�

O

i2m

F (�1; �

i

)

�

and we shall call the elements of F (n;m; �) multi-kink fields.
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Proposition 6.2.4 : Let � 2 T (n;m; e) be a family of one-kink homomorphisms.

Then for each arrangement � 2 P (n;m) there exists a canonical linear map which

maps F (n;m; �) into H
�

�

.

F (n;m; �)

-

H

�

�

; a

-

a

�




e

0

:

Proof. Let a 2 F (n;m; �) be of the form

a :=

�

O

j2n

a

j

�




�

O

i2m

a

i

�

:

Then the prescription

a

�




e

0

:= a

m

� � � a

�

�

(l)+1

a

n

� � �a

�

+

(l)+1

� � �a

�

�

(1)

� � � a

1

a

�

+

(1)

� � � a

1




e

0

defines a linear function which maps F (n;m; �) into H
�

�

where the arrangement

� = (�

+

; �

�

) is parameterized by equation (6.1). �

In order to discuss quasi-statistics for kink fields we need an additional defini-

tion.

Definiton 6.2.5 : Given two families of one-kink homomorphisms�; �̂ 2 T (n;m; e).

Then we define the vector space of intertwiner

(�̂j�) :=

�

O

j2n

(�̂

j

j�

j

)

�




�

O

i2m

(�̂

i

j�

i

)

�

:

We shall say that the elements of (�̂j�) intertwine the families � and �̂.

Remark: Note that, according to equation (6.6), each intertwiner v 2 (�̂j�) can

be canonically identified with a linear map

v : F (n;m; �)

-

F (n;m; �̂) :

Proposition 6.2.6 : For each arrangement � 2 P (n;m), there exists a canonical

linear embedding

v 2 (�̂j�)

�

-

v

�

2 (�̂

�

j�

�

)

such that the following relation is fulfilled for each a 2 F (n;m; �):

(va)

�




e

0

= v

�

� a

�




e

0
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Proof. The proof of the proposition is given in Appendix B.1. �

In order to formulate the conditions for quasi-statistics relation, we introduce

a local structure on the space of multi-kink fields. (Compare also [18, 19, 10] for

this notion.)

Definiton 6.2.7 : Given a wedge region W and a one-kink homomorphism � 2

�

1

(q; e

1

; e

2

). We shall say that a one-kink fielda = (�; a) 2 F (q; �) is localized in

W if there exists a kink homomorphism �̂ 2 �

1

(q; e

1

; e

2

) and a unitary intertwiner

u 2 (�̂; �) such that:

(a) �̂ is localized in W .

(b) The operator ua is localized in W .

The localization region of a one-kink field does not depend on the choice of the

intertwiner u and it is covariantly transformed under space-time translations:

Proposition 6.2.8 : Leta = (�; a) 2 F (q; �) be a one-kink field which is localized

in W . Then the following statements hold:

(1) For each unitary intertwiner v 2 (�

1

j�) for which �
1

is localized in W , the

operator va is localized in W .

(2) For each x 2 R2,

a(x) := U(x) � a � U(�x)

is a one kink field which is localized in W + x.

Proof.

(1) Let us consider a one-kink field a = (�; a) which is localized in W . By

definition, there exists a unitary intertwiner u 2 (�̂j�) such that �̂ and ua

are localized in W . If v 2 (�

1

j�) is a unitary intertwiner such that �
1

is also

localized in W , then va is localized in W since uv� 2 (�̂j�

0

) is localized in

W .
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(2) Let 
�

be a cocycle of charge transporters of �. Then we obtain:

a(x) = (�; 

�

(x)

�

�

x

(a)) :

If u 2 (�̂j�) is a unitary intertwiner such that �̂ and ua are localized in W ,

then the operator

w = �

x

(u)

�

(x)

�

is a unitary intertwiner in (�

x

� �̂ � �

�x

j�). Since �
x

� �̂ � �

�x

and �
x

(ua)

are localized in W + x, the statement (2) follows.

�

We introduce a further technical definition:

Definiton 6.2.9 :

(1) We denote byF (q; �;W ) the linear subspace of all one-kink fields which are

localized in W .

(2) Let W = (W

j

;W

i

)

i2m

j2n

be a family of wedge regions where the W
j

’s are

right wedge regions and the W i’s are left wedge regions. We define

F (n;m; �;W ) :=

�

O

j2n

F (1; �

j

;W

j

)

�




�

O

i2m

F (�1; �

i

;W

i

)

�

and we shall say that the multi-kinkfields ina 2 F (n;m; �;W ) are localized

in W .

We are now prepared to formulate the quasi-statistics relations for kink fields.

Theorem 6.2.10 : Let a 2 F (n;m; �;W ) be a multi-kink field. IfW
j

andW i are

space-like separated for each pair (j; i), then for each pair (�; �̂) 2 G(n;m) the

equation

a

�




e

0

= �

(�;�̂)

(�) a

�̂




e

0

holds.
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Proof. (Compare also [18, 19, 10]) We shall show in Appendix B.2 that there

exists a unitary intertwiner u 2 (�; �̂) such that

(ua)

�




e

0

= (ua)

�̂




e

0

for each pair (�; �̂) 2 G(n;m). This is due to the localization property of a. Thus

we obtain from Proposition 6.2.4:

a

�




e

0

= u

�

�

u

�̂

a

�̂




e

0

:

In Appendix B.2, the quasi-statistics operator is defined by

u

�

�

u

�̂

:= �

(�;�̂)

(�)

and is shown to be independent of the choice of the intertwiner u. �

6.2.3 Cluster Properties for Kink Fields

In order to prove the existence of kink collision states, we shall study the cluster

property of products of one-kink fields.

In the first step, we shall establish cluster properties for the simplest case, namely

for products of two one-kink fields. We consider one-kink homomorphisms (�
1

; �

1

) 2

T (1; 1; e

�1

; e

0

; e

1

) and wedge regions W
1

;W

1, W
1

� (W

1

)

0 with space-like dis-

tance

�

0

:= supfjtj jW

1

+ (t; 0) � (W

1

)

0

g :

Then we have:

Lemma 6.2.11 : Let a
1

2 F (1; �

1

;W

1

) and a

1

2 F (�1; �

1

;W

1

) be one-kink

fields. Denote by �
0

the value of the mass gap in sp(U

e

0

). Then there exists a con-

stant K > 0, depending only on jja
1

jj and jja1jj, such that the estimate

�

�

�

�

jja

1

a

1




e

0

jj

2

� jja

1




e

0

jj

2

jja

1




e

0

jj

2

�

�

�

�

� K e

��

0

�

0

holds.
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Proof. The lemma follows directly from a result which has been established by

K.Fredenhagen [25]. Compare also [28]. �

For establishing cluster properties for arbitrary products of kink fields, it seems

to be necessary to assume stronger localizing properties for kink homomorphisms

and kink fields.

The definition, given below, and the following proposition are formulated only

for kink homomorphisms with orientation q = 1. Since the case q = �1 can

simply be discussed in the same manner, we omit it here.

Definiton 6.2.12 : Given a kink homomorphism � 2 �(1; e

1

; e

2

), we shall say

that the interpolation region of � is contained in the double coneO, if the following

conditions are fulfilled.

(a) The homomorphism � is localized in O
R

, i.e. supp(�) � O

R

.

(b) There exists a symmetry �
�

2 Sym(A) such that:

�j

C

�

(A;O

RR

)

= �

�

j

C

�

(A;O

RR

)

:

Remark: Note that kink homomorphisms, which are induced by interpolating au-

tomorphisms fulfill the conditions (a) and (b).

Proposition 6.2.13 : Let �
1

; �

2

2 �(1; e

1

; e

2

) be kink homomorphisms whose in-

terpolation regions are contained in O
1

and O
2

respectively. If �
�

1

= �

�

2

, then

each intertwiner v 2 (�

1

j�

2

) is contained in A(O
12

) where O
12

denotes the small-

est double cone which contains the union O
1

[ O

2

.

Proof. It is sufficient to prove the proposition for q = 1. The case q = �1

can be treated analogously. We obtain for each observable a which is localized

in (O

12

)

LL

:

v�

1

(a) = va = �

2

(a)v = av :

We define � := �

�

1

= �

�

2

, and we obtain for each observable b which is localized

in (O

12

)

RR

:

v�

1

(b) = v�(b) = �

2

(b)v = �(b)v :
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Since � is a symmetry, we conclude by using Haag duality:

v 2 A

e

1

((O

12

)

LL

)

0

^ A

e

1

((O

12

)

RR

))

0

= A

e

1

((O

12

)

R

) ^ A

e

1

((O

12

)

L

)) = A(O

12

)

which completes the proof. �

Definiton 6.2.14 : Given a one-kink field a = (�; a). We shall say that the in-

terpolation region of a is contained in the double cone O if there exists a unitary

intertwiner u 2 (�̂; �) such that:

(a) The interpolation region of �̂ is contained in O.

(b) The operator ua is localized in O.

We shall see later that this localization property is sufficient for controlling the

clustering of correlation functions of multi-kink fields.

Remark:

(i) Note that such one-kink fields exist. Let us choose a one-kink homomor-

phism � with interpolation region in O and an operator a 2 A(O), then the

interpolation region of a = (�; a) is contained inO. In particular, each one-

kink field a whose interpolation region is contained inO is localized inO
R

,

for q = 1, and O
L

, for q = �1.

(ii) In complete analogy to the proof of Proposition 6.2.8, it can be verified that

the interpolation region of the translated one-kink field a(x) is contained in

O + x if the interpolation region of a is contained in O.

In order to formulate the main result of this section, we consider the subspace

F (n;m; �;O) � F (n;m; �)

which is spanned by multi-kink fields of the form

a =

�

O

j2n

a

j

�




�

O

i2m

a

i

�

2 F (n;m; �) (6.7)

such that the interpolation region of a
j

is contained in a double cone O
j

and the

interpolation region of ai is contained in a double cone Oi.
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Notation: We write for the vacuum vectors




j�1

= 


e

j�1

and 


i�1

= 


e

�i+1

and for the implementations of the translation group in the corresponding vacuum

representations:

U

j�1

(x) = U

e

j�1

(x) and U

i�1

(x) = U

e

�i+1

(x) :

The value of the mass gap in sp(U

j

) and sp(U

i

) is denoted by �
j

and �i respec-

tively. We also define the space-like distance (see Figure 6.1):

�

0

= �

0

:= supfjtj j (O

1

)

R

� (O

1

)

RR

+ (t; 0)g

�

j

:= supfjtj j (O

j

)

R

� (O

j+1

)

RR

+ (t; 0)g

�

i

:= supfjtj j (O

i+1

)

R

� (O

i

)

RR

+ (t; 0)g :

Moreover, we introduce a partial ordering� on the set of double cones. We write

O �

^

O ifO
L

�

^

O

LL

.

t

O

2

O

1

O

1

O

2

�

1

�

0

�

1

Figure 6.1: This figure shows the positions of the double conesO = (O

j

;O

i

) for

i; j 2 f1; 2g.
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= id

O

�

�

1

�

1

�

1

Figure 6.2: The figure above illustrates how the kink homomorphism �

1

changes

the localization region of local operators. This property encodes that the energy

density of the kink is strictly localized in O
1

.

Proposition 6.2.15 : Let a 2 F (n;m; �;O) be a multi-kink field which is a tensor

product as given by equation (6.7). If the double cones O = (O

j

;O

i

) are placed

in such a way that

O

m

� O

m�1

� � � � � O

1

� � � � � O

n

:

Then there exists a constant K > 0, depending only on jja
j

jj and jjaijj, such that

for each arrangement � 2 P (n;m) the following estimate holds:
�

�

�

�

jja

�




0

jj

2

�

n

Y

j=1

jja

j




j�1

jj

2

m

Y

i=1

jja

i




i�1

jj

2

�

�

�

�

� K

�

n�1

X

j=0

e

��

j

�

j

+

m�1

X

i=0

e

��

i

�

i

+ e

��

0

�

0

�

Proof. From Theorem 6.2.10, we conclude that

jja

�




0

jj

2

= jja

m

� � �a

1

a

n

� � � a

1




0

jj :

Since am; � � � ;a1 are localized in (O1

)

L

and a
n

; � � � ;a

1

are localized in (O
1

)

R

, an

straight forward generalization of Lemma 6.2.11 gives:
�

�

�

�

jjb

1

b

1




0

jj

2

� jjb

1




0

jj

2

jjb

1




0

jj

2

�

�

�

�

� K e

��

0

�

0 (6.8)



6.2 Quasi-Statistics, Kink Fields and Cluster Properties 127

where b
1

and b1 are given by

b

1

:= a

n

� � � � � a

1

and b

1

= a

m

� � � � � a

1

and K > max

i;j

(jja

j

jj; jja

i

jj)

2(n+m) is a sufficiently large constant.

Keeping in mind, how kink fields act on the state bundle H, we conclude that

jjb

1




0

jj

2 can be written as

jjb

1




0

jj

2

= !

0

(a

�

1

�

1

(b

�

b)a

1

)

where b is localized in (O

2

)

R

. The interpolation region of �
1

is contained in O
1

and hence �
1

(b

�

b) is also localized in (O

2

)

R

(see Figure 6.2). Since a
1

is localized

in (O

1

)

L

, we conclude from [25] and the fact that !
0

(�

1

(b

�

b)) = !

1

(b

�

b):

j!

0

(a

�

1

�

1

(b

�

b)a

1

)� !

1

(b

�

b)!

0

(a

�

a)j � K e

��

0

�

0

Let b
2

:= a

n

� � � � � a

2

. Then we have jjb
2




1

jj

2

= !

1

(b

�

b) and we obtain the

estimate:
�

�

�

�

jjb

1




0

jj

2

� jjb

2




1

jj

2

jja

1




0

jj

2

�

�

�

�

� K e

��

0

�

0 (6.9)

In a similar way, we derive:
�

�

�

�

jjb

2




1

jj

2

� jjb

3




2

jj

2

jja

2




1

jj

2

�

�

�

�

� K e

��

1

�

1 (6.10)

with b
3

= a

n

� � � � � a

3

. Inserting equation (6.10) into equation (6.9) gives:
�

�

�

�

jjb

1




0

jj

2

� jjb

3




2

jj

2

jja

2




1

jj

2

jja

1




0

jj

2

�

�

�

�

(6.11)

� K

�

e

��

0

�

0

+ e

��

1

�

1

�

By induction it follows:

�

�

�

�

jjb

1




0

jj

2

�

n

Y

j=1

jja

j




j�1

jj

2

�

�

�

�

� K

n

X

j=1

e

��

j�1

�

j�1 (6.12)

Analogously we obtain:

�

�

�

�

jjb

1




0

jj

2

�

m

Y

i=1

jja

i




i�1

jj

2

�

�

�

�

� K

n

X

i=1

e

��

i�1

�

i�1

(6.13)

Finally, the proposition follows by inserting equation (6.12) and (6.13) into equa-

tion (6.8). �
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6.3 The Structure of Scattering States

In this section we introduce one-kink creation operators. We apply the results of

the previous Section 6.2 to products of one-kink creation operators in order to prove

the existence of the Haag-Ruelle collision states. We also refer to [44, 68, 18, 19,

10]. The cluster property for kink fields is one of the crucial facts to carry through

our subsequent analysis.

6.3.1 Creation Operators for Massive One-Kink States

To describe a stable one-particle state, we use one-kink fields a = (�; a), such that

the vector  = f�; a


e

g has spectral support on the mass shell H
m

, i.e. it is an

eigenstate of the mass operator:

P

�

P

�

 = m

2

 

Indeed, there are such fields. If we choose a energy-momentum distribution f 2

S(R

2

) such that supp(f) \ sp(U

�

) � H

m

, then the one-kink field

a(f) =

Z

dx f(x) a(x)

has the desired property.

Since f has compact support in momentum space, the field operator a(f) is

only an almost local operator, i.e. the kink field a(f) can be approximated in norm

by fields which are localized in wedge regions.

We shall show that for a momentum distribution f 2 S(R

2

) and a one-kink

field a the operator a(f) can be approximated in norm by one-kink fields with

bounded interpolation region.

Proposition 6.3.1 : Let f 2 S(R2

) be a momentum distribution and a 2 F (q; �)

a one-kink field whose interpolation region is contained inO. Then for each � > 0

there exists a compact region G � R

2 such that

jja(f) � a

G

(f)jj < � (6.14)

where the interpolation region of the field operator

a

G

(f) :=

Z

G

dx f(x) a(x) (6.15)

is contained in a bounded double cone.
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Proof. It is sufficient to prove the proposition for kink fields with orientation q =

1. The case q = �1 can be treated in the same manner. To establish equation

(6.14), we consider the following inequality:

jja(f)� a

G

(f)jj =

�

�

�

�

�

�

�

�

Z

R

2

nG

dx f(x) a(x)

�

�

�

�

�

�

�

�

�

Z

R

2

nG

dx jf(x)j jjajj

Since f is of fast decrease, equation (6.14) follows.

It remains to be proven that the kink field a
G

(f) has a bounded interpolation

region. We choose a = (�; a) such that � has interpolation region in O and a is

contained in A(O). The translated one-kink field operator

a(x) = (�; 

�

(x)

�

�

x

(a))

has interpolation region in O + x. We choose a point x
G

2 R

2 such that

�

G

:= Ad(

�

(x

G

)) � �

is localized in the right space-like complement of

O

G

:=

_

x2G

O + x :

Here 
�

is a cocycle of charge transporters of �. By Proposition 6.2.13, the operator



�

(x

G

)

�

(x)

�

2 (�

G

j�

x

� � � �

�x

)

is localized in O
G

and we conclude:



�

(x

G

)

Z

G

dx f(x) a(x) =

�

�

G

;

Z

G

dx f(x) 

�

(x

G

)

�

(x)

�

�

x

(a)

�

:

Since the operator
Z

G

dx f(x) 

�

(x

G

)

�

(x)

�

�

x

(a)

is contained in A(O
G

) and �
G

has kink region in O
G

, the proposition follows. �

The one-kink field a(f) 2 F (q; �) describes the creation of a kink with energy-

momentum distributionf . We are interested in those momentum distributions which

describes the free propagation of a massive particle. For this purpose, we assign

to each one-kink homomorphism � 2 �

1

(q; e

1

; e

2

) a linear subspace L
�

� S(R

2

)

of energy-momentum distributions which is given by the condition:
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(a) The support supp( ~f) is compact and supp(

~

f)\ sp(U

�

) � H

m

�

wherem
�

is

the value of the mass which corresponds to the one-kink homomorphism �.

The velocity support v
r

(f), r > 0, of an energy-momentum distribution f 2

L

�

is given by

v

r

(f) := fv

�

(p)jp 2 B(r) + k for some k 2 supp(

~

f).g

where v
�

(p

0

; p

1

) = p

1

� (p

2

1

+m

2

�

)

1=2 is the velocity with respect to p in the Lorenz

frame which is given by the x0-coordinate and B(r) is the closed ball with radius

r and center k = 0.

Given a one kink field a 2 F (q; �) and an energy-momentum distribution f 2

L

�

. We define the time-depending field operator

a(f; t) := a(D

t

f)

where the operator D
t

is given by the kernel

D

t

(x� y) :=

Z

dp e

i(p

0

�w

�

(p))t

e

�i(x�y)

:

If we apply a(f; t) to the corresponding vacuum 


e

, then we obtain a vector

which is independent of t and represents a stable massive particle. Indeed, we ob-

tain by a straight forward computation

a(f; t)


e

= 2� � f�;

~

f(P

�

)�

e

(a)


e

g

which is obviously independent of t. Here P
�

denotes the generator of the transla-

tions U
�

(x). (Compare also [10, 18, 19, 28].)

Given an energy-momentum distribution f 2 L

�

. We consider the compact

region

G

r

(f; t) := fx 2 R

2

j x

0

2 [t� r; t+ t] and t�1x1 2 v
r

(f).g

and the one-kink field

a

r

(f; t) := a

G

r

(f;t)

(D

t

f)

By Proposition 6.3.1, we conclude that the interpolation region of a
r

(f; t) is

contained in a bounded double cone. It is well known [10, 18, 19, 28] that the norm

of the difference of a
r

(f; t) and a(f; t) is of fast decrease in t, i.e. a fast decreasing

function h 2 S(R) exists such that:

jja

r

(f; t)� a(f; t)jj � h(t) (6.16)

Let us have a closer look to the kink-region of a
r

(f; t).



6.3 The Structure of Scattering States 131

Lemma 6.3.2 : Let a be a one-kink field with interpolation region in O and an

energy-momentum distribution f 2 L

�

and define v
L

:= inf(v

r

(f)) and v
R

:=

sup(v

r

(f)). Then the interpolation region of the one-kink field a
r

(f; t) is contained

in

O

r

(f; t) := O

L

+ (t; t � v

L

) \ O

R

+ (t; t � v

R

)

Proof. From the definition of the velocity support we obtain:

O

r

(f; t) =

_

x2G

r

(f;t)

O + x

We choose a charge transporter u 2 (�̂; �) such that �̂ is localized in G
r

(f; t)

R

.

Then, for each x 2 G
r

(f; t), the operator u
�

(x)

� is contained in (�̂; �

x

� � ��

�x

).

Therefore, the operator

Z

G

r

(f;t)

dx D

t

f(x) u

�

(x)

�

�

x

(a)

is localized inO
r

(f; t). Since the interpolation region of �̂ is contained inO
r

(f; t),

the lemma follows. �

6.3.2 Construction of the Haag-Ruelle Collision States

We consider energy-momentum distributions f for with velocity support in I , i.e.

f 2 L

�

(I) := ff

1

2 L

�

jv

r

(f

1

) � I for at least one r > 0g :

Energy-momentum distributions of multi-kink configurations are described by test

functions which are contained in

L(n;m; �; I) :=

�

O

j2n

L

�

j

(I

j

)

�




�

O

i2m

L

�

i
(I

i

)

�

� S(R

2

)


(n+m)

where � is contained in T (n;m; e).

Given a multi-kink field a 2 F (n;m; �) and an energy momentum distribution

f 2 L(n;m; �; I). Then the multi-kink fields a(f; t) are analogously defined to the

one-kink case: Let

f =

�

O

j2n

f

j

�




�

O

i2m

f

i

�

and a =

�

O

j2n

a

j

�




�

O

i2m

a

i

�

(6.17)
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then a(f; t) is given by

a(f; t) =

�

O

j2n

a

j

(f

j

; t)

�




�

O

i2m

a

i

(f

i

; t)

�

: (6.18)

The operators a(f; t) describe configurations of n right-moving and m left-

moving kinks with velocities v
j

2 I

j

and vi 2 I

i. For each arrangement � 2

P (n;m), the vector

 (f; t) := a(f; t)

�




0

represents the corresponding multi-kink state.

To obtain asymptotically stable configurations of n + m free kinks, we con-

sider multi-kink fields a and energy-momentum distributions f which fulfill the

following conditions:

(a) a 2 F (n;m; �;O) such that:

O

m

� O

m�1

� � � � � O

1

� � � � � O

n

(b) The energy-momentum distributionsf 2 L(n;m; �; I) is velocity orderedi.e.:

I

m

< I

m�1

< � � � < I

1

< � � � < I

n

:

(c) The multi-kink fielda and the energy-momentumdistributionf 2 L(n;m; �; I)

are tensor products as given by equation (6.17).

Proposition 6.3.3 : Leta be a multi-kink fielda and let f be an energy-momentum

distribution such that the conditions (a) to (c) are fulfilled. Then there exists a

rapidly decreasing function h such that, for each arrangement � 2 P (n;m), the

following inequality holds for each t > 0:

�

�

�

�

jja(f; t)

�




0

jj

2

�

n

Y

j=1

jj (f

j

)jj

2

m

Y

i=1

jj (f

i

)jj

2

�

�

�

�

� h(t)

Here  (f
j

) := a

j

(f

j

)


j�1

and  (f i) := a(f

i

)


i�1 are t-independent vectors,

representing one-kink states.
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Proof. Since the energy-momentum distribution f is velocity ordered we con-

clude from Lemma 6.3.2 that there are positive numbers T > 0 and R > 0 such

that for each t > T and for each r < R the interpolation regions O
j

(t) and Oi

(t)

of the one-kink fields a
j;r

(f

j

; t) and ai
r

(f

i

; t) are placed as follows:

O

m

(t) � O

m�1

(t) � � � � � O

1

(t) � � � � � O

n

(t)

Moreover, the space-like distances (compare Proposition 6.2.13) of the interpola-

tion regions (O
j

(t);O

i

(t)) increase like jtj if t tends to infinity.

We conclude from equation (6.16) that there is a rapidly decreasing function

h

1

such that

jja

j;r

(f

j

; t)� a

j

(f

j

; t)jj � h

1

(t) and jja

i

r

(f

i

; t)� a

i

(f

i

; t)jj � h

1

(t) :

Thus the proposition follows from Proposition 6.2.15. �

Corollary 6.3.4 : There exists a rapidly decreasing function h, such that

�

�

�

�

�

�

�

�

d

dt

a(f; t)

�




0

�

�

�

�

�

�

�

�

� h(t)

for each arrangement �.

Proof. By using Proposition 6.3.3 and applying the Leibniz rule, we obtain the

result. �

Lemma 6.3.5 : Let a 2 F (n;m; �;O) be a multi-kink field and let f 2 L(n;m; �; I)

be a energy-momentum distribution. If the conditions (a) to (c) are fulfilled, then

the following statements are true:

(1) For each arrangement � 2 P (n;m) the strong limits

s� lim

t!1

a(f; t)

�




0

=  

out

�

(f) 2 H

�

�

exist.

(2) Let  (f
j

) := a

j

(f

j

)


j�1

and  (f i) := a(f

i

)


i�1, then the norm of  
�

(f)

is

jj 

out

�

(f)jj =

n

Y

j=1

jj (f

j

)jj

m

Y

i=1

jj (f

i

)jj :
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Proof.

(1) For each t
1

; t

2

> 0, we obtain from Corollary 6.3.4 the estimate:

�

�

�

�

�

�

�

�

a(f; t

1

)

�




0

� a(f; t

2

)

�




0

�

�

�

�

�

�

�

�

=

�

�

�

�

�

�

�

�

Z

t

1

t

2

dt

d

dt

a(f; t)

�




0

�

�

�

�

�

�

�

�

�

Z

t

1

t

2

dt

�

�

�

�

�

�

�

�

d

dt

a(f; t)

�




0

�

�

�

�

�

�

�

�

�

Z

t

1

t

2

h(t)

Since h is rapidly decreasing, we conclude

lim

t

1

;t

2

!1

�

�

�

�

�

�

�

�

a(f; t

1

)

�




0

� a(f; t

2

)

�




0

�

�

�

�

�

�

�

�

= 0

which implies (1).

(2) The statement (2) follows directly from Proposition 6.3.3.

�

Given a one-kink homomorphism � 2 �

1

(q; e

1

; e

2

). Then we define the one-

kink Hilbert space

H

1

(�) := f 2 H

�

jP

�

P

�

 = m

2

�

 g :

It is well known, that

D

�

:= f = a(f)


e

j a 2 F (q; �) and f 2 L
�

.g

is a dense subspace of H
1

(�).

Let � 2 T (n;m; e) be a family of one-kink homomorphisms. We consider for

each � 2 P (n;m) the Hilbert space

H(n;m; �)

�

:= H

1

(�

m

)
 � � � 
 H

1

(�

�

�

(l)+1

)
H

1

(�

n

)
 � � �H

1

(�

�

+

(l)+1

)
 � � �

� � � 
 H

1

(�

�

�

(1)

)
 � � � 
 H

1

(�

1

)
H

1

(�

�

+

(1)

)
 � � � 
 H

1

(�

1

)

where the arrangement � = (�

+

; �

�

) is parameterized by equation (6.1).
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Given a pair of arrangements (�; �̂) 2 G(n;m), then we denote by

u

(�;�̂)

: H(n;m; �)

�̂

-

H(n;m; �)

�

the unitary operator, canonically given by exchanging the tensor factors inH(n;m; �)

�̂

in an appropriate way.

Moreover, let U
�

-

U

�

(x) be the representation of the translation group on

H(n;m; �)

�̂

, induced by the translations U : x

-

U(x) which act on the state

bundle H.

The elements ofH(n;m; �)

�

describe a configuration of n+m freely moving

kinks which do not interact. We close this section by showing that the asymptotic

scattering states 	out

(f) can be interpreted in the same manner.

Theorem 6.3.6 : For each arrangement � 2 P (n;m), there are isometries

	

ex

�

: H

�

�

-

H(n;m; �)

�

ex = out; in, such that the following statements hold:

(1) Let �
(�;�̂)

(�) be the quasi statistics operator with respect to (�; �̂) 2 G(n;m),

then one has:

u

(�;�̂)

�	

ex

�̂

= 	

ex

�

� �

(�;�̂)

(�)

(2) The isometries 	ex are translationally covariant, i.e.:

U

�

(x) �	

ex

�

= 	

ex

�

� U(x)

Proof. The existence of the isometries 	ex

�

follows directly from Lemma 6.3.5.

(1) The statement (1) can be obtained by an application of the quasi-statistics

theorem (Theorem 6.2.10) and an application of Proposition 6.3.3.

(2) Let f 2 L

�

be an energy-momentum distribution. Then one has for each

a 2 F (q; �):

U(x)a(f)


e

= a(�

x

f)


e

where �
x

f denotes the translated test function f by x. Thus we conclude for

an arrangement � 2 P (n;m):

U(x)a(f; t)

�




0

= a(�

x

f; t)

�




0

and (2) follows from Proposition 6.3.3.

�
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Conclusion and Outlook

7
7.1 Remarks on Open Problems

In Chapter 4 and Chapter 5, a construction scheme for kink sectors has been devel-

oped which can be applied to a large class of quantum field theory models. Most of

the techniques which are used, except those in the proof of the extendibility of the

dynamics, concern operator algebraic methods. They are model independent in the

sense that they can be derived from first principles. There are still some interesting

open problems and we shall make a few remarks on them here.

7.1.1 Some Further Remarks on Kink States, Induced by Inter-

polating Automorphisms

Let us consider a quantum field theory model (P (�)
2

, Y
2

), possessing vacua !
1

; !

2

which are related by a symmetry �. According to Theorem 5.1.8, there exists a �-

interpolating automorphism �

I which induces a kink state ! = !

1

��

I . Note that

! is a pure state in this case.

Alternatively, we obtain a kink state !̂ by passing to the two folded tensor prod-

uct of the theory with itself first and then by restricting the �
F

-interpolating auto-

morphism �

I , whose existence follows also from Theorem 5.1.8, to the first tensor

factor, i.e.:

!̂ = !

1


 !

2

� �

C

�

(A)
1

:

It would be interesting to know in which way both sectors [!] and [!̂] are related

to each other.
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7.1.2 The Problem of Reducibility

The problem of reducibility arises if the vacua under consideration are not related

by a symmetry since then our construction scheme leads to kink representations of

the form

� = �

1


 �

2

� �j

C

�

(A)
1

where � 2 Aut(�

F

;A 
 A) is an interpolating automorphism and �
1

; �

2

are vac-

uum representations. The representation � is not irreducible and whether � can be

decomposed into irreducible sub-representations is still an open problem. Some of

our results (Theorem 4.4.3) suggest that � is, in non exceptional cases, an infinite

multiple of a finite direct sum of irreducible components.

7.2 Application to other Topics

Some of the ideas and techniques which we have used in Chapter 4 and Chapter 5

can also be applied to topics which have not been considered in the present work.

In this section we shall briefly mention some examples.

7.2.1 Further Applications in 1+1-Dimensional Quantum Field

Theories

We consider a net of field algebras F : O 7! F(O) in 1 + 1-dimensional quantum

field theory with an compact internal symmetry groupG, acting by automorphisms

�

g

on C�

(F). Furthermore, we assume that F is faithfully and irreducibly repre-

sented by a vacuum representation on some Hilbert spaceH and that the inclusion

�(O) = (F(O

RR

);F(O

R

);
)

is standard split, where 
 is the vacuum vector in H. Furthermore, we denote by

	

O

is the universal localizing map with respect to �(O).

The fix-point net A under the action of G does not fulfill Haag duality and we

are interested in the dual net Ad. Recently, an explicit construction of the dual net

A

d has been carried out by M. Müger [62]. He applied for his purposes, similar

techniques as we have used in Chapter 4 and Chapter 5. We shall briefly sketch the

main ideas. In the same manner as in Chapter 5, he constructs a non-local extension
^

F of the net F:

^

F(O) := F(O) _ U

O

(G)

00
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where the representation U
O

is given by

U

O

(g) := 	

O

(1
 U(g)) :

HereU is a unitary representation ofG onH which implements the action ofG in

the vacuum representation.

The action ofG onC�

(F) can be lifted to the extensionC�

(

^

F) in a natural way.

Hence one can build the fix-point net ^A of ^F under the action of G. According to

[62], the net ^A is nothing else but the dual net. Finally, we illustrate this result by

the following diagram:

F(O)

�

-
^

F(O)

A(O)

[

6

�

-
^

A(O) = A

d

(O)

[

6

7.2.2 Kink Sectors in d > 1 + 1 Dimensions

It would be desirable to apply our program to quantum field theories in higher di-

mensions. Let us suppose a theory, given by a net of W*-algebras A, possesses

two locally normal vacuum states !
1

; !

2

.

As a sensible generalization of a kink states to d > 1+1, we propose to consider

locally normal states ! which fulfill the interpolation condition:

!j

C

�

(A;S

1

)

= !

1

j

C

�

(A;S

1

)

and !j

C

�

(A;S

0

2

)

= !

2

j

C

�

(A;S

0

2

)

(7.1)

whereS
1

; S

2

, S
1

� S

2

, are space-like cones. The state ! describes the coexistence

of two phases which are separated by the phase boundary @S := S

0

1

\ S

2

.

Let us assume duality for space-like cones in the vacuum representations under

consideration. Furthermore, we assert that the inclusion

� = (A

�

1

(S

1

);A

�

1

(S

2

);


1

)

is standard split. Here (H
1

; �

1

;


1

) is a GNS-triple with respect to !
1

.

Unfortunately, for d > 1+1 the phase boundary @S is not compact and there-

fore our construction scheme can not directly be generalized to higher dimensions.

In order to overcome this difficulties, we consider a sequence of standard split

inclusions

�

n

:= (A

�

1

(O

1n

);A

�

1

(O

2n

);


1

)
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where O
1n

�� O

2n

are bounded double cones such that O
jn

tends to S
j

for n!

1.

As in the 1 + 1-dimensional case we pass now to the two folded tensor prod-

uct of the theory with itself. Denote by 	

�

n


�

n

the universal localizing map with

respect to the inclusion �

n


 �

n

. Since the operators

�

n

:= 	

�

n


�

n

(1 
 u

F

)

are localized in a bounded region, we may define the following automorphisms of

C

�

(A):

�

n

:= (�

1


 �

1

)

�1

� �

n

� (�

1


 �

1

) :

We obtain a sequence of states f!
n

; n 2 Ng where !
n

is given by:

!

n

:= !

1


 !

2

� �

n

j

C

�

(A)
1

:

For large n the states !
n

have almost the correct interpolation property, namely for

each pair of local observables a; b where a is localized S0
2

and b is localized in S
1

,

there exists a sufficiently large N such that

!

n

(a) = !

1

(a) and !

n

(b) = !

2

(b)

for each n > N . Note that each state !
n

fulfills the Borchers criterion since !
n

belongs to the vacuum sector [!
1

].

In order to obtain generalized kink states, we propose to investigate weak*-

limit points of the sequence f!
n

; n 2 Ng. Note that each weak*-limit !
�

point of

the sequence f!
n

; n 2 Ng fulfills the interpolation condition (7.1). It remains to

be proven that the weak*-limit points are locally normal.
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Remarks on the Split Property

for Massive Free Scalar FieldsA
A.1 Preliminaries:

We work here with the self-dual CCR-algebra in d spatial dimensions. Therefore,

we need some technical definitions.

Definiton A.1.1 : For the vector space K = S(R

d

) � S(R

d

), we denote by �

the complex conjugation in K , �f =

�

f . Moreover, we introduce the following

sesquilinear form  on K:

(f; g) =

�

f;

 

0 �i

i 0

!

g

�

(A.1)

where (�; �) denotes the ordinary scalar-product in L
2

(R

d

)�L

2

(R

d

). The self-dual

CCR-algebra A(K; ;�) is the *-algebra which is generated by the set of symbols

fb(f) : f 2 Kg modulo the following relations:

(1) The map b : f 2 K 7! b(f) 2 A(K; ;�) is linear.

(2) We have the following *-relation: b(f)� = b(�f).

(3) We have the commutator relation [b(f)

�

; b(g)] = (f; g)1.

For a regionG � R

dwe consider the CCR-algebraA(G) := A(K(G); ;�)where

K(G) is defined by K(G) := �

1=2

S(G) � �

�1=2

S(G). Here � is the pseudo dif-

ferential operator which is given by kernel

�(x� y) :=

Z

dp (p

2

+m

2

)

1=2

e

ip(x�y)

: (A.2)
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We now define the quasi-free vacuum functional !
0

on A(K; ;�) by

!

0

(b(f)

�

b(g)) := 1=2(f; g) :

where the functions f; g are contained in K .

A.2 Product States:

Let us consider now two regionsG
1

; G

2

� R

d with non vanishing distance. In the

sequel we writeG := G

1

[ G

2

for their union.

We denote by A(G
1

) _ A(G

2

) the algebra which is given by all finite sums
P

a

n

b

n

with a
n

2 A(G

1

) and b
n

2 A(G

2

). Since G
1

and G
2

have non vanishing

distance we conclude thatA(G
1

)_A(G

2

) = A(G). We define now a product state

! on A(G) by

!(

X

a

n

b

n

) :=

X

!

0

(a

n

)!

0

(b

n

) : (A.3)

Since !
0

is quasi-free, ! is also a quasi-free state on A(G).

We are now interested in a criterion which give us the possibility to decide for

which regions G
1

; G

2

with non vanishing distance the GNS-representations with

respect to the states ! and !
0

are unitarily equivalent on A(G).

We are going to use a criterion which is proven by H. Araki. To formulate this

criterion, let us consider the following two scalar products on the space K(G

1

[

G

2

):

(1) (f; g)

0

:= !

0

(b(f)

�

b(g)) + !

0

(b(�f)

�

b(�g))

(2) (f; g)

p

:= !(b(f)

�

b(g)) + !(b(�f)

�

b(�g))

Here ! is the product state, induced by !
0

. The completion of K(G) with re-

spect to the norm jj � jj

0

= (�; �)

0

(resp. jj � jj
p

= (�; �)

p

) is denoted by K(G)

0

(resp.

K(G)

p

).

Moreover, denote by s
0

(resp. s
p

) a positive operator, bounded by 1, with the

property (f; s

0

g)

0

= !

0

(b(f)

�

b(g)) (resp. (f; s
p

g)

p

= !(b(f)

�

b(g))).

Criterion: The GNS-representations with respect to !
0

and ! are unitarily

equivalent if the following conditions hold:

(1) The values 0; 1=2 are not eigenvalues of s
0

(resp. s
p

) inK(G)

0

(resp. K(G)

p

).
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(2) The norms jj � jj
0

and jj � jj
p

are equivalent on K(G).

(3) The following operators are of Hilbert-Schmidt class in K(G)

0

= K(G)

p

:

(s

0

� s

p

)(1� 2s

0

)

�1 and (s

0

(1� s

0

))

1=2

� (s

p

(1� s

p

))

1=2

The following analysis can be done in complete analogy to those of D. Buch-

holz [8] who has proven that ! and !
0

are unitarily equivalent onA(G), in the case

where G
1

= O

1

is a compact region and G
2

= O

2

the complement of a slightly

larger compact region inR3. The only argument in this analysis which depends on

the spatial dimension is contained in the proof of condition (2) ([8, Lemma 3.2]).

The necessary generalization is given in the next paragraph.

If one carries through the analysis of [8], we obtain the following criterion:

Consider two regions ^

G

j

� G

j

; j = 1; 2 such that ^

G

1

and ^

G

2

have also non

vanishing distance and let �
G

1

; �

G

2

be two C1-functions with supp(�

G

j

) �

^

G

j

and �
G

j

(x) = 1 for x 2 G
j

. Then we obtain:

Proposition A.2.1 : The states ! and !
0

are unitarily equivalent on A(G) if the

integral-kernel

�

G

1

(x)�(x� y)�

G

2

(y) (A.4)

is an element of S(R2d

).

A.3 Equivalence of Norms:

For convenience, we cite now the proof of [8, Lemma 3.2] by making the necessary

changes to show that the result is independent of the spatial dimension.

Lemma A.3.1 : Let (G
1

; G

2

) be any pair of regions with non-vanishing distance,

then the norms jj � jj
0

and jj � jj
p

are equivalent on K(G

1

[G

2

).

Proof. Let t > 0 be the distance between G
1

andG
2

. Moreover, let s, be a func-

tion in S with support in B
d

(t=2) and Fourier transform ŝ, such that ŝ(p) � 0

for all p 2 R

d. A function with these properties exists and can be obtained by

using the convolution theorem. Hence there are constants c > a > 0 such that

c > (p

2

+m

2

)

1=2

(ŝ(p) + a) � a > 0. This implies

j(p

2

+m

2

)

�1=2

� c

�1

(ŝ(p) + a)j � ac

�1

(p

2

+m

2

)

�1=2

j(p

2

+m

2

)

1=2

� c

�1

(p

2

+m

2

)(ŝ(p) + a)j � ac

�1

(p

2

+m

2

)

�1=2

(A.5)
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We consider now the following operators which are diagonal in momentum space:

w

1

(p) = c

�1

(ŝ(p) + a)

w

2

(p) = c

�1

(p

2

+m

2

)(ŝ(p) + a)

(A.6)

For any element g 2 S(G
2

) one has

(w

1

g)(x) = c

�1

(s � g(x) + ag(x))

(w

2

g)(x) = c

�1

(@

�

@

�

+m

2

)(s � g + ag)(x) ; � = 1; 2; 3

(A.7)

and hence suppw
j

g \ G

1

= ;. Thus one gets (f;w
j

g) = 0 for each f 2 K(G

1

)

and each g 2 K(G

2

). Now we compute:

j(f; �

�1

g)j = j(f; �

�1

g � w

1

g)j

�

R

dp j(p

2

+m

2

)

�1=2

� c

�1

(ŝ(p) + a)jj

^

f(p)jjĝ(p)j

� ac

�1

R

dp (p

2

+m

2

)

�1=2

j

^

f(p)jjĝ(p)j

� ac

�1

(f; �

�1

f)

1=2

(g; �

�1

g)

1=2

(A.8)

Analogously we obtain the estimate j(f; �g)j � ac

�1

(f; �f)

1=2

(g; �g)

1=2. Keep-

ing in mind that ac�1 < 1, the equivalence of the norms jj � jj
0

and jj � jj
p

can be

obtained by using the same arguments as in [8]. �

A.4 Application of the Criterion:

In this paragraph, we discuss the application of Proposition A.2.1 with respect to

the possible cases for G
1

and G
2

.

Denote by S(Rd

; 0) the space of functions f such that �f 2 S(R

d

) for each

test function � 2 S(Rd

) with 0 =2 supp(�).

It turns out that the problem can be reduced to the following question:

Let f be a function in S(Rd

; 0). For which pairs of regionsG
1

; G

2

� R

d is the

function

f

(G

1

;G

2

)

: (x;y) 7! �

G

1

(x)f(x� y)�

G

2

(y) (A.9)

contained in S(R2d

) ?

Since f may be singular at x = 0, one has to require that G
1

and G
2

have non

vanishing distance.
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Definiton A.4.1 : A pair of regions G
1

; G

2

� R

d with non vanishing distance is

called admissible if there exists a constant k > 0 such that for each r > 0 the set

G(r) := f(x

1

;x

2

)jx

1

2 G

1

;x

2

2 G

2

; x

1

� x

2

2 B

d

(r)g

is contained in B
2d

(kr), where B
d

(r) denotes the closed ball in Rd with radius r.

Lemma A.4.2 : If (G
1

; G

2

) is a pair of regions in Rd which is admissible, then

the function f
(G

1

;G

2

)

is contained in S(R2d

).

Proof. Since the pair (G
1

; G

2

) is admissible, the regionG(k�1r) := f(x;y)jx 2

G

1

;y 2 G

2

; x � y 2 B

d

(k

�1

r)g is contained in the closed ball B
2d

(r) for a

constant k > 0. This implies that for each m 2 N one has

j�

G

1

(x)f(x� y)�

G

2

(y)j < const: � jx� yj

�m

� const: � k

m

r

�m

� const: � j(x;y)j

�m

:

(A.10)

Hence we conclude that f
(G

1

;G

2

)

is of fast decrease and thus contained in S(R2d

).

�

Corollary A.4.3 : If the pair of regions (G
1

; G

2

) is admissible, then the states !
0

and ! are unitarily equivalent on A(G).

Proof. The function

f : x 2 R

d

nf0g 7! f(x) =

Z

dp (p

2

+m

2

)

1=2

e

ipx (A.11)

is contained in S(Rd

; 0). An application of Proposition A.2.1 and Lemma A.4.2

implies the result. �

Let us now discuss the cases for witch the pair (G
1

; G

2

) is admissible. To carry

through this analysis, we have to give a few more definitions. Let e 2 R

d be a

vector of unit length and s 2 (0; 1), then we define the convex cone C(e; s) :=

R

+

� (B

d

(s) + e). The complement of C(e; s) in Rd is denoted by C 0

(e; s).

Lemma A.4.4 : Let s
1

; s

2

2 (0; 1) with s
1

< s

2

and e a unit vector, then for each

� > 0 the pair (C(e; s
1

) + �e; C

0

(e; s

2

)) is admissible.
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Proof. Let us consider the set C(e; s
2

)nC(e; s

1

) = C(e; s

2

; s

1

). For s
2

> s

1

,

there exists a convex cone C(e0; s
3

) which is contained in C(e; s
2

; s

1

). Hence for

each x 2 @C(e; s

1

) exists r > 0, such that B
d

(r) + x � C(e; s

2

). Moreover, we

have the following relation between x and r:

jxj � sin('

2

� '

1

)

�1

� r (A.12)

Here '
j

= arcsin(s

j

) is the opening angle ofC(e; s
j

). We set t := sin('

2

�'

1

)

�1

and conclude for each x 2 B
d

(tr)

0

\ C(e; s

1

)

B

d

(r) � C(e; s

2

) + x : (A.13)

Hence for each x 2 B
d

(tr)

0

\C(e; s

1

) there is no y 2 C 0

(e; s

2

) such that x+y 2

B

d

(r). Since for each � > 0 the setC(e; s
1

)+�e is contained inC(e; s
1

), we obtain

that

G(r) := f(x;y)jx 2 C(e; s

1

) + �e;y 2 C

0

(e; s

2

) ; x+ y 2 B

d

(r)g (A.14)

is contained in B
d

(tr) � C

0

(e; s

2

). On the other hand, for each r > 0 there exists

y 2 @C(e; s

2

) such that B
d

(r)\C(e; s

1

) = ;. We have the following relation for

y and r:

jyj � sin('

2

� '

1

)

�1

� r (A.15)

Thus with the same argument as above we conclude finally that there exists a con-

stant k > 0, such that

G(r) � B

d

(tr)�B

d

(tr) � B

2d

(kr) (A.16)

which implies the result. �

We see that for d > 1 the arguments in the proof of Lemma A.4.4 fails for cones

with the same opening angle, i.e. the pair (C(e; s)+�e; C 0

(e; s)) is not admissible.

On the other hand, for d = 1 the pair ((�1; 0]; [�;1)) is indeed admissible.

A.5 The Split Property:

To discuss the split property, we briefly describe the construction of the local v.Neumann

algebras for the free massive scalar field in the vacuum representation. Denote by
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(H

0

; �

0

;


0

) the GNS-triple of !
0

. We define for each f 2 K

�

:= fg 2 K :

�g = gg, the field operator b
0

(f) := �

0

(b(f)) which is essentially self-adjoint on

�

0

(A(K; ;�))


0

. For a region G � R

d we denote by M(G) the v.Neumann al-

gebra which is given byM(G) := fe

i�

0

(b(f))

: f 2 K

�

(G)g

00, where 00 denotes the

double commutant in B(H
0

).

Let us consider a pair of admissible regions (G
1

; G

2

), then by Corollary 3.1 we

know that the vacuum state !
0

and its induced product state ! are unitarily equiva-

lent onA(G
1

[G

2

). Hence the product state ! induces a normal state onM(G

1

)_

M(G

2

) which is given by a vector � 2 H
0

, where � is cyclic forM(G

1

)_M(G

2

).

Thus we have for a
1

2M(G

1

) and a
2

2M(G

2

)

h�; a

1

a

2

�i = h


0

; a

1




0

i h


0

; a

2




0

i (A.17)

By standard arguments [8], we conclude that for a pair of admissible regions

(G

1

; G

2

) the inclusion

M(G

1

)

0

�M(G

2

) (A.18)

is a split inclusion.

Example: We close the appendix by discussing the 1 + 1-dimensional case

briefly. We consider the regions (0;1) and (�1; 0). For x 2 (0;1) the pair

((x;1); (�1; 0)) is admissible (see Lemma A.4.4). Keeping in mind that the net

of the free field I 7!M(I) satisfies wedge duality we obtain that the inclusion

M(x;1) �M(0;1) (A.19)

is standard split. Hence the massive free scalar field in 1 + 1 dimensions satisfies

the split property for wedge regions.



150 Remarks on the Split Property for Massive Free Scalar Fields



The Proofs for Chapter 6

B
B.1 The Proof of Proposition 6.2.6

In order to compute products of one-kink fields, we introduce the following nota-

tion: Let � 2 T (n;m; e) and consider a family of operators a = (a

j

; a

i

)

i2m

j2n

with

a

j

2 C

�

(A

+

e

j�1

) and ai 2 C�

(A

�

e

1�i

).

(1) From the above data, we define operators in C�

(A

+

e

0

) by:

a

1

� � � � � a

n

:= a

1

�

1

(a

2

) � � � (�

1

� � � �

n�2

)(a

n�1

)(�

1

� � � �

n�1

)(a

n

)

(2) Analogously, we define operators in C�

(A

�

e

0

):

a

1

� � � � � a

m

:= a

1

�

1

(a

2

) � � � (�

1

� � � �

m�2

)(a

m�1

)(�

1

� � � �

m�1

)(a

m

)

(3) Denote by 1
j

and 1i the unit in C�

(A

+

e

j

) and C�

(A

�

e

�i

) respectively. For � 2

P (n;m) we define:

a

�

:= �

+

e

0

(a

1

� � � � � a

�

+

(1)

)�

�

e

0

(a

1

� � � � � a

�

�

(1)

) � � �

� � ��

+

e

0

(1

1

� � � � � 1

�

+

(l)

� a

�

+

(l)+1

� � � � � a

n

)

�

�

e

0

(1

1

� � � � � 1

�

�

(l)

� a

�

�

(l)+1

� � � � � a

m

)

which is an operator in B(H

e

0

). where � = (�

+

; �

�

) is parameterized by

equation (6.1). Furthermore, we let

a

#

�

:= (a

�

)

�

�

where we have set: a� := (a

�

j

; a

i

�

)

i2m

j2n

.

151



152 The Proofs for Chapter 6

Now, let a 2 F (n;m; �) be a kink field of the form

a =

�

O

j2n

a

j

�




�

O

i2m

a

i

�

:

Then it is not hard to prove that for each � 2 P (n;m) we have:

a

�




e

0

= f�

�

; a

#

�




e

0

g (B.1)

In order to complete the proof of Proposition 6.2.6, we are now prepared to

establish the lemma below.

Lemma B.1.1 : Let a be the kink field above and let v 2 (�̂; �) be an intertwiner

of the form

v =

�

O

j2n

v

j

�




�

O

i2m

v

i

�

with v
j

2 (�̂

j

; �

j

) and vi 2 (�̂

i

; �

i

). Then for each � 2 P (n;m) the following

holds:

(va)

�




e

0

= v

�

a

�




e

0

:

Proof. An application of equation (B.1) gives:

(va)

�




e

0

= f�̂

�

; (va)

#

�




e

0

g

where the family va is given by (v

j

a

j

; v

i

a

i

)

i2m

j2n

. Let � = (�

+

; �

�

) be parameter-

ized by equation (6.1). Then we have for k � l:

a

�

�

n

(k)+1

v

�

�

n

(k)+1

� � � � � a

�

�

n

(k+1)+1

v

�

�

n

(k+1)+1

= a

�

j

v

�

j

�̂

j

(a

�

j+1

v

�

j+1

) � � � (�̂

j

� � � �̂

j+i�1

)(a

�

j+i

v

�

j+i

)

= a

�

j

�

j

(a

�

j+1

) � � � (�

j

� � � �

j+i�1

)(a

�

j+i

)v

�

j

�̂

j

(v

�

j+1

) � � � (�̂

j

� � � �̂

j+i�1

)(v

�

j+i

)

= (a

�

�

n

(k)+1

� � � � � a

�

�

n

(k+1)+1

)(v

�

n

(k)+1

� � � � � v

�

n

(k+1)+1

)

�
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Here we have set j = �

+

(k) + 1 and j + i = �

+

(k + 1). Analogously, we find:

a

�

�

(k)+1

�

v

�

�

(k)+1

�

� � � � � a

�

�

(k+1)+1

�

v

�

�

(k+1)+1

�

= (a

�

�

(k)+1

�

� � � � � a

�

�

(k+1)+1

�

)(v

�

�

(k)+1

� � � � � v

�

�

(k+1)+1

)

�

By inserting the above relation into the expression for (va)
�




e

0

and v
�

a

�




e

0

, the

lemma follows. �

B.2 The Proofs of Theorem 6.2.1 and Theorem 6.2.10

In order to prove Theorem 6.2.1 we establish some useful lemmas.

Lemma B.2.1 : Let � 2 �(e

1

; e

2

; e) be a kink representation and let � 2 �(e

1

; ê

1

; e

1

),

� 2 �(ê

2

; e

2

; e

2

) be oriented kink representations such that � and � are localized

in space-like separated regions. Then one has:

�

#

�

#

� = �

#

�

#

� 2 �(ê

1

; ê

2

; e)

Proof. Since � and � are localized in space-like separated regions, there exist a

right wedge W such that � is localized in W and � is localized in W 0.

Let O be any sufficiently large double cone and let us choose oriented kink

representations �̂ 2 �(e

1

; ê

1

; e

1

) and �̂ 2 �(ê

2

; e

2

; e

2

) where �̂ �
=

� is localized

in O
RR

� W and �̂ �

=

� is localized in O
LL

� W

0. Furthermore, there exists

an oriented kink representation �̂ 2 �(e

1

; e

2

; e

1

), �̂ �
=

� , which is localized inW .

We choose unitary intertwinerw 2 (�̂ ; � ), u 2 (�̂; �) and v 2 (�̂; �). Furthermore,

we define for a kink representation � 2 �(e

1

; e

2

; e):

�

#

(a) := � � (�

�

e

1

)

�1

(a) for a 2 ��
e

1

(C

�

(A

�

e

1

)).

�

#

(b) := � � (�

+

e

2

)

�1

(b) for b 2 �+
e

2

(C

�

(A

+

e

2

)).

The localization properties of �̂; � and �̂; � imply that u is localized in W and
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that v is localized in W 0. Thus we obtain for each a 2 A(O):

�

#

�

#

�(a) = w�̂

#

(v)�̂

#

(u)�̂(a)�̂

#

(u

�

)�̂

#

(v

�

)w

�

= wv�̂

#

(u)�̂(a)�̂

#

(u

�

)v

�

w

�

= w�̂

#

(u)v�̂(a)v

�

�̂

#

(u

�

)w

�

= �

#

(u)�

#

(v)� (a)�

#

(v

�

)�

#

(u

�

)

On the other hand, we have:

�

#

�

#

�(a) = �

#

(u)�

#

(v)� (a)�

#

(v

�

)�

#

(u

�

)

which implies the result. �

Lemma B.2.2 : Let � 2 �(e

1

; e

2

; e) be a kink representation and let � 2 �(e

1

; ê

1

; e

1

),

� 2 �(ê

2

; e

2

; e

2

) be oriented kink representations. Then there exists a unitary in-

tertwiner �
�

(�; �)

�

�

(�; �)�

#

�

#

�(a) = �

#

�

#

�(a)�

�

(�; �)

which depends only on �; �; �.

Proof. We choose unitary intertwiner u 2 (�̂; �) and v 2 (�̂; �) such that �̂ is

localized in a right wedge W and �̂ is localized in W 0. By Lemma B.2.1 we con-

clude:

�

#

�

#

�(a) = �

#

(v�̂

#

�(a)v

�

)

= �

#

(v)�

#

�̂

#

�(a)�

#

(v

�

)

= Ad(�

#

(v)(�

#

�̂)

#

(u))�

#

�̂

#

�̂(a)

= Ad(�

#

(v)(�

#

�̂)

#

(u))�

#

�̂

#

�̂(a)

= Ad((�

#

�)

#

(u)�

#

(v)�

#

(u

�

)(�

#

�)

#

(v

�

))�

#

�

#

�(a)
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We define quasi-statistics operator �
�

(�; �) by:

�

�

(�; �) := (�

#

�)

#

(u)�

#

(v)�

#

(u

�

)(�

#

�)

#

(v

�

)

Let us choose intertwineru
1

2 (�

1

; �) and v
1

2 (�

1

; �) such that �
1

is localized

in a right wedge W
1

� W and �
1

is localized in W
2

� W

0. By substituting u 7!

uu

1

and v 7! vv

1

, we obtain an alternative quasi-statistics operator �0
�

(�; �). In

order to prove that �
�

(�; �) depends only on �; �; �, we establish that �0
�

(�; �) =

�

�

(�; �). Letw 2 (�

1

; � ) be a unitary intertwiner where �
1

is oriented and localized

in W
1

.

w

�

�

0

�

(�; �)w = (�

1

#

�)

#

(uu

1

)�

1

#

(vv

1

)�

1

#

(u

�

1

u

�

)(�

1

#

�)

#

(v

�

1

v

�

)

= �

1

#

(v)(�

1

#

�̂)

#

(uu

1

)v

1

�

1

#

(u

�

1

)v

�

1

(�

1

#

�̂)

#

(v

�

)�

1

#

(u

�

)

= �

1

#

(v)(�

1

#

�̂)

#

(u)�

1

#

(u

1

)v

1

�

1

#

(u

�

1

)v

�

1

(�

1

#

�̂)

#

(v

�

)�

1

#

(u

�

)

= �

1

#

(v)(�

1

#

�̂)

#

(u)(�

1

#

�̂)

#

(v

�

)�

1

#

(u

�

)

= �

�

1

(�; �) = w

�

�

�

(�; �)w

Here we have used the fact that v
1

is localized in W 0 and that �
1

#

(u

1

) is localized

in W . �

Proof of Theorem 6.2.1: Let � 2 T (n;m; e). We define oriented kink represen-

tations:

�

n

:= �

+

e

0

� �

1

� � � �

n

and �

m

:= �

�

e

0

� �

1

� � � �

m

:

Let u 2 (�̂; �) be a unitary intertwiner and let us choose �̂ in such a way that �̂j is

localized in W and that �̂i is localized in W 0. We conclude from Lemma B.2.1:

�̂

�

= �̂

n

#

�̂

m

for each � 2 P (n;m). By Lemma B.1.1 we obtain for each � 2 P (n;m):

�

�

= Ad(u

�

) � �̂

�
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Thus we have for each pair (�; �̂) 2 G(n;m):

�

�

= Ad(u

�

) � �̂

n

#

�̂

m

= Ad(u

�

) � �̂

�̂

= Ad(u

�

u

�

�̂

) � �

�̂

:

Finally we define the quasi statistics operator:

�

(�;�̂)

(�) := u

�

u

�

�̂

In the same manner as in the proof of Lemma B.2.2 it can be shown that �
(�;�̂)

(�)

does not depend on the auxiliary family �̂. �

Proof of Theorem 6.2.10: Let a 2 F (n;m; �) be a multi-kink field of the form

a =

�

O

j2n

a

j

�




�

O

i2m

a

i

�

:

Since for each pair (j; i) the one-kink fields a
j

= (�

j

; a

j

) and a

i

= (�

i

; a

i

) are

localized in space-like separated regions, there exists unitary intertwiners u
j

2

(�̂

j

; �

j

) and ui 2 (�̂

i

; �

i

) such that u
j

a

j

and �̂
j

are localized in a right wedge W

and uiai and �̂i are localized in W 0. This implies

(ua)

�

= (ua)

�̂

for each pair (�; �̂) and therefore:

u

�

a

�




e

0

= u

�̂

a

�̂




e

0

:

Finally, Theorem 6.2.10 follows from the identity

�

(�;�̂)

(�) := u

�

u

�

�̂

:

�
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