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Zusammenfassung

In dieser Arbeit werden zwei verschiedene Ansätze studiert, die es erlauben, unitäre Störungs-
theorie für Quantenfelder auf dem nichtkommutativen Minkowskiraum auch bei nicht-kommu-
tierender Zeit zu definieren.
Der erste Ansatz basiert auf der üblichen Dyson’schen Störungstheorie mit einem entsprechend
definierten Hamiltonoperator. Die Graphentheorie wird angegeben. Wird die Nichtkommuta-
tivität nicht als festes Hintergrundfeld betrachtet, sondern an jedem Vertex gemittelt, so sind
Theorien mit kubischer (und mit hoher Wahrscheinlichkeit auch solche mit quartischer) Selbst-
wechselwirkung ultraviolett-endlich. Verwendet man dagegen die sogenannte Quanten-Diagonal-
Abbildung (eine neue Definition des Limes zusammenfallender Punkte auf dem nichtkommu-
tativen Minkowskiraum) zur Definition des Wechselwirkungsterms, so ist die resultierende S-
Matrix immer ultraviolett-endlich. Das übliche Ultraviolett-Infrarot-Mischungsproblem tritt
hier nicht auf.
Der zweite, zum Hamiltonformalismus inäquivalente, störungstheoretische Ansatz basiert auf
der Yang-Feldman-Gleichung. Quantenfelder werden als sogenannte q-Distributionen definiert,
und die zugehörige Graphentheorie wird angegeben. Der Limes zusammenfallender Punkte
wird für diesen Rahmen definiert, und darauf basierend wird ein Kriterium, genannt q-Lokalität,
angegeben, welches die erlaubten Gegenterme für die Renormierung auszeichnet. Sodann werden
Produkte von Feldern, die sogenannten quasiplanaren Wick-Produkte, dadurch definiert, daß
nur q-lokale Gegenterme zugelassen sind. Diese bleiben im Limes zusammenfallender Punkte
wohldefiniert. Die resultierende Dispersionsrelation deutet darauf hin, daß das asymptotische
Verhalten der Theorie von demjenigen lokaler Theorien auf dem Minkowskiraum stark abweicht.

Abstract

In this thesis, two different approaches are studied which allow for the definition of unitary per-
turbation theory for quantum fields on the noncommutative Minkowski space, without assuming
commutativity in the time-variable.
The first approach is based on the usual perturbation theory according to Dyson, using a suitably
defined Hamilton operator. The corresponding graph theory is presented. Theories with cubic
(and, most likely, also those with quartic) self-interaction turn out to be ultraviolet finite, if
the noncommutativity is averaged at each vertex. On the other hand, if the so-called quantum
diagonal map (a suitable definition of the limit of coinciding points on the noncommutative
Minkowski space) is used to define interaction terms, the resulting S-matrix is always ultraviolet-
finite. The ordinary ultraviolet-infrared mixing problem is not present here.
The second approach to perturbation theory, which is inequivalent to the Hamilton formalism,
is based on the Yang-Feldman equation. Quantum fields are defined as so-called q-distributions,
and the appropriate graph theory is specified. The limit of coinciding points is defined in this
framework, and a criterion, called q-locality, is formulated, which singles out the admitted coun-
terterms. Products of fields, called quasi-planar Wick products, are defined by only admitting
q-local counterterms. These products remain well-defined in the limit of coinciding points. The
resulting dispersion relation provides evidence that the theory’s asymptotic behaviour is consid-
erably changed compared to that of local theories on Minkowski space.
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Introduction

The idea that spacetime might not be continuous down to arbitrarily small scales can be traced
back to the early days of quantum theory [74]. By the advent of quantum field theory, a
particle’s Compton wavelength was generally considered to be the bound as to how accurately its
localization should be measurable. In a next step, motivated by the incorporation of gravitational
effects into field theory, a fundamental length scale, the Planck length λP =

√
G~ c−3 ∼ 10−33cm

with G the gravitational constant, beyond which the resolution of different events was expected
to be impossible, was introduced and considered as a possible cure to treat the divergences arising
in quantum field theory [25, 68]. The idea that the geometry of spacetime should radically differ
at distances smaller than the Planck length, or that measurements of such distances should
be meaningless, has been further elaborated in theories of quantum gravity [82, 6, 52] and in
string theory [5]. On a less fundamental level, lattice structures have proved to be convenient
modifications of Minkowski space, mainly motivated by the quest to regularize the ultraviolet
divergences in quantum field theory. It was realized early that, contrary to such fixed lattice
structures, a spacetime whose coordinates do not commute might provide a covariant means to
regularize quantum electrodynamics [76]. An interpretation of the resulting uncertainty relations
was not attempted, and probably due to the success of renormalization theory this approach
was apparently soon forgotten.

Ideas on the existence of a fundamental length and the modification of spacetime at small scales
were taken up in [27], and relative bounds on the accuracy of simultaneous measurements of
spacetime directions in terms of uncertainty relations were shown to result from the following
heuristic argument. By Heisenberg’s principle of uncertainty, a very accurate measurement of
the position of an event up to uncertainties ∆x0, . . . ,∆x3 requires an energy-transfer of the
order E ∼ ~c/a, where a is the smallest of the uncertainties. Taking general relativity into
consideration, this energy, which is concentrated at some time t0 in a region ∆x1 · ∆x2 · ∆x3,
should act as a source term M = E/c2 in the Einstein equation. The resulting gravitational
potential is the stronger, the larger M is, i.e. the more accurately we try to measure the event’s
position in spacetime. In an extreme situation, it could become strong enough to trap photons,
by building a horizon (of radius R ∼ MG/c2), in which case the region of interest would be
shielded completely from the observer. If only one direction is measured very accurately, the
energy may spread along the other directions and, depending on how accurately these other
directions are to be measured, a horizon does not necessarily form. In this sense, arbitrarily ac-
curate localizations become meaningless, and, based on this argument, the following uncertainty
relations were derived in [27],

∆q0 · (∆q1 +∆q2 +∆q3) ≥ λ2P , ∆q1 ·∆q2 +∆q1 ·∆q3 +∆q2 ·∆q3 ≥ λ2P .

These uncertainty relations provide relative bounds and still allow very accurate measurements
of some directions at the cost of the others. In [27], they were taken as a starting point to
modify the structure of spacetime itself in such a way that more precise measurements than
those complying with the uncertainty relations are impossible. This was achieved by replacing
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the usual coordinates by noncommuting coordinate operators,

[qµ, qν ] = iQµν , µ, ν = 0, . . . , 3 ,

where the commutators themselves are central,

[qρ, Qµν ] = 0 ,

and subject to the so-called quantum conditions, which fix the spectrum of the commutators in
a manner similar to what is known from the field strength tensor in classical electrodynamics (I
the identity),

QµνQ
µν = 0 ,

(
1
8 Qµν Qρσ ǫ

µνρσ
)2

= λ8P I .

These conditions are invariant under the full Poincaré group, including space as well as time
reflections. The commutators being central, the problem of finding a representation of the
(unbounded) operators qµ is similar to that known from quantum mechanics. Contrary to the
situation there, however, the commutators are not given by a fixed matrix with entries θµν ,
but by operators Qµν possessing a non-trivial spectrum. This is a consequence of the fact that
the quantum conditions are Poincaré-invariant. If fixed values θµν for the commutators were
chosen, Lorentz covariance would evidently be broken, since the θµν would have to be the same
in all reference frames, providing a modern version of the aether. Allowing for the Poincaré-
invariant quantum conditions above, a representation in terms of a noncommutative C ∗-algebra
was achieved in [27] and the desired uncertainty relations were shown to hold. In particular,
functions of the quantum coordinates were defined, with a product given in terms of the so-
called twisted convolution in momentum space, where compared to the ordinary convolution
(corresponding to the local product of ordinary functions on Minkowski space) an oscillating
function of the momenta, the so-called twisting, appears. For an attempt to implement a stronger
form of the uncertainty relations, as well as to give up the requirement that the commutators
themselves be central in this framework see [26].
The argument leading to the uncertainty relations is not absolutely compulsory in itself. In
particular, it is assumed in the derivation that the laws of classical gravity hold at very small
distances, extrapolating the theory over many orders of magnitude – an assumption whose
correctness Einstein apparently doubted (see for instance, [34], where he expresses doubts on
the existence of an initial singularity, claiming that the field equations do not necessarily hold
at arbitrarily small distances). In this spirit, it has been proposed in [71], that the strength of
gravitation may be scale-dependent and lessen at smaller distances, which provides an alternative
resolution to the paradox of arbitrarily accurate localizations.
However, the analysis in [27] starts from two well-established theories and points out that the
contradiction arising if both of them hold (at arbitrarily small distances) can be resolved in a
covariant way, by assuming that continuous spacetime is to be replaced by a noncommutative C ∗-
algebra. The hypothesis that the structure of spacetime changes at small distances is sufficiently
motivated and certainly worthwhile to be investigated. The modifications to be expected when
quantum field theory is formulated on such a noncommutative spacetime should at least in
principle be verifiable or falsifiable by experiment, and indeed, the phenomenology of field theory
on noncommutative spacetimes has already aroused much interest [54, 1]. Furthermore, the
question of whether the noncommutative spacetime provides a natural regularization and a
possible cure for ultraviolet divergences in quantum field theory is to be considered.
Related to the approach pursued in [27] is the idea to generalize the Gelfand-Naimark construc-
tion from commutative to noncommutative C∗-algebras. In the same manner as the topology
of a locally compact space is encoded in the commutative C ∗-algebra of functions on this space
which vanish at infinity, the topology of “quantum spaces” is supposed to be encoded in the
properties of a noncommutative C∗-algebra. This approach had far-reaching consequences in
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mathematics [20]. Moreover, an elegant motivation of the standard model action including the
Higgs mechanism has been formulated in this framework (cf. [23] and [72]) and was unified
with the Einstein-Hilbert action in [21]. Unfortunately, the spectral triples employed in this
formalism are only defined for compact Riemannian manifolds. Partly motivated in the context
of quantum groups, a variety of noncommutative spacetimes were introduced and investigated
from different viewpoints (see for instance [66, 67, 81, 65, 49] as well as [45, 46]).

More recently, interest in formulating field theory on noncommutative spacetimes has been
aroused by its appearance in the context of string theory [83]. Certain limits of M -theory have
led to gauge theories on noncommutative spacetimes [22], and field theories on noncommutative
spacetimes were derived as special low-energy limits of open string theories on D-brane config-
urations in background magnetic fields [75, 73]. The remarkable feature of this limit is that the
string tension approaches 0, but the strings do not collapse, as the magnetic field and the open
string metric are kept fixed. The resulting theory is interpreted as a field theory on a spacetime
whose spatial coordinates do not commute. The situation is different from what was proposed
in [27], as in these models the noncommutativity by construction breaks Lorentz covariance,
since the background field singles out distinguished directions. See also [29, 79] for reviews.

In this context, the so-called Seiberg-Witten map [75] was introduced, which maps a classical
gauge theory defined on the ordinary Minkowski space to a counterpart in a noncommutative
framework. The latter is defined as a formal power series in the noncommutativity parameter θ,
proportional to the inverse of the magnetic field strength, and as such allows for a wide range
of possible commutators, not only central ones as in the C ∗-algebra approach investigated here.
Structural insight has been gained [58], relying in part on the general theory of deformation
quantization (see also [15]). An advantage of this so-called θ-expanded approach is that arbitrary
gauge groups can be considered, while it remains a problem in other approaches to implement
gauge groups other than U(N). The price to pay is that the theory allows for the calculation
of modifications only up to some order in θ, where at every order the theory is an ordinary
field theory with derivatives in the interaction. The standard model has been formulated in
this context [16], and phenomenological calculations have been performed at tree level. Little is
known, however, about the interplay of the formal power series arising from the Seiberg-Witten
map and the perturbative expansion in quantum field theory, which is a formal power series
itself. Earlier hopes that the resulting effective theories as they stand would be renormalizable
order by order in θ have not been met [85].

Apart from the θ-expanded approach, most investigations on field theories on noncommutative
spacetimes are based on a set of modified Feynman rules [37, 38]. Here, the commutators are
again assumed to possess fixed values, given in terms of a noncommutativity matrix θµν =
−i[qµ, qν ]. Formally, the rules, which first appeared in the context of matrix models [33, 44],
may be derived from a functional integral approach on a Euclidean noncommutative space. They
have also been applied to field theories on the noncommutative Minkowski space with fixed θµν ,
but due to the fact that a generalization of Osterwalder-Schrader positivity is not yet available
and that not even the ordinary Wick rotation has been properly defined as yet, the relation
between the Euclidean and the Minkowskian regime remains obscure. Effectively, the theory is
treated as one defined on the ordinary Minkowski space with a nonlocal interaction, and the
ordinary perturbative setup is applied. In particular, Feynman propagators serve as internal
lines. The only difference to ordinary quantum field theory is that at every vertex an oscillatory
function of the momenta, the so-called twisting, appears.

As first observed in [43, 2], the major drawback of this approach is that it does not lead to
a unitary S-matrix for general spacetime-noncommutative structures, i.e. with noncommuting
time-variable. In particular, a fixed noncommutativity matrix complying with the quantum
conditions given in [27] leads to a non-unitary perturbation theory in this approach. The same
was observed for theories derived as low-energy limits of string theories in the presence of back-
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ground electro-magnetic fields, which are interpreted as theories on a general noncommutative
spacetime. It seems that such a low-energy limit only yields a unitary field theory, if one allows
for tachyonic states with negative norm [3].

Subsequently, it was proposed to consider only noncommutative spacetimes that are consistent
with the modified Feynman rules. These are spacetimes with commuting time-variable (space-
space-noncommutativity), where the noncommutativity matrix satisfies the equation θµνnν = 0
with a timelike vector n, and spacetimes with so-called lightlike noncommutativity [2], where
θµνnν = 0 with a lightlike vector n, which can be characterized in a Poincaré-invariant way
by setting both right-hand sides of the quantum conditions to 0. As an aside, it is mentioned
that the latter type of noncommutative spacetimes was already introduced in [27], where it
was called “dilation covariant quantum spacetime” and appeared as a large scale limit. No
uncertainty relations seem to hold in this case [27, p.199].

One of the main goals of this thesis is to show that the restriction to such spacetimes is not at
all necessary. Already in [27], before the modified Feynman rules became popular, a symmetric
Hamilton operator was introduced, which by means of the ordinary Dyson series automatically
yields a formally unitary S-matrix, regardless of whether lightlike, space-space or time-space-
noncommutativity complying with the quantum conditions given in [27] is assumed. In addition
to that, it was proposed in [9] to employ the Yang-Feldman approach [86, 59], where the field
equation is used as a starting point and the interacting field is constructed perturbatively. Again,
the interacting field is Hermitean for lightlike, space-space or time-space-noncommutativity, and
the theory is unitary. Both approaches, which, contrary to the case on the ordinary Minkowski
space, are in general inequivalent, are investigated in the present thesis and will be analysed
in detail. As problems still arise at a very fundamental level, the analysis is confined to scalar
self-interacting theories.

Taking as an interaction term a normally ordered product :φn(q) : as proposed in [27], where
φ(q) is a suitably defined generalization of the ordinary quantum field to the noncommutative
Minkowski space, the Hamiltonian formalism and the framework of the modified Feynman rules
are similar to one another, with twistings appearing at the vertices – and until the violation
of unitarity in the setting of the modified Feynman rules was found, they were supposed to be
equivalent. As pointed out in [9], this violation of unitarity can be linked with the way the
time-ordering is implicitly defined in the modified Feynman rules as opposed to the Hamiltonian
formalism. In particular, the internal lines in the two unitary approaches, i.e. the Hamiltonian
formalism and the Yang-Feldman equation, are not, in general, given by Feynman propagators.
In the special cases of lightlike and space-space noncommutativity, where the time-ordering may
be defined as usual, the framework of the modified Feynman rules, which is unitary in these
cases, coincides with the Hamiltonian as well as with the Yang-Feldman approach.

While the interaction term above is a straightforward generalization of the ordinary local in-
teraction term :φn(x) :, this is not the only possibility, and the major question of this thesis is
how ordinary local interaction terms are to be replaced in the noncommutative setting. Since
ordinary quantum field theory is based on the principle of locality, one of the most challenging
questions is how to replace this notion on a noncommutative spacetime. While plagued with
problems such as the violation of causality, it is shown that field theories on the noncommutative
Minkowski space do allow for minimal notions of locality from which suitable generalizations of
interaction terms may be derived. Two different approaches are proposed here.

The first is based on re-defining the concept of taking products of fields at the same point. Since,
by construction, on the noncommutative Minkowski space strict localization is impossible, it is
argued that fields cannot be evaluated “at the same point”, but rather only at points which
are “close together”. Using the notion of states which minimize the uncertainty [27], a so-called
quantum diagonal map is introduced which replaces the ordinary concept of coinciding points.
Applying this map to define interaction terms, Hamilton operators are found which lead to
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ultraviolet finite theories for any φn-self-interaction [10].

The second approach follows a different line of thought, and is adapted to the Yang-Feldman
framework. A precise definition of a field on the noncommutative Minkowski space is given
in terms of the so-called q-distributions, which generalize the operator-valued distributions or-
dinarily arising in local quantum field theory [12]. A criterion, called q-locality, is then given
which singles out the admissible counterterms – and interaction terms – as those q-distributions
which satisfy a minimal locality requirement. Roughly speaking, a q-distribution is q-local, if
it does not increase a testfunction’s support. On the basis of this definition, products of fields,
the so-called quasiplanar Wick products are defined, much in the same manner as in ordinary
field theory, but allowing only q-local counterterms. They provide a suitable generalization of a
local interaction term.

Other major results of this thesis are the following. In the framework of the Hamiltonian
approach with interaction term :φn(q) :, it is shown that the ultraviolet behaviour depends on
whether the noncommutativity is treated as a fixed background or whether the dependence on
the commutators of the noncommuting coordinates is averaged over a certain measure at each
vertex. The latter approach in fact leads to an ultraviolet finite theory in the case of a cubic
(and, most likely, also for a quartic) self-interaction.

The mixing of ultraviolet and infrared divergences [70], as found in the setting of the modified
Feynman rules, has not appeared in the approaches investigated here, at least not in the sense
that the insertion of ultraviolet finite graphs into higher order diagrams may produce infrared
singularities. It appears, however, that the asymptotic behaviour (i.e. the infrared regime) is
considerably modified compared to the ordinary case.

Furthermore, differences and similarities compared to ordinary local field theory and the nonlocal
theories considered earlier [87, 60, 11] as a means to regularize the divergences of quantum field
theory are investigated in the different approaches, paying particular attention to matters such
as causality and covariance. One of the surprising results here is that the cluster decomposition
property is satisfied for vacuum expectation values of free fields.

This thesis is structured as follows.

The first chapter is a presentation of known results about the noncommutative Minkowski space
defined in [27] and intended to make the reader familiar with the necessary definitions and
notations.

In the second chapter, the perturbation theory based on the introduction of a Hamilton operator
on the noncommutative Minkowski space is analysed. General properties of the resulting Dyson
series are discussed. The graph theory and the rules to calculate expectation values are spelled
out explicitly, and emphasis is put on contrasting them with the modified Feynman rules. It
is shown how the definition of the time-ordering automatically yields a unitary theory in the
Hamiltonian approach. This Hamiltonian approach leads to an ultraviolet finite theory when
the twisting is integrated against a certain measure at each vertex.

In the third chapter, the quantum diagonal map is introduced, and it is shown that the resulting
Hamilton operators yields a regularized theory which is ultraviolet finite as long as an adiabatic
cutoff is employed. The removal of this cutoff requires a mass renormalization which is not
Lorentz-invariant.

The fourth chapter contains an introduction to the Yang-Feldman approach on the noncommu-
tative Minkowski space. A precise definition of quantum fields as q-distributions is given and
the limit of coinciding points is defined accordingly. Vacuum expectation values of free fields
are calculated and compared with ordinary Wightman functions. The graphical rules for the
Yang-Feldman approach are specified.

In the last chapter, the notion of a q-local counterterm is introduced. It is established that
products of fields, the quasiplanar Wick products, which are defined by subtracting merely q-



8

local counterterms remain well-defined in the limit of coinciding points. The combinatorics of
the resulting Wick theorem is treated and first results regarding the domain of definition are
given. The distorted dispersion relation arising in this context is discussed.
An outlook concludes the thesis.



Chapter 1

The noncommutative Minkowski

space and free fields

This chapter is a presentation of known results from [27] (see also [28, 40]) and should provide
the reader with the necessary definitions and notations. Let us start with an outline of the
properties of the quantum spacetime defined by the conditions mentioned in the introduction,

[qµ, qν ] = iQµν , (1.1)

where the commutators themselves are central,

[qρ, Qµν ] = 0 , (1.2)

and subject to the so-called quantum conditions

QµνQ
µν = 0 ,

(
1
8 Qµν Qρσ ǫ

µνρσ
)2

= λ8P I . (1.3)

The qµ are referred to as the quantum coordinates or the noncommutative coordinates. Unless
explicitly stated otherwise, units will be used such that λP = 1. As emphasized in the intro-
duction, the quantum conditions fix the spectrum of the operators Qµν in a Poincaré-invariant
manner, in the same way as is well-known from classical electrodynamics (the only difference
being, that we also retain invariance under space- and time-reflections separately). Introducing
the “electric” and “magnetic” components ~E and ~M of Q, where Ei = Q0i and Mi = ǫijkQjk,
the quantum condition can be rewritten as

~E 2 = ~M , 1
2(
~E · ~M + ~M · ~E) = ±1 .

The price to pay for not breaking Poincaré-covariance is that the representation theory of the
commutation relations is more complicated than that of the canonical commutation relations of
ordinary quantum mechanics.
As desired, by application of the ordinary relation for uncertainties of selfadjoint operators A,B
in a state ω, ∆ω(A) · ∆ω(B) ≥ 1

2 |ω( [A,B] ) |, the following uncertainty relations (λP 6= 1) for
the noncommutative coordinates were found in [27],

∆q0 · (∆q1 +∆q2 +∆q3) ≥ λ2P /2 , ∆q1 ·∆q2 +∆q1 ·∆q3 +∆q2 ·∆q3 ≥ λ2P/2 . (1.4)

In the derivation it is important that the commutators are central.
As shown in [27], a C∗-algebra E to which the quantum coordinates qµ are affiliated1 can be
constructed in the following way. First it is shown that the Qµν are affiliated to C0(Σ), the

1Following [27], affiliation is used in the sense of [84]: Let A be a C∗-algebra with unit. An (unbounded)
operator A is affiliated to A, if there is a ∗-homomorphism (with unbounded support) of C0(R) into A, f 7→ f(A),
whose support projection E ∈ A∗∗, the double commutant of A, is central. If A does not have a unit, A is said
to be affiliated to A, if it is affiliated to M(A), the multiplier algebra of A. This construction is necessary, as the
operators qµ are unbounded.

9



10 CHAPTER 1. THE NONCOMMUTATIVE MINKOWSKI SPACE AND FREE FIELDS

algebra of continuous functions vanishing at infinity on Σ, where

Σ = {σ | (σµν) real antisymmetric 2-tensor, σµνσ
µν = 0, 1

8 σµνǫ
µνρτσρτ = ±1}

= {σ |σµν = −σνµ : σ0i = ei, ǫijkσjk = mi, ~e
2 = ~m2 , 1

2(~e · ~m+ ~m · ~e) = ±1} ,
which is homeomorphic to the non-compact manifold TS2. Σ is the orbit of the standard
symplectic matrix (σ(0))µν =

(

0 −12
12 0

)

under the action σ 7→ ΛσΛt of the full Lorentz

group, where t denotes the transpose.
Note here, that the dilation-covariant noncommutative spacetime introduced in [27], later called
the lightlike noncommutative spacetime [2], is defined by quantum conditions where both invari-
ants are zero, QµνQ

µν = Qµν Qρσ ǫ
µνρσ = 0. As shown in [27], the spectrum of the Qµν in this

case is connected and consists of the orbit of the degenerate matrix σµν =
(

0 −1
1 0

)

⊕
(

0 0
0 0

)

under the restricted Lorentz group. No uncertainty relations seem to hold in this case; when
following the analysis in [27], both right-hand sides of (1.4) are zero, cf. [27, p.199].
Obviously, for a spacetime with commuting time (space-space-noncommutativity), no uncer-
tainty relation with respect to the time variable will arise.
Now consider functions from Σ to L1(R4 ), vanishing at infinity, endowed with a product

(F ×G)(σ, k) =
∫
d4pF (σ, p)G(σ, k − p) e− i

2
kµσµνpν ,

an involution (F ∗)(σ, k) = F (σ,−k) and a norm ||F || = supσ
∫
dk |F (σ, k)|. Completion with

respect to the norm || · || yields the Banach ∗-algebra E0. Since the commutators are central, von
Neumann’s uniqueness theorem can be applied and it can be deduced that there is a unique C ∗-
norm on E0 [27, Theorem 4.1]. The associated C∗-algebra, denoted E , is isomorphic to C0(Σ,K),
where K is the algebra of compact operators on a fixed separable Hilbert space. In particular, for
fixed σ ∈ Σ the corresponding C∗-algebra Eσ is isomorphic to K. By construction, the quantum
coordinates are elements of the multiplier algebra M(E) of E .2 In the same manner as C0(R

4)
encodes the structure of Minkowski space, E is supposed to encode the structure of a “quantum
spacetime”, the so-called noncommutative Minkowski space.
This representation can also be understood as follows. The commutation relations are canonical
in the sense that the commutators are central. This makes a generalized Weyl correspondence
possible, where

W(h⊗ f) = h(Q)f(q) (1.5)

with

f(q) =

∫
d4k f̌(k)eikq .

Here, f ∈ FL1(R4), f̌ = F−1f , and F denotes the ordinary Fourier transform. h is an element of
C0(Σ) and h(Q) is to be understood in the same way as f(q), in the sense of the joint functional
calculus of the commutators Qµν . The function h(σ) f(x) is called the symbol ofW(h⊗f). Since
the multiplier algebra of C0 is Cb, the algebra of bounded functions, Cb(Σ) can be identified with
the centre Z of the multiplier algebraM(E). This centre will play an important role throughout,
and it is emphasized again that it is nontrivial, because Poincaré invariance was required.
The generalized Weyl correspondence extends to any symbol F ∈ C0(Σ×R4) with inverse Fourier
transform (at fixed σ) F̌ (σ, ·) ∈ L1(R4). Via the formula W(F ⋆ G) =W(F )W(G) it induces a
product of symbols, the so-called twisted convolution product,

(F ⋆ G)(σ, ·) = F (σ, ·) ⋆σ G(σ, ·) .
2To be exact, it is mentioned here, that the states which are used to calculate the uncertainty relations must

be in the domain of the commutators. For the definition cf. [27]: Let A be a C∗-algebra to which A is affiliated

(see page 9). A state ω ∈ S(A) is in the domain of A, if it is in the support of A and ω(A2)
def
= sup

(

ω(f(A)) | f ∈
C0(R)+ , f(λ) ≤ λ2, λ ∈ R

)

< ∞.
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Then E is the enveloping C∗-algebra of the algebra with twisted convolution product. By
definition,

F (σ, x) ⋆σ G(σ, x) =

∫
dkdp F̌ (σ, k) Ǧ(σ, p) e−

i
2
kσp ei(k+p)x (1.6)

= (4π)−4

∫
dx1dx2 F (σ, x1)G(σ, x2) e

−2i (x2−x)σ−1(x−x1) .

Shorthand notations such as kq = kµq
µ and kµσµνp

ν = kσp are employed throughout, and dk
abbreviates d4k. The exponential exp(− i

2kσp) is referred to as the twisting.

Frequently, only f(q) will be considered in calculations, and the dependence on Q will be sup-
pressed. As f(q) is independent of Q, it is an element of the C ∗-algebra of continuous bounded
(not vanishing at infinity) functions from Σ to K. Products of such f(q) depend on Q, and, the
twisting being bounded, are again elements of this C ∗-algebra, which is denoted Ẽ as in [27].

The symbol of an n-fold product f1(q) · · · fn(q) may be written as

(f1 . . . fn)(x) =

∫
dx1 . . . dxn f1(x1) . . . fn(xn)Cn(σ;x1 − x, . . . , xn − x) ,

with the nonlocal kernel Cn (cf. [27]),

Cn(σ;x1 − x, . . . , xn − x) = (2π)−4n

∫
dk1 . . . dkn e

+i
∑

j kj(x−xj) e−
i
2

∑
i<j kiσkj . (1.7)

In the literature, (1.6) is often interpreted as the Weyl-Wigner-Moyal star-product

f ⋆M g (x) = e
i
2

←
∂ µσ

µν
→
∂ νf(x)g(x) .

This requires the interchange of the momentum integration with the exponential series expan-
sion. Hence, it is not surprising that for general smooth functions the star-product is a formal
power series, and as such may have very different support properties from the twisted convolution
product. However, apart from the models which employ θ-expanded actions, the calculations
performed in the literature actually use the twisted convolution product, not the star-product.
Therefore, the symbol ⋆ which is customary there is used also throughout this thesis.

The Poincaré group acts on the symbols in E by

(τa,ΛF )(σ, x) = (det Λ) F (Λ−1σ(Λ−1)t,Λ−1(x− a)) ,

and, hence, acts as an automorphism on E . Therefore, derivatives can be defined as infinitesimal
generators of translations, and for f(q) we obtain

∂qµ f(q) = ∂aµ f(q + a) |a=0 , where a ∈ R4 .

A Z-valued trace on Ẽ was defined in [27] by

Tr(f(q))
def
= f̌(0) ,

written symbolically as Tr(f(q)) =
∫
d4q f(q), and was shown to be indeed positive. It has the

property

Tr(f(q)g(q)) =

∫
d4q f(q) g(q) =

∫
d4x f(x) ⋆σ g(x) =

∫
d4x f(x) g(x) .
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Hence, in terms of the twisted convolution product we may say that “one star-product may be
dropped under the trace”. It was also shown in [27] that there is another positive Z-valued map
on Ẽ , given by ∫

q0=t
d3q f(q)

def
=

∫
dk0 e

ik0t f̌(k0,0) . (1.8)

Here and in what follows, boldface letters stand for the spatial part of a 4-vector. In view
of the uncertainty relations the map (1.8) can be understood as follows: one may consider an
expression at a fixed time t at the cost of total ignorance regarding its position in space. Note,
however, that evaluation in a point, qµ 7→ a, a ∈ R4 , fails to be a positive functional on E .
States on E must be maps to C , and therefore, one has to integrate out the dependence on Z.
Unfortunately, the Lorentz group is not compact and no Lorentz-invariant compact measure
exists, and therefore, evaluation in a state will break Lorentz covariance. One may postpone
this problem by first considering Z-valued “states” and integrating over parts of Σ later. Both
notations

ω(A) and 〈ω,A〉
for evaluation in a state ω will be used throughout. States on E with optimal localization both
in space and in time can be defined. By definition, they minimize (∆q0)

2 + · · · + (∆q3)
2, a

characterization which is evidently invariant under rotations and translations, but not under
Lorentz boosts. Explicitly, it was shown in [27] that for F ∈ E the optimally localized states are
of the following form,

ωa(F ) =

∫

Σ1

dµσ(ηaF )(σ) , (1.9)

where ηa : E → C0(Σ1) is the localization map with localization centre a ∈ R4 ,

(ηaF )(σ)
def
=

∫
dk F̌ (σ, k) e−

1
2
|k|2 eika , |k|2 = k0

2 + · · ·+ k3
2 , (1.10)

and where µ is any probability measure on the distinguished subset Σ1 of Σ,

Σ1
def
= {σ ∈ Σ | ||σ||2 def

= 1
2

∑
σ2µν = 1

2(~e
2 + ~m2) = ~e 2 = ~m2 = 1} , (1.11)

whose definition is rotation- and translation-invariant but not invariant under boosts. In fact,
Σ1 is the orbit of σ(0) under the action of the orthogonal group.
For later purposes, it is convenient to introduce the C ∗-algebra E1 generated by the symbols of
E restricted to Σ1 by the restriction map ρ : E → E1 with ρF = F↾Σ1 . A localization map η with
localization a = 0 can then be written as the composition η = η (1) ◦ ρ, where η(1) is a positive
map from E1 to C0(Σ1) and where

〈
η, eikq

〉
= e−

1
2
|k|2 is understood as a constant function of

σ ∈ Σ1.
We are now prepared for a first preliminary definition of a free quantum field on the noncom-
mutative Minkowski space. It will be made precise in Definition 4.6 in chapter 4, but suffices
for the following two chapters. By analogy with the definition of f(q), a quantum field φ on the
noncommutative Minkowski space is formally written as

φ(q)
def
=

∫
dk φ̌(k)⊗ eikq

= (2π)−3/2

∫
dk

2ωk

(
a(k) ⊗ e−ikq + a†(k) ⊗ eikq

) ∣∣
k∈H+

m
(1.12)

with ordinary annihilation and creation operators a and a†, ωk =
√
k2 +m2 and the ordinary

positive mass-shell H+
m. The field φ is to be interpreted as a linear map from states on E to

smeared field operators,

ω 7→ φ(ω) = 〈I ⊗ ω, φ(q)〉 =
∫
dx φ(x)ψω(x) ,
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where on the right-hand side, φ(x) is a quantum field on ordinary spacetime, smeared with a
testfunction ψω defined by ψ̌ω(k) = 〈ω, eikq〉. If products of fields are evaluated in a state, the
right-hand side will in general involve nonlocal expressions such as φ⋆φ (x). The tensor product
sign will be dropped to save notation, if no confusion is to be expected. The field operators
being unbounded are affiliated to the corresponding Weyl algebra, the ordinary field algebra
denoted F .
The smeared field operator is defined on the ordinary symmetric Fock space of the free scalar
field,

H =
∞⊕

n=0

H(n) with scalar product 〈ψ|ϕ〉 =
∞∑

n=1

〈ψ(n)|ϕ(n)〉 , 〈ψ|ψ〉 <∞ , (1.13)

where H(n) is the n-particle space with wavefunctions ψ(n) ∈ L2(R3n) and scalar product

〈ψ(n)|ϕ(n)〉 =
∫

dp1

2ωp1

. . .
dpn

2ωpn

ψ(n)(p1, . . . ,pn) ϕ
(n)(p1, . . . ,pn) .

Often, the wavefunction will be written as depending on 4-momenta, ψ (n)(p1, . . . , pn), the mea-
sure restricting them to the positive mass-shell. The unique vacuum state is denoted |Ω〉.
Frequently, the invariant domain D will be employed, which consists of states |ψ〉 with smooth
wavefunctions,

ψ(n)(p1, . . . ,pn) ∈ S(R3n)

Throughout the following chapter, the “improper eigenstates” of the momentum operator, are
used,

|p1, . . . pn〉 def= a†(p1) . . . a
†(pn)|Ω〉 .

The implicit assumption underlying the definition of the quantum field (1.12) is that the field
and the noncommutative structure do not interact. A possibly very interesting modification
would be to consider annihilation and creation operators which depend on σ ∈ Σ.

With (1.12) as it stands, large parts of the apparatus of ordinary quantum field theory can be
used. In order to clarify the notation let us now recall some basic facts from ordinary quantum
field theory. As a very first starting point, the ordinary definition of Wick ordering can be
applied to products of fields on the noncommutative Minkowski space via the formula

:φn(q) :
def
= (2π)−4n

∫
dkN : φ̂(k1) . . . φ̂(kn) :

∏

l∈N
e−iklq , (1.14)

where the Wick product : φ̂(k1) . . . φ̂(kn) : is defined as usual by putting all annihilation operators
to the right. A shorthand notation has been applied, where N = {1, . . . , n} and where dkN
denotes

∏
i∈N dki. This notation will be employed throughout. Note that by application of Wick

ordering to the field-operator part of (1.12), the order of the noncommutative exponentials eiklq

remains unaffected.

Equivalent to the ordering prescription is the following definition of Wick products in momentum
space, useful in later calculations,

: φ̂(k1) . . . φ̂(kn) : = φ̂(k1) . . . φ̂(kn) +

+
∑

J⊂N
J 6=∅

∑

α:J→N\J
injective

α(j)>j ∀j∈J

(∏

l∈J
(−i) (2π)4 ∆̂+(kl) δ

(4)(kl + kα(l))
∏

i∈(J∪α(J))c
φ̂(ki)

)
, (1.15)
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where c denotes the complement in N and where ∆̂+(k) is the Fourier transform of the 2-point
function ∆+(x− y),

〈Ω|φ(x)φ(y)|Ω〉 = i∆+(x− y) ,
〈Ω|φ̂(k)φ̂(p)|Ω〉 = (2π)4 i ∆̂+(k) δ

(4)(k + p) .

In what follows, the above vacuum expectation values both in position and momentum space
are referred to as contractions of two fields, and any term consisting of a number of contractions
of two fields and possibly further uncontracted fields is referred to as a contraction.
The lengthy proof of (1.15) is elementary. Instead of requiring that α(j) > j for all j ∈ J ,
we could alternatively introduce a factor 1

2 for every contraction to absorb the effect of double
counting. Note that |J |, the number of elements of J , must be smaller than or equal to [ n2 ] (the
integer part of n

2 ), as otherwise the condition that α be injective is empty.
It is well-known that in Minkowski space

:φ(x1) . . . φ(xn) : =

∫
dkN : φ̂(k1) . . . φ̂(kn) :

∏

i∈N
e−ikixi

with : φ̂(k1) . . . φ̂(kn) : as in (1.15) yields a well-defined distribution in coinciding points, i.e. it
remains well-defined when evaluated in a sequence of compactly supported testfunctions gn ∈
C∞
c (R4n) approaching

δ(x− x1) · · · δ(x− xn)
with supp gn ⊂ supp gn+1 and

⋂
supp gn = {x}. The ordinary product of fields φ(x1) . . . φ(xn)

diverges in this limit. The question of how to generalize this notion of coinciding points as well
as the investigation of the resulting product of fields on the noncommutative Minkowski space
is the main subject of this thesis.
Another formula which will be needed later is the Wick theorem. On Minkowski space as well as
on its noncommutative counterpart, the product of two Wick monomials of order n and m can
be rewritten as a sum of Wick monomials of order ≤ n +m by application of Wick’s theorem,
which in momentum space is

: φ̂(k1) . . . φ̂(kn) : : φ̂(p1) . . . φ̂(pm) : (1.16)

=
∑

I⊂N

∑

α:I→M
injective

∏

i∈I
i (2π)4 ∆̂+(ki) δ

(4)(ki + pα(i)) :
∏

i∈Ic
φ̂(ki)

∏

i∈α(I)c
φ̂(pi) : .

For all further necessary conventions see appendix A. They mostly coincide with the ones in [12].
If not pointed out otherwise, natural units are employed.



Chapter 2

The Hamiltonian Approach

In [27], a definition of a field theory on noncommutative spacetime has been proposed which is
based on the introduction of a Hamiltonian and yields a formally unitary S-matrix by means of
the ordinary Dyson series. This approach was later also called the interaction point time-ordering
approach [13]. The aim of this chapter is to discuss the modified expectation values emerging
in this approach in a formal manner. We will see, in particular, why the arising perturbation
theory is formally unitary, while a violation of unitarity [43] was found in the context of the
modified Feynman rules [37, 38]. The chapter should moreover serve as an introduction to the
kind of problems one encounters when defining a quantum field theory on a noncommutative
spacetime with noncommutative time variable. Moreover, the ultraviolet behaviour of such an
approach is discussed. It is shown, in particular, that the ultraviolet behaviour of a special
Hamiltonian formalism is essentially improved compared to the modified Feynman rules, such
that a theory with φ3-self-interaction (and most likely, also φ4) turns out to be finite.

Starting point is the observation that the free Hamiltonian on the ordinary Minkowski space
can equivalently be understood as the positive linear functional

∫
q0=t d

3q from (1.8) acting on a
Hamiltonian density defined on the noncommutative Minkowski space,

H0 = 1
2

∫

x0=t
d3x : ( (∂0φ(x))

2 + (∇φ(x))2 +m2φ(x)2 ) :

= 1
2

∫

x0=t
d3x : ( (∂0φ(x))

2 − (∂20φ(x))φ(x) ) :

= 1
2

∫

q0=t
d3q : ( (∂0φ(q))

2 − φ(q) (∂20φ(q)) ) :

= 1
2

∫

q0=t
d3q : ( (∂0φ(q))

2 + (∇φ(q))2 +m2φ(q)2 ) : ,

where the equivalence of the second and the third line has been proved in [27] for free fields
satisfying the Klein-Gordon equation. The double dots denote normal ordering in the sense of
equation (1.14). We see that H0 does not depend explicitly on Σ and that, as usual, H0 is
independent of the time t.

It is now natural to define the interaction Hamiltonian for a scalar self-interacting theory by
analogy, simply replacing the ordinary interaction term φn(x) by a noncommutative counterpart
φn(q) and employing the positive linear functional

∫
q0=t d

3q. As we will see in chapter 3, this is
not the only possible generalization.

The twisting appearing in the product φn(q), the resulting operator depends on the possible
values of the commutators Qµν for n ≥ 3 (or, to be exact, it takes values in the centre Z of
the multiplier algebra of E). Somehow, one has to eliminate this dependence, since, finally,
expectation values calculated from the theory must be numbers. It was proposed in [27] to get

15
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rid of this dependence by integrating over Σ1, the compact rotationally invariant subset of Σ,
which arose in the discussion of best-localized states (1.11). Hence, the interaction Hamiltonian
on the noncommutative Minkowski space proposed in [27] is

HI(t) =
g

n!

∫

Σ1

dµσ

∫

q0=t

d3q :φn(q) : , (2.1)

which can equivalently be written as

HI(t) = g
n!

∫

Σ1

dµσ

∫

x0=t

d3x :φ ⋆σ · · · ⋆σ φ (x) :

= g
n!

1
(2π)4n

∫

Σ1

dµσ

∫

x0=t

d3x

∫
dkN : φ̂(k1)... φ̂(kn) : exp

(
− i

2

∑
i<j

kiσkj
)
e−ix

∑
ki (2.2)

= g
n!

∫

Σ1

dµσ

∫
dxN D(σ, t;x1, . . . , xn) :φ(x1) · · · φ(xn) : . (2.3)

Here, the double dots indicate normal ordering of ordinary fields (in position or momentum
space respectively), and where the position space kernel D is given by

D(σ, t;x1, . . . , xn) = (2π)−4n

∫
dkN exp

(
− i

2

∑
i<j

kiσkj
)
(2π)3 δ(3)(

∑
ki) e

+i
∑

kixi e−it
∑

ki,0

=

∫

x0=t

dx C(σ;x− x1, . . . , x− xn)

with C as in equation (1.7). The rotation- and translation-invariant measure has the following
explicit form,

dµσ = (8π)−1 d~e d~mδ(~e 2 − 1) δ(3)(~e∓ ~m) . (2.4)

There are more possibilities to rid HI of the dependence on Z than by integrating over Σ1,
though unfortunately, no Lorentz-invariant yielding a finite result is available on Σ. Integrating
over Σ1 is not a Lorentz-invariant prescription, but at least rotation and translation invariance
are kept in this approach.
Another approach, which is more commonly employed in the context of string-inspired non-
commutative models, is to fix a particular value θ ∈ Σ, or more frequently, to consider a fixed
noncommutativity matrix θ /∈ Σ. For such a fixed noncommutativity matrix θ, the interacting
Hamiltonian is

Hθ
I (t) =

g
n!

∫

x0=t

d3x :φ ⋆θ · · · ⋆θ φ (x) : . (2.5)

This can be understood in terms of the Hamiltonian previously defined by using special point
measures,

Hθ
I (t) =

g
n!

∫
dµ̃σ

∫

q0=t

d3q :φ(q)n : = g
n!

∫
dxN D(θ, t;x1, . . . , xn) :φ(x1) · · · φ(xn) : ,

where
dµ̃σ = d~e d~m δ(3)(ei − θ0i) δ(3)(mi − ǫilkθlk) . (2.6)

In particular, we can choose

θ ∈ Σ1 ⊂ Σ : dµ̃σ = d~e d~mδ(3)(~e− (1, 0, 0)) δ(3)(~e∓ ~m) ,

θ /∈ Σ spacelike: dµ̃σ = d~e d~mδ(3)(~e) δ(3)(~m− (1, 0, 0)) ,

θ /∈ Σ dilation-covariant (lightlike): dµ̃σ = d~e d~mδ(3)(~e− (0, 1, 0)) δ(3)(~m− (1, 0, 0)) .
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Obviously, for θ /∈ Σ, the corresponding noncommutative algebra is not Eσ, although similar
in its algebraic properties. In particular, the uncertainty relations will differ when θ /∈ Σ, as
discussed in chapter 1.

Of course, not only invariance under boosts but also rotation invariance is lost, if a fixed non-
commutativity matrix is used, though translation invariance is kept as a consequence of the fact
that the commutators are central. Using the symmetries which leave the property “spacelike”
or “lightlike” invariant, we may however find measures which are not point measures. As is
well-known from electrodynamics, in the lightlike case, such an extended measure will not be
rotation-invariant, since rotations do not preserve the property “lightlike”. One could choose,
for instance,

dµσ = d~e d~mδ(3)(~e− (0, 0, 1)) δ(m3) δ(~m
2 − 1) . (2.7)

In what follows, different fixed noncommutativity matrices as well as the integration over Σ1

will be considered. We will frequently work with a Hamiltonian which depends on σ,

HI(σ; t) = g
n!

1
(2π)4n

∫
x0=t

d3x
∫
dkN : φ̂(k1)... φ̂(kn) : exp

(
− i

2

∑
i<j

kiσkj
)
e−ix

∑
ki

= g
n!

∫
dx1 . . . dxn D(σ, t;x1, . . . , xn) :φ(x1) · · · φ(xn) : ,

(2.8)

to perform calculations and bear in mind that we still need to integrate against a measure (2.4)
or (2.6). Note that in the limit λP → 0, where the twisting exp(− i

2 λ
2
P

∑
kiσkj) tends to 1, the

kernels D tend to
n∏

j=1

δ(xj,0 − t)
n∏

j=2

δ(3)(xj − x1) ,

and we recover the ordinary local Hamiltonian.

In [27] it was proposed to assume LSZ-asymptotic conditions [61] and to calculate expectation
values from

∞∑

r=0

(−i)r

r! 〈Ω|T
(
φ0(x1) . . . φ0(xn)

∫
dt1 . . . dtrHI(t1) . . . HI(tr)

)
|Ω〉 .

Before discussing the resulting graph theory, some general remarks on the properties of theories
with nonlocal interaction in the Hamiltonian framework are to be made.

2.1 Dyson’s series

Consider a Hamiltonian on Minkowski space, defined by some nonlocal kernel K,

HI(t) = g
n!

∫

x0=t

dx

∫
dxN K(x− x1, ..., x− xn) :φ(x1) · · · φ(xn) : (2.9)

= g
n!

∫
dxN K(t;x1, . . . , xn) :φ(x1) · · · φ(xn) : , (2.10)

where K is the spatial integral
∫
dx of K at fixed time t. Similarly to the usual case, we can

then write

HI(t) = eiH0tHI,0 e
−iH0t ,
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where HI,0 is defined by (2.10) with kernel K(0;x1, . . . , xn) at time 0. This is a consequence of
the following identity

∫
dxN K(0;x1, . . . , xn) eiH0t :φ(x1,0,x1) · · · φ(xn,0,xn) : e

−iH0t

=

∫
dxN

∫

x0=0

dx K(x− x1, . . . , x− xn) :φ(x1,0 + t,x1) · · · φ(xn,0 + t,xn) :

=

∫
dxN K(t;x1, . . . , xn) :φ(x1) · · · φ(xn) : .

The kernels K(...) =
∫
dµσ C(σ; ...) and K(t; ...) =

∫
dµσ D(σ, t; ...) with one of the measures dµσ

from above provide special examples of such Hamiltonians. Pursuing this programme means to
treat the theory on the noncommutative spacetime E as a theory on the ordinary Minkowski
space with an effective nonlocal Hamiltonian density given by C. Compared to the ordinary
case, it is important to note that the interaction Hamiltonian HI,0 at time zero does not arise
from a product of time-zero fields on the noncommutative spacetime E . A direct definition of
such time-zero fields on E does not seem to be available, as sharp localization is impossible
(recall that – as was pointed out in chapter 1 – the δ-distribution is not a positive functional
on E).
Based on the above, we can formally follow the usual procedure and solve the Schrödinger
equation for the time evolution operator U(t, s) in the interaction picture,

i
d

dt
U(t, s) = HI(t)U(t, s) , U(t, t) = 1 ,

by iteration. This yields the ordinary Dyson series [31] with its time-ordered exponential. The
interacting field in this framework then is (formally) defined as

φint(x) = U−1(x0,−∞)φ(x)U(x0,−∞) , x = (x0,x) . (2.11)

By Haag’s theorem [50], we know that in ordinary field theory the interaction picture is in-
consistent. Within the local approach to quantum field theory, this is usually circumvented,
since the coupling constant is replaced here by a function g ∈ C∞

0 (R4) which is constant in some
bounded region and vanishes completely outside some bounded region in spacetime. Translation
invariance is broken and Haag’s theorem does not apply anymore.
Let us now proceed in a similar way and introduce such a cutoff function g in the interaction,
which renders all expressions well-defined in the infrared region (large distance). The interaction
Hamiltonian then is

Hg
I (t) = eiH0tHg

I,t e
−iH0t

with

Hg
I,t =

1
n!

∫

x0=0

d3x g(t,x)

∫
dxN K(x− x1, ... , x − xn) :φ(x1)... φ(xn) : ,

and the S-matrix can be defined as the limit of the corresponding time evolution operator U(t, s),
where t→∞ and s→ −∞, such that

S[g] = 1 +

∞∑

r=1

Sr[g] ,

where (with πs abbreviating π(s) for an element π of the permutation group Pr)

Sr[g] = (−i)r

r!

∑

π∈Pr

∫
dt1 . . . dtr θ(tπ1 − tπ2) . . . θ(tπr−1 − tπr)H

g
I (tπ1) . . . H

g
I (tπr)

= (−i)r
∫
dt1 . . . dtr θ(t1 − t2) . . . θ(tr−1 − tr)Hg

I (t1) . . . H
g
I (tr) (2.12)



2.1. DYSON’S SERIES 19

with θ denoting the Heaviside step function. Following common convention, the symbol θ is
also used for the fixed noncommutativity matrix, but, since the Heaviside functions appear in a
different context, no confusion is to be expected.

In this framework, the interacting field can be defined by Bogoliubov’s formula as

φint(x) =
δ

iδh(x)
S(g, 0)−1 S(g, h)

∣∣
h=0

, (2.13)

where S(g, h) is the S-matrix with interaction term

h(x)φ(x) + g(x)

∫
dxN K(x− x1, . . . , x− xn) :φ(x1) · · · φ(xn) :

for g and h compactly supported testfunctions. This definition has the advantage over (2.11)
that fields with definite time-component (time-zero-fields), which in higher order perturbation
theory are ill-defined, do not appear explicitly1.

The connection between the local formalism and the one without cutoff function is usually
established by taking the adiabatic limit, where the cutoff function g tends to a constant. It can
be performed either for the n-point functions (“weak adiabatic limit”) or for the S-matrix itself
(“strong adiabatic limit”). For massive local theories both limits were shown to exist [35, 36].
An alternative approach [55] was analysed recently in [14], where local observables in the sense
of [51] are constructed from the S-matrix via Bogoliubov’s formula. The construction depends
only locally on the particular cutoff function g, such that if two such functions coincide on some
bounded region of spacetime, the corresponding algebras of observables are unitarily equivalent.
The construction relies on the fact that the S-matrix is causal.

Before investigating some properties of the above S-matrix for a nonlocal interaction, note that
it can also be written using an effective “Lagrangian density”,

Sr[g] =
ir

r!

∫
dx1 . . . dxr Sr(x1, . . . , xr) g(x1) . . . g(xr)

with Sr(x1, . . . , xr) =

=
(−1
n!

)r ∑

π∈Pr

θ(xπ1,0 − xπ2,0) · · · θ(xπr−1,0 − xπr,0) ·

·
∫
dx11... dx

n
1

∫
. . .

∫
dx1r... dx

n
r

r∏

i=1

(
K(xπi

− x1πi
, ... , xπi

− xnπi
) :φ(x1πi

)... φ(xnπi
) :
)
.

For example, if K(. . . ) =
∫
dµσC(σ; . . . ), the second line in the above is

∫
dµσ1 ...

∫
dµσr :φ ⋆σ1 ... ⋆σ1 φ (xπ1) : . . . :φ ⋆σr ... ⋆σr φ (xπr) : .

Formally, the Hamiltonian H can indeed be derived from the “Lagrangian density”. However,
a precise definition of the energy-momentum tensor on the noncommutative Minkowski space
has so far been derived in a satisfactory way only in [88] for classical fields, and the framework
is not directly applicable here. Hence, the Hamiltonian approach is to be interpreted as an
effective approach, enabling us to calculate expectation values of the S-matrix in analogy with
the ordinary case. We will frequently encounter consequences of the fact that not all properties
of ordinary local quantum field theory hold.

1Alternatively, we can still define operators U for the interaction with cutoff and formally define the interacting
field as before.



20 CHAPTER 2. THE HAMILTONIAN APPROACH

Let us now recount some of the properties of the S-matrix defined by the Dyson series (2.12)
with or without cutoff-function g.

Unitarity: First recall the following well-known argument which formally holds independently
of whether we use the cutoff function g in the definition of the interaction Hamiltonian or not:

Remark 2.1 Any S-matrix defined by (2.12) is formally unitary (i.e. before renormalization),

S S† = 1 + S1 + S†
1 + (S2 + S1 S

†
1 + S†

2) + . . . = 1 ,

if the interaction Hamiltonian is symmetric, HI(t) = HI(t)
†.

The well-known proof is repeated here only for the sake of demonstrating that the nonlocality
of the interaction does not enter.

Proof: The claim is an immediate consequence of the way the time-ordering has been defined.

∑

N1+N2=N

SN1 SN2
† =

= iN
N∑

N1=0

(−1)N1

∫
dt1 . . . dtN θ(t1 − t2) . . . θ(tN1−1 − tN1) ·

· θ(tN1+1 − tN1+2) . . . θ(tN−1 − tN )HI(t1) . . . HI(tN1)HI(tN ) . . . HI(tN1+1)

= iN
∫
dt1 . . . dtN HI(t1) . . . HI(tN )

N∑

N1=0

(−1)N1

N1−1∏

i=1

θ(ti − ti+1)

N−1∏

i=N1+1

θ(ti+1 − ti)
︸ ︷︷ ︸

= (∗)

,

where the convention is such that Heaviside functions of arguments satisfying an empty condition
such as ti − ti+1 with i = N , as well as empty products such as

∏N−1
i=N . . . , are set to 1.

Obviously, (∗) = 1 for N = 0, and using

N+1∑

N1=0

(−1)N1

N1−1∏

i=1

θ(ti − ti+1)
N∏

i=N1+1

θ(ti+1 − ti)

=

N∑

N1=0

(−1)N1

N1−1∏

i=1

θ(ti − ti+1)

N−1∏

i=N1+1

θ(ti+1 − ti) ·
{
θ(tN+1 − tN ) N1 < N
1 N1 = N

+ (−1)N+1
N∏

i=1

θ(ti − ti+1)

together with the fact that 1 = θ(tN+1− tN)+θ(tN− tN+1) one proves by induction that (∗) = 0
for N ≥ 1. �

Hence, if the time-ordering in the S-matrix is defined as in (2.12) with respect to the parameter
times t appearing in the HamiltoniansHI(t), the theory will automatically be (formally) unitary.
It follows in particular, that the S-matrix for any of the Hamiltonians introduced in this section
is (formally) unitary, independent of whether we integrate over Σ1 as in (2.1) or consider a
Hamiltonian with fixed noncommutativity matrix as in (2.5).

It follows immediately that the outgoing field φout when defined as

φout = S†φinS ,
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satisfies the same commutation relations as the incoming field, i.e.

[φout(x), φout(y)] = [φin(x), φin(y)] ,

where problems of renormalization have not yet been taken into account.

Thus the question arises whether this contradicts earlier results on nonlocal interactions [87, 60,
11] (cf. [57, 80] and the discussions at the “Conference of Theoretical Physics” in Kyoto and
Tokyo in 1953, [56]). There, the above condition was shown to be violated (before renormaliza-
tion), contrary to earlier claims [11], in theories which are nonlocal in time. As a consequence,
a modification of the asymptotic condition was shown to be necessary in [53]. Starting point of
these considerations is the field equation with a nonlocal interaction term, which is then solved
recursively, a procedure called the Yang-Feldman approach [86, 59] in local quantum field theory.

In chapter 4 of this thesis, this approach shall be analysed on the noncommutative Minkowski
space. One of its virtues is that we are not compelled to treat the theory as an effective one on
the ordinary Minkowski space with a nonlocal interaction. If however, we choose to do so, we
will see in section 4.4 that the interacting field calculated by such methods differs from the one
defined here. Hence, the two approaches are not immediately related and we may conclude that
the counterexamples at fourth order of the perturbative expansion analysed in the publications
cited above do not apply to the Hamiltonian formalism investigated here.

A point particularly worth mentioning in this context is the fact that the interacting field in the
Hamiltonian formalism does not satisfy the ordinary equation of motion.

Remark 2.2 The interacting field defined by (2.13) for a nonlocal Hamiltonian does not satisfy
the ordinary equation of motion,

(�+m2)φint(x) 6= U−1(x0, s) i[HI(x0), ∂
0φ(x)]U(x0, s) , s→∞ , x = (x0,x) ,

unless the nonlocal kernel K is local with respect to the time variable,

K(x− x1, . . . , x− xn) =
n∏

j=1

δ(x0 − xj,0)Ks(x− x1, . . . ,x− xn) ,

where Ks(x− x1, . . . ,x− xn) is nonlocal with respect to the spatial variables.

Proof: The calculation is straightforward, and already at first order we find a deviation. We
employ a cutoff function g, which, however, is not crucial for the proof. The definition of the
interacting field yields the following expression at first order,

φint,1(x) = i

∫
dy g(y) θ(x0 − y0) [H(y), φ(x)] ,

where H(x) def
= 1

n!

∫
dxN K(x−x1, . . . , x−xn)φ(x1) . . . φ(xn) is the Hamiltonian density. Hence,

∂0∂0 φint,1(x) = i

∫
dy g(y) ∂0

(
δ(x0 − y0) [H(y), φ(x)] + θ(x0 − y0) [H(y), ∂0φ(x)]

)
.

In the local case, the first term is zero, since [H(y), φ(x)] is proportional to the commutator
function ∆(y − x) which is zero if y0 = x0. For a nonlocal interaction, the commutator yields

[H(y), φ(x)] = 1
n!

∫
dyN K(y − y1, .. , y − yn)

∑

i

∆(yi − x):
∏

j 6=i

φ(yj) : ,
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which will only vanish for y0 = x0 if yi,0 = y0 ∀i, i.e. if K is local with respect to the time
variable. In the general nonlocal case we derive, using [H(y), ∂ 0∂0φ(x)] = (∇2−m2)[H(y), φ(x)],

(�+m2)φint,1(x) = i

∫
dy g(y)

(
∂0( δ(x0 − y0) [H(y), φ(x)] ) + δ(x0 − y0) [H(y), ∂0φ(x)]

)
,

and, hence, taking into account that the fields are (operator-valued) distributions, we find
∫
dx (� +m2)φint,1(x)h(x) = i

∫
dx [H(x0), ∂

0φ(x)]h(x) − i
∫
dx [H(x0), φ(x)] ∂

0h(x)

for a testfunction h. Only the first term arises at first order in the right-hand side of the ordinary
equation of motion, but the disturbance by the second term is absent only for interactions which
are local with respect to the time variable. �

Problems such as the well-posedness of the initial value problem and the derivation of the
equations of motion from a Lagrangian density of classical fields may be investigated in the
more rigorous framework elaborated in [88]. As emphasized before, however, the framework
employed there is different from what is investigated here, and the results not immediately
applicable.
Other attempts to give meaning to the Hamiltonian formalism in theories with nonlocal inter-
action or with higher derivatives have been investigated, for instance, in [42]. Here, the nonlocal
theory is treated as a system with constraints, and a classical Hamiltonian is defined after an
additional time-coordinate has been introduced.

Causality: In nonlocal theories, the S-matrix defined by Dyson’s series (2.12) does not satisfy
the causal factorization usually satisfied in local field theory, where for {x1, . . . , xl} later than
or spacelike to {xl+1, . . . , xn} (or equivalently for {xl+1, . . . , xn} not in the forward lightcones
of {x1, . . . , xl}) we have

Sloc
r (xπ1 , . . . , xπr) = Sloc

l (x1, . . . , xl)S
loc
r−l(xl+1, . . . , xr) .

More particularly, we find in the local case the following locality condition for spacelike separated
arguments {x1, . . . , xl} and {xl+1, . . . , xn},

Sloc
r (xπ1 , . . . , xπr) = Sloc

l (x1, . . . , xl)S
loc
r−l(xl+1, . . . , xr) = Sloc

r−l(xl+1, . . . , xr)S
loc
l (x1, . . . , xl) .

While for {x1, . . . , xl} later than {xl+1, . . . , xr} the causality condition is satisfied for the S-
matrix on the noncommutative spacetime, due to the time-ordering given by the Heaviside
functions, the locality condition for spacelike separated arguments does not hold. To see this
consider an example at second order. Let x be earlier than y, (x− y)2 > 0, x0 < y0, then indeed
we find

S2(x, y) = H(y)H(x) = S1(y)S1(x) ,

whereH(x) = 1
n!

∫
dxN K(x−x1, . . . , x−xn)φ(x1) . . . φ(xn) is the effective Hamiltonian density,

defined already in the proof of Remark 2.2, and where for now, normal ordering is not taken
into account. Now let x be spacelike separated from y, (x− y)2 < 0, then contrary to the above
causality conditions we find

S1(x)S1(y)− S1(y)S1(x) = 1
n!2

∫
dxNdyN K(x− x1, . . . , x− xn) ·

·K(y − y1, . . . , y − yn)
n∑

i=1

( i−1∏

k=1

φ(xk)
n∑

j=1

(
i∆(xi − yj)

∏

l 6=j

φ(yl)
) n∏

k=i+1

φ(xk)
)

6= 0 .
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This commutator remains unequal to 0 even for equal time variables x0 = y0, unless the kernel
K is local in time, such that xi,0 = x0 and yi,0 = y0 ∀i. In the next chapter a Hamilton operator
on the noncommutative Minkowski space will be introduced where the kernels are such that this
non-locality will decay like a Gaussian function.

Covariance: Consider the kernels from the previous section. We have seen there that Lorentz
covariance is problematic due to the fact that the product φn(q) depends on σ ∈ Σ and that there
is no Lorentz-invariant measure on Σ which would yield a finite integral. However, when the
noncommutative spacetime E is considered (or the dilation covariant “lightlike” noncommutative
spacetime from [27]), the question of covariance may be postponed – and in the meantime, we
bear in mind that before integration over Σ1 (or against some extended measure in the lightlike
case), the Hamiltonian density (2.8) transforms covariantly under the full Poincaré group,

U(a,Λ) φ(q)n U(a,Λ)−1 = φ(Λq + a)n

=

∫
dkN φ̌(k1) · · · φ̌(kn) ei(

∑
l kl) (Λq+a) e−

i
2

∑
l<j kl (ΛσΛ

†) kj

and by construction, ΛσΛ† is again an element of Σ. Once the integration over Σ1 is performed,
the resulting expression is at least invariant under rotations and translations.

Notwithstanding the problems sketched above, LSZ-asymptotics [61] are assumed to hold (for
an investigation with commuting time-variable see [17]), such that expectation values of the
S-matrix in multi-particle states can be calculated as usual by the following formula

〈p1 . . . in |Sr | q1 . . . in〉 = (−i)r

r!

∑

π∈Pr

∫
dt1 . . . dtr θ(tπ1 − tπ2) . . . θ(tπr−1 − tπr) ·

· 〈p1 . . . in | HI(tπ1) . . . HI(tπr) | q1 . . . in〉 (2.14)

This was already proposed in [27] and was later also called the interaction point time-ordering
approach [13]. In later chapters we will consider the proper Fock space (1.13) to calculate
expectation values, but for the time being, no smearing in the momenta is employed for the
time being. Instead, we consider the improper eigenstates |p1 . . . ps〉, where

〈p| :φ(x)φ(y) : |q〉 = 1
(2π)3

( e+ipx−iqy + e+ipy−iqx ) .

From the expressions derived in this manner, we can find the smeared expectation values by sim-
ply integrating over the external momenta on the mass-shell against appropriate functions ψ (n).
Inserting the explicit form of the Hamiltonian, we see that the important step in the calculation
is to evaluate expectation values in position or momentum space,

〈p1 . . . in | : φ̂(kπ1
1 ) . . . φ̂(kπ1

n ) : . . . : φ̂(kπr
1 ) . . . φ̂(kπr

n ) : | q1 . . . in〉 (2.15)

〈p1 . . . in | :φ(xπ1
1 ) . . . φ(xπ1

n ) : . . . :φ(xπr

1 ) . . . φ(xπr
n ) : | q1 . . . in〉 , (2.16)

employing Wick’s theorem. It is convenient for some purposes to introduce graphical rules
to treat the combinatorics of the perturbative expansion in the spirit of Feynman’s rules, but
it is emphasized that this is not necessary. To calculate an expectation value at r-th order
perturbation theory (2.14) in anm1- and anm2-particle state, we simply consider all possibilities
to contract r·n−(m1+m2) fields in (2.15) or (2.16), respectively. If the renormalization procedure
in position space is employed, it is not necessary to sort the diagrams in terms of their loop
number. Instead, the S-matrix is renormalized order by order in the coupling constant. As
we have seen, a number of properties, such as formal unitarity of the S-matrix, can be derived
without reference to graphs.
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Nonetheless, in order to establish the connection with the literature and, in particular, with
the modified Feynman rules, let us now derive graphical rules for the case where ordinary
normal ordering is used. These rules will moreover turn out to be quite useful to investigate
the renormalization in the Hamiltonian formalism sketched here. Also, they will serve us well
in the next chapter where the adiabatic limit of a theory based on a regulated interaction term
is discussed.
Since our interest in this chapter mainly lies in comparing the graphical rules employed in the
literature, where g is a constant from the outset, with the graphs arising within the Hamilto-
nian formalism, the cutoff function is not considered anymore in the remainder of this chapter.
Instead, the ordinary coupling constant is employed.

2.2 Graphs

There are different ways to define graphical rules to simplify the calculation of the S-matrix’
expectation values. The simplest one as far as its derivation is concerned is given in position
space. Starting point is the Hamiltonian written in position space as in (2.3). To calculate the
contribution to the S-matrix at the r-th order of the perturbative expansion, and with a number
of l incoming and s outgoing external momenta, we have to calculate the following expression

(−i)r
∫
dt1... dtr

r−1∏

i=1

θ(ti − ti+1) 〈p1... ps | HI(t1) . . . HI(tr) | q1... ql〉

= (−i)r
∫
dt1... dtr

r−1∏

i=1

θ(ti − ti+1)

∫ r∏

j=1

dx1j ... dx
n
j

∫
dµσ1 ... dµσr D(σ1, t1;x

1
1, . . . , x

n
1 ) ·

· D(σr, tr;x
1
r , . . . , x

n
r ) 〈p1... ps |

r∏

j=1

:φ(x1j ) · · ·φ(xnj ) : | q1... ql〉 . (2.17)

Here, and throughout the rest of this chapter, the kernels C, and D are employed, but all
results hold generally for any nonlocal kernel. In order to simplify the calculations, symmetrized
kernels D,

D(σ, t;x1, . . . , xn) =
1

n!

∑

π∈Sn

D(σ, t;xπ1 , . . . , xπn) ,

are employed, which is legitimate since :φ(x1) · · · φ(xn) : = :φ(xπ1) · · ·φ(xπn) : for an arbitrary
permutation of the arguments.
By application of Wick’s theorem, the products

∏r
j=1 :φ(x

j
1) · · ·φ(xjn) : are now to be brought

into complete normal order, picking up the appropriate contractions, each of which yields a
2-point function (positive-frequency propagator) i∆+(x

i1
j1
−xi2j2), where j1 < j2. The non-trivial

contributions to the expectation value 〈p1... ps | . . . | q1... ql〉 are those where n · r − s− l fields
are contracted. In order to keep track of the combinatorics, graphs may be helpful. The main
difference to the graph theory on Minkowski space is that we have to employ vertices which
consist of n points,

✫✪
✬✩rrrr n points

t1

✫✪
✬✩rrrr n points

t2

. . . . . .

✫✪
✬✩rrrr n points

tr

where t1 > · · · > tr, and the points in the j-th vertex are labelled by xi
j, i = 1, . . . , n. Such

vertices were called multi-vertices in [10]. The circles around the multi-vertices are merely a
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manner to keep track of which vertices belong to the same parameter time; since the nonlocal
kernel’s support is not compact, the multi-vertices are not confined to a particular region in
spacetime.
Now, the different possibilities to contract a number of n · r − s − l fields are symbolized by
the different possibilities to draw directed lines which pairwise connect points x i1

j1
and xi2j2 with

j1 < j2. Each line then symbolizes a contractions i∆+(x
i1
j1
− xi2j2), j1 < j2. No lines connecting

points from the same vertex (tadpoles) appear since the interaction at every vertex is already
normally ordered. Since the kernels D are symmetric, it does not matter which of the n points
in the vertices are used in a contraction. The fields which are not contracted are to be evaluated
in improper states 〈p1... ps | . . . | q1... ql〉. From these simple considerations we can already
conclude that as in the ordinary case for φ2m-theories, only graphs with an even number s + l
of external legs contribute, as the number of contracted fields r · 2m− s− l must be even.
If the graph theory is posed in this manner, problems of causality are apparent, cf. also [13]. It is
a general feature of theories with a nonlocal interaction, and in [10] this problem was considered
explicitly for the nonlocal Hamilton operator which will be investigated in the next chapter.
The problem can briefly be described as follows: usually, in a local theory, the time-orderings
in the S-matrix have the same argument as the fields appearing at each vertex, and they can
be combined to yield causal commutators (Feynman propagators),

θ(x0 − y0)∆+(x− y) + θ(−x0 + y0)∆+(−x+ y) .

As is well-known, this propagator is causal in the following sense: the matrix element i∆+(x−
y) = 〈Ω|φ(x)φ(y)|Ω〉 belongs to the process where a particle is created at y and annihilated at
x. This process is causal if the creation takes place before the annihilation, i.e. if x 0 > y0.
Likewise, the process described by ∆+(−x+ y) is causal if y0 > x0. When a Hamilton operator
is considered which is nonlocal in time, the time-ordering in the definition of the S-matrix does
not refer to the arguments of the fields. Hence, a contraction between two fields from two
different vertices which corresponds to the process of creating and annihilating a particle does
not come together with an appropriate time-ordering and the creation may well take place after
the annihilation.
Let us briefly discuss the situation for the particular Hamiltonian (2.3) in φ3-theory, where the
position space kernel is (see [27])

D3(σ, t;x1, x2, x3) = c e2i(x1−x2)σ−1(x2−x3) δ(−x1,0 + x2,0 − x3,0 + t) .

Consider the following simple graph at second order,
time

✻

✲
space

✫✪
✬✩q x1q x2

q x3
t1 ✫✪

✬✩
q y1

q y3
q y2t2

Here, it is obvious that, according to the time-ordering in the S-matrix, we find t1 < t2 for the
parameter times t1 = x1,0 − x2,0 + x3,0 and t2 = y1,0 − y2,0 + y3,0, but x2,0 > y1,0, such that the
contraction between φ(x2) and φ(y1) is not causal.
This is a general feature of nonlocal theories and, unless the kernel employed is local in time, in
general, processes will exhibit acausal behaviour.
If, for instance, a kernel D with fixed noncommutativity matrix θ is employed, many graphs
are acausal in the above sense, although, as we will see in section 2.3, in some graphs (the
so-called planar graphs) the twistings cancel and causal commutators appear. Considering only
space-space-noncommutativity, where the kernel is local in time, will lead to causal behaviour.
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The properties found here do not contradict the causal behaviour of the S-matrix we found in
the preceding section. The causality problem as investigated refers to inner processes, while
before we investigated the causal behaviour with respect to the overall parameter times t. In
local interactions, these two considerations coincide.
Let us now consider another possibility to derive graphical rules which is more apt to establish
the connection to the existing literature on the subject2. Though equivalent to the rules given
above, they appear in a decisively different form, and, in particular, we will not need the multi-
vertices introduced above. Before proceeding, let us first recall that on the ordinary Minkowski
space, the graph theory is much simplified, if the asymptotic condition is used to show that

〈p1 . . . pl1 , out | q1 . . . ql2 , in〉 = 〈p1 . . . in |S | q1 . . . in〉

= disconnected terms +

+ (iZ−1/2)l1+1

∫
dy1... dyl1dx1... dxl2 e

i(
∑

piyi−
∑

qixi) ·

· (�y1 +m2) . . . (�xl2
+m2) 〈Ω|T (φ(y1) . . . φ(xl2)) |Ω〉

with a renormalization constant Z, such that all information is contained in the time-ordered vac-
uum expectation values of the interacting fields, the so-called n-point functions G(x1, . . . , xn) =
〈Ω|T (φ(x1) . . . φ(xn)) |Ω〉. For local interactions, the n-point functions can be calculated from
the following formula,

G(x1, . . . , xn) 〈Ω|T exp
(
− i
∫
dtHI(t)

)
|Ω〉 =

=
∞∑

r=0

(−i)r

r! 〈Ω|T
(
φ0(x1) . . . φ0(xn)

∫
dt1 . . . dtrHI(t1) . . . HI(tr)

)
|Ω〉 , (2.18)

where all fields (also the ones in the Hamiltonians) are free incoming fields, and where the
time-ordering T applies to the time variables x1,0, . . . , xn,0, t1, . . . , tr. The calculations are then
greatly simplified by the fact that all connecting lines in such time-ordered vacuum expectation
values are given by Feynman propagators. As we shall see below, this is no longer the case, if the
interaction is nonlocal: while the formal apparatus can still be applied (under the assumption
that LSZ-asymptotics hold), the conclusion that Feynman propagators alone serve as internal
lines is no longer true. In fact, as was pointed out in [9], it is this assumption which leads to
the violation of unitarity first observed in [43]. This point will be treated in more detail later.
In order to calculate connected expectation values for the nonlocal interaction one can indeed use
(2.18) as a starting point as proposed in [27, (6.15)]. This has been done explicitly in [63]. It ap-
pears to be somewhat easier to directly calculate the on-shell matrix elements 〈p1 . . . |S | q1 . . . 〉
and this will be done here. The rules thus derived indeed coincide with those given in [63], if
the Hamiltonian (2.5) with fixed noncommutativity matrix θ is used.
The combinatorics are greatly simplified, if the customary symmetrized vertex factors

S(σ; k1, . . . , kn)
def
= 1

n!

∑

π∈Pn

exp
(
− i

2

∑
i<j
kπi
σkπj

)

are introduced in order to make the momenta of one vertex indistinguishable. We thus use the
following interaction Hamiltonian,

HI(σ; t) =
g
n!

1
(2π)4n

∫
dk1...dkn : φ̂(k1)...φ̂(kn) : S(σ; k1, ..., kn)

∫
dx eix

∑n
j=1 kj −i t

∑n
j=1 kj,0 .

2In the meantime, a paper in which also the above position space graphical rules were spelled out has ap-
peared [24].
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Here, the nonlocality is hidden in the vertex factors S and pointlike vertices can be used, each
labelled by an ordinary 4-vector (t,x). Note that the spatial integral

∫
dx yields 3-momentum

conservation at the vertex. In the above definition, the dependence on σ has not yet been taken
care of, so we still have the choice to either perform the integration

∫
Σ1
dµσ at each vertex or to

use one of the point measures (2.6) and, hence, to set all σ equal to a given θ.

To start with, consider the third order contribution to the S-matrix in φ4-theory with one
momentum flowing out and three momenta flowing in,

〈q1|S3|q2q3q4〉 = (−i)3

3!

∑

π∈P3

∫
dt1dt2dt3 θ(tπ1 − tπ2)θ(tπ2 − tπ3)

× 〈q1|HI(σπ1 ; tπ1)HI(σπ2 ; tπ2)HI(σπ3 ; tπ3)|q2q3q4〉 .

Here, S3 is to be understood to depend on σ1, σ2, σ3, and we still have to decide whether to
integrate over Σ1 or to set all σi equal to a given θ . The major complication compared to the
ordinary case is that the different time orderings have to be treated separately. For instance,
consider an ordinary graph at this order with four external momenta,

✒✑✓✏r r r✑✑
◗◗ (2.19)

Assign the outgoing momentum q1 to the vertex on the left and the incoming momenta q2, q3, q4
to the vertex on the right, and then attribute times t1, t2, t3 to the vertices from left to right,

✒✑✓✏r r r✛ ✛
❦

✰
q1 q2,q3,q4✑✑

◗◗
t1 t2 t3 (2.20)

Now, the contribution to S3 corresponding to this graph will differ depending on the order of
the ti. For illustration, we will consider the explicit calculations for the cases t 1 > t2 > t3 (A)
and t1 > t3 > t2 (B).

First we pick the contribution corresponding to graph (2.19) which arises when the 3-fold prod-
uct of normally ordered field monomials is brought into complete normal order by application
of (1.16). This is a contraction where three fields from the first vertex are contracted with three
fields from the second vertex, and the remaining field from this vertex is contracted with one
field from the third vertex. Since we work with symmetrized twistings it does not matter which
particular momenta we choose at each vertex.
Hence, for the time-ordering where t1 > t2 > t3, the contribution to S3 is given by

A = i
3! C

(
g

(2π)16 4!

)3 ∫
dt1dt2dt3 θ(t1 − t2)θ(t2 − t3)

∫
dk1 . . . dk4

∫
dp1 . . . dp4

∫
dl1 . . . dl4

·
∫
dx1 e

ix1(k1+k2+k3+k4)

∫
dx2 e

ix2(p1+p2+p3+p4)

∫
dx3 e

ix3(l1+l2+l3+l4)

· S(σ1; k1, .. , k4)S(σ2; p1, .. , p4)S(σ3; l1, .. , l4) e
−i t1

∑
ki,0 e−i t2

∑
pi,0 e−i t3

∑
li,0

· (2π)26 δ(4)(q1 + k1) δ
(4)(q2 − l1) δ(4)(q3 − l2) δ(4)(q4 − l3) i ∆̂+(k2)δ

(4)(k2 + p1)

· i ∆̂+(k3)δ
(4)(k3 + p2) i ∆̂+(k4)δ

(4)(k4 + p3) i ∆̂+(p4)δ
(4)(p4 + l4)

= i
3!

(
g
4!

)3
(2π)−18 C

∫
dx1dx2dx3 θ(x1,0 − x2,0)θ(x2,0 − x3,0) e+iq1x1 e−ix3(q2+q3+q4)

·
∫

dk2

2ωk
2

dk3

2ωk
3

dk4

2ωk
4

dp4

2ωp
4

e−ik2(x1−x2) e−ik3(x1−x2) e−ik4(x1−x2) e−ip4(x2−x3)

· S(σ1;−q1, k2, k3, k4)S(σ2;−k2,−k3,−k4, p4)S(σ3;−p4, q2, q3, q4) .
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The combinatorial factor C is calculated as usual in the following way. Consider the second
vertex. There are

(4
3

)
3! = 4! possibilities to select an ordered tuple of 3 momenta out of four.

These momenta are to be paired with 3 out of the 4 momenta of the first vertex. Here, we
have to take an unordered sample to avoid double counting, so the symmetry factor is

(4
3

)
= 4.

The remaining momentum of the second vertex is then paired with one of the momenta of the
third vertex, which gives an additional symmetry factor of

(4
1

)
= 4. There is only one way to

distribute the outflowing momentum q1 to the one remaining momentum in the first vertex, but
there are 3! possibilities to distribute the incoming momenta q2, q3, q4 to the remaining three
momenta of the third vertex. We conclude that C = 4! 42 3! = 2304. Note that if we did not
use symmetrized vertex factors, 4! 42 = 386 of these contributions would have to be treated
separately.
The same graph with the distinct time-ordering t1 > t3 > t2 is given by a very similar expression,
the only difference being that the Hamiltonian HI(t2) now stands right of HI(t3). To make the
resulting changes more lucid, the momenta belonging to HI(t2) and HI(t3) are denoted pi and

li as before. The only contraction that differs from the previous one then is i ∆̂+(l4)δ
(4)(l4 + p4)

which replaces i ∆̂+(p4)δ
(4)(p4 + l4). Hence, the contribution to S3 is

B = i
3!

(
g
4!

)3
(2π)−18 C

∫
d4x1d

4x2d
4x3 θ(x1,0 − x3,0)θ(x3,0 − x2,0) e+iq1x1 e−ix3(q2+q3+q4)

·
∫

dk2

2ωk
2

dk3

2ωk
3

dk4

2ωk
4

d l4
2ωl

4

e−ik2(x1−x2) e−ik3(x1−x2) e−ik4(x1−x2) e−il4(x3−x2)

·S(σ1;−q1, k2, k3, k4)S(σ3; l4, q2, q3, q4)S(σ2;−k2,−k3,−k4,−l4) .

From these examples we can readily extract the general rules for a φn-theory in position space.

Remark 2.3 Graphical rules in position space, employing the S-kernels:

1. Draw all ordinary connected Feynman graphs of the process under consideration, charac-
terized by the number of vertices (r vertices at r-th order of the perturbative expansion)
and the number of external momenta. Since we consider a normally ordered interaction
term, no tadpole graphs need to be considered, such that no internal line starts and ends
at the same vertex. Consider all possibilities to distribute the external momenta to the
vertices separately.

2. Pick one of the above graphs and assign vectors x1, . . . , xr with time components x1,0, . . . , xr,0
to its vertices.

3. Choose one particular time order and write down the appropriate r−1 Heaviside functions
∫
d4x1 . . . d

4xr θ(... ) · · · θ(... ) .

4. For every internal line connecting xi and xj write down a mass-shell integral

1

(2π)3

∫
dk

2ωk

e−ik(xi−xj) ,

where xi,0 > xj,0. The internal momentum k labels a directed line leading from x j to xi
(earlier to later).

5. For an external momentum q leaving the vertex xi multiply with (2π)−3/2 e+iqxi .
For an external momentum q entering the vertex xi multiply with (2π)−3/2 e−iqxi .

6. At each vertex, the twisting S is determined by the following rules:

• an external momentum leaving the vertex enters with a − sign;
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• an external momentum flowing into the vertex enters with a + sign;

• an internal momentum enters with a + sign, if the vertex is the endpoint of the
momentum’s line, and it enters with a − sign if the vertex is the starting point of the
momentum’s line. In other words, if k labels the line from xj to xi (so xi,0 > xj,0), k
enters the twisting with a − sign at the vertex xj and with a + sign at xi.

As the twistings S are symmetrized, the order of the momenta in S is arbitrary.

7. For each of the r vertices multiply with a factor g
n! . Calculate the symmetry factor of the

diagram as described on page 28 and multiply the expression with it. Multiply with a
factor (−i)r

r! .

The rules in momentum space follow immediately, we merely have to perform the time and space
integrations, using the identity

∫
dτ θ(τ) e−iτk0 =

i

2π

1

−k0 + iǫ
.

For illustration, let us again consider the above examples. Introducing relative time coordinates
τi = ti − ti+1, i = 1, 2, and performing the time and space integrations, we obtain3 for A,

A = i
3!

(
g
4!

)3 ( i
2π

)2
(2π)−8 C

∫
dk2

2ωk
2

dk3

2ωk
3

dk4

2ωk
4

dp4

2ωp
4

1

q1,0 − ωk
2
− ωk

3
− ωk

4
+ iǫ

·

· 1

q1,0 − ωp
4
+ iǫ

S(σ1;−q1, k2, k3, k4)S(σ2;−k2,−k3,−k4, p4)S(σ3;−p4, q2, q3, q4)

· δ(3)(−q1 + k2 + k3 + k4) δ
(3)(−k2 − k3 − k4 + p4) δ

(3)(q2 + q3 + q4 − p4)

· δ(−q1,0 + q2,0 + q3,0 + q4,0) .

The overall energy conservation is the result of the time integration dt3. It yields the δ-
distribution δ(k1,0+ · · ·+k4,0+p1,0+ · · ·+p4,0+ l1,0+ · · ·+ l4,0) in which only external momenta
survive. Note that the spatial δ(3)-distributions can be rewritten in such a form that they also
yield the distribution δ(3)(−q1+q2+q3+q4). Therefore, energy and momentum of the external
momenta are conserved.
More generally, consider a graph with times t1 > · · · > tr. Introduce r − 1 relative time
coordinates τi = ti − ti+1, i.e. ti =

∑r−1
j=i τj + tr. The time integrations then yield

(
i
2π

)r−1
δ
(∑

i(k
(1)
i,0 + ..+ k

(r)
i,0 )

)

(−∑i k
(1)
i,0 + iǫ) (−∑i(k

(1)
i,0 + k

(2)
i,0 ) + iǫ) · · · (−∑i(k

(1)
i,0 + ..+ k

(r−1)
i,0 ) + iǫ)

,

where the 4-momenta k
(1)
i , i = 1, . . . , n, belong to the latest vertex, and the momenta k

(r)
i belong

to the earliest one. These considerations enable us to state the general rules in momentum space:

Remark 2.4 Graphical rules in momentum space, employing the S-kernels:

1. As in Remark 2.3 item 1.

2. Pick one of the above graphs and assign times t1, . . . , tr to its vertices. Choose a particular
time-ordering.

3. For every internal line write down a mass-shell integral

1

(2π)3

∫
dk

2ωk

where k = (ωk,k) labels the directed line connecting the earlier vertex with the later one.
k thus flows out of the earlier vertex into the later one.

3At the end of chapter 3, we will comment on the peculiar divergence which would arise, if q1 were on the
same mass-shell as the internal momentum p4.



30 CHAPTER 2. THE HAMILTONIAN APPROACH

4. For each vertex j apart from the earliest one write down the following energy factors,

i

2π

1

−∑i ki,0 + iǫ
,

where the sum runs over the 0-components of the following momenta:

• the internal momenta flowing into the vertex (with a + sign), i.e. the ones labelling
inner lines starting at earlier vertices and ending in the vertex under consideration;

• the internal momenta flowing into any of the later vertices (with a + sign), provided
they start at earlier vertices than the vertex under consideration;

• the external momenta which flow into or out of the vertex under consideration or any
of the later vertices of the graph. Here, outgoing momenta enter with a − sign, while
the ones flowing into a vertex enter with a + sign.

5. At each vertex impose 3-momentum conservation (2π)3δ(3)(...), where incoming momenta
enter with a + sign, outgoing momenta with a − sign. Impose overall energy conservation
of the external momenta 2π δ(...), where incoming momenta enter with a + sign, momenta
flowing out of the graph with a − sign. For every external momentum multiply with a
factor (2π)−3/2.

6. At each vertex, the twisting S is determined by the same rules as stated in Remark 2.3
item 6.

7. As in Remark 2.3 item 7.

We thus conclude that these rules indeed coincide with the ones given in [63] when σ i = θ ∀ i.
Phenomenological consequences for noncommutative QED in this setting have been investigated
in [62], where, due to the lack of covariance, measurements depend on the earth’s movement
through spacetime (measured relative to the absolute directions given by the fixed θ).
To calculate the S-matrix element at r-th order perturbation theory (2.14) using ordinary graphs
by application of the rules given above, one has to sum over all possibilities to distribute the
external momenta to the vertices as well as sum over all possible time-orderings.
Alternatively, one may start from the second line in (2.12) and treat only one time-ordering, as
we have done in the derivation of the graphical rules employing the position space kernels D and
multi-vertices. The resulting graphs are calculated by the same rules as stated above, but more
graphs have to be considered. For instance, in addition to (2.20) we would have to consider

r r r
t1 > t2 > t3

✛ ✲s
✸✑
◗ ,

which yields the same contribution as (2.20) with time-ordering t1 > t3 > t2.
In view of later chapters, it is important that the explicit form of the kernel S never entered in
the derivation of the rules in momentum space as given in Remarks 2.3 and 2.4. It only mattered
that S was allowed to depend on the momenta’s 0-components.
In the following two sections the rules given above will be compared to the modified Feyn-
man rules. We will specialize to the nonlocal kernels arising in the Hamiltonian (2.8) on the
noncommutative Minkowski space, mostly with fixed noncommutativity matrix θ.

2.3 Planar graphs and Feynman propagators

As first observed in [38], one of the crucial properties of the modified Feynman rules [37, 38]
is the (partial) cancellation of twistings in particular graphs, which gives rise to two types of
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graphs, planar and non-planar ones. The underlying mechanism is similar to the one known
from the analysis of twisted Eguchi-Kawai matrix models [44].
Basis of the modified Feynman rules is the graph theory in momentum space as it arises in
ordinary field theory where Feynman propagators serve as internal lines. The noncommutativity
of spacetime modifies the ordinary rules only by additional twisting factors exp( i

2

∑
kiθkj) which

appear at every vertex. They depend on the momenta that flow into and out of the vertex. One
of the major simplifications compared to the setup discussed in the previous section is that not
only the 3-momentum but also the energy is conserved at each vertex, which in turn causes the
expressions to be cyclically symmetric with respect to the momenta entering and flowing out of
each vertex. To simplify the combinatorics, the twisting can be symmetrized as in the previous
section, but this is not done here.
One way to justify the modified Feynman rules is to start from a theory with nonlocal interac-
tion on Euclidean spacetime. On a Euclidean version of E , where, compared to the spacetime
discussed before, all Lorentz products are replaced by Euclidean scalar products, the Lagrangian
from which one starts is

∫
d4q

(
1
2∂µφ(q)∂

µφ(q)− 1
2 m

2 φ(q)2 − 1
n!φ

n(q)
)
,

where
∫
d4q is the trace on Ẽ (see chapter 1). As in the Hamiltonian formalism, the free part

of the theory turns out to be the same as usual, since
∫
d4q f(q)g(q) =

∫
d4x f(x)g(x), and only

the interaction part φn(q) differs. Formally, the modified Feynman rules can then be derived by
mimicking the ordinary Euclidean path integral with the ordinary Gaussian measure. Since the
only propagator in ordinary field theory on a Euclidean spacetime is the Feynman propagator,
these propagators will appear in the resulting perturbative expansion. Again, the theory is thus
treated as an effective nonlocal theory on ordinary spacetime – a generalization of the path
integral suitable for noncommutative vector spaces has not been found as yet. The question to
start from would be to give meaning to the concept of a path on a noncommutative spacetime.
In any case, starting from such a Euclidean theory, one has to extract results for the corre-
sponding theory on Minkowski space. The problem here is to define what this corresponding
theory on Minkowski space should be. First note that the ordinary analytic continuation fails
if the time variable does not commute. For instance, by analytic continuation of two Euclidean
Feynman propagators we would usually find

1

−p24 − p2 −m2

1

−k24 − k2 −m2
−→ 1

−(p4 + ip0)2 − p2 −m2

1

−(k4 + ik0)2 − k2 −m2

such that the product of two Minkowski Feynman propagators appears in the limit p4, k4 → 0.
However, if a twisting is present with θ0i 6= 0, this analytic continuation yields

exp(−ikθp)→ exp(−i(p4 + ip0)θ
0iki − ipiθi0(k4 + ik0)− ipiθijkj)

which produces divergent terms. Unless the time variable commutes, one is compelled to consider
the entries θ0i of the noncommutativity matrix to be variables as well (which is usually not the
case in string inspired models), and perform an analytic continuation in θ 0i which yields

exp(−ikθp)→ exp(−i(p4 + ip0)(θ̃
0j + iθ0j)kj − ipj(θ̃j0 + iθj0)(k4 + ik0)− ipiθijkj) .

As can be checked explicitly, the result is indeed analytic also with respect to θ̃0j + iθ0j. The
desired Minkowskian theory would then formally be the limit p4, k4 → 0 and θ̃0j → 0. There is,
however, the serious problem that unless a generalization of the Osterwalder-Schrader positivity
theorem has been proved, the relation between these two theories remains obscure. For a
spacetime with noncommuting time variable such a generalization seems to be at least difficult
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(while the Schwinger function itself is the same as usual and as such is positive, it is not clear
whether and how this extends to higher orders).
The above ideas should not be confused with the prescription used in [43], where the replacement
θj0 → i θj0 was needed to render an otherwise infinite integral over inner momenta finite. Unless
an integration over θ is part of the expression, it is impossible to perform this change of variables.
Nonetheless, the results of the paper remain valid (see, for instance [3]), and an alternative
discussion was given in [9] which, in greater detail, is also subject of this chapter.

Let us now, though briefly, comment on field theories on noncommutative spacetimes which
are derived as certain low-energy limits of open string theories on D-brane configurations in
background magnetic fields [75, 73]. Here, the string tension approaches 0, while the magnetic
field and the open string metric are kept fixed. The strings then do not collapse in the limit and
the resulting theory is interpreted as a field theory on a space-space-noncommutative spacetime.
To consider an electric field as well, would yield a theory with spacetime noncommutativity,
but it seems that such a low-energy limit only yields a unitary field theory if one allows for
tachyonic states with negative norm [3]. This has been taken as evidence that it should be im-
possible to define unitary perturbation theory on a noncommutative spacetime with time-space
noncommutativity. As we have seen in the preceding section, this is not true, although it must
be admitted that theories which are nonlocal in time exhibit strange properties, such as obeying
the “wrong” equation of motion in the Hamiltonian formalism. However, if the motivation to
consider noncommutative spacetimes is founded on considering uncertainty relations, there is
no reason to assume only space-space noncommutativity.

This being said, let us turn to a comparison of the different sets of rules. As for the Hamiltonian
formalism we will, unless otherwise stated, focus our attention on the Hamiltonian (2.5) with
fixed noncommutativity matrix θ, where θ may be in Σ or not. We will see that the difference
between the Hamiltonian framework and the one based on the modified Feynman rules is that
in the latter, all internal lines are given by Feynman propagators, while in the former, Feynman
propagators appear only in planar graphs (unless we impose space-space or lightlike noncom-
mutativity). Moreover, it is shown that it is the assumption of Feynman propagators serving as
internal lines also in nonplanar graphs which leads to a violation of the optical theorem in the
context of the modified Feynman rules.

One of the complications compared to the modified Feynman rules is that in the Hamiltonian
formalism only the overall energy is conserved, while at the vertices we merely find 3-momentum
conservation. As a consequence, no cyclic symmetry is at hand and the question of which graphs
are planar and which are not turns out to be quite complicated.

Definition 2.5 A graph is planar if the cancellation of twistings from different vertices is such
that the resulting twisting does not depend on the internal momenta.

In the following analysis, instead of the symmetrized vertex factors, the original twisting

tθ(k1, . . . , kn) = exp
(
− i

2

∑
i<j

kiθkj
)

is employed, and all contributions which have previously been hidden in the combinatorial
factor C are considered individually. The corresponding reasoning in terms of the symmetrized
vertex factors, though leading to the same results, would be less transparent.
To start the analysis let us introduce symbols as a shorthand notation to label individual con-
tractions which contribute to an expectation value. In the perturbation theory arising from the
Hamiltonian (2.5),

Hθ
I (t) =

g

n!

1

(2π)4n

∫
dkN : φ̂(k1)... φ̂(kn) : tθ(k1, ... , kn) δ

(3)(
∑

i ki ) e
−it

∑
i ki,0 ,
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the Wick theorem in momentum space (1.16) can be put into a simple graphical language: For
every vertex draw a group of n points in a horizontal line and for every contraction

i (2π)4 ∆̂+(k
(r)
i ) δ(4)(k

(r)
i + k

(m)
α(i))

draw a curve connecting the i-th point of the r-th group with the α(i)-th point in the m-th
group.

Remark 2.6 A graph which is planar in the context of the modified Feynman rules is not
necessarily planar in the Hamiltonian setting.

To see this, consider once more the example graph (2.20). One of its particular contributions
(which was previously hidden in the combinatorial factor C) is the contraction

❛ ❛ ❛ ❛
1 2 3 4

❛ ❛ ❛ ❛
1 2 3 4

❛ ❛ ❛ ❛
1 2 3 4

(2.21)

Cancellations of twistings, if they occur, are independent of the time ordering. It therefore
suffices to consider only the twistings together with the appropriate 3- and 4-momentum con-
servation,

tθ (k1,−q1, k2, k3) tθ (−k2, k4,−k1,−k3) tθ (q2, q3,−k4, q4) δ(−q1,0 + q2,0 + q3,0 + q4,0)

· δ(3)(k1 − q1 + k2 + k3) δ
(3)(−k2 + k4 − k1 − k3) δ

(3)(q2 + q3 − k4 + q4) ,

for external momenta q1 (flowing out) and q2, q3, q4 (entering the graph). A short calculation
shows that this graph is not planar, as the evaluation of the first and the second δ(3)-distribution
yields

δ(4)(q2 + q3 − q1 + q4) exp
(
− i

2

(
2(k1,i + k2,i − q1,i)θi0(ωq1−k1−k2

− ωq1
+ ωk1

+ ωk2
)

+q1θ(q2 + q3 − q4) + q2θ(q3 + q4) + q3θq4
))
.

We conclude that the twisting does depend on the internal momenta k1 and k2 – unless θ0i is set
to zero. Therefore, the contraction fails to be planar in the Hamiltonian setting for general θ.

If, on the contrary, the 4-momentum is conserved at every vertex, then a simple calculation
shows that the twisting

tθ (k1,−q1, k2, k3) tθ (−k2, k4,−k1,−k3) tθ (q2, q3,−k4, q4)

does not depend on internal momenta and, hence, that the contraction (2.21) is planar in
the setting of the modified Feynman rules. In a graphical language, the mechanism can be
understood as follows:

❛ ❛ ❛ ❛
1 2 3 4

❛ ❛ ❛ ❛
1 2 3 4

❛ ❛ ❛ ❛
1 2 3 4

if cycl. symm.−→ ❛ ❛ ❛ ❛
2 3 4 1

❛ ❛ ❛ ❛
3 4 1 2

❛ ❛ ❛ ❛
3 4 1 2

≃ ❛3
1

42 ❛4 2

3

1 ❛3
PP✏
✏ ,

where the cyclic symmetry at the vertices is a consequence of the 4-momentum conservation.

Nonetheless, planar graphs do appear also in the Hamiltonian formalism with fixed noncommu-
tativity matrix θ even if θ0i 6= 0. As a short calculation shows, the contraction ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ with
external momenta q1, q2 flowing out of the left vertex, and q3, q4 entering the vertex on the right,
is indeed planar: its twisting is

tθ (k1, k2,−q1,−q2)tθ (q3, q4,−k2,−k1) = e−
i
2

(
(k1+k2)θ(−q1−q2+q3+q4)+q1θq2+q3θq4

)
,
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and the δ-distributions to be considered are

δ(3)(k1 + k2 − q1 − q2) δ
(3)(q3 + q4 − k1 − k2) δ(−q1,0 − q2,0 + q3,0 + q4,0) .

Hence, the first term in the twisting vanishes by energy-momentum conservation of the external
momenta, and the twisting does not depend on the internal momenta k1, k2.
In the modified Feynman rules it is assumed from the outset that Feynman propagators serve
as internal lines. Hence, in order to compare the Hamiltonian formalism with the modified
Feynman rules, it is crucial to give a criterion when causal propagators appear in the Hamiltonian
formalism.

Proposition 2.7 Consider the perturbative expansion based on Dyson’s series (2.12), where the
Hamiltonian (2.5) with fixed noncommutativity matrix θ is employed. If an internal momentum
in a particular graph does not appear in the twisting (planar contribution), the internal line can
be written in terms of a Feynman propagator. If an internal line does appear in the twisting
(nonplanar contribution), then the internal line can be written in terms of a Feynman propagator
if and only if there is a timelike or lightlike 4-vector n such that θµνnν = 0.

Proof: Since we sum over all different time-orderings as well as all possibilities to distribute
the external momenta to the vertices, there are always two contributions to any graph in the
Hamiltonian setting with everything but the time order coinciding. Hence, we find, according
to the rules,

. . . θ(xi,0 − xj,0)
1

(2π)3

∫
dk

2ωk

e−ik(xi−xj) f(ωk,k, . . . ) . . .

and

. . . θ(xj,0 − xi,0)
1

(2π)3

∫
dk

2ωk

e−ik(xj−xi) f(ωk,k, . . . ) . . . ,

where f(ωk,k, . . . ) abbreviates the twistings at the vertices i and j, tθ(. . . , k, . . . ) tθ(. . . ,−k, . . . ),
k = (ωk,k).
In a planar contribution, where k does not appear in the twisting, the integrations over

∫
dk
2ωk

can be performed and the two contributions can be combined to yield a Feynman propagator,

θ(xi,0 − xj,0) i∆+(xi − xj) . . . + θ(xj,0 − xi,0) i∆+(xj − xi) . . . = i∆F (xi − xj) . . . .

In general, this is not true in a nonplanar contribution, where f depends on k. Suppose that
also in this case a Feynman propagator would serve as the internal line connecting vertex i and
vertex j. Then the appropriate contribution would be (for better readability xi = x, xj = y)

(2π)−4

∫
d4k

e−ik(x−y)

k2 −m2 + iǫ
f(k0,k, . . . )

= (2π)−4

∫
d4k

1

k2 −m2 + iǫ
e−ik0(x0−y0+θ0i

∑
l ±pl,i) e+ik(x−y+

∑
l ±p̃l) f0(. . . )

= θ(x0 − y0 + θ0i
∑

l

±pl,i) 1
(2π)3 i

∫
dk

2ωk

e−iωk(x0−y0+θ0i
∑

l ±pl,i) e+ik(x−y+
∑

l ±p̃l) f0(. . . )

+ θ(y0 − x0 − θ0i
∑

l

±pl,i) 1
(2π)3 i

∫
dk

2ωk

e−iωk(y0−x0−θ0i
∑

l ±pl,i) e+ik(−x+y−∑
l ±p̃l) f0(. . . ) ,

where ±pl are the momenta which have non-vanishing twisting with k and where
p̃l = (θ1µp

µ
l , θ2µp

µ
l , θ3µp

µ
l ). f0(. . . ) stands for that part of the twisting which is independent

of k. By assumption,
∑±pl 6= 0 (we consider a nonplanar contribution), and we conclude that

the above expression is equal to the one derived before if θ0i = 0, or rather, since the expressions
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are covariant, if there is a timelike 4-vector n with θµνnν = 0. By continuity, this extends to
the case of a lightlike n. There being no other possibilities for arbitrary p l, the condition is not
only sufficient but also necessary. �

This is obviously consistent with the fact that without any twistings the rules in the Hamiltonian
approach must reproduce the ordinary Feynman rules. Moreover, we conclude that the modified
Feynman rules coincide with the ones based on the Hamiltonian approach with Hamiltonian (2.5)
at fixed noncommutativity matrix θ, if and only if θ is such that we have space-space or lightlike
noncommutativity. It follows that only in these cases we find the internal processes arising in
the perturbation theory to be causal. Note that if it is possible to put the time-ordering and
the contractions together such that only Feynman propagators appear as internal lines, we find
4-momentum conservation at this vertex.
It is noteworthy that if the Hamiltonian’s dependence on σ is taken care of by integrating over
Σ1, cancellations of twistings from different vertices are impossible. There are, however, graphs
in which the momenta entering and leaving a particular vertex are such that at this vertex itself,
the twisting yields 1. Such graphs will be discussed at the end of this chapter.
It is now shown that the unitarity problem found in the context of the modified Feynman rules
is related to the assumption that Feynman propagators serve as internal lines also in nonplanar
graphs.

2.4 Unitarity

By re-considering the example first investigated in [43], we will see in this section how the
modified Feynman rules lead to a non-unitary perturbation theory. As pointed out in [9], this
failure can be linked to the assumption that all internal lines are given by Feynman propagators.
Recall from Remark 2.1 that the Hamiltonian setup leads to a (formally) unitary S-matrix.
Hence, there is no need to check the unitarity constraint graph by graph for particular expecta-
tion values. On the contrary, from the definition of the (formally) unitary S-matrix the optical
theorem at second order perturbation theory can be derived as an identity given in terms of
graphs. Consider, for instance, an expectation value with two external momenta at the second
order of the perturbative expansion in φ3-theory. Using the Dyson series (2.12), we immediately
deduce that

〈q1|S†
2 + S1 S

†
1 + S2|q2〉 = 〈q1| 2ReS2 |q2〉+ 〈q1|S1 S†

1 |q2〉

= i2
∫
dt1dt2

(
θ(t2 − t1)− 1 + θ(t1 − t2)︸ ︷︷ ︸

= 0

)
〈q1|HI(t1)HI(t2)|q2〉 = 0 . (2.22)

Remark 2.8 This identity can be understood in terms of graphs as

0
Ham.form.

= q q✒✑✓✏
+ q✚✚

❩❩ ( )
†q✚✚

❩❩
+ ( )

†q q✒✑✓✏
, (2.23)

which is known as the optical theorem at second order perturbation theory. The corresponding
explicit expression is given by

0 = i2

2

( g
3!

)2 18
(2π)9

∫
dx1dx2

∫
dk1

2ωk1

dk2

2ωk2

(
− e−i(k1+k2)(x1−x2) − e+i(k1+k2)(x1−x2)

+ θ(x1,0 − x2,0) e−i(k1+k2)(x1−x2) + θ(x2,0 − x1,0) e+i(k1+k2)(x1−x2)

+ θ(x2,0 − x1,0) e−i(k1+k2)(x1−x2) + θ(x1,0 − x2,0) e+i(k1+k2)(x1−x2)
)

·
(
e+iq1x1 e−iq2x2 S(σ1;−q1, k1, k2)S(σ2;−k1,−k2, q2) + (q1 ↔ −q2)

)
.
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Proof: First, we calculate 〈q1|S2|q2〉, which according to the rules given in Remark 2.3 is equal
to the following graph

✒✑✓✏q q ,

where the incoming momentum q1 can either be assigned to the vertex on the left and the
outgoing momentum q2 to the vertex on the right, or the other way around. The times x1,0
and x2,0 are assigned to the vertices and the two possible time-orderings have to be considered.
According to the rules, we thus have four contributions. Renaming the integration variables
x1 ↔ x2 in two of these terms, and noting that σ1 and σ2 are treated on the same footing, such
that we can switch σ1 ↔ σ2 as well (either they are both equal to θ or they are both integrated
over the same measure dµσ), we derive

〈q1|S2|q2〉 = i2
( g
3!

)2
(2π)−9C

∫
dx1dx2 θ(x1,0 − x2,0)

∫
dk1

2ωk1

dk2

2ωk2

e−ik1(x1−x2) e−ik2(x1−x2)

·
(
e+iq1x1 e−iq2x2 S(σ1;−q1, k1, k2)S(σ2;−k1,−k2, q2) + (q1 ↔ −q2)

)
.

Here, C =
(3
2

)
2!
( 3
2

)
= 18 is the appropriate combinatorial factor4. Since 〈q1|S†

2|q2〉 = 〈q2|S2|q1〉,
where the bar symbolizes complex conjugation, it only remains to calculate the middle term,

〈q1|S1 S†
1|q2〉 = −i2

∫
dt1dt2 〈q1|HI(t1)HI(t2)|q2〉

=
( g
3!

)2
(2π)−9C′

∫
dx1dx2

∫
dk1

2ωk1

dk2

2ωk2

e−ik1(x1−x2) e−ik2(x1−x2)

·
(
e+iq1x1 e−iq2x2 S(σ1;−q1, k1, k2)S(σ2;−k1,−k2, q2) + (q1 ↔ −q2)

)
,

where C′ =
(3
2

)
2!
(3
2

)
= 18. In terms of graphs, this contribution can be written as

q✚✚
❩❩ ( )

†q✚✚
❩❩ ,

where the dashed line symbolizes the fact that two of the legs of each tree graph are contracted,
such that the result has two external legs. Note that internal lines k1 and k2 remain on-shell.
Adding all three terms, we thus find the explicit expression for the identity (2.22) as claimed,
where we have to use that

∫
dx1dx2f(x1, x2) =

1
2

∫
dx1dx2f(x1, x2) +

1
2

∫
dx1dx2f(x2, x1)

as well as take advantage of the fact that the term involving the twistings and the external
momenta is symmetric under the exchange of the integration variables x1 and x2. �

4For σ1 = σ2 = θ this contribution can equivalently be written as

∫

dx1dx2 θ(x1,0 − x2,0) · [ 〈q1| :φ(x1)φ(x2) : |q2〉
sym
⋆θ ∆+(x1 − x2)

sym
⋆θ ∆+(x1 − x2) ]

+

∫

dx1dx2 θ(x2,0 − x1,0) · [ 〈q1| :φ(x1)φ(x2) : |q2〉
sym
⋆θ ∆+(x2 − x1)

sym
⋆θ ∆+(x2 − x1) ] ,

where
sym
⋆σ stands for the symmetrized star-product with respect to both x1 and x2. This is the expression used

in [9].
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A more common convention in the derivation of the optical theorem is to use the transition
matrix T instead of the S-matrix, S = 1 − i T . In this case, (2.22) can be rewritten as

0 = 〈q1|S†
2 + S1 S

†
1 + S2|q2〉 = 〈q1|(−iT2)† + T1 T

†
1 − iT2|q2〉 such that

0 = 〈q1| 2 Im T2 |q2〉+ 〈q1|T1 T †
1 |q2〉 .

If σ1 = σ2 = θ is fixed, the explicit form of the optical theorem is

0 = (2π)4 δ(4)(q1 − q2) i2

2

∫
dz

∫
dk1

2ωk1

dk2

2ωk2

(
− e−i(k1+k2)z − e+i(k1+k2)z +

+ θ(z0) e
−i(k1+k2)z + θ(−z0) e+i(k1+k2)z + θ(−z0) e−i(k1+k2)z + θ(z0) e

+i(k1+k2)z
)

·
(
e+iq1z S(θ;−q1, k1, k2)S(θ;−k1,−k2, q2) + (q1 ↔ −q2)

)
.

From the preceding section we know that only the planar parts of the above, where the twisting
becomes independent of k1 and k2, will yield Feynman propagators. In such planar contributions
the optical theorem reads as usual,

0 =

∫
dx1dx2 〈q1|:φ(x1)φ(x2) :|q2〉

(
∆2

F +∆2
F −∆2

+ −∆2
−︸ ︷︷ ︸

= 0

)
(x1 − x2) . (2.24)

In the nonplanar contributions the time-ordering cannot be absorbed into Feynman propagators
alone, but, by construction, the unitarity constraint is satisfied.
Let us now consider the corresponding calculation in the context of the modified Feynman rules.
It was shown in [43, 2] that in this setting the three terms which correspond to the graphs
in (2.23) do not yield zero unless one assumes spacelike or lightlike noncommutativity. Let us
now recall the argument given in [9] which puts this result in a slightly different language.

Remark 2.9 If the modified Feynman rules are employed, the right-hand side of (2.23) yields

q q✒✑✓✏
+ q✚✚

❩❩ ( )
†q✚✚

❩❩
+ ( )

†q q✒✑✓✏
modF∝

∫
dx1dx2 〈q1| :φ(x1)φ(x2) : |q2〉

(
∆ret ⋆∆av +∆av ⋆∆ret

)
(x1 − x2)

with the retarded and advanced propagators, ∆ret/av(x) = ±θ(±x0)∆(x).

Proof: The fish graph in the setting of the modified Feynman rules is given by the following
expression,

❛ ❛✒✑✓✏
modF
=

( g
3!

)2 18
(2π)11

∫
dx1dx2

∫
dk1dk2

1

k21 −m2 + iǫ

1

k22 −m2 + iǫ
e−i(k1+k2)(x1−x2)

·
(
e+iq1x1 e−iq2x2 S(θ;−q1, k1, k2)S(θ;−k1,−k2, q2) + (q1 ↔ −q2)

)
,

which, by the fact that “one star-product can be dropped under the trace”
∫
dxi (see chapter 1),

is equal to

=
( g
3!

)2 18
(2π)11

∫
dx1dx2

∫
dk1dk2

1

k21 −m2 + iǫ

1

k22 −m2 + iǫ
e−i(k1+k2)(x1−x2)

·
(
e+iq1x1 e−iq2x2 + e+iq1x2 e−iq2x1

)
cos
(
1
2k1θk2

)
cos(12k1θk2

)

= 18
2

( g
3!

)2
∫
dx1dx2

(
∆F ⋆2θ ∆F (x1 − x2) + ∆2

F (x1 − x2)
)
〈q1| :φ(x1)φ(x2) : |q2〉 .
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Likewise, we calculate the term in the middle,

−18
2

( g
3!

)2
∫
dx1dx2 〈q1| :φ(x1)φ(x2) : |q2〉

(
∆+ ⋆2θ ∆+ + ∆2

+ + ∆− ⋆2θ ∆− +∆2
−
)
(x1 − x2) .

Adding all three terms and dividing by the common prefactor, we thus obtain
∫
dx1dx2 〈q1| :φ(x1)φ(x2) : |q2〉

(
∆F ⋆2θ ∆F + ∆2

F + ∆F ⋆2θ ∆F + ∆2
F

−∆+ ⋆2θ ∆+ − ∆2
+ − ∆− ⋆2θ ∆− −∆2

−
)
(x1 − x2) .

Hence, the planar contributions which correspond to the expression (2.24) appearing in ordinary
quantum field theory indeed add up to zero. On the contrary, the nonplanar part yields a star-
product of retarded and advanced propagators, since (for better readability, ⋆ is used instead of
⋆2θ)

∆F ⋆∆F +∆F ⋆∆F = (θ∆−∆−) ⋆ (θ∆−∆−) + (−θ∆+∆+) ⋆ (−θ∆+∆+)

= ∆− ⋆∆− +∆+ ⋆∆+ + θ∆ ⋆ (θ∆−∆) + (θ∆−∆) ⋆ θ∆

= ∆− ⋆∆− +∆+ ⋆∆+ +∆ret ⋆∆av +∆av ⋆∆ret .

Here, ∆ denotes the commutator function ∆++∆−, and ∆ret/av(x) = ±θ(±x0)∆(x) stands for
the retarded and the advanced propagator, respectively. This proves the claim. �

Proposition 2.10 The twisted convolution product of the retarded and the advanced propagator
vanishes, if the time is assumed to commute with the space variables, i.e. when there is a timelike
vector n with θµνnν = 0. This remains true if n is lightlike.

Proof: The proof is essentially the same as the one of Proposition 2.7. Let g be a testfunction.
Ignoring any problems regarding divergences, we find for θ0i = 0,

∫
dx g(x)

∫
dy1dy2 (∆ret(x0,y1)∆av(x0,y2) + ∆av(x0,y1)∆ret(x0,y2))

×
∫
dp δ(3)(y1,i + θijp

j − xi) e+ip(y2−x) = 0 ,

as ∆av(x0,y1)∆ret(x0,y2) = 0. In a covariant way this reads

∆ret/av(x) = ±θ(±nx)∆(x) = ±θ(±nx) ⋆∆(x) = ±∆(x) ⋆ θ(±nx)

for timelike n and hence ∆ret ⋆∆av = i2∆ ⋆ θ ⋆ (1− θ) ⋆∆. For θµνnν = 0 this vanishes as in this
case θ ⋆ (1 − θ) = θ(1 − θ) = 0. By continuity, this remains true when n approaches a lightlike
vector. �

Now let θ be a full noncommutativity matrix, θ ∈ Σ, such that we have non-trivial commutation
relations for all space and time variables and such that, in particular, there is no timelike or
lightlike vector n such that a new time- or lightcone-coordinate q̃ 0 = nµqµ commutes with all
other coordinates. Then the twisted convolution product of the retarded and the advanced
propagator does not vanish,

∆ret ⋆∆av +∆av ⋆∆ret 6= 0 ,

where, for now, all problems concerning divergences are ignored. This is a consequence of the
fact that it was proved in [3] that the optical theorem is violated in the context of the modified
Feynman rules. If the above product would vanish, the optical theorem would be complied with.
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A direct proof of the fact that the product is non-zero is not available, but it may be understood
as follows. First recall how it may be shown via Fourier transform that the pointwise product
∆ret∆av vanishes. The Fourier transforms of the retarded and the advanced propagator are

1

m2 − k2 + 2iǫk0
and

1

m2 − p2 − 2iǫp0
,

respectively, where the term 2iǫk0 encodes the prescription of how to integrate around the two
poles which appear in each of the propagators,

✲

✻

and

∆ret :
Imk0

Rek0

(k0)1/2 = ±ωk + iǫ

q q ✲

✻∆av :
Imp0

Rep0

(p0)1/2 = ±ωp − iǫ

q q
Taking the pointwise product of these propagators at x, the paths of integrations in k0 and p0

cannot be closed such that the singularities of both propagators are enclosed; for x0 > 0 we have
to close both paths in the upper half planes, thus excluding the singularities of ∆av, and for
x0 < 0 we have to close both paths in the lower half planes, thus excluding the singularities of
∆ret. Hence, by the residue integral theorem, the result is zero. If, on the contrary, a twisting is
present in which p0 and k0 appear, the situation is changed. In ∆ret ⋆∆av we find the following
dependence on the imaginary part of p0 and k0,

e−Im k0 (x0−θ0ip
i) e−Im p0 (x0+θ0ik

i) ,

such that for fixed k and p we can close the path in the upper half for k0 and the lower half for
p0, if x0 − θ0ipi > 0 and x0 + θ0ik

i < 0. By the calculus of residue, the result is

iπ
ωk

iπ
ωp

(
eiωk(x0−θ0ipi) − e−iωk(x0−θ0ipi)

) (
eiωp(x0+θ0iki) − e−iωp(x0+θ0iki)

)

for x0 − θ0ipi > 0 and x0 + θ0ik
i < 0. Now let θ = σ(0), the standard symplectic form (λp = 1),

then we find the following expression for ∆ret ⋆∆av (with p⊥ = (p1, p3)),
∫
dp⊥dk⊥ e−i(k1p3−k3p1) e−i(k⊥+p⊥)x⊥ ·

·
∞∫

−∞

dp2

∞∫

−∞

dk2 θ(p2 + x0) θ(k2 − x0)
sin(ωk(x0 − p2)) sin(ωp(x0 + k2))

ωk ωp

e−i(k2+p2)x2

︸ ︷︷ ︸
=: f(x0, x2; k2, p2;m

2 + p2⊥ + k2⊥)

.

This is not obviously zero by some symmetry in k and p, although the integrand f vanishes if
k2 = −p2. A crude numerical analysis shows the following:

Consider the estimate where we “smear” f in x0 with
a double step function and with a Gauss function in
x2, regardless of the fact that the above product may
be ill-defined on parts of the lightcone. Then, by a nu-
merical analysis using Maple, we find that for fixed k2⊥
and p2⊥ with k2⊥+p2⊥+m2 = 4, the smeared integrand

∫
dx0dx2 (−θ(x0−1

2)+θ(x0+
1
2))

2 e−
1
4x22√
π

f(x0, x2; k2, p2; 4)

–2

–1

0

1

2

k2

–2
–1

0
1

2p2

–0.04

–0.02

0

0.02

0.04

0.06

as a function of p2 and k2 has the form shown in the figure above. Therefore, it is not to be
expected that the integral over k2 and p2 to vanishes.
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The situation is different if the formal series with the Moyal-star-product ⋆M is considered. By
virtue of the fact that (at every order in θ) the star-product is local, the support of ∆ret ⋆M ∆av

in this case consists only of 0. Since the product is singular in this point, an infinite number of
renormalizations are needed to render the product well-defined (at each even order in θ; all odd
orders vanishing). Renormalization conditions could then be used to set the product to 0, but it
is not clear whether an infinite number of these makes sense. Treating a θ-expanded approach
as an effective theory, however, one may truncate the formal power series at some order.

The observation that for lightlike and spacelike noncommutativity the obstruction in the optical
theorem vanishes, has been taken as a motivation to consider only these special cases. While
this may be natural when models are motivated by string theory, it is not if the motivation is
based on spacetime uncertainty relations. In particular, Lorentz invariance should not easily be
given up. While questions concerning covariance remain to be solved also in the context of [27],
covariance is at least not lost from the start.

Therefore, the argument should be turned around. Starting point should be an approach which
is formally unitary for a general noncommutative spacetime, such as the one based on Dyson’s
series (2.12). With the special choice of a fixed space-space or lightlike noncommutativity matrix
θ, where obviously the theory is still unitary, the rules resulting from (2.12) simplify and coincide
with the modified Feynman rules by Proposition 2.7.

We will see that the same is true in the Yang-Feldman approach which will be analysed in
chapter 4.

2.5 Renormalizability

Let us conclude this chapter with some remarks on properties of the Hamiltonian formalism
concerning renormalization and contrast them with those found in the framework of the modified
Feynman rules.

In the framework of the modified Feynman rules, the most serious obstacle to applying ordinary
renormalization procedures is a notorious mixing of ultraviolet and infrared divergences which
was first discussed in [70]. Roughly speaking, the problem is that graphs which are ultraviolet
finite may develop hard infrared divergences when inserted into larger graphs. To sketch the
mechanism let us consider an example in the Euclidean regime, as discussed in [70]. Here, one of
the nonplanar contributions to the fish graph in φ3-theory is given by the following expression,

δ(4)(q − q′)
∫
dkdp

1

k2 +m2

1

p2 +m2
e−ikθp δ(4)(k + p− q) ,

where q and q′ are the momenta which enter and leave the diagram. Using Schwinger’s parametriza-
tion,

1

k2 +m2
=

∫ ∞

0
dα e−α(k2+m2) ,

a short calculation yields

δ(4)(q − q′)
∫ ∞

0
dαdβ π2

(α+β)2
e−(α+β)m2

e
− αβ

α+β
q2 − 1

4(α+β)
(θq)2

.

Due to the effective ultraviolet cutoff exp(− 1
4(α+β) (θq)

2) arising from the twisting, this contri-

bution to the fish graph is ultraviolet finite as long as (θq)2 6= 0. When this graph is inserted
into a higher order diagram, it is no longer guaranteed that θq 6= 0 (for instance, q may be zero),
and, hence, the ultraviolet divergence re-appears as an infrared divergence with leading order
∝ (θq)−2.
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There are two different kinds of nonplanar graphs, where this effect manifests itself. A graph
of the first kind is one which is ultraviolet finite due to the fact that an internal momentum
has a nonvanishing twisting with an external momentum. Then, if the external momentum
is 0 (infrared regime), the divergence reappears. A graph of the second kind is one which is
ultraviolet finite due to the fact that an internal momentum has a nonvanishing twisting with
another internal momentum in such a manner, that by using energy-momentum conservation at
the vertex, the twisting can be rewritten as one between an internal and an external momentum,
and, hence, can be reduced to a graph of the first kind. The example above is of this nature.
Let us now consider the two different kinds of graphs with ultraviolet-infrared mixing in the
Hamiltonian framework. It is obvious, that a graph which is ultraviolet finite due to a twisting
involving an internal and an external momentum alone will diverge, when the external momen-
tum is set to zero. This is no longer true, when we take into account the fact that, in the
Hamiltonian framework, all momenta are on the mass-shell. Consider the following contribution
to the fish graph in φ3-theory,

δ(4)(q − q′)
∫

dk

2ωk

dp

2ωp

1

−(ωk + ωp − q0) + iǫ
δ(3)(k+ p− q) e−ikθq .

As in section 2.3, we do not employ the symmetrized twisting here, since the results are more
lucid, if we consider single contributions. Here, we have picked the contraction where the first
and the third momentum of one vertex are contracted with the other vertex’ second and first
momentum, respectively. The choice of the time-ordering is irrelevant here. Setting q = (m,0)
and introducing spherical coordinates, where the 3-axis is given by −e with e i = θ0i, we obtain

∫
dk

2ωk

1

2ωk

1

−2ωk

e−iki θ
i0 m ∝

∫
dr

r

|~e|m (r2 +m2)3/2
sin(r |~e|m) .

The integrand is well-defined for r = 0, and for large r it decreases as fast as 1/r2, which is
sufficient for the integral to remain well-defined. Similarly, we find for a contribution to the fish
graph of the second kind,

δ(4)(q − q′)
∫

dk

2ωk

dp

2ωp

1

−(ωk + ωp − q0) + iǫ
δ(3)(k+ p− q) e−ikθp .

Even for q = 0 the above remains well-defined. To see this, introduce spherical coordinates to
perform the k-integration, where the 3-axis is again given by −e. Then we obtain

∫
dk

2ωk

1

2ωk

1

−2ωk

e−ikθ(ωk,−k) ∝
∫
dr

r

|~e| (r2 +m2)2
sin(+2 r

√
r2 +m2 |~e|) .

Again, the integrand is well-defined in r = 0, and for large r it behaves like sin(r 2)/r3 and hence
decreases fast enough for the integral to be well-defined. Due to the fact that the energy is not
conserved at the vertex, the two graphs discussed differ from one another (which was not the
case in the setting of the modified Feynman rules).
The calculations are consistent with the fact that for commuting time the modified Feynman
rules and the Hamiltonian formalism coincide. For the first graph, we find that in the limit
|~e| → 0 (commuting time) the integrand becomes

lim
|~e|→0

r sin(rm |~e|)
|~e| (r2 +m2)3/2

=
r2m

(r2 +m2)3/2
r≫m2

∼ 1/r ,

and similarly for the second graph,

lim
|~e|→0

r sin(+2 r
√
r2 +m2 |~e|)

|~e| (r2 +m2)2
=

2 r2

(r2 +m2)3/2
r≫m2

∼ 1/r ,
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such that the integrals over r diverge logarithmically as in the ordinary case and coincide with the
result of the Euclidean calculation. The above argument illustrates the fact that the situation is
more complicated in the Hamiltonian setting than in context of the modified Feynman rules; it is
not claimed that this particular mixing of infrared and ultraviolet divergences is entirely absent
in the Hamiltonian approach with fixed noncommutativity matrix θ and further investigations
concerning these questions will follow elsewhere. Similar results, also at higher orders, have
been obtained in [39], where it was furthermore claimed to be very plausible that the mixing of
ultraviolet and infrared divergences should be entirely absent in this approach.

Last but not least, the ultraviolet behaviour in the Hamiltonian formalism is now shown to be
quite different, if an integration over Σ1 at each vertex is performed. As a matter of fact, it was
already pointed out in [38] that differences were to be expected, but they have not as yet been
analysed. First of all, as was mentioned already in section 2.3, no cancellations of twistings from
different vertices can occur. And secondly, as we will see below, the integration itself supplies
an additional factor which for large momenta p decreases fast as 1/|p|2. This factor is actually
sufficient to render both φ3- and φ4-theory ultraviolet finite (where in the latter case, the proof is
unfortunately founded on an as yet unproved conjecture about the degeneracy of the twisting).

Let us perform the integration over Σ1 explicitly in φ3- and φ4-theory, employing the mea-
sure (2.4) in the definition of the Hamiltonian. As already shown in [27], a direct calculation in
spherical coordinates yields

∫

Σ1

dµσ e
− i

2
aσb =

sin γ+(a, b)

γ+(a, b)
+

sin γ−(a, b)
γ−(a, b)

,

where γ±(a, b) = | − a0b+ b0a± a× b|. Likewise, we find

∫

Σ1

dµσ e
− i

2
aσb− i

2
cσf =

sinβ+(a, b, c, f)

β+(a, b, c, f)
+

sinβ−(a, b, c, f)
β−(a, b, c, f)

,

where β±(a, b, c, f) = | − a0b+ b0a± a× b− c0f + f0c± c× f |. The Hamiltonian in φ3-theory
thus takes the form

HI(t) = g
3!

∫
dk1dk2dk3

( sin γ+
γ+

+
sin γ−
γ−

)
(k1 + k2, k2 + k3)

: φ̌(k1)φ̌(k2)φ̌(k3) : δ
(3)(k1 + k2 + k3) e

+it
∑

ki,0 ,

while for a φ4-self-interaction we find

HI(t) = g
4!

∫
dk1... dk4

( sinβ+
β+

+
sinβ−
β−

)
(k1 + k2, k2 + k3 + k4, k3, k4)

: φ̌(k1)... φ̌(k4) : δ
(3)(k1 + ...+ k4) e

+it
∑

ki,0 .

The factors 1/γ± and 1/β± arising from the integration over Σ1 change the superficial degree
of divergence. Both decrease like an inverse square for large momenta. Under the assumption
(which will be weakened below) that the twisting is never trivial, we obtain the following näıve
modified counting rules for a graph with r vertices (in 4 dimensions):

• for each internal line: propagator −1, integration +3;

• from momentum conservation: −3 at every vertex and once −1 for energy conservation;

• from the energy factors: −1 for r − 1 of the vertices;

• from the integrated twisting: −2 at each one of the r vertices.
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Therefore, for a theory with φn-self-interaction the superficial degree of divergence is

ω(Γ) = 2b− 6r + 4 = n · r − e− 6r + 4 = (n− 6)r − e+ 4 = ωord(Γ)− 2r ,

where e is the number of external lines, b the number of internal lines, i.e. 2b = n · r − e,
and where ωord denotes the ordinary degree of divergence. As usual, ω < 0 implies that a
graph is superficially finite. Note that the oscillating sine-factors which may further improve
the ultraviolet behaviour have not been taken into account here.

Remark 2.11 Application of the counting rules to φ3-theory yields ultraviolet-finiteness for all
graphs apart from the tadpole q✒✑✓✏

,

since for e = 1, ω will be less than zero for any graph with r > 1, and for e > 1, ω is always less
than zero (usually, ω < 0 for r > 4− e, e ≥ 1).

Let us convince ourselves of the finiteness of the fish graph in an explicit calculation. To do so,
we apply the rules from Remark 2.4 as they stand, with the only difference that the integration
over Σ1 is performed. If it is true that the twisting is never trivial, it suffices for our purposes
to pick one particular contribution (instead of using the symmetrized kernels S) in the same
manner as we have done it in section 2.3. Consider, for instance, the contribution where the
second and the third field of the earlier vertex are contracted with the second and the third field
of the later vertex, and q is an external momentum leaving the later vertex, while q ′ enters at
the earlier one. Then the rules yield

δ(4)(q − q′)
∫

dk

2ωk

dp

2ωp

δ(3)(k+ p− q)

−(ωk + ωp − q0) + iǫ

(( sinγ+
γ+

+
sin γ−
γ−

)
(−q + k, k + p)

)2

= δ(4)(q − q′)
∫

dk

2ωk

1

2ωq−k

1

−(ωk + ωq−k − q0) + iǫ

(
2
sin γ̃ k,q

γ̃ k,q

)2
,

where
γ̃ k,q = γ±(−q + k, (ωk + ωq−k,0) = (ωk + ωq−k) |k− q| ,

such that, after introducing spherical coordinates, we see that the integrand decreases as fast as
|k|−5 (i.e. ω = −4), rendering a well-defined integral. Note that this remains true for q = 0. It
is interesting to observe that the sine-factor is absent in part of the above expression due to the
fact that it appears in a square.
In the same manner, application of the näıve counting rules yields finiteness of φ4-theory. The
main difference compared to the ordinary case is that ω is no longer independent of the number
of vertices. As usual, there are no graphs with an odd number of external legs e (recall that the
number of contractions in a graph arising in φn-theory is 1

2(r ·n− e) such that for n = 4, 4 r− e
must be even). Hence, the smallest (non-zero) possible number of external legs is 2.

Remark 2.12 Provided that the twisting is never trivial, the superficial degree of divergence ω
for graphs in φ4-theory with at least two external legs, e ≥ 2, (i.e. all non-vacuum graphs), is
less than 0 for r ≥ 2 (in the ordinary case r ≥ 4 is necessary). By the same argument, graphs
with e ≥ 4 are also superficially finite, as in this case ω ≤ −2r (usually, ω is independent of r,
ω = −e + 4 such that the number of external legs must be greater than 6 in order to find
superficially finite graphs). Therefore, from the application of the näıve counting rules it follows
that all graphs apart from vacuum graphs and graphs containing tadpoles (where e = 2, r = 1
is possible) are superficially finite.

However, things are not quite so simple. The reason is that there are some graphs in which
the twisting at a vertex may become trivial due to particular relations between the momenta
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entering and leaving it. Before investigating this question, we recall that Σ 1 is the orbit of σ(0)

(which is non-degenerate) under the action of the orthogonal group, and, hence, that the space
where the twisting becomes trivial is the same as the one where γ± = 0 or β± = 0, respectively.
In φ3-theory the situation is still fairly simple. At the vertex, we make use of 3-momentum
conservation to replace k3, which for the twisting yields (µi = ±ωki

, µi+j = ±ωki+kj
),

−(µ1 + 2µ2 + µ1+2)σ
0i k1,i + (µ2 + µ1+2)σ

0i k2,i + k1,i σ
ij k2,j .

It follows that the only dependence between k1 and k2 which can arise from the graph theory
and renders the twisting trivial is that k1 = −k2, including the energy-component (it follows
that k3 = 0). This is only possible if either: k1 and k2 are the only external momenta of the
graph, and k3 connects the vertex under consideration with a bubble graph (or a number of
bubble graphs),

◗
✑

k1

k2
q q

✟✟✟✟
✟✟✟
✟✒✑✓✏

, ◗
✑
q q

✟✟✟✟
✟✟✟
✟✒✑✓✏q q

✟✟✟✟
✟✟✟
✟✒✑✓✏

etc. ,

or: k1 and k2 are internal momenta of a bubble, one of which enters and one of which leaves the
only vertex of the bubble where some (external or internal) momentum (k3) enters,

. . . q
✟✟✟✟
✟✟✟
✟✒✑✓✏

.

We conclude in particular, that in the fish graph the twisting is never trivial. We know already
that the tadpole graph has to be subtracted, which may be taken care of by using a normally
ordered interaction term. Therefore, the important question is, whether the only other graph
which has to be renormalized in ordinary φ3-theory, q qq✒✑✓✏

, is finite or not. If it is, φ3-theory
is ultraviolet finite in this approach.
Taking into account that one of the twistings may become trivial in this graph, the counting rules
still yield the desired result: since the graph ordinarily diverges logarithmically, the remaining
two vertices where the twisting stays non-trivial suffice to render a well-defined integration
(ω = −4). This can be confirmed by a tedious explicit calculation.
In φ4-theory the situation is more complicated. Here, 3-momentum at the vertex yields (with
µi = ±ωki

, µi+j+l = ±ωki+kj+kl
),

−(µ1 + 2µ2 + 2µ3 + µ1+2+3)σ
0i k1,i − (µ2 + 2µ3 + µ1+2+3)σ

0i k2,i

−(µ3 + µ1+2+3)σ
0i k3,i + k1,i σ

ij (k2,j + k3,j) + k2,i σ
ij k3,j .

Conjecture: The only dependence between the momenta which can arise in the graph theory
and which results in the above being 0, is: k1 = −k2 and the energy-components of k3 and k4
have opposite sign (k3 = −k4 follows from k1 = −k2).
The only non-vacuum graph in which a vertex with such a dependence arises is the following:

◗
✑
q✒✑✓✏
✟✟✟✟
✟✟✟
✟

,

where one of the internal momenta of the bubble enters, the other leaves the vertex, and where
4-momentum conservation of the external momenta ensures that their energy-components have
opposite sign. Again, by application of the counting rules, we conclude that, even taking into
account that one of the twistings may become trivial, only the tadpole graph

◗
✑
q✒✑✓✏

diverges, since, otherwise, ω is at least equal to −2. Therefore, all possible graphs apart from
vacuum graphs (and graphs containing tadpoles) are superficially finite, since

q q✒✑✓✏
ω = −2

✒✑✓✏
✟✟✟✟
✟✟✟
✟

ω ≤ −2

✑
◗

◗
✑
q q✒✑✓✏
ω = −4

✑

◗

◗

✑✒✑✓✏
✟✟✟✟
✟✟✟
✟

ω < −4
.
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Although the theories turn out to be ultraviolet finite in this approach, we will see in section 3.3
that a mass renormalization becomes necessary, as, otherwise, infrared divergences may occur
in graphs which are not one-particle-irreducible. Since the theory is not Lorentz-invariant,
such a mass renormalization will in general not be Lorentz-invariant. Therefore, the dispersion
relation may be modified when such a scheme is applied. The mechanism of the occurrence of
such infrared divergences, which may be understood as a subtle form of the ultraviolet-infrared
mixing problem, will be studied in section 3.3. In section 5.3 we will encounter a similar effect
within the Yang-Feldman approach.



46 CHAPTER 2. THE HAMILTONIAN APPROACH



Chapter 3

Regularized Wick monomials

In the previous chapter, ordinary normal ordering was applied to products of fields φn(q) to
define an interaction term. In this chapter, we explore one of the possibilities to generalize the
ordinary construction in a way more suitable for fields on the noncommutative spacetime E .
Let us first recall the situation in ordinary quantum field theory. As emphasized in chapter 1,
normal ordering is necessary because products of fields are in general not well-defined when one
or more of their arguments coincide. This is due to the fact that fields are (operator-valued)
distributions. A normally ordered product arises from the näıve product by subtraction of

suitable counterterms (:1:
def
= 1),

:φ(x1) . . . φ(xn) : (3.1)

= φ(x1) :φ(x2) . . . φ(xn) :−
n∑

i=2

i∆+(x1 − xi) :φ(x2) . . . φ(xi−1)φ(xi+1) . . . φ(xn) : ,

yielding a well-defined distribution in the limit of coinciding points (while the individual terms
on the right-hand side diverge). This definition of Wick products coincides with the rule to
put all creation operators to the left in momentum space (normal order). As it turns out, this
is not the case on the noncommutative Minkowski space: defining a well-defined product at
different points and then taking a suitable limit of coinciding points whose definition is adapted
to the fact that the theory is defined on a noncommutative spacetime, yields an interaction term
other than :φn(q) :. In particular, a natural definition of this limit of coinciding points makes it
unnecessary to subtract any counterterms – the limit is well-defined in itself. Starting point of
the construction are n mutually commuting sets of quantum coordinates qµi , i = 1, ... , n, defined
as the n-fold tensor product

qµi
def
= I ⊗ · · · ⊗ I ⊗ qµ ⊗ I ⊗ · · · ⊗ I (3.2)

with qµ in the i-th tensor factor. As in the ordinary case, the product of fields at different points,

φ(q1) . . . φ(qn) = (2π)−4n

∫
dkN φ̌(k1) . . . φ̌(kn) e

ik1q1 . . . eiknqn ,

is well-defined, mapping states to operators affiliated to the ordinary field algebra F as in
chapter 1.
Contrary to the ordinary case, however, it is not possible to let the (Euclidean) distance between
two sets of coordinates tend to zero, since the relative coordinates qi − qj fail to commute with
each other such that the map f(qi − qj) 7→ f(0) fails to be positive. Hence, the limit of
coinciding points cannot be assumed as in the ordinary case, and the best we can do is to
minimize the relative coordinates using the states with minimal uncertainty. This can be seen

47
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as an “approximate limit” of coinciding points [41], the construction of which is the content of
the following section (see also [69]). For a related discussion see also [19].
The interaction term arising from taking the approximate limit of coinciding points is different
from the term :φn(q) : used previously. In particular, we will see that the resulting S-matrix
is ultraviolet-finite at every order of the perturbative expansion. Most of the statements made
in this chapter have been published in a joint paper [10], but the method employed there to
prove ultraviolet-finiteness differs from the one used in this chapter. Moreover, in addition to
the results published in [10], the adiabatic limit is investigated.

3.1 An approximate limit of coinciding points

The first step in [10] to define the approximate limit of coinciding points was to take the tensor
product in (3.2) not over the complex numbers C but over Z, the centre of the multiplier algebra
of E . This simplification is natural in the following sense. Let n = 2. We want to minimize the
Euclidean distance of the two sets of mutually commuting variables qµ1 = qµ⊗I and qµ2 = I⊗qµ.
Although it is not possible to set the difference q1− q2 of the variables themselves equal to 0, we
may be able to set the difference of certain functions of q1 and q2 equal to zero. In particular,
it is possible to set the difference of their commutators to zero,

[qµ1 , q
ν
1 ]− [qµ2 , q

ν
2 ] = [qµ, qν ]⊗ I − I ⊗ [qµ, qν ] = 0 .

To implement this, the tensor product in (3.2) is taken over Z such that

qµi
def
= I ⊗Z · · · ⊗Z I ⊗Z q

µ ⊗Z I ⊗Z · · · ⊗Z I (3.3)

with qµ in the i-th entry. The quantum coordinates qj then satisfy the canonical commutation
relation1,

[qµj , q
ν
j ] = iQµν ,

where the right-hand side does not depend on j. Here, Q is subject to the quantum con-
ditions (1.2) and (1.3), and we use units such that λP = 1. Note that employing the tensor
product over Z also implies that the mean coordinate 1

n(q1+· · ·+qn) commutes with the relative
coordinates

qµij
def
= qµi − q

µ
j ,

1
n [ q

µ
1 + · · ·+ qµn , q

ν
ij ] =

1
n [ q

µ
1 + · · ·+ qµn , q

ν
i − qνj ] = 1

n [ q
µ
i , q

ν
i ]− 1

n [ q
µ
j , q

ν
j ] = 0

and that the mean coordinate itself behaves like a quantum coordinate of characteristic length
1/
√
n, i.e.

1
n2 [q

µ
1 + · · · + qµn, q

ν
1 + · · ·+ qνn] = i 1

nQ
µν .

Now consider E ⊗Z · · · ⊗Z E , the (n + 1)-fold tensor product of E over Z. Since the mean
coordinates and the relative coordinates satisfy the canonical commutation relations (the for-
mer up to a factor), it is possible to identify the algebra to which the mean coordinates are
affiliated with the first tensor factor of E ⊗Z · · · ⊗Z E , while the algebra to which the relative
coordinates are affiliated can be identified with the factors 2 to n + 1. As first shown in [69]
and is demonstrated below, this construction enables us to apply an n-fold tensor product ηn⊗Z

of localization maps (1.10) to minimize all the distance variables simultaneously. To see this,
we will need some C∗-algebraic properties. First note that since the coordinates qµi satisfy the
canonical commutation relations, the correspondence

W(g ⊗ f) = g(Q)f(q), g ∈ C0(Σ), f ∈ C0(R
4 ), f̌ ∈ L1(R4 ),

1Strictly speaking, the tensor product over Z yields the desired commutation relations in Weyl form.
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as in (1.5) naturally extends to generalized symbols F = F (σ;x1, . . . , xn), called n-symbols, by

W(n)(g ⊗ f) = g(Q)f(q1, . . . , qn), g ∈ C0(Σ), f ∈ C0(R
4n), f̌ ∈ L1(R4n),

with

f(q1, . . . , qn) =

∫
dkN f̌(k1, . . . , kn) e

i(k1q1+···+knqn) .

It induces a product and an involution on the generalized n-symbols, and the enveloping C ∗-
algebra of the resulting algebra is E (n) = E ⊗Z · · · ⊗Z E .
Now consider coordinates qµ of characteristic length 1/

√
n, and define the following coordinates

with n+ 1 tensor factors,

q̄µ def
= qµ ⊗Z I ⊗Z · · · ⊗Z I︸ ︷︷ ︸

n factors

and qµ
ij

def
= I ⊗Z q

µ
ij ,

where qµij is the relative coordinate qµi − q
µ
j . Then the n coordinates

qµ
i

def
= q̄µ + 1

n

n∑

j=1

qµ
ij ,

which by construction are elements ofM(E (n+1)), the multiplier algebra of E (n+1), satisfy canon-
ical commutation relations,

[qµ
j ,q

ν
j ] = iQµν ⊗Z In⊗Z

def
= iQµν and [qµ

i ,q
ν
j ] = 0 for i 6= j .

This is due to the fact that, by definition,

[q̄µ, q̄ν ] = i 1
nQ

µν , [q̄µ,qν
ij ] = 0 ,

and that for the sum of the relative coordinates we find

[
∑

l

qµjl,
∑

k

qνjk] = [n−1
n qµj − 1

n

∑

l 6=j

qµl ,
n−1
n qνj − 1

n

∑

k 6=j

qνk ] = i n−1
n Qµν ,

[
∑

l

qµil,
∑

k

qνjk] = [n−1
n qµi − 1

n

∑

l 6=i

qµl ,
n−1
n qνj − 1

n

∑

k 6=j

qνk ] = −i 1
n Qµν for i 6= j .

Remark 3.1 By von Neumann uniqueness (at each fixed σ ∈ Σ, as elaborated in [27]), there
exists a faithful *-homomorphism which maps the coordinates defined by (3.3) to the coordinates
defined above,

β(n) : E(n) 7→M(E(n+1)) with β(n)(qi) = qi

where M(E(n+1)) denotes the multiplier algebra of E (n+1) = E ⊗Z · · · ⊗Z E .

Proof: See [69, 10]: The map qµi 7→ qµ
i determines a *-homomorphism βi : E → M(E(n+1))

(whose canonical extension to M(E) is also denoted by βi). The ranges of βi and βj commute
for i 6= j as qi and qj commute for i 6= j. Moreover, βi restricted to Z is an isomorphism
independent of i. By the universal properties of the tensor product and its uniqueness for nuclear
C∗-algebras, there is a *-homomorphism β(n) of E(n) to M(E(n+1)), s.t. β(A1 ⊗Z · · · ⊗Z An) =
β1(A1) . . . βn(An) for Ai ∈ E . By construction, β(n) is faithful on Z. This is sufficient for β (n)

to be faithful on E (n): since K ⊗ K ∼ K as C∗-algebras (K is the algebra of compact operators
on a separable Hilbert space), we conclude that E ⊗Z · · · ⊗Z E ∼ E ∼ C0(Σ,K), and hence that
the closed 2-sided ideals in E ⊗Z · · · ⊗Z E are in a 1-1 correspondence with the closed subsets
of Σ. �
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Explicitly, we have β (n)
(
g(Q)f(q1, . . . , qn)

)
= g(Q)f(q1, . . . ,qn), where

f(q1, . . . ,qn) =

∫
dk1 . . . dkn f̌(k1, . . . , kn)e

ik1q1 . . . eiknqn .

This construction enables us to define the approximate limit of coinciding points, where the
Euclidean differences |qij |2 are minimized. Main ingredient is the observation that the action
of an n-fold tensor product of best-localized states on (an exponential of) a difference variable

eikµq
µ
ij is equal to the action of one best-localized state on (an exponential of) the ordinary

noncommutative coordinate eikµq
µ
, as

〈 η ⊗Z · · · ⊗Z η , e
i√
2
kµq

µ
ij 〉 = e−

1
2
|k|2 = 〈 η, ei kµqµ 〉 .

Hence, the above is a constant function of σ ∈ Σ1, since the use of best-localized states restricts
the spectrum of the commutators to Σ1, such that η may be written as η = η(1) ◦ ρ, where ρ is
the restriction map from E to E1 (cf. the remarks following equation (1.11)). We are now able
to define the map which replaces the notion of coinciding points by a notion of approximate
coincidence adapted to the noncommutative setting.

Definition 3.2 Let E(n) : E(n) → E1 be defined by

E(n) = (ρ⊗Z η ⊗Z · · · ⊗Z η︸ ︷︷ ︸
n times

) ◦ β(n) ,

where β(n) : E(n) 7→ M(E(n+1)) is defined in Remark 3.1, η : E → C0(Σ1) is the localization
map (1.10), and where ρ : E → E1 is the restriction map. Then E(n) is called the quantum
diagonal map and replaces the ordinary limit of coinciding points.

Note that the generators of the algebra in which E(n) takes values have characteristic length
1/
√
n. In what follows, the use of the letter q instead of q will always indicate that the coordinate

is of characteristic length 1/
√
n.

We close this section by giving the explicit form of the quantum diagonal map acting on a
generalized n-symbol.

Proposition 3.3 Let f ∈ C0(R
4n), f̌ ∈ L1(R4n). Then the explicit form of the quantum

diagonal map acting on f is given by

E(n)(f(q1, . . . , qn)) =

∫
dkN f̌(kN ) rn(kN ) ei(

∑
i ki)q ,

where q is a quantum coordinate with characteristic length 1/
√
n and where the kernel rn is

given by

rn(k1, . . . , kn) = exp
(
− 1

2

n∑

i=1

∣∣ki − 1
n

n∑

l=1

kl
∣∣2 ) . (3.4)

Equivalently, the quantum diagonal map can be written as E(n)
(
f(q1, . . . , qn)

)
= hf (q) where hf

is the symbol of the function hf (x) = cn
∫
daN f(x+a1, . . . , x+an) r̃n(aN )with cn = n2

4 (2π)−2n+4

and with the position space kernel r̃n given by

r̃n(a1, . . . , an) = exp
(
−1

2 |a1|2 − · · · − 1
2 |an|2

)
δ(4)
(
a1 + · · ·+ an

)
. (3.5)

In particular, E(n)
(
f(q1, . . . , qn)

)
is a constant function of σ ∈ Σ1 such that there is no explicit

dependence on σ.
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Proof: By definition, β(n)
(
f(q1, . . . , qn)

)
=
∫
dk1 · · · dkn f̌(k1, . . . , kn) eik1q1+···+iknqn , and with

exp
(
i
∑

i

kiqi

)
= exp

(
i
∑

i

kiq̄
)
⊗Z exp

(
i

n∑

i=1

(ki − 1
n

n∑

j=1

kj)qi
)

we find

(ρ⊗Z η
n⊗Z ) ◦ β(n)

(
f(q1, . . . , qn)

)

=

∫
dk1 · · · dkn f̌(k1, . . . , kn) ei

∑
i kiq

n∏

i=1

〈 η , exp
(
i(ki − 1

n

n∑

j=1

kj)qi
)
〉

which proves (3.4). Let us recall that, by construction, the above is a constant function of
σ ∈ Σ1: the best-localized states restrict the spectrum of the Qµν to Σ1, but, since the qi

commute among themselves, no twistings appear explicitly.
The configuration space kernel (3.5) follows by direct calculation from

hf (x) = (2π)−4n

∫
dxN f(xN )

∫
dkN e−i

∑
ki(xi−x) rn(kN )

=

∫
dyN f(x+ y1, . . . , x+ yn) (2π)

−4n

∫
dkN e−i

∑
kiyi rn(kN )

︸ ︷︷ ︸
= cn r̃n(yN )

.

To calculate r̃n, we first perform a reparametrization which makes the Gaussian functions inde-
pendent of one of the integration variables (here, I4 is the 4× 4-identity matrix),



k1
k2
...

kn−1

kn



7→




p1
p2
...

pn−1

pn




= − 1

n




(1− n) I4 I4 . . . I4 I4
I4 (1− n) I4 . . . I4 I4
...
I4 I4 . . . (1− n) I4 I4
0 0 . . . 0 −n I4







k1
k2
...

kn−1

kn



,

such that

cn r̃n(yN ) =
n4

(2π)4n

∫
dpN exp

(
−i

n−1∑

i=1

(p1 + · · ·+ 2pi + · · · + pn) yi − ipnyn
)
·

· exp
(
−1

2 |p1|2 − · · · − 1
2 |pn−1|2 − 1

2 |p1 + · · ·+ pn−1|2
)

= (2π)−4(n−1) n4 δ(4)(y1 + · · · + yn) ·

·
∫
dpN−1 e

−i
∑n−1

i=1 pi(yi−yn) e−
1
2 |p1|

2−···−1
2 |pn−1|2−1

2 |p1+···+pn−1|2

= (2π)−4(n−1) n4δ(4)
(∑

yi
)
(
π

n
2

n∏

i=2

√
2 (i−1)

i

)4

e−
1
2
|y1|2−···− 1

2
|yn−1|2− 1

2
|yn|2 .

Since
∏n

i=2

√
2 (i−1)

i = 2
n−1
2√
n
, it follows that cn = n2

4 (2π)−2n+2. �

3.2 Regularized field monomials

In this section, the quantum diagonal map E (n) is used to define regularized monomials of
quantum fields. Employing such monomials as interaction terms, we can show that the resulting
S-matrix is finite at every order of the perturbative expansion if an adiabatic switching is applied.
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Definition 3.4 Let φ(q) be a field as defined in (1.12), and let E(n) : E(n) → E1 be the quantum
diagonal map of Definition 3.2. Then

φnR(q) = E(n)(φ(q1) . . . φ(qn))

=

∫
dkN rn(k1, . . . , kn) φ̌(k1) · · · φ̌(kn) ei(k1+···+kn)q

is called the regularized field monomial.

The regularized field monomials are now used to define an effective theory on the ordinary
Minkowski space, by the same principles as applied in the previous chapter. Our investigation
is based on the symbol φnR(x) of φ

n
R(q),

φnR(x) =

∫
dkN rn(k1, . . . , kn) φ̌(k1) · · · φ̌(kn) ei(k1+···+kn)x

= cn

∫
daN r̃n(x− a1, . . . , x− an)φ(a1) · · ·φ(an) .

Due to the kernel rn, the “regularized field monomials” are indeed regular:

Proposition 3.5 The regularized field monomial φnR(x) is a well-defined distribution, mapping
Schwartz functions to operators acting on the invariant domain D of smooth wavefunctions (as
defined in chapter 1).

Proof: Let us first introduce the notation

a = (a1, . . . , an) ∈ R4n , da = d4a1 . . . d
4an

which for later purposes replaces the notation aN , daN in this chapter. Evaluating φn
R(x) in a

function g ∈ S(R4 ), we obtain

∫
dx g(x)φnR(x) = c

∫
da g(κ(a))

n∏

i=1

exp
(
−1

2 |ai − κ(a)|2
)
φ(a1) . . . φ(an) ,

where κ(a) ∈ R4 is the mean of a,

κ(a) = 1
n

n∑
i=1

ai .

Since the n-fold tensor product of fields φ(a1) . . . φ(an) is a well-defined distribution which after
evaluation in a testfunction on R4n yields a well-defined operator acting on elements of D, the
invariant domain, it suffices to show that g(κ(a))

∏n
i=1 exp

(
−1

2 |ai − κ(a)|2
)

is a Schwartz
function on R4n . Now, the Gaussian functions are translation invariant, and they merely yield a
Schwartz function on R4(n−1) , when each ai is understood as the vector (0, . . . , 0, ai, 0, . . . , 0) ∈
R4n , such that all ai are linearly independent and such that κ(a) is equal to 1/n (a1, . . . , an) ∈
R4n . Only n − 1 of the arguments ai − κ(a), i = 1, ... , n, turn out to be linearly independent,
while the sum of all n arguments vanishes,

n∑
i=1

(ai − κ(a)) = 0 .

We have seen this effect already in the proof of Proposition 3.3, where a coordinate trans-
formation (in that case on the momenta) was employed which rendered the Gaussian functions
independent of one of the new coordinates. However, it can be seen easily that κ(a) and ai−κ(a),
i = 1, . . . , n − 1, (understood again as vectors in R4n) are linearly independent: for ai ∈ R4n ,
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i = 1, . . . , n linearly independent, the 4n×4n-matrix with rows given by ai ∈ R4n , i = 1, . . . , n−1,
and κ(a) ∈ R4n , has non-zero determinant, since

det
(
− 1

n




(1− n) I4 I4 . . . I4 I4
I4 (1− n) I4 . . . I4 I4
...
I4 I4 . . . (1− n) I4 I4
−I4 −I4 . . . −I4 −I4




)
6= 0 .

We may thus conclude that g(κ(a))
∏

i exp
(
−1

2 |ai − κ(a)|2
)

is a Schwartz function on R4n . �

In other words, there is no need to bring the annihilation and creation operators in the regularized
field monomial φn

R(x) into normal order as in the ordinary case. In particular, all subtraction
terms (the tadpoles) are well-defined due to the regularizing kernels r̃n.
For reasons to be explained below, we nevertheless define an effective Hamiltonian with a nor-
mally ordered interaction,

Hg
I (t) =

1
n!

∫
dx δ(x0 − t) g(x) :φnR(x) : , (3.6)

where the regularized Wick monomial :φn
R(x) : is defined as

:φnR(x) : = cn

∫
daN r̃n(x− a1, . . . , x− an) :φ(a1) · · · φ(an) : .

For the time being, an adiabatic switching g ∈ S(R4) is applied to postpone all questions
concerning the infrared-behaviour of the theory, and Haag’s theorem as mentioned in section 2.1
is circumvented. Note that the adiabatic switching has no counterpart on the noncommutative
side, but is part only of the effective theory. As in chapter 2, the effective Hamiltonian does not
arise from taking the product of time zero fields, but from the following expression instead,

eiH0t :φnR(0,x) :e
−iH0t = cn

∫
daN r̃n(x− a1, . . . , x− an)

∣∣
x0=0

eiH0t :φ(a1) · · · φ(an) : e−iH0t .

Here, H0 is the free Hamiltonian already applied in the preceding chapter. Hence, the free Hamil-
tonian is treated on a different footing compared to the effective interaction Hamiltonian (3.6).
This is necessary as the use of the regularized field monomials in the free Hamiltonian density
would result in a modified Hamiltonian that is no longer the zero component of a Lorentz vec-
tor. This is due to the fact that, in order to define best-localized states which in turn yield the
regularized interaction term, one has to choose a fixed Lorentz frame. It is emphasized again,
however, that translation and rotation invariance are preserved.
Contrary to the Hamiltonian arising from the interaction φn(q) employed in the previous chap-
ter, Hg

I (t) is a constant function of σ ∈ Σ1 by definition. The situation is thus improved in
comparison to the one discussed in the previous chapter, where a particular measure had to be
chosen to rid the Hamiltonian of its dependence on Σ.
We will now investigate the perturbation theory following the principles already explained in
section 2.1. A normally ordered interaction is chosen since normal ordering is required in the free
Hamiltonian. Also it does not seem natural to use an interaction with non-vanishing vacuum
expectation value, which, as we shall see in the next section, moreover diverges in the adiabatic
limit where the cutoff is removed.

Remark 3.6 Contrary to the ordinary case, Hg
I (t) is a well-defined operator on the ordinary

invariant domain D.
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Proof: Let us first consider the ordinary case. Here, the normally ordered product of fields
:φn(x) : at a fixed time t when acting, for instance, on the vacuum, yields the following expression,

∫ n∏

i=1

dki

2ωki

g̃t(
∑

ki) e
it
∑

ωk
i a†(k1) . . . a†(kn)Ω ,

where g̃t(
∑

ki) =
∫
dx g(t,x)e−ix

∑
ki . This is ill-defined, as the function g̃t(

∑
ki) e

it
∑

ωk
i does

not decrease fast enough on R3n . If, on the contrary, we employ regularized Wick monomials
:φnR(x) :, we derive the following function of the momenta ki,
∫
dx g(t,x)

∫
da1... dan−1 e

− 1
2

∑n−1
i=1 |ai|2 e−

1
2
|∑n−1

i=1 ai|2 ei
∑n−1

i=1 ki((t,x)−ai) eikn((t,x)+
∑n−1

i=1 ai)

= g̃t(
∑

ki) e
it
∑

ωk
if(kn − k1, . . . , kn − kn−1)

∣∣
ki∈H+

m
= h(k1, . . . ,kn) ,

where f is the Fourier transform of a Schwartz function on R4(n−1) ,

f(kn − k1, . . . , kn − kn−1) =

∫
da1... dan−1 e

i
∑n−1

i=1 ai(kn−ki) e−
1
2
|∑n−1

i=1 ai|2 e−
1
2

∑n−1
i=1 |ai|2 .

Hence, h is square-integrable on R3n . In the same manner it can be shown that the Hamil-
tonian Hg

I is well-defined when acting on a particle state |ψ (s)〉 with smooth wavefunction
ψs(p1, .. ,ps) ∈ S(R3s). �

This being settled, let us follow the procedure of the preceding chapter and define an S-matrix
via the Dyson series.

Remark 3.7 The effective Hamiltonian is symmetric, H g
I (t)

† = Hg
I (t), and it follows, by Re-

mark 2.1, that the S-matrix is (formally) unitary when defined by the formal series

S[g] = I +

∞∑

r=1

Sr[g] ,

where

Sr[g] =
(−i
n!

)r
∫
dt1 . . . dtr θ(t1 − t2) . . . θ(tr−1 − tr) ·

·
∫
dx1 . . . dxr g(t1,x1) :φ

n
R(t1,x1) : . . . g(tr,xr) :φ

n
R(tr,xr) : . (3.7)

Moreover, due to the regularizing kernel, the S-matrix S[g] is well-defined in every order r, as
the following Proposition shows.

Proposition 3.8 For any Schwartz function g ∈ S(R4) the r-th order contribution to the S-
matrix S[g], as given by equation (3.7), can be written as a finite sum of closable operators on
the invariant domain D. No ultraviolet divergences appear.

In [10] a proof of the above claim was given in momentum space for factorized Schwartz functions
g(x) = gt(x0)gs(x). To complement this result a proof in position space and for general g is
provided here (see also [8]). Let us first consider ordinary quantum field theory, where the
S-matrix at r-th order is given by

Sr[g] = c

∫
dx1 · · · dxr g(x1) . . . g(xr)

r−1∏

j=1

θ
(
xj0 − xj+1

0

) r∏

j=1

:φ(xj)n : .
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Expectation values in multi-particle states (without smearing in the momenta) are typically of
the following form,

∏

j<j′

∆+(x
j − xj′)n(j,j′) 〈p(l)| :φ(x1)m1 . . . φ(xr)mr : |q(s)〉 ,

for some choice of indices j, j ′ ∈ R = {1, . . . , r}. Here, n(j, j′) = n(j′, j) ∈ N0 and mj =
n −∑i∈R n(j, i). While the multiplication of a translation-invariant distribution with a Wick
product of fields is well-defined (Theorem 0 in [35]), ultraviolet divergences arise, since the
product of a Heaviside function θ with contractions ∆n

+ is ill-defined in 0 for n ≥ 2. Such
divergences do not appear, if regularized Wick monomials are employed.

Proof of Proposition 3.8: In addition to the notation used in the proof of Proposition 3.5,
let us furthermore introduce

a− x = (a1 − x, a2 − x, · · · , an − x), x, aj ∈ R4 , a ∈ R4n .

Now, write down the regularized Wick monomials :φn
R(xj) : which appear in the S-matrix at

r-th order using the position space kernels r̃n given by formula (3.5). After evaluation of the
δ-distributions, we find the following expression for Sr[g],

Sr[g] = c

∫
da1 · · · dar g(κ(a1)) . . . g(κ(ar))

r−1∏

j=1

θ
(
κ0(a

j)− κ0(aj+1)
)

·
r∏

j=1

(
exp

(
−1

2 |aj − κ(aj)|2
)
:φ(aj1) . . . φ(a

j
n) :

)
, (3.8)

where, as before, κ(a) ∈ R4 is the mean of a, and has the time component κ0(a),

κ(a) = 1
n

n∑
i=1

ai , κ0(a) =
1
n

n∑
i=1

ai,0 .

Taking expectation values of Sr[g] in multi-particle states (without smearing in the momenta)
then yields terms of the form

( ∏

j<j′∈J
(i,i′)∈I

∆+(a
j
i − a

j′

i′ )
)
〈p(l)| :φ(a11) . . . . . . . . . φ(arn) :︸ ︷︷ ︸

φ(aji ) , φ(a
j′
i′ ) missing

|q(s)〉

for some choice of index sets J ⊂ R = {1, .. , r}, I ⊂ N × N , N = {1, .. , n}. Here, the total
number of contractions ∆+ is equal to 1

2 (r · n − s − l). Contrary to the ordinary case, every
contraction appears only once. Hence, multiplication with the Heaviside functions does not pose
a problem. Moreover, as the product of Heaviside functions in (3.8) is a translation-invariant
distribution,

u(a1, . . . , ar) =
r−1∏

j=1

θ
(
κ0(a

j)− κ0(aj+1)
)
= u(a1 − x, . . . , ar − x) for x ∈ R4n ,

its multiplication with the Wick product of fields is not problematic. And finally, as the argu-
ments of the contractions differ from those appearing in the fields, the product of contractions
and fields is actually a tensor product and as such automatically well-defined. It remains to
be shown that the Gaussians together with the adiabatic switching functions g are sufficient as
testfunctions. This is indeed the case by the same argument as employed in Proposition 3.5, as
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for each j ∈ {1, . . . , r}, the vectors κ(aj) and aji −κ(aj), i = 1, . . . , n−1, understood as elements
of R4n , are linearly independent. Hence, the Gaussian functions together with the r adiabatic
switchings at r-th order of the perturbative expansion yield a testfunction on R4nr . �

It is emphasized that the effect of the above regularization is similar to other attempts to derive
a regularized field theory, but in our case the regularizing kernels are intrinsically motivated by
the underlying noncommutative spacetime E . Note that if we were to reintroduce units where
λP 6= 1, the Planck length would appear as the width of the Gaussians in the position space
kernels and as the inverse width of the ones in the momentum space kernels.
If no normal ordering is employed in the definition of the interaction Hamiltonian, the S-matrix
is still finite at every order of the perturbative expansion as long as an adiabatic switching g is
employed. To see this, rewrite the regularized monomial φn

R as a normally ordered product plus
appropriate contractions (the tadpoles) by repeated application of formula (1.15), and consider
one of the tadpole contributions to Sr[g], for instance a contribution with one tadpole contraction
in the first vertex. Then, instead of (3.8), we have to consider

∫
da1 · · · dar g(κ(a1)) . . . g(κ(ar))

r−1∏

j=1

θ
(
κ0(a

j)− κ0(aj+1)
)
·

·∆+(a
1
1 − a12) :φ(a13) . . . φ(a1n) :

r∏

j=1

exp
(
−1

2 |aj − κ(aj)|2
)
:φ(aj1) . . . φ(a

j
n) : .

Multi-particle expectation values of this expression are well defined, since, as in Proposition 3.5
and Theorem 3.8, it is sufficient that the adiabatic switchings g(κ(a j)) in combination with the
Gaussian functions exp

(
−1

2 |aj − κ(aj)|2
)
yield a Schwartz function on R4nr .

3.3 Graphs and the adiabatic limit

So far, an adiabatic switching g was employed to cut off the interaction. As discussed in
section 2.1, there are at least two possibilities to treat the dependence on g. One is to calculate
the so-called adiabatic limit [35, 36], where g tends to a constant, and another is to show that
the algebra of local observables is independent of the chosen cutoff function (in the sense that
if two such functions coincide on some bounded region of spacetime, the corresponding algebras
of observables are unitarily equivalent), cf. [55, 14]. This latter construction relies on a causal
behaviour of the (relative) S-matrix. However, by the same principles as explained in section 2.1,
the S-matrix defined in Remark 3.8 is not causal. Instead, we find, with notation as before and
without taking normal ordering into account,

0 6= S1(x)S1(y)− S1(y)S1(x)

= c

∫
dxdy r̃n(x− x) r̃n(y − y)

n∑

i=1

( i−1∏

k=1

φ(xk)
n∑

j=1

(
i∆(xi − yj)

∏

l 6=j

φ(yl)
) n∏

k=i+1

φ(xk)
)

for spacelike separated x, y. Although at least compared to the case investigated in section 2.1
(see p. 22) the nonlocality decreases fast like a Gaussian function, the local approach will not
be investigated here.
Instead, it is shown that if regularized Wick monomials are used as interaction terms, all expec-
tation values are well-defined as long as a cutoff in time is kept. Furthermore, it is shown that if
this cutoff in time is also replaced by a constant, the one-particle irreducible (1PI) expectation
values of the resulting S-matrix remain well-defined, while graphs which are not one-particle ir-
reducible, may develop a peculiar kind of divergence. It is emphasized, however, that no mixing
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of ultraviolet and infrared divergences appears by insertion of lower order graphs into higher
order diagramms. Let us start the analysis by considering the vacuum expectation values, which
behave like the vacuum graphs in the ordinary theory and diverge when g tends to a constant.

Remark 3.9 In the adiabatic limit, where the function g is a constant, the vacuum expectation
values of the S-matrix (3.7) diverge.

Proof: The mechanism is similar to the one in the ordinary case. It is analysed in position
space using formula (3.8). In vacuum expectation values all fields are contracted, such that at
r-th order of the perturbative expansion the maximal possible number (i.e. r·n

2 ) of contractions

∆+(a
j
i − a

j′

i′ ) appears. Therefore, the distributions θ and ∆+ in the integrand of 〈Ω|Sr |Ω〉 only
depend on relative coordinates between different vertices. Now perform a coordinate transfor-
mation at every vertex j = 1, .. , r, where

aji 7→ v1 + · · · + vi−1 + 2 vi + vi+1 · · ·+ vn for i = 1, .. , n − 1 and ajn 7→ vn

such that for i = 1, .. , n− 1, aji −κ(aj) = vji and ajn− κ(aj) = −
∑n−1

i=1 v
j
i . (This transformation

is the inverse of the transformation used in the proof of Proposition 3.3.) Now the Gaussian

functions do not depend on vn, and for relative coordinates between different vertices aji − a
j′

i′

we immediately find that vjn and vj
′

n enter only as the differences vjn − vj
′

n . Hence, there is a
transformation which renders the integrand independent of one of the coordinates vjn, j = 1, .. , r.
As a result, the integration over this variable diverges. �

Special vacuum contributions are the tadpole graphs arising in φ2m-theories at first order per-
turbation theory. As we have seen above, they diverge in the adiabatic limit. Similarly, we find
that in φ2m+1-theories, some (non-vacuum) tadpole contributions at first order perturbation
theory diverge in this limit. Replacing the adiabatic switching function g by a constant, we find
from (3.7) the following explicit expression for such contributions:

∫
dx

∫
ad1... dan φ(a1)

2m∏

i=2

∆+(ai − ai+1)r̃n(x− a1, ..., x − an)

=

∫
dx φ(x)

∫
da1... dan

2m∏

i=2

∆+(ai − ai+1)

n∏

i=1

e−
1
2
|ai|2 δ(

∑
ai) .

The kernel r̃n being symmetric, it is irrelevant which field remains uncontracted. While the
integrals

∫
da1... dan are well-defined, the integration over x is not, since for a one-particle state

|ψ(1)〉, the expectation value

〈Ω|
∫
dxφ(x) |ψ(1)〉 =

∫
dp

2ωp

ψ(1)(p) δ(4)(p) = ψ(1)(0) δ(m)

is ill-defined. This provides further motivation to use Wick ordered regularized field monomials
as interaction terms, since otherwise some tadpole contributions to the Hamiltonian diverge in
the adiabatic limit.

Let us now consider diagrams with more than one external leg. The graphical rules as given in
Remarks 2.3 and 2.4 can be employed, since their derivation did not rely on the particular form
of the nonlocal kernels which appear in the Hamiltonian. Let us briefly consider the position
space graphs which were sketched at the beginning of section 2.2. In the approach investigated
here, according to formula (3.8), the time-ordering of the multi-vertices in position space graphs
will be defined with respect to the average times κ0(a

j). By the same mechanism as discussed
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in section 2.2 for the kernels D, problems concerning causality become apparent which have
already been mentioned in [10].
For our purposes, it is more convenient to work in momentum space, employing the rules from
Remarks 2.3 and 2.4. Let us first consider again the fish graph in φ3-theory with one of the
two possible time-orderings, where q and q ′ are the external momenta leaving and entering the
graph,

δ(4)(q − q′)
∫

dk

2ωk

1

2ωq−k

1

−(ωk + ωq−k − q0) + iǫ
r3(−q, k, (ωq−k,q− k))2 .

Since the square of r3(−q, k, (ωq−k,q− k)) is equal to

exp
(
− 1

2 |q|2− 1
2 |k|2− 1

2 |q−k|2− 1
9 (2q0 +ωk+ωq−k)

2− 1
9 (2ωk−ωq−k+ q0)

2− 1
9 (2ωq−k−ωk+ q0)

2
)
.

and as the Fourier transform of the Heaviside function never reaches its singularity in 0, the
expression is well-defined. Even if q = 0, the regularizing effect of the kernel remains, yielding

exp
(
− 2

3 |ωk|2 − 2 |k|2
)
.

More generally, the special planar graphs from the previous chapter with vanishing twisting are
not problematic in the approach pursued here. This is due to the fact that the kernel rn is 1 if
and only if all of its arguments are zero. In particular,

r3(0, k,−k) = e−|k|2 , r4(q,−q, k,−k) = e−|q|2−|k|2 , rn(k, 0, . . . , 0) = e−
n−1
2n

|k|2 .

This is consistent with the fact that the kernels Sn as well as sin γ±/γ± and sinβ±/β±, respec-
tively, arose directly from the twisting in the product φn(q), whereas the kernel rn is constructed
in a very different way.

Proposition 3.10 The expectation values for the S-matrix remain finite when the adiabatic
switching function is of the form g(x) = g0(x0) · gs, where gs is a constant.

Proof: From the rules given in Remark 2.3 we derive the general form of an expectation value
at r-th order perturbation theory with an arbitrary fixed time-ordering without spatial cutoff.
The only difference is that we now have to consider

∏
θ(xi,0− xi+1,0)

∏
g0(xi,0) instead of only

Heaviside functions as before. Performing the space-integrations we again find 3-momentum
conservation at all vertices. Hence, the rules from Remark 2.4 remain valid as far as points 3.,
6. and 7. are concerned. Point 5. remains valid apart from the overall energy conservation.
And instead of the energy factors described in point 4., the time-integrations yield a bounded
function of the internal and external momenta. This is due to the fact that the integrand is

∏
θ(xi,0 − xi+1,0)

∏
g0(xi,0) exp

(∑
xi,0(

∑
j∈T(i)

±kj)
)
,

where T(i) labels the momenta entering (+ sign) and leaving (− sign) the i-th vertex. Since∏
θ(xi,0 − xi+1,0)

∏
g0(xi,0) is certainly L

1 (which it is not if the cutoff is removed), its Fourier
transform is bounded (and if some k does not appear in the exponential, the integration yields
a constant (hence bounded) function of k). It remains to be shown that the integrations over
the internal momenta remain well-defined.
Let b be the number of internal lines, and let l = n · r− 2b be the number of external momenta,
then an expectation value is of the form

∫ b∏

i=1

dki

2ωki

t(kB , qL)

r∏

s=1

δ(3)
(∑
i∈Is

ki −
∑
j∈Js

kj +
∑
l∈Ls

±ql
)
rn
(
kIs ,−kJs ,±qLs

)
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for some sets Is, Js and Ls with |Is|+ |Js|+ |Ls| = n to be specified below. Here, t(kB , qL) stands
for the bounded function of internal and external momenta discussed above (B = {1, ..., , b},
L = {1, ..., , l}), and in the δ-distributions and the kernels rn every internal momentum appears
twice, once with a positive sign, once with a negative sign, but never twice in the same kernel
rn (no tadpoles). In other words,

r⋃

s=1

Is =

r⋃

s=1

Js = {1, ... , b} , Is ∩ Js = ∅ , Is ∩ Is′ = ∅ = Js ∩ Js′ ,
r⋃

s=1

Ls = {1, ..., l} .

As in the ordinary case, the arguments of the δ-distributions are linearly independent, provided
that there are external momenta (no vacuum graphs). Hence, their product is well-defined,
and evaluating them by absorbing a number of mass-shell integrations will yield conservation
of the external 3-momenta. The important difference compared to the approaches analysed in
the previous chapter now is that the kernels rn yield quickly decreasing testfunctions in the
remaining internal momenta, since at every vertex the evaluation of the δ-distribution yields

δ(3)
(∑
i∈Is

ki −
∑
j∈Js

kj +
∑
l∈Ls

±ql
) ∏

r∈Is∪Js
exp

(
−1

2 |kr − 1
n(
∑
i∈Is

ki −
∑
j∈Js

kj +
∑
l∈Ls

± ql)|2
)

·
∏

r∈Ls

exp
(
−1

2 | ± qr − 1
n(
∑
i∈Is

ki −
∑
j∈Js

kj +
∑
l∈Ls

± ql)|2
)

−→
∏

i∈Is∪Js
exp

(
−1

2 |ki|2
)∏

j∈Js
exp

(
−1

2 |kj |2
)∏

l∈Ls

exp
(
−1

2 | ± ql|2
)
exp

(
zero components

)
,

where one of the internal momenta is replaced according to the δ-distribution and where the
function depending on the 0-components is a Gaussian (i.e. certainly bounded) function depend-
ing on the spatial parts of the momenta. Since the Gaussian functions from different vertices
cannot cancel each other, we conclude that the expectation values are well-defined. �

As far as the smoothing effect of the kernels at high momenta is concerned, the removal of the
cutoff function g0 does not do any harm. However, if g0 is replaced by a constant, the time
integrations may well yield unbounded functions. In fact, as the following remark shows, graphs
which are not one-particle-irreducible (i.e. those which may fall into two pieces when an internal
line is cut) may develop a divergence of a peculiar kind.

Remark 3.11 Let G be a graph which is not one-particle-irreducible. Call every line a single
line which, if cut, renders two separate graphs. Let l be a single line. Then the removal of the
time cutoff renders an infrared divergence if one (ore both) of the vertices which are connected
by l is connected by (possibly many) internal lines with a vertex into which only one external
momentum enters, provided that between this latter vertex and the former one no other external
momenta enter.

Typical examples of such graphs in φ4- and φ3-theory are

✒✑✓✏r r r✑✑
◗◗ ✒✑✓✏rr r r✑✑ ✑✑

◗◗ ✒✑✓✏r r r rrr✒✑✓✏ ✒✑✓✏r r r rrr✒✑✓✏
.

To understand the problem in principle, it is sufficient to consider only the first example already
investigated in section 2.2. Pick the time-ordering where the vertex on the left is the latest one
and the one on the right is the earliest, then according to the rules we find

δ(4)(q −
∑

q′i)
∫ 4∏

i=1

dki

2ωki

δ(3)(k1 − q)

−(ωk1
− q0) + iǫ

δ(3)(
∑4

i=2 ki − q)

−(ωk2
+ ωk3

+ ωk4
− q0) + iǫ

r4(...) r4(...)
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and the first term is obviously ill-defined for q on the mass-shell. This is not an effect particular
to the noncommutative case, but rather a consequence of the fact that in our approach the
bare and the physical mass coincide. If the physical mass were equal to m, such divergences
would also appear in ordinary field theory: applying the ordinary rules to the first graph,
one finds the Fourier transform of a Feynman propagator evaluated in an external momentum
∆̂F (q) = (q2 −m2 + iǫ)−1, which is ill-defined if q2 = m2. Note, however, that in the n-point
functions (2.18), where the external lines correspond to Feynman propagators (in the ordinary
case), this divergence remains unnoticed until the appropriate Klein-Gordon operator is applied
and the integration performed.
The reason why these graphs are not problematic in the ordinary case is that the mass in the
internal lines is not the physical mass. Following the ordinary renormalization procedure, one
first sums up all self-energy contributions and then uses dressed propagators to calculate skele-
ton graphs only. In particular, the graph discussed above would be absorbed in the vertex of
a tree graph with four legs (one vertex). The application of this programme to the interaction
investigated here will not be pursued in this thesis, but it is mentioned that the mass renormal-
ization resulting from this programme should not be Lorentz-invariant, since the whole setup
uses a fixed Lorentz frame. This might result in a distorted dispersion relation, which may be of
great interest as a means to find experimental bounds for the noncommutative parameter λP .
Therefore, it is desirable to formulate a realistic theory such as quantum electrodynamics on
the noncommutative Minkowski space within the above framework and pursue the programme
of mass renormalization as proposed above. A similar mass renormalization is necessary in the
framework of the finite theories discussed in section 2.5, since, apart from the different explicit
form of the twisting, the graph theory is the same. One should therefore pursue the same
programme there and compare the results. In section 5.3, a similar effect which occurs in the
framework of the Yang-Feldman equation and leads to a modified dispersion relation will be
discussed.



Chapter 4

The Yang-Feldman equation

As shown in the previous chapters, the Hamiltonian formalism provides an acceptable pertur-
bative setup on a noncommutative spacetime. In the remainder of this thesis, yet another
possibility to define quantum field theory on the noncommutative Minkowski space is intro-
duced. It is based on what is called the Yang-Feldman equation [86, 59] and, contrary to field
theory on ordinary Minkowski space, turns out to be inequivalent to the Hamiltonian approach.
The field equation is used as a starting point and the interacting field is constructed iteratively.
The formalism is Lorentz-covariant and permits to study the asymptotic behaviour of the inter-
acting field directly. The interaction picture is avoided, as the formalism works exclusively in the
Heisenberg picture; initial conditions are given not at a fixed instant in time, but asymptotically
at infinite times. The earlier investigations in nonlocal field theory [87, 60, 11] mentioned in
section 2.1 were based on this approach.

4.1 The classical perturbative setup

Due to the success of Feynman’s rules, the Yang-Feldman approach seems to have lost some of
its early popularity, and it is worthwhile to briefly mention how to set up perturbation theory
for a classical field on the noncommutative Minkowski space in this approach. Consider the field
equation of a scalar classical field on the noncommutative Minkowski space with a self-interaction
given by φn−1(q),

(�q −m2)φ(q) = −g φn−1(q) , g ∈ R , (4.1)

where, according to chapter 1, the Klein-Gordon operator is defined by

(�q −m2)φ(q) = (�a −m2)φ(q + aI) |a=0 ,

with a 4-vector a ∈ M4 and identity I. In what follows, φ(q + a) will be used as a shorthand
notation for φ(q + aI). For the time being, g > 0 is a real coupling constant.

Remark 4.1 The field equation (4.1) can be solved recursively by the ansatz

φ(q) =
∞∑

κ=0

gκ φκ (q) ,

where

φκ(q) =
∑

κ1+···+κn−1=κ−1

(G× φκ1 . . . φκn−1)(q)

=
∑

κ1+···+κn−1=κ−1

∫
dx G(x)φκ1(q − x) . . . φκn−1(q − x) (4.2)

61
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with some ordinary Green function G of the Klein-Gordon equation. G is fixed by initial condi-
tions given at infinite times, in the sense that φ(q + t e0) with a timelike 4-vector e0 is given for
t approaching ±∞.

Proof: The field equation at order κ reads

gκ (�a −m2)φκ(q + a) |a=0 = −gκ
∑

∑
κi=κ−1

φκ1 . . . φκn−1(q) ,

and is solved by (4.2), since

(�a −m2)
∑

∑
κi=κ−1

∫
dx G(x)φκ1(q + a− x) . . . φκn−1(q + a− x) |a=0

= (�a −m2)
∑

∑
κi=κ−1

∫
dx G(x+ a)φκ1(q − x) . . . φκn−1(q − x) |a=0 = −

∑
∑

κi=κ−1

φκ1 . . . φκn−1(q) .

Initial conditions at infinity apply in the following sense:

lim
t→−∞

φ(q + te0) = lim
t→−∞

∑

κ

gκ
∑

∑
κi=κ−1

∫
dx G(x+ te0)φκ1(q − x) . . . φκn−1(q − x) .

�

The integrals above make sense if we choose the symbols of the fields and their Fourier transforms
such that they decrease fast enough and such that the convolution of G and φ is well-defined.
For instance, at first order we find

φ1(q) =

∫
dk eikq

∫
dkN δ(k −∑iki) e

− i
2

∑
kiQkj φ̌(k1) . . . φ̌(kn−1) Ǧ(

∑
iki)

︸ ︷︷ ︸
=ȟφ(k)

where φ is chosen such that hφ(x) decreases fast and is sufficiently smooth. Hence, the expression
(4.2) for κ = 2 makes sense, and likewise one proceeds to higher orders κ.
For the initial condition that φ0, the field at zero-th order, is the incoming field, the interacting
field at κ-th order is

φκ(q) =
∑

∑
κi=κ−1

∫
dx ∆ret(x)φκ1(q − x) . . . φκn−1(q − x)

with the retarded propagator ∆ret = θ(x0)∆(x), since for G = ∆ret we find

lim
t→−∞

φκ(q + te0) = lim
t→−∞

∫
dx ∆(x+ te0)

∑
∑

κi=κ−1

φκ1 . . . φκn−1(q − x) = 0 for κ 6= 0 .

Remark 4.2 By construction, the interacting field is Hermitean,

φκ(q)
† =

∑
∑

κi=κ−1

∫
dx ∆ret(x)φ

†
κn−1

(q − x) . . . φ†κ1
(q − x) = φκ(q) , (4.3)

if the zero-th order field is Hermitean, φ†
0 = φ0. The standard proof follows immediately from

the fact that the retarded propagator ∆ret is real.



4.1. THE CLASSICAL PERTURBATIVE SETUP 63

The graph theory of the Yang-Feldman equation is given by rooted trees, where the end branches
symbolize free fields φ0 and where the connecting lines between inner vertices symbolize the
appropriate Green function G. Consider as an example a theory with φ3-self-interaction and
initial conditions as above. Then the interacting field at first order is given by

φ1(q) =

∫
dy ∆ret(y)φ0(q − y)φ0(q − y) ,

which can be symbolized by the following graph,

r❅� }
∆ret(y) .

q − y →
q →

At second order of the perturbative expansion, we find

φ2(q) =

∫
dy ∆ret(y) (φ0(q − y)φ1(q − y) + φ1(q − y)φ0(q − y) )

=

∫
dy ∆ret(y)

∫
dz ∆ret(z)

(
φ0(q − y)φ20(q − y − z) + φ20(q − y − z)φ0(q − y)

)
,

which can be cast into a graphical language as follows: start from

φ0 φ1r❅�q − y →
q → +

φ1 φ0r❅�q − y →
q →

and append the first order graph to obtain

r r❅�
❅��q − y →

q →

← q − y − z

+

�❅ rr
❅❅�← q − y
← q

q − y − z →
.

More generally, the classical graph theory (tree level) of the Yang-Feldman approach is con-
structed by appending trees of lower order to one another. Each tree starts with a root, has
a number of inner vertices connected by lines, as well as a number of endpoints. The lines
connecting inner vertices correspond to the Green functions, and the end-branches symbolize
free fields. The following rule applies:

Remark 4.3 For a self-interacting φn-theory, every vertex which is neither the root at q nor
an endpoint has n − 1 successors. Such vertices are referred to as inner vertices. At order κ
in the perturbative expansion, κ inner vertices occur in each tree, and each tree at order κ has
κ (n− 2) + 1 endpoints and one root.

Proof: By induction: At first order, we have indeed n−1 = 1 (n−2)+1 endpoints. Appending
one more vertex to the endpoint of a graph of order κ− 1, which, by induction hypothesis, has
(κ − 1) (n − 2) + 1 endpoints, swallows one endpoint while adding n − 1 new ones, leaving us
with (κ− 1) (n − 2) + 1− 1 + (n − 1) = κ (n− 2) + 1 endpoints. �

The number of graphs at κ-th order perturbation theory is therefore given by a well-known
combinatorial formula:

Remark 4.4 For a φn-self-interacting theory, the number of tree graphs at the κ-th order of
the perturbative expansion in the Yang-Feldman approach is

(κ (n − 1)) !

(κ (n − 2) + 1) !κ !
. (4.4)
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Proof: The number P (~r) of plane forests of type ~r = (r0, . . . , rm), where ri counts the number
of vertices (including the endpoints, but not counting the root) which have i successors, is given
by (cf. [77])

P (~r) =
s

l

l !

r0 ! r1 ! . . . rm !
,

where l is the total number of vertices, l =
∑
ri, and where s is the number of components,

s =
∑

i(1−i) ri > 0. In a Yang-Feldman tree graph, the κ (n−2)+1 endpoints have 0 successors,
while each of the κ inner vertices is succeeded by n−1 vertices. Not counting the root, the total
number of vertices (inner vertices plus endpoints) is l = κ (n− 2)+1+κ = κ (n− 1)+1. Hence,
the number of trees is given by P (~r) with ~r = (κ (n − 2) + 1, 0, . . . , 0, κ) ∈ Nn . The number of
components indeed is s = κ (n − 2) + 1 + (1− (n− 1))κ = 1 (the trees are connected). �

As we have seen in the explicit calculation for a φ3-self-interaction, there is one tree graph at
first order, and two at second order. At third order, one has to consider 5 different graphs, while
in fourth order we have to take 14 graphs into account. In a theory with φ4-self-interaction, in
second order perturbation theory 3 graphs are to be investigated, in third and fourth order 12
and 55 graphs, respectively.
Of course, the above analysis does not yet take into account quantum properties of the fields,
which by application of Wick’s theorem will result in the appearance of loop graphs. Before
proceeding along these lines, let us consider the support properties of the interacting field’s
integrands, the so-called retarded products Rκ(q;x1, . . . , xκ),

φκ(q) =

∫
dx1 . . . dxκRκ(q;x1, . . . , xκ) .

By construction, supp Rκ(q; · ) ⊂ {(x1, . . . , xκ) |xi ∈ V+ , i = 1, . . . , κ }, since at order κ a
product of κ retarded propagators ∆ret(x1) . . .∆ret(xκ) appears. Redefining the integration
variables, we moreover find

R1(q;x1) = ∆ret(x1)φ0(q − x1)n−1 ,

R2(q;x1, x2 − x1) = ∆ret(x1)∆ret(x2 − x1)
n−1∑

l=1

φ0(q − x1)l−1 φ0(q − x2)n−1 φ0(q − x1)n−1−l ,

R3(q;x1, x2 − x1, x3 − x2) =

= ∆ret(x1)∆ret(x2 − x1)∆ret(x3 − x2) ·

·
n−1∑

l1=1

φ0(q − x1)l1−1
( n−1∑

l2=1

φ0(q − x2)l2−1 φ0(q − x3)n−1 φ0(q − x2)n−1−l2
)
φ0(q − x1)n−1−l1

+ ∆ret(x1)∆ret(x2 − x1)∆ret(x3 − x1) ·

·
n−2∑

l1=1

φ0(q − x1)l1−1 φ0(q − x2)n−1
n−l1−1∑

l2=1

φ0(q − x1)l2−1 φ0(q − x3)n−1 φ0(q − x1)n−1−l1−l2 .

More generally, Rκ(q; ·) can always be written as a function of x1, x2−x1, . . . , xi+1−xi, . . . , xκ−
xκ−1.

Remark 4.5 The support of the retarded products with respect to the variables x1, . . . , xκ, ,
supp Rκ(q; · ), is contained in the set

{(x1, . . . , xκ) |x1 ∈ V+ , (xi − xi−1) ∈ V+ , i = 2, . . . , κ } .
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This is a consequence of the fact that, with notation xi − xi−1 |i=1
def
= x1, from xi − xi−1 ∈ V+

for i = 1, . . . , κ it can be inferred that the 4-vector xi+l − xi, for any 0 < l ≤ κ − i, is again
inside the future lightcone, since

xi+l − xi = (xi+l − xi+l−1) + (xi+l−1 − xi+l−2) + · · ·+ (xi+1 − xi) ∈ V+ .

Contrary to the ordinary case, however, q is not included in this causality structure. If q were
a 4-vector x ∈M4 , we could perform the coordinate transformation xi 7→ yi = x− xi and, from
the fact that x− yi ∈ V+, yi− yj ∈ V+ implies that x− yj = (x− yi) + (yi− yj) ∈ V+, we derive
the well-known result that on ordinary Minkowski space,

supp Rκ(x; · ) ⊂ {(y1, . . . , yκ) |x− yi ∈ V+ , i = 1, . . . , κ− 1 } .

4.2 Wick products and unitarity

Let us now turn to the definition of quantum fields on the noncommutative Minkowski space
which will give rise to loop graphs in the perturbative expansion (4.2). Starting point is the
definition of the free quantum field (1.12) on the noncommutative Minkowski space first given
in [27],

φ(q + x) = (2π)−3/2

∫
dk

2ωk

(
a(k) ⊗ e−ik(q+x) + a†(k) ⊗ e+ik(q+x)

) ∣∣∣
k∈H+

m

,

where H+
m denotes the positive mass-shell, and where a and a† are the ordinary annihilation and

creation operators on the symmetric Fock space H. In the setting which is investigated here,
this formal equation is to be understood in terms of the following definition.

Definition 4.6 Let φ(x) be an ordinary Wightman field [78] on M4 with invariant domain D,
and let F be the corresponding field algebra. A q-field φq on the noncommutative spacetime E
associated to φ is a linear map, formally denoted

g 7→ φq(g) =

∫
dx φ(q + xI) g(x) ,

from testfunctions g ∈ S(R4 ,Z) to closable operators affiliated to F ⊗ E, such that, for each
state ω on E with ω(eikq) ∈ C∞

b (R4 ,Z) and for each unit vector Ψ ∈ D with Ψ(·) = 〈Ψ| · |Ψ〉,
the following two conditions are satisfied:

1. Ψ ⊗ ω is in the domain1 of φq(g), g ∈ S(R4 ,Z), i.e., after the field is smeared with a
testfunction, evaluating in a state on E and taking an expectation value are well-defined
operations.

2. (Ψ⊗ω) (φq(·)) ∈ S(R4 ,Z)′, i.e. evaluation in a state on E as well as taking an expectation
value yields a continuous linear functional on the testfunction space.

Here, Z denotes the centre of the multiplier algebra of E and ′ denotes the dual space.

Again, as usual, the shorthand notation φ(q + x) will replace φ(q + xI). The above is still
a preliminary definition. In section 5.2, we shall see that the testfunction space as well as
the invariant domain and the admissible states on E have to be modified. A certain property

1cf. [27]: let A be a C∗-algebra to which A is affiliated (see page 9). A state ω on A is in the domain of A, if

it is in the support of A and ω(A2)
def
= sup

{

ω(f(A)) | f ∈ C0(R)+ , f(λ) ≤ λ2, λ ∈ R
}

< ∞.
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regarding analyticity will be required. The testfunctions may take values in Z, and at times it
will be suitable to write g(Q;x) to emphasize this. Since I ∈ Z, it is possible to identify g(x)
with g(x)I such that S(R4 ) ⊂ S(R4 ,Z) and, hence, ordinary testfunctions taking values in C

are included in the definition. If a fixed noncommutativity matrix θ is employed, g is simply an
element of S(R4n) and (Ψ ⊗ ω) (φq(·)) ∈ S(R4)′. Note that the admissible states have to be in
the domain of any monomial of the qµ in order to ensure that ω(eikq) be smooth, since taking
derivatives of the exponential will result in the appearance of polynomials.
Again, the fields are merely affiliated to the field algebra for the same reason and in the same
sense as usual: the field operators are unbounded and the field algebra F is the corresponding
Weyl algebra. This is merely a fact to be kept in mind; in all calculations which follow, the
unbounded field operators are used.
Explicitly, after smearing in a testfunction f and a state ω, the free q-field acts on state |ϕ〉 ∈ H

as

(ω(φq(f)) |ϕ〉)(n)(p1, . . . , pn) = c
√
n+ 1

∫
dp

2ωp

ψω(p) f̂(p)ϕ
(n+1)(p, p1, .. , pn)

+
c√
n

n∑

i=1

ψω(−pi) f̂(−pi)ϕ(n−1)(p1, .. , p̂k, .. , pn) , (4.5)

where ̂ indicates omission of the argument, and where ψω(k) = ω(eikq) and c > 0.
The n-fold tensor product of q-fields associated to φ can easily be defined in this framework. It
is a linear map, formally denoted

φ⊗n
q (g) =

∫
dx1 . . . dxn φ(q + x1) · · · φ(q + xn) g(x1, . . . , xn) , (4.6)

which maps testfunctions g ∈ S(R4n ,Z) to closable operators affiliated to F ⊗ E such that the
two conditions from Definition 4.6 are satisfied (with R4 replaced by R4n). The integral kernel
φ⊗n(q;xN ) of φ⊗n

q is given by

φ(q + x1) · · · φ(q + xn) = φ⊗n(q;xN ) =

∫
dkN φ̂(k1) . . . φ̂(kn) ⊗

∏

l∈N
e−i kl (q+xl) (4.7)

with the ordinary field’s Fourier transform φ̂. More general distributions on the noncommutative
Minkowski space can be defined as follows.

Definition 4.7 A q-distribution uq associated to a Wightman field φ on M4 is a linear map,
formally denoted

uq(g) =

∫
dx1 . . . dxn u(q;x1, . . . , xn) g(x1, . . . , xn) ,

from testfunctions in S(R4n ,Z) to closable operators affiliated to F ⊗E such that the conditions
from Definition 4.6 are satisfied (with R4 replaced by R4n).
A Q-distribution uQ associated to φ is a q-distribution which takes values in closable operators
affiliated to F⊗Z, the tensor product of the field algebra and the centre Z. It is formally denoted

uQ(g) =

∫
dx1 . . . dxn u(Q;x1, . . . , xn) g(x1, . . . , xn) ,

where g ∈ S(R4n ,Z).

Notation: From now on, all q-distributions considered are associated to the free field, and will
simply be called “q-distributions”.
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From the classical setup discussed in the previous section we may conclude that the quantum
perturbation theory in the Yang-Feldman approach on the noncommutative Minkowski space
gives rise to q-distributions. One of the tasks in setting up the perturbation theory will be to
give meaning to products of fields whose arguments may coincide, for example,

φ(q + x1)φ(q + x2) . . . φ(q + x1) . . . φ(q + xn) .

This situation differs from the one analysed in chapter 3, where coinciding points were defined
with respect to the noncommuting coordinates qµ.

Definition 4.8 For a q-distribution uq on S(R4n ,Z), the limit of coinciding points is defined by
evaluating uq in a sequence of compactly supported testfunctions gr ∈ C0(R

4n) which approaches

δ(4)(x− x1) · · · δ(4)(x− xn)

with supp gr ⊂ supp gr+1 and
⋂

supp gr = {(x, . . . , x)} ∈ R4n . If it is well-defined, it renders a
q-distribution uq on S(R4 ,Z).

A field monomial is not well-defined in this limit. This follows after evaluation in a testfunc-
tion g ∈ S(R4 ,Z) and a state ω by the same argument as usual: for ki ∈ H±

m, the function
g(
∑
ki)ψω(

∑
ki), where ψω(

∑
ki) = ω(ei

∑
ki q), does not decrease fast in all directions2.

Now re-consider the products of fields, where all annihilation and creation operators are normally
ordered, in view of the above definitions. Such products arise from (4.7) by applying the ordinary
definition of normal-ordering in momentum space (1.15) to the product φ̂(k1) . . . φ̂(kn),

:φ⊗n
q (x1, ... , xn) :

def
= (2π)−4n

∫
dkN : φ̂(k1) . . . φ̂(kn) : ⊗

∏

l∈N
e−ikl(q−xl) . (4.8)

From ordinary quantum field theory we may conclude that the above yields a well-defined q-
distribution :φn

q : on S(R4 ,Z) when evaluated in the limit of coinciding points. These normally
ordered products will serve as a preliminary definition; in chapter 5, a thorough investigation
of an appropriate definition of Wick products will follow and the so-called quasiplanar Wick
products will be introduced. In what follows, the tensor product sign is dropped to simplify the
notation. It is emphasized that in equation (4.8) the order of the exponentials is not changed
when the fields are brought into normal order. Any manipulation concerning the ordering of
the fields, such as the application of Wick’s theorem (1.16), will leave the noncommutative
exponentials alone.

Let us now consider the quantum interacting field in the Yang-Feldman approach on E and
find the general rules for the perturbation theory resulting from the use of the above normally
ordered products defined above. We start by considering the first two orders arising in φ3-theory
as an example. Throughout, initial conditions are applied such that φ0 is the incoming field.

Notation: In what follows, the zero order field φ0 = φin being a free field is simply labelled by φ
(as in the definition of q-fields). The full solution of the Yang-Feldman equation (the interacting
field) is labelled by φint.

Since the fields are now operator-valued distributions, the convolutions with Green functions are
no longer a priori well-defined. Hence, an infrared cutoff is introduced via an adiabatic cutoff

2See [30] for an investigation of distributions and the twisted convolution product, where it was shown, for
instance, that the twisted convolution product of speedily decreasing distributions is again a speedily decreasing
distribution; a result which is unfortunately not applicable here, since the distributions under consideration are
not of this type.
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function g such that

φg1(q)
def
=

∫
dy g(y)∆ret(y) :φ(q − y)φ(q − y) : =

(
(g∆ret)× :φ2 :

)
(q) ,

and for κ ≥ 2

φgκ(q) =
∑

κ1+···+κn−1=κ−1

∫
dx g(x)∆ret(x)φκ1(q − x) . . . φκn−1(q − x) . (4.9)

In ordinary quantum field theory, the (temporary) introduction of such a cutoff is not problem-
atic; one simply replaces the original interaction term φn−1(x) by φn−1(x)g(x) which in (4.2)
yields

φgκ(y) =
∑

κ1+···+κn−1=κ−1

∫
dx ∆ret(x) g(y − x)φκ1(y − x) . . . φκn−1(y − x) .

Contrary to that, (4.9) does not follow from such a modified interaction term. Bearing in
mind, however, that in the end one will pass to the adiabatic limit of expectation values in a
similar manner as discussed in the framework of the Hamiltonian approach, this is not a major
drawback, but should instead be seen as an effective intermediate step in defining the theory3.
In the following chapters, emphasis is put on the analysis of ultraviolet divergences.
To save notation, the superscript g is now dropped again. For the interacting field at second
order we then find

φ2(q) =

∫
dy g(y)∆ret(y)

∫
dz g(z)∆ret(z) ·

·
(
φ(q − y) :φ2(q − y − z) : + :φ2(q − y − z) :φ(q − y)

)
.

Applying Wick’s theorem (1.16), the products of Wick monomials are now rewritten as a sum
of normally ordered expressions,

φ(q − y) :φ2(q − y − z) : = :φ(q − y)φ2(q − y − z) : +

+ i (2π)−8

∫
dp dk1dk2 ∆̂+(p)

(
δ(4)(p+ k1) : φ̂(k2) : + δ(4)(p + k2) : φ̂(k1) :

)

· e−ip(q−y) e−ik1(q−y−z) e−ik2(q−y−z)

= :φ(q − y)φ2(q − y − z) : + i∆+(z)φ(q − y − z)

+ i (2π)−8

∫
dp ∆̂+(p) e

−ipz

∫
dk φ̂(k) e−ipQk e−ik(q−y−z) .

In the same manner :φ2(q − y − z) : φ(q − y) is normally ordered, and we obtain

φ2(q) =

∫
dy g(y)∆ret(y)

∫
dz g(z)∆ret(z)

(
:φ(q−y)φ2(q−y − z) : + :φ2(q−y − z)φ(q−y) :

)

+

∫
dy g(y)∆ret(y)

∫
dz g(z) (∆ret · i∆+(z)−∆ret · i∆−(z) )φ(q − y − z)

+ (2π)−4

∫
dy g(y)∆ret(y)

∫
dz g(z)∆ret(z)

∫
dk
(
i∆+(z +Qk) e−ik(q−y−z) φ̂(k)

− i∆−(z −Qk) e−ik(q−y−z) φ̂(k)
)
.

3Again it should be mentioned that a very different possibility to treat the infrared problem may be based on
the approach pursued in [88].
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In terms of graphs, the four contractions can be symbolized as

r r❅�
��

+

rr❅
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�

+

r r
��
❅

+

rr
❅❅
�

.

To see this, consider the second and the fourth graph. They correspond to the contractions
which arise from bringing φ(q − y) :φ2(q − y − z) : into normal order. In doing so, the field
φ(q− y) is contracted once with the first field at the vertex q− y− z, and once with the second
field at the vertex q − y − z (counted from left to right).
Similar to what was found within the Hamiltonian framework in chapter 2, we have thus ar-
rived at two qualitatively different contributions; one is a product of a field and an ordinary
distribution, while the other depends on the twisting (or rather on the operator Q). As should
be obvious from the above calculation, the mechanism leading to the different contributions
is the same as in the Hamiltonian approach or in the modified Feynman rules, and again the
contributions are referred to as planar and nonplanar graphs, respectively. The following section
will be concerned with a systematic analysis of the graph theory in this context.
Before proceeding, let us consider the above nonplanar graphs in more detail, and reconsider
the unitarity problem in the Yang-Feldman approach. In order to make the connection with the
modified Feynman rules, the cutoff is dropped for the rest of this section. Using the fact that
in every fibre Eσ, the following equation holds,

∫
dzf(z) · (g ⋆ h)(z) =

∫
dz(f ⋆ g)(z) · h(z), the

second order term may be rewritten as

c

∫
dy∆ret(y)

∫
dz

∫
dl ∆̂ret(l)

∫
dp

∫
dk
(
∆̂+(p) e

−ipz−ilz e+ilQp e−ik(q−y−z) φ̂(k)

− ∆̂−(p) e
−ipz−ilz e−ilQp e−ik(q−y−z) φ̂(k)

)

=

∫
dy∆ret(y)

∫
dz ( i∆+ ⋆2Q ∆ret(z)−∆ret ⋆2Q i∆−(z) )φ(q − y − z) .

By abuse of notation, ⋆2Q stands for the twisted convolution product with respect to 2Q. This
notation is used to emphasize that the fibrewise product with 2σ instead of σ is used, but that
the expression is understood as being defined on the full bundle. In more precise terms, the
expression above is a q-distribution on S(R8 ,Z) which may be written as a tensor product of a
Q-distribution and a field φq.
Let us now turn again to the question of the connection between time-ordering and unitarity.
As in the Hamiltonian formalism, we find that the time-ordering, hidden here in the retarded
propagator, can be absorbed into a Feynman propagator in the planar contribution, since

∆ret (i∆+ − i∆−) = i∆2
F − i∆2

− .

This is not the case for the nonplanar contribution. Again, an additional product of retarded
and advanced propagators appears,

i∆+ ⋆2Q ∆ret −∆ret ⋆2Q i∆− = i∆F ⋆2Q ∆F − i∆− ⋆2Q ∆− −∆av ⋆2Q i∆ret .

As discussed in section 2.4, this contribution does not vanish for general Qµν .
Not having assumed from the outset that Feynman propagators serve as internal lines, no prob-
lems with formal unitarity arise. Explicitly, from the equations

i∆+ ∆ret(z)−∆ret i∆−(z) = −∆ret i∆−(z) + i∆+ ∆ret(z)

i∆+ ⋆2Q ∆ret(z)−∆ret ⋆2Q i∆−(z) = −∆ret ⋆2Q i∆−(z) + i∆+ ⋆2Q ∆ret(z)

we obtain φ†2 = φ2. In fact, this is true at any order perturbation theory.
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Remark 4.9 If the incoming field φ is Hermitean, the interacting field φκ(q) is Hermitean at
any order κ.

Proof: By induction as in the classical case (4.3). The important fact to note is that normal
ordering does not spoil Hermiticity, which in turn is a consequence of the fact that normal
ordering is defined by subtracting Hermitean terms (namely vacuum expectation values). �

As mentioned in section 2.1, it was recognized early that for interactions on the ordinary
Minkowski space which are nonlocal in time, the Yang-Feldman approach yields out-going fields
which will in general not satisfy the canonical commutation relations. It was then deduced that
there is no unitary operator connecting the asymptotic in- and the out-fields. Concerning the
asymptotic behaviour of the theory considered here, we will see in section 5.3, that it is to be
seriously modified, and, therefore, that the question of the unitarity of the S-matrix has to
be reconsidered on a more fundamental level. On the level of the interacting field, however,
unitarity means that the field is Hermitean, which is satisfied in the above framework.

4.3 Contractions and microcausality

In this section the prerequisites are provided for stating the general rules to calculate the in-
teracting field at any given order, and general properties of the resulting n-point functions are
discussed. From the example considered in the preceding section, we expect planar as well as
nonplanar graphs to appear, and the combinatorics will turn out to be quite complicated com-
pared to the one used in field theory on the ordinary Minkowski space. In order to treat such
graphs systematically, some notations and combinatorial prerequisites are needed.

Let J be an ordered subset of N with 2a elements, J = (j1, . . . , j2a) with jl < jk if l < k. Then
an ordered pairing of J is a partition of J into a ordered pairs, i.e. into pairwise disjoint ordered
subsets of two elements (i1, j1) , . . . , (ia, ja) with i1 < i2 < · · · < ia and ik < jk.

Let N be an ordered set of n elements, N = (1, . . . , n). An ordered pairing in N is an ordered
pairing of a subset J ⊂ N . Such a pairing will be labelled by a tuple (A,α) where A ⊂ J is an
ordered subset of J ⊂ N and α is an injective map α : A→ N with i < α(i) for i ∈ A, such that
the ordered pairs are given by (i, α(i)), i ∈ A, and J = A ∪ α(A). The first element of the pair
(i, α(i)) is also used as a label for the whole pair. Small letters denote the number of elements
of sets, i.e. a = |A|.

Definition 4.10 “Intersection and Enclosure Matrix” Let (A,α) be an ordered pairing in
N as above, and let U be the ordered subset U = N\(A ∪ α(A)). The pair (i, α(i)) encloses the
index l ∈ U if i < l < α(i). Two pairs intersect if i < j < α(i) < α(j).

The enclosure matrix E of the pairing is the a × u-matrix with Eil = 1, if the pair (i, α(i))
encloses the index l, and 0 otherwise (i ∈ A, l ∈ U). The intersection matrix I is defined as
the upper diagonal a × a-matrix with Iij = 1 if the pairs (i, α(i)) and (j, α(j)) intersect and 0
otherwise (i < j ∈ A).
A pairing is called planar if both its intersection and enclosure matrix are trivial, i.e. if
I = E = 0.

With the sign function ǫ(x) =

{
1 x > 0
−1 x < 0

, the intersection and the enclosure matrix of a

pairing (A,α) can be given explicitly as follows: I ij = 0 for i > j, Eil = 0 for i > l, and

Iij = 1
2 (ǫ(j − i)− ǫ(α(j) − i)− ǫ(j − α(i)) + ǫ(α(j) − α(i)) ) for i < j ,

Eil = 1
2 (ǫ(l − i)− ǫ(l − α(i)) ) for i < l .



4.3. CONTRACTIONS AND MICROCAUSALITY 71

In terms of graphs, these definitions can be understood more easily as follows:

Remark 4.11 For the ordered set N = (1, . . . , n) draw a number of n points in a horizontal
line. Then, for fixed ordered pairing (A,α), connect each point i ∈ A with its respective partner
α(i) by a curve. Then two pairs intersect if and only if their connecting curves intersect, and a
pair encloses an index l ∈ N\(A ∪ α(A)) if and only if their connecting curve encloses it.

Example: Consider the pairing (A,α) inN = (1, . . . , 8) where A = (2, 4, 6) and α(A) = (3, 7, 8).
The corresponding graph then is ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛

1 2 3 4 5 6 7 8 , and it allows to read off intersection and
enclosure matrix: I46 = 1, E45 = 1, all others 0.

Using this notation, a Wick-ordered product of q-fields as given by equation (4.8) may be
rewritten in terms of products of q-fields in the following convenient way.

Proposition 4.12 Let φ⊗n
q , :φ⊗n

q : denote the q-distributions as in (4.6) and (4.8). Then

:φ⊗n
q : = φ⊗n

q +
∑

(A,α)

(−1)|A|K(A,α)
n , (4.10)

where the sum runs over all ordered pairings in N with A 6= ∅, and where K
(A,α)
n is a q-

distribution with kernel

K(A,α)
n (q;xN ) = c

∫
dkAdkU I(kA) E(kA, kU )

∏

j∈A
i ∆̂+(kj) e

−ikj(xj−xα(j))
∏

l∈U
φ̂(kl) e

−ikl(q+xl) ,

where c = (2π)−4(n−|A|), U = N\(A ∪ α(A)),

I(kA) = exp
(
− i

∑

i<j
i,j∈A

IijkiQkj
)

and E(kA, kU ) = exp
(
− i

∑

i<l
i∈A,l∈U

EilkiQkl
)

with intersection matrix I and enclosure matrix E as in Definition 4.10.

Proof: Apply (1.15) to rewrite the normally ordered product : φ̂(k1) . . . φ̂(kn) : which appears
in (4.8) in terms of un-ordered products of fields. With the notations introduced in Defini-
tion 4.10, we find (4.10) with

(−1)|A|K(A,α)
n (g) = (2π)−4n

∫
dxN g(xN )

∫
dkN exp

(
−i
∑

j∈N
kj(q + xj)

)

· exp
(
− i

2

∑

i<j
i,j∈N

kiQkj
)
(2π)4|A|∏

i∈A
(−i) ∆̂+(ki) δ

(4)(ki + kα(i))
∏

l∈U
φ̂(kl) .

Let ǫ(r) again denote the sign of r ∈ Z, and rewrite the twisting as

∑

i<j
i,j∈N

kiQkj = 1
2

∑

i,j∈N
ǫ(j − i) kiQkj .
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Evaluating the δ-distributions, i.e. replacing kα(i) by −ki, we then obtain for the twisting

∑

i<j
i,j∈U

kiQkj +
1
2

∑

i,j∈A

(
ǫ(j − i)− ǫ(α(j) − i)− ǫ(j − α(i)) + ǫ(α(j) − α(i))

)
kiQkj

+ 1
2

∑

i∈U
j∈A

(ǫ(j − i)− ǫ(α(j) − i)) kiQkj + 1
2

∑

j∈U
i∈A

(ǫ(j − i)− ǫ(j − α(i))) kiQkj

=
∑

i<j
i,j∈U

kiQkj + 2
∑

i<j∈A
Iij kiQkj + 2

∑

i<l
i∈A,l∈U

Eil kiQkl ,

and the claim follows. �

The q-distribution K
(A,α)
n is referred to as a general contraction. It is uniquely determined by

the ordered pairing (A,α) in N . Hence, a unique graph may be assigned to any contraction
according to Remark 4.11, and the corresponding twisting can be read off directly. For example,

the twisting of the contraction K
(A,α)
8 where A = (2, 4, 6) and α(A) = (3, 7, 8) is exp(−ik4Qk6−

ik4Qk5). The momenta which are not contracted are referred to as external momenta, while
the contracted fields’ momenta are called internal momenta. A contraction is called planar if its
pairing is planar (i.e. if I = E = 0).

The graphs can be used to find all contractions which appear in (4.10). To that end, simply draw
all possibilities to pairwise connect a number of 2a points out of n points drawn in a horizontal
line, where a runs from 1 to the Gauss bracket [n/2] = maxm∈N(m ≤ n/2). Note that while
these graphs bear some similarity with the ones introduced in section 2.3, the calculation of the
resulting twisting is different. The reason that such graphs are convenient in both approaches
is that they enable us to keep track of the position of the contracted fields in (tensor) products
of fields.

A general contraction with a = n/2, where n is even, is a Q-distribution. This follows clearly
from the proof of Proposition 4.12: if all fields are contracted, U = ∅, and there is no longer any
dependence on q, while the twisting in such contractions may well be nontrivial.

Remark 4.13 The contractions with a = n/2, n even, constitute the vacuum expectation
values of free fields,

W (Q;x1, . . . , xn)
def
= 〈φ(q + x1) · · ·φ(q + xn)〉0 =





∑
(A,α)
a=n/2

K
(A,α)
n (Q;x1, . . . , xn) for n even

0 for n odd ,

where with the notation of Definition 4.6, 〈 · 〉0 = Ω ⊗ id with Ω(·) = 〈Ω| · |Ω〉, Ω being the
ordinary Fock vacuum of the scalar free field. As in the ordinary case, vacuum expectation
values of an odd number of fields vanish. Moreover, W is a translation-invariant Q-distribution
which only depends on the differences of the coordinates xi. In analogy with Wightman theory
we will speak of n-point functions.

Proof: The claims are proved by the same method as used in the proof of Proposition 4.12. �

Consider as an example the 4-point function

W (Q;x1, . . . , x4) = 〈φ(q + x1) · · · φ(q + x4)〉0 ,
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which in terms of the graphs introduced in Remark 4.11 may be symbolized as the sum of all
different possibilities to pairwise connect four points,

〈 ❛ ❛ ❛ ❛ 〉0 = ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛
From the above discussion it follows that the 4-point function has one non-planar and two planar
contributions,

W (Q;x1, . . . , x4) = i2∆+(x1 − x2)∆+(x3 − x4) + i2 ∆+(x1 − x4)∆+(x2 − x3)

+ (2π)−6

∫
dk1

2ωk1

dk2

2ωk2

e−ik1 (x1−x3)−ik2 (x2−x4) e−ik1Qk2 .

In fact, the only n-point function (for n even) which is completely independent of Q is the
2-point function,

W (Q;x1, x2) = i∆+(x1 − x2) .
All other n-point functions have some nonplanar contributions, since we sum over all possible
pairings (A,α) of length n/2.
Let us collect some properties of the n-point functions which follow directly from the definition
together with the classic results for fields on the ordinary Minkowski space (cf., for instance, [78]).
The n-point functions behave as ordinary Wightman functions under complex conjugation,

W (Q;x1, . . . , xn) =W (Q;xn, . . . , x1) ,

and they are covariant under Poincaré transformations (with σ → ΛσΛt), since

U(Λ, a)φ(q + x)U(Λ, a)−1 = φ(Λ(q + x) + a) .

Moreover, the n-point functions are translation-invariant with respect to the commutative ar-
guments xi, and hence their Fourier transforms have support only in

∑n
i=1 pi = 0. Furthermore,

the spectral property holds by definition, since we treat only free fields.
After evaluation in a state ω, the n-point functions are moreover positive definite in the usual
sense (φ∗ = φ)

∑

j,k

∫
dx1 . . . dxj dy1 . . . dyk fj(x1, ... , xj) ·

·ω
(
〈φ(q + xj) · · ·φ(q + x1)φ(q + y1) · · · φ(q + yk)〉0

)
fk(y1, ... , yk) ≥ 0 ,

for any sequence of testfunctions {fj}, fj ∈ S(R4j ,Z) with fj = 0 except for a finite number of
j. This is proved as in the ordinary case (see [78]) by using the fact that the inequality above
is another way of saying that evaluation of the norm of the state

f0 |Ω〉+
∫
dx1 φ(q + x1) f1(x1) |Ω〉+

∫
dx1dx2 φ(q + x1)φ(q + x2) f2(x1, x2) |Ω〉+ . . .

in ω yields a non-negative result.
But, apart from the lowest possible order, the n-point functions (for n even) are not local in the
sense of Wightman theory. While for the 2-point function we find

W (Q;x1, x2) = i∆+(x1 − x2) = i∆+(x2 − x1) =W (Q;x2, x1) for (x1 − x2)2 < 0 ,

this ceases to be the case when more fields are involved,

W (Q;x1, . . . , xi, xj , . . . , xn) 6=W (Q;x1, . . . , xj, xi, . . . , xn) for (xi − xj)2 < 0 ,



74 CHAPTER 4. THE YANG-FELDMAN EQUATION

as a short calculation for the 4-point function shows. It follows that the vacuum expectation
value of the commutator of two q-fields at spacelike separated points vanishes,

〈[φ(q + x1), φ(q + x2)]〉0 = 0 for (x1 − x2)2 < 0 .

But contrary to the ordinary case, this is no longer true, if the vacuum expectation value is not
taken: for the commutator itself we find

[φ(q + x1), φ(q + x2)] =

=

∫
dk1dk2

(
φ̌(k1)φ̌(k2) e

− i
2
k1Qk2 − φ̌(k2)φ̌(k1)e−

i
2
k2Qk1 ) ei(k1+k2)q+ik1x1+ik2x2

=

∫
dk1dk2 φ̌(k1)φ̌(k2) ( e

− i
2
k1Qk2 − e+ i

2
k1Qk2 ) ei(k1+k2)q+ik1x1+ik2x2

+

∫
dk1dk2 [φ̌(k1), φ̌(k2)] e

+ i
2
k1Qk2 ei(k1+k2)q+ik1x1+ik2x2

which is in general not 0 even for (x1− x2)2 < 0. Hence, microcausality in the ordinary sense is
lost.
As an aside, it is mentioned here, that, since the two noncommutative structures (the fields on
one side and the noncommutative spacetime on the other) are completely unrelated, one might
think that the ordinary commutator of tensor products is not the correct notion to encode
locality. For instance, considering qµ1 = qµ ⊗ I and qµ2 = I ⊗ qµ such that [q1, q2] = 0 as in
chapter 3, we find that the commutator [φ(q1+x1), φ(q2+x2)] indeed vanishes for (x1−x2) < 0.
This may provide sufficient motivation for an attempt to produce local commutation relations
by introducing a new commutator for q-fields. For example, one could consider

[φ(q + x1), φ(q + x2)]1
def
=

∫
dk1dk2 [φ̌(k1), φ̌(k2)] e

i(k1+k2)q+ik1x1+ik2x2 e−
i
2
k1Qk2

or

[φ(q + x1), φ(q + x2)]2
def
=

∫
dk1dk2 [φ̌(k1), φ̌(k2)] (e

ik1(q+x1)eik2(q+x2))sym

=

∫
dk1dk2 [φ̌(k1), φ̌(k2)] e

i(k1+k2)q+ik1x1+ik2x2 (e−
i
2
k1Qk2 + e−

i
2
k1Qk2)

which both lead to local commutation relations for two free fields. Obviously, such a construction
must be made consistent with the way the Wick ordering is defined, and possibly interesting
results could be produced along these lines. The disadvantage is that both commutators violate
the Jacobi identity, while [φ(q + x1), φ(q + x2)]1 is not even antisymmetric. In any case, these
prescriptions fail to produce local commutation relations when products of fields are considered.
Quite surprisingly the cluster decomposition property is still valid for free fields. While the proof
for general Wightman fields uses locality (cf. [78], and references therein), it is not required when
the vacuum expectation values of free fields are considered. This is a consequence of the fact
that, in the case of free fields, the two-point functions are known to decrease exponentially for
spacelike arguments.

Proposition 4.14 “Cluster decomposition property” The cluster decomposition property
holds for the vacuum expectation values of free q-fields: Let a be a spacelike vector, and λ > 0.
Then

W (Q;x1, . . . , xj , xj+1 + λa, . . . , xn + λa)→W (Q;x1, . . . , xj)W (Q;xj+1, . . . , xn)

for λ→∞ as distributions in S ′(R4n ,Z).
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Proof: By definition, the n-point function (for n even) is a sum over all pairings in N , each
labelled by a tuple (A,α) such that N = A ∪ α(A). All pairings, where for all i ∈ A both i
and α(i) are either in {1, . . . , j} or in {j + 1, . . . , n}, are independent of λa. They constitute
the right-hand side of the above equation. All other pairings, i.e. those with at least one pair
(i, α(i)) such that i ∈ {1, . . . , j} and α(i) ∈ {j + 1, . . . , n}, yield a dependence on λa such that
these terms vanish for λ → ∞. To see this, consider such a contraction and evaluate it in a
testfunction g which is assumed to be symmetric in its arguments. The contraction then is of
the form

∫
dx1 . . . dxn

∫
dkA

2ωkA

∏
e−iki(xi−xα(i)+λia) e−

i
2

∑
IijkiQkj g(x1, . . . , xn) ,

where λi = 0, if both i and α(i) are either in {1, . . . , j} or in {j+1, . . . , n}, and λi = λ otherwise
(and where, by assumption, λi = λ for at least one i ∈ A). Performing the integrations over
x1, . . . , xn yields ∫

dkA

2ωkA

∏
e−ikiλia e−

i
2

∑
IijkiQkj ǧ(k1, . . . , kn) .

Now define ȟ(k1, . . . , kn) = e−
i
2

∑
IijkiQkj ǧ(k1, . . . , kn), which is again a testfunction, then the

claim follows since the 2-point functions decrease exponentially for spacelike argument. �

The physical significance of the cluster decomposition property for general fields (not necessarily
free fields) is that, if two systems are separated by a very large spacelike distance, the interaction
between them decreases quickly (in fact, it decreases exponentially, e−λm, in the ordinary massive
case and at least as λ−2 in massless theories). The locality condition being violated, the cluster
decomposition property probably ceases to be true for vacuum expectation values of interacting
fields. In a way, the above proposition may be seen as a consequence of the fact that the free
field remains the same, and only in the interaction the effects of the noncommutative structure
of spacetime become apparent.
A different approach to the problem of locality which works for theories with fixed space-space-
noncommutativity matrix θ has been pursued in [4]. Lorentz covariance being broken in such
a setup, one takes the largest symmetry group which preserves the noncommutative struc-
ture, O(1, 1)×SO(2), and defines microcausality with respect to the group O(1, 1) (light-wedge
causality).

4.4 General rules

In this section, the general rules to calculate the interacting field at any given order are pre-
sented. As a prerequisite we need Wick’s theorem for ordinary normally ordered products on
the noncommutative Minkowski space.

Remark 4.15 Proposition 4.12 allows to rewrite Wick’s theorem (1.16) for n- andm-fold tensor
products of q-fields in the following compact notation:

:φ⊗n : :φ⊗m : = :φ⊗(n+m) : +
∑

(A,α) with
property (N |M)

:K
(A,α)
n+m : , (4.11)

where property (N |M) indicates that the sum runs over all ordered pairings in N ∪M such that

∅ 6= A ⊂ N , α(A) ⊂ M . In :K
(A,α)
n+m : all uncontracted fields are normally ordered with respect

to each other.



76 CHAPTER 4. THE YANG-FELDMAN EQUATION

For fixed a = |A|, there are n!m!
(n−a)! (m−a)! a! ordered pairings satisfying property (N |M), since this

is the number of possibilities to connect a elements of the ordered set N with a elements of the
ordered set M . Hence, the total number of terms in the sum in (4.11) is

min(m,n)∑

a=1

n!m!

(n− a)! (m− a)!a! .

The contractions K
(A,α)
n+m with (A,α) having property (N |M) can be symbolized by the graphs

introduced in Remark 4.11 in the following way: draw n+m points in a horizontal line, separated
by a small dash, then every contraction K with property (N |M) corresponds to one of the
possibilities to connect a points on the left-hand side with a points on the right-hand side. The
twisting can then be read off as in Remark 4.11.

The combinatorics of Wick’s theorem on the noncommutative Minkowski space as given by
equation (4.11) can also be applied, if some of the arguments in the Wick products coincide,
although, strictly speaking, the Wick product with coinciding arguments,

:φ(q + x1) . . . φ(q + xi) . . . φ(q + xi) . . . φ(q + xn) : ,

is no longer a tensor product φ⊗n
q . Hence, the interacting field at order κ is calculated from

formula (4.9) as follows. Start at the first order. Here, the fields are normally ordered by
definition of the interaction term, φ1 = (g∆ret)× :φn−1 :. Proceed to second order by inserting
φ1 at the appropriate position in

φ2(q) =

∫
dy g(y)G(y)

n−1∑

l=1

(φ · · ·
l−th
φ1 · · ·φ)(q − y) .

Bring the result into normal order by application of (4.11). Proceed to third order φ3 by inserting
φ1 as well as the expression found for φ2 (which is now normally ordered) at the appropriate
positions according to formula (4.9). Proceed in this way to order κ.

To write down directly all expressions which appear at a given order κ one may also apply the
graphical rules given below. For illustration, every step is followed by an example.

1. At order κ of the perturbation theory draw all

(κ (n − 1)) !

(κ (n − 2) + 1) !κ !

rooted tree graphs which occur according to Remark 4.4. The lines in these graphs which
connect the vertices are called connecting lines and are symbolized by double lines. Ac-
cording to Remark 4.3, each tree graph possesses κ(n − 2) + 1 endpoints, each of which
symbolizes a field φ.

Example:

r r❅�
❅��

+

�❅ rr
❅❅�

.

2. Starting from the root, label the first inner vertex as q − x1. The inner vertices which are
connected to the vertex q−x1 are then labelled q−x1−x2, q−x1−x3 through q−x1−xm.
Now consider one of these vertices, say q − x1 − x3 and again label all vertices which are
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connected to it q− x1− x3 − xm+1, q− x1 − x3 − xm+2 through q− x1 − x3 − xl. Proceed
in this way until all inner vertices are labelled.

The argument of each field φ is then given by the label of the inner vertex from which the
field-line starts. The order in which they appear is read off from left to right. Specifically,
one can proceed as follows: draw a horizontal line above the graph and elongate the field-
lines in such a manner that they do not intersect until they reach this line. Then read off
the arguments from left to right.

If a normally ordered interaction is employed, where φ1 = (g G) × :φn−1 :, fields which
start at the same inner vertex are normally ordered with respect to each other, if the
inner vertex is an extremal one, i.e., if the vertex is connected to the graph by only one
connecting line. None of the other fields are normally ordered with respect to each other.

Example: a) r r❅�❅
❅��q − x1 →

q →

← q − x1 − x2
φ φ φ: :

+ �❅ rr
❅❅�

�
← q − x1
← q

q − x1 − x2 →
φ φ φ: :

b)
q−x1−x4−x5r

r q−x1−x4

q−x1

r
q−x1−x2

rq−x1−x2−x3

r❅ ❅
❅
�

�

❅
�

❍❍❍
❍❍❍

�
�

→ :φ(q − x1 − x2 − x3)3 :φ(q − x1 − x2)2 φ(q − x1 − x4)
:φ(q − x1 − x4 − x5)3 : φ(q − x1 − x4)φ(q − x1)

Here, only the fields starting from the vertices q − x1 − x2 − x3 and q − x1 − x4 − x5 are
normally ordered with respect to each other.

3. In each tree graph a number of contractions :K
(A,α)
κ(n−2)+1 : arises when the product of the

κ(n − 2) + 1 fields is brought into normal order by application of Wick’s theorem (4.11).
Each of the contractions is symbolized by one of the possibilities to pairwise connect
a certain number of the fields with each other such that no connections between fields
starting at the same extremal vertex occur.

Example: From a) above we derive

r r❅�❅
❅

φ φ φ: :

��q − x1 →
q →

← q − x1 − x2
+

�❅ rr
❅❅�

�
φ φ φ: :

← q − x1
← q

q − x1 − x2 →

+ r r❅�
�� + r r

��
❅

+ rr❅
❅❅
�

+ rr
❅❅
�

,

where the second line corresponds to the contractions

2∑

i=1

K(Ai,αi)(q;−x1,−x1 − x2,−x1 − x2) +
4∑

i=3

K(Ai,αi)(q;−x1 − x2,−x1 − x2,−x1)

with A1 = (1), α1(1) = 2 , A2 = (1), α2(1) = 3 , A3 = (2), α3(2) = 3 , A4 = (1), α4(1) = 2 .

4. The analytic expression for each of the graphs thus arising, is then given as follows:
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First write down the integrals over the inner vertices as well as the retarded propagators
symbolized by the connecting lines

∫
dx1 . . . dxκ g(x1)∆ret(x1) . . . g(xκ)∆ret(xκ) .

Then for the graph under consideration write down the appropriate contraction term

:K
(A,α)
κ(n−2)+1 : or the Wick-ordered product :φ(q −∑I1

xi) . . . φ(q −
∑

Il
xi) :, respectively,

whose arguments are read off from the graph from left to right according to item 2. in this
list. The contraction’s intersection and enclosure matrix may then be read off from the
graph according to Remark 4.11.

Example: Applycation of the rule above to the graphs in the second line of the preceding
example reproduces the analytic expressions explicitly calculated on page 68.

As a more complicated example consider the following second order contribution in φ4-theory,

φ φ φ: :φ φqq← q − x1
← q

← q − x1 − x2❅
❅
❅

❅

�
�
��

Here, only the three fields starting at q − x1 − x2 are normally ordered with respect to each
other and the contribution to φ2 before applying Wick’s theorem is

∫
dx1dx2 g(x1) g(x2)∆ret(x1)∆ret(x2)φ(q − x1) :φ(q − x1 − x2)3 :φ(q − x1) .

The contractions which arise from normal ordering are

∑

(A,α)′

A 6=∅

:K
(A,α)
5 (q;−x1,−x1 − x2,−x1 − x2,−x1 − x2,−x1) : ,

where ′ indicates that (A,α) must be chosen according to the fact that the fields in second,
third and fourth position are already Wick ordered with respect to each other such that no
contractions among the second, the third and the fourth index occur. Therefore, the sum runs
over the following pairings (A,α):

A α(A)

(1) (2), (3), (4), (5) ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
(2) (5) ❛ ❛ ❛ ❛ ❛
(3) (5) ❛ ❛ ❛ ❛ ❛
(4) (5) ❛ ❛ ❛ ❛ ❛
(1, 2) (3, 5), (4, 5) ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
(1, 3) (2, 5), (4, 5) ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
(1, 4) (3, 5), (2, 5) ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛

The graph theory according to Remark 4.11 allows to read off the intersection and enclosure
matrices of the above contractions. Summing all terms under the integral

∫
dx1dx2 g(x1) g(x2)∆ret(x1)∆ret(x2)
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gives the full contribution.

The contraction in the above example with A = (1) and α(1) = 5 is a tadpole contribution.
Matters such as whether it has to be subtracted or not will occupy us in the next chapter. In φ3-
theory such tadpole contributions which enclose fields starting at another vertex do not occur.
Only two lines start at every vertex, and, hence, either both of them are fields, in which case
the vertex is an extremal one and the fields are normally ordered with respect to each other, or
one or both of the lines is a connecting line ∆ret, in which case normal ordering is not necessary.

Note that if one starts from an interaction which is not normally ordered, the application of
Wick’s theorem (4.11) also yields contraction terms with tadpole contractions between fields
starting from the same extremal inner vertex.

Let us now collect some properties of the graphs which appear in the perturbative expansion.
First we note that after application of Wick’s theorem any graph will be of the following general
form: it has at least one external leg (the root). A tree (indicated by double lines) is embedded in
the graph in such a manner that every inner vertex is reached by the branches of the tree, without
branches forming loops. By construction, any graph always appears together with its mirror
image at a given order perturbation theory (unless it is mirror-symmetric itself). Moreover, the
following claim holds:

Remark 4.16 Let

K
(A,α)
κ(n−2)+1(q; −

∑
I1
xi︸ ︷︷ ︸

=: y1

, . . . , −∑Iκ(n−2)+1
xi

︸ ︷︷ ︸
=: yκ(n−2)+1

)

be one of the contractions resulting from the application of Wick’s theorem (4.11) at order κ
in φ4-theory. Let A1 ⊂ A be the set which labels those contractions of two fields within K
connecting two neighbouring vertices (i.e. vertices which are connected by one connecting line
∆ret) and intersecting only other contractions from (A1, α↾A1). Then there also is a contraction
arising from Wick’s theorem which differs from K only in that for i ∈ A1 the exponentials
e−iki(yi−yα(i)) appear with the opposite sign, e−iki(−yi+yα(i)).

Proof: Consider φ4-theory. Two generic contractions satisfying the assumptions are

rr
❍❍❍❍❍

❍❍❍❍❍
...

... and

...

...❍❍❍❍❍

❍❍❍❍❍ rra

b
...

�
.

Since all possible trees appear in the perturbative expansion, there will also be tree graphs which
have the following contractions in place of the ones above, but otherwise coincide with them:

rr
..
.

❍❍❍❍
�
�

�
�

...
and ❍❍❍❍ ...

rr
..
.

�
�

�
�

...a b

.

Their analytic expressions are identical apart from the sign in the exponential. �

The claim made in Remark 4.16 is not valid in general for contractions of neighbouring fields
which intersect others or enclose other fields. This point is illustrated by the following example

...

...❍❍❍❍❍

❍❍❍❍❍ rra

b ...

�

for which we cannot find a tree graph with a contraction as in Remark 4.16.
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Consider now a contraction K with contractions of two fields which satisfy the condition of the
above remark. If they do not intersect each other (by definition, they do not intersect any other
lines), they yield a product of propagators ∆+(yi−yα(i)), i ∈ A1. The sum of this contraction K
and the corresponding contraction K ′ with ∆+(−yi + yα(i)) = −∆−(yi − yα(i)) (and everything
else coinciding) thus yields the propagator

∆(1) = ∆+ −∆− .

The planar graphs at second order discussed in section 4.2 satisfy the conditions of Remark 4.16,
and, hence, as was calculated there explicitly, this propagator did appear. On the ordinary
Minkowski space, where no intersections occur at all, all graphs can be rewritten such that
only the two propagators ∆ret and i∆(1) appear. For this reason, the graphs in the Yang-
Feldman approach have been called “Dyson’s double graphs” [32]. In this case, the identity
∆ret (i∆+ − i∆−) = i∆2

F − i∆2
− already employed in section 4.2, thus allows one to absorb

the time-ordering appearing by means of the retarded propagators in any graph into Feynman
propagators.
Last but not least, it is now shown that if the theory analysed in this chapter is interpreted as
a theory on the ordinary Minkowski space with a nonlocal interaction, the interacting field as
well as all expectation values differ from the ones calculated in the Hamiltonian formalism in
chapter 2.
There are different ways to define the time-ordered vacuum expectation values of the interacting
field (4.2). One possibility is to consider

〈Ω|T
(
φint(q + x1) . . . φint(q + xn)

)
|Ω〉

and to evaluate this in a state ω. Here, T is the time-ordering with respect to the variables
x1,0, . . . , xn,0. Another possibility is to consider

〈Ω|T
(
ωx1(φint) . . . ωxn(φint)

)
|Ω〉

with best-localized states ωxi
centered at xi, ωx(e

ikq) = e−
1
2
|k|2 e−ikx, where the time ordering

is defined with respect to the variables x1,0, . . . , xn,0. One further possibility is given by

〈Ω|T
(
φint(q1) . . . φint(qn)

)
|Ω〉 , (4.12)

where the qi are mutually commuting quantum variables (i.e. we consider n-fold tensor products
as in (3.3)) such that the time ordering T with respect to q1, . . . , qn is well-defined. Then one still
has to evaluate the time-ordered expectation values in suitable states. In all these proposals, the
dependence on Σ could be treated by integrating over Σ1 (keeping only rotation and translation
invariance). It will be interesting to investigate consequences of the different definitions and to
fully understand their physical interpretation.
For fixed noncommutativity matrix, the last of the above proposals yields a perturbative expan-
sion in the spirit of the programme pursued in the context of theories with nonlocal interaction on
the ordinary Minkowski space [60]. Understood as an effective theory on the ordinary Minkowski
space, the time-ordered expectation values of this approach are

〈Ω|T
(
φint(x1) . . . φint(xn)

)
|Ω〉 (4.13)

with

φint(x) = φin(x) +
∞∑

κ=1

gκ
∑

∑
κi=κ−1

∆ret × (φκ1 ⋆ · · · ⋆ φκn−1) (x) . (4.14)

Here, the infrared-cutoff is removed and the switching function g is replaced by a constant.
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Remark 4.17 The interacting field φH
int(x) defined in the Hamiltonian approach by (2.11) does

not coincide with the interacting field defined by (4.14) unless θ0i = 0 (or rather unless there
is a timelike 4-vector nµ with nµθ

µν = 0). Moreover, their time-ordered expectation values are
not the same unless there is a timelike 4-vector nµ with nµθ

µν = 0.

Proof: Consider φ3-theory as an example. To match the conventions, absorb the factorial 1/3!
into the Hamiltonian’s coupling constant. Already at first order in the coupling constant, the
two approaches yield different results:

φH1 (x) = −i (2π)−11

∫
dy θ(x0 − y0)

∫
dk1dk2

∫
dp

2ωp

: φ̂(k1)φ̂(k2) : e
−i(k1+k2)y

·
(
e−ip(x−y)S(θ; k1, k2,−p)− e+ip(x−y)S(θ; k1, k2,+p)

)

6=
∫
dy θ(x0 − y0)

(
∆+(x− y)−∆+(y − x)

)
:φ ⋆ φ(y) :

unless θ0i = 0 (or rather unless there is a timelike 4-vector nµ with nµθ
µν = 0), in which case∫

dy is a (partial) trace with the property

∫
dy (∆(x− y) ⋆ φ(y) ⋆ φ(y))sym =

∫
dy∆(x− y) · (φ ⋆ φ)(y) .

To see that neither the time-ordered vacuum expectation values calculated from the two ap-
proaches coincide, note that

〈Ω|T (φH1 (x)φH1 (y)) |Ω〉 =

= (−i)2 θ(x0 − y0)
∫
dx1 θ(x0 − x1,0)

∫
dy1 θ(y0 − y1,0) ·

· 〈Ω| :
(
∆(x− x1) ⋆ φ(x1) ⋆ φ(x1)

)
sym

: :
(
∆(y − y1) ⋆ φ(y1) ⋆ φ(y1)

)
sym

: |Ω〉
+(x↔ y)

is not the same as

〈Ω|T (φ1(x)φ1(y)) |Ω〉 =

= (−i)2 θ(x0 − y0)
∫
dx1 θ(x0 − x1,0)∆(x− x1)

∫
dy1 θ(y0 − y1,0)∆(y − y1) ·

· 〈Ω| :φ(x1) ⋆ φ(x1) : :φ(y1) ⋆ φ(y1) : |Ω〉
+(x↔ y)

unless θ0i = 0. �

This result should not come as a surprise, since it was already shown in section 2.1 that the
Hamiltonian interacting field does not satisfy the ordinary equation of motion for general time-
space-noncommutativity.
From Remark 4.17 it follows in particular, that the Yang-Feldman approach and the modified
Feynman rules coincide in the case of space-space noncommutativity.
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Chapter 5

Quasiplanar Wick products

In the preceding chapter, ordinary normal ordering was used in defining products of fields. In
other words, all tadpoles were subtracted from products as counterterms. The question which
remains yet to be answered is whether there is a notion of locality of counterterms suitable in the
Yang-Feldman approach on the noncommutative Minkowski space, and if so, whether subtracting
only such local counterterms renders well-defined products of q-fields. As this chapter’s analysis
will show, this is indeed feasible; the crucial property being a notion of so-called q-locality. This
is a weaker version of the locality property ordinarily demanded of counterterms, which does
comply with one of the crucial requests usually made regarding support properties. The q-local
subtractions then turn out to be those whose enclosure matrix vanishes, a property which is
called quasiplanarity. Here, the prefix “quasi” indicates that the intersection matrix of q-local
subtractions is in general nontrivial.1 After proving that the subtractions which are not q-
local remain finite in the limit of coinciding points, a definition of the so-called quasiplanar
Wick products is given, where only quasiplanar subtractions are admitted. Furthermore, the
corresponding Wick theorem is formulated.

Let us first consider some examples in order to become familiar with the kind of subtractions
and terms we will be dealing with. Consider a three-fold product of q-fields. Then from (4.10)
it follows that the normally ordered product is equal to

:φ(q + x1)φ(q + x2)φ(q + x3) : = φ(q + x1)φ(q + x2)φ(q + x3)

− i∆+(x1 − x2)φ(q + x3)− i∆+(x2 − x3)φ(q + x1) (5.1)

− i(2π)−8

∫
dk1dk2 ∆̂+(k1) e

−ik1Qk2 eik1(x1−x3) φ̂(k2) e
−ik2(q+x2) , (5.2)

which in terms of the graphs introduced in the preceding section can be symbolized as

: :❛ ❛ ❛ = ❛ ❛ ❛ − ❛ ❛ ❛ − ❛ ❛ ❛ − ❛ ❛ ❛
In the limit of coinciding points defined as in Definition 4.8, where the above q-distribution
is evaluated in a sequence of compactly supported testfunctions approaching δ(x − x1) δ(x −
x2) δ(x − x3), the monomial of q-fields as well as the two subtraction terms in (5.1) yield ill-
defined expressions as in the ordinary case (for the subtractions this is obvious, for the field
monomial see page 67). In contrast to this, the term (5.2), which has a non-vanishing enclosure

1It would be preferable to say also “quasilocal” instead of q-local in order to avoid the inflationary use of
the prefix q in contemporary physics, but quasilocality is already used as a technical term to denote a different
property. Now, the term q-locality is used here to indicate that the definition is suitable for q-distributions, a
term which serves as an abbreviation for “distribution taking values in operators affiliated to F ⊗ E”.

83
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matrix, yields the following expression in the limit of coinciding points

❛
x

❛
x

❛
x
= (2π)−4 i

∫
dk∆+(Qk) φ̂(k) e

−ik(q+x) ,

which turns out to be a well-defined q-distribution. To see this, recall that for the (free) q-field
the momentum integration only runs over the (positive and negative) mass-shell, such that Qk
is spacelike. Hence, ∆+(Qk) is a smooth bounded function of k. Smearing with a testfunction g,

∫
dx g(x)

∫
dk∆+(Qk) φ̂(k) e

−ik(q+x) =

∫
dk∆+(Qk) ĝ(−k) φ̂(k) e−ikq ,

and evaluating in a state on E then yields a well-defined operator, since the evaluation in a state
ω on Ẽ yields the following expression

∆+(Qk) ĝ(−k)ω(eikq) = ∆+(Qk) ĝ(−k)ψω(k) ,

which is square-integrable on the mass-shell (and even smooth if ĝ and ψω are smooth). Note
that ∆+(Qk) alone would not suffice to render the momentum integration well-defined, since it
does not decrease quickly in all directions. To see this, consider the frame of reference where
Q = σ(0). Then for k on the mass-shell, we find (Qk)2 = −m2−2k⊥, where k⊥ = (k1, k3). Since
∆+ depends only of the Lorentz square of its argument (and the sign of the zero-component,
unless the argument is spacelike, as is the case here), it follows that ∆+(Qk) is constant as a
function of k2 and decreases exponentially in the perpendicular directions k⊥. Hence, we may
conclude that the tadpole (5.2), if subtracted, merely produces a finite mass renormalization.
As a more complicated example consider now the product of five q-fields. One of the subtractions
which appear by application of Wick’s theorem (4.10) can be symbolized by ❛ ❛ ❛ ❛ ❛ . In the
limit of coinciding points, we find explicitly (up to numerical factors)

❛ ❛ ❛ ❛ ❛ ∝ ∫
dk

∫
dp

2ωp

∆+(Qp) e
−ipQk φ̂(k) e−ik(q+x) .

The integration over p is well-defined by the same argument as employed above, but it is not
immediately clear that the resulting function is a bounded function of k ∈ H±

m (or at least that
it does not increase faster than a polynomial). To see that all is well consider again the frame
of reference where Q = σ(0), such that, for p on the mass-shell, ∆+(Qp) = h(p⊥) is a constant
function of p2 which decreases exponentially in the perpendicular directions p⊥. Then in the
term under consideration,

∫
dp⊥ h(p⊥) e

+ip⊥ k̃⊥

∫
dp2

1√
m2+p2⊥+p22

e−i
√

m2+p2⊥+p22 k̃0+ip2 k̃2 with k̃ = Qk ,

the integration over the second component of p yields the two-dimensional ∆2D
+ -propagator of

mass m2 + p2⊥. However, since k is on the mass-shell, (k̃0, k̃2)
2 = −m2 is spacelike and therefore

∆2D
+ is a bounded function of k. The integration over the perpendicular directions p⊥ then yields

a bounded function of k, since the product of h and ∆2D
+ is integrable with respect to p⊥. As

before, boundedness in k suffices, since the q-field is still to be evaluated in a testfunction g and
a suitable state ω.
The last example to be discussed here will illustrate that the structure of divergences in the
Euclidean approach and the one on Minkowski space are not compatible and that a non-vanishing
intersection matrix alone is not enough to render a tadpole finite. Consider the contraction❛ ❛ ❛ ❛ ❛ which also appears when Wick’s theorem (4.10) is applied to a product of five q-
fields and whose explicit form in the limit of coinciding points is

∫
dp

2ωp

∆+(Qp)φ(q + x) .
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Contrary to the terms discussed above, there is no enclosure matrix. Now, by the same argument
as employed before, we conclude that ∆+(Qp) is a bounded function of p ∈ H+

m, but that it is not
integrable. Instead, in the frame of reference where Q = σ(0), the integration over p2 diverges
logarithmically. This means that results on renormalization gained in a Euclidean theory (see
for instance [18]) cannot be applied to the Minkowskian regime: in a Euclidean regime, the
above tadpole would take the following form,

∫
dp

∫
dk

1

k2 +m2

1

p2 +m2
e−ipQk = c

∫ ∞

0
dαdβ e−(α+β)m2 1

(αβ + θ2

4 )
2
,

where Q is assumed to have maximal rank and, without loss of generality, (Qp)2 = θ2(p22 + p21 +
p20 + p23). As usual, the integrands fall off quickly at infinity, but contrary to the ordinary case,
they are well-defined also for α, β = 0, and the integration yields a finite result.

5.1 q-Locality

In chapter 3, a concept of locality was applied, where the ordinary limit of coinciding points is
replaced by the approximate limit of coinciding points. This provided an appropriate generaliza-
tion of the ordinary local interaction term :φn(x) : suitable for the noncommutative Minkowski
space E . Here, a different line of thought is pursued: a notion of so-called q-local q-distributions
is introduced, which will enable us to discriminate between admissible and non-admissible coun-
terterms. This notion will furthermore allow to a posteriori justify the choice of an interaction
term of the form φn(q).

In a very general sense, we may say that a map acting on a function is to be considered local,
if it does not increase the function’s support. It is not difficult to make this definition precise
also for functions which take values in Z. As mentioned before, such a definition comprises the
case of ordinary complex-valued functions, since I ∈ Z.

Definition 5.1 A map γ : S(R4n ,Z) → S(R4u ,Z), 0 ≤ u ≤ n, is local, if it is linear and
continuous and if the support of γ(g) is canonically embedded in that of g,

supp γ(g) ⊂
⋃

U⊂N
|U |=u

PU supp g , (5.3)

where PU : R4n → R4u is the projection map PU (xN ) = xU , N = {1, . . . , n}.

Consider again the recursive definition of Wick products on the ordinary Minkowski space (3.1)
and recall that any term v appearing on the right-hand side of the equation is a distribution of
the following form, when evaluated in a testfunction g,

〈v, g〉 =
∫
dxN g(xπ1 , . . . , xπn)K(xu+1, . . . , xn)φ(x1) . . . φ(xu) (5.4)

for some permutation π ∈ Sn. The translation-invariant distributions K are also called the
coefficient functions. Obviously, the map γ, where

γ(g)(x1, . . . , xu) =

∫
dxu+1 . . . dxn g(xπ1 , . . . , xπn)K(xu+1, . . . , xn) ,

is local in the above sense. For this reason, we may call v a local counterterm, since

〈v, g〉 = 〈φ⊗u ◦ γ, g〉 = 〈φ⊗u, γ(g)〉 .
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Note that a local map γ respects the limit of coinciding points: for a sequence of testfunc-
tions gr(xN ) approaching δ(x − x1) . . . δ(x − xn) with supp gr+1 ⊂ supp gr and ∩supp gr =
{(x, . . . , x)}, we find supp γ(gr+1) ⊂ supp γ(gr) and ∩ supp γ(gr) = {(x, . . . , x)} ⊂ R4u . It
turns out that this concept of locality can be directly applied to q-distributions.

Definition 5.2 “q-Locality” A q-distribution v(q;x1, . . . , xn) associated to φ is q-local of order
u ∈ N, if there is a local map γ : S(R4n ,Z)→ S(R4u ,Z) such that v = φ⊗u ◦ γ,

〈v, g〉 = 〈φ⊗u, γ(g)〉 .
More generally, a linear combination of q-local q-distributions (possibly of different orders) is
called q-local. For 0 < u ≤ n we will also speak of a q-local product of u q-fields.

The slightly unusual index u is employed above as it labels the uncontracted fields.
To put Definition 5.2 in other words, a q-local distribution v is a product of Z-valued coefficient
functions H and q-fields,

∫
dxN g(xN ) v(q;x1, . . . , xn) =

∫
dxN g(xN )H(Q;xN\U )

∏

l∈U
φ(q + xl) ,

where ∫
dxN\U g(xN )H(Q;xN\U ) = (γ(g))(xU ) .

Note that the monomial of q-fields and the contractions containing no q-fields are not excluded
in the definition, as they correspond to γ = id and to γ(·) = 〈v, ·〉. By definition, q-local distribu-
tions bear much similarity with the local counterterms (5.4) ordinarily employed in quantum field
theory, although the product of q-fields is non-local when re-expressed in terms of the twisted
convolution product on the ordinary Minkowski space. It is important to realize that this notion
of locality was already employed implicitly in chapter 2 as well as in the previous chapter, where
φn(q) was claimed to be a natural generalization of the local interaction term φn(x).
The important observation now is, that not all contractions which appear when ordinary Wick
ordering is applied to a product of q-fields (see Proposition 4.12), are q-local, and that typical
non-q-local contractions do not approach the limit of coinciding points in the correct manner.
In fact, we will see below that if a typical non-q-local distribution is evaluated in a sequence
of testfunctions which approaches a product of δ-distributions

∏
i δ(x− xi) as in Definition 4.8,

there is a finite neighbourhood of x not in the support of the resulting testfunction γ(g). Hence,
such non-q-local distributions should not be admitted as counterterms. The scope of this chapter
is to show that it is possible to define products of q-fields in the spirit of ordinary Wick products
where only q-local counterterms are subtracted. The resulting products, called quasiplanar
Wick products and denoted by triple points, ❵❵❵φn(q + x) ❵❵❵ , turn out to be well-defined q-local
q-distributions in coinciding points.
The term q-locality is used to distinguish the definition from properties concerning causality (as
in “local commutation relations”). Contrary to the situation in ordinary field theory, q-locality
does not imply causal behaviour, as the q-fields themselves do not satisfy the proper commutation
relations. However, we will see below that certain causality properties are preserved for particular
q-local distributions, while they are violated for those which are not q-local. Before proceeding,
it is shown that γ is not uniquely determined by the q-distribution v.

Remark 5.3 Let v be a q-distribution with v = φ⊗u ◦ γ for some linear and continuous map
γ : S(R4n ,Z)→ S(R4u ,Z). Then γ is uniquely determined up to the range of the Klein-Gordon
operator, v = φ⊗u ◦ γ = φ⊗u ◦ γ′, with

γ′ = γ +
u∑

j=1

(�j +m2)β(j) ,
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where β(j) : S(R4n ,Z)→ S(R4u ,Z) are linear and continuous.

Proof: By the properties of a tensor product of distributions, we have
∫
dx1dx2 (v1 ⊗ v2)(x1, x2) g(x1, x2) =

∫
dx1 v1(x1) f(x1) ,

where f is determined up to the kernel of v1. In our case (with u = 1), this means that

v(g) = 〈v, g〉 = 〈φ ◦ γ, g〉 = 〈φ, γ(g)〉 = 〈φ, γ(g)〉 + 〈φ, (� +m2)h〉 ,

as the kernel of φ consists of functions of the form (� +m2)h. As for any h ∈ S(R4 ,Z) there
exists a linear continuous map β : S(R4n ,Z) → S(R4 ,Z) s.t. h = β(g), the claim follows. To
prove this for u > 1, it suffices to note that

ker(φ⊗u) =

u∑

i=1

V ⊗ . . . V⊗
i−th
K ⊗V · · · ⊗ V

where V = S(R4 ,Z) and K is the free field’s kernel. �

Since q-locality will serve as a means to rule out certain subtraction terms as unphysical, we have
to bear in mind that γ is not uniquely determined. Let us first analyse which of the contractions
arising when ordinary Wick ordering is applied to a product of q-fields as in (4.10), are q-local.
Let us first introduce the notion of quasiplanarity, which turns out to be the crucial property in
the following discussion.

Definition 5.4 “Quasiplanarity” A contraction K
(A,α)
n (q;x1, . . . , xn) is called quasiplanar if

its enclosure matrix is trivial, Eil = 0 for all i ∈ A, l ∈ U = N\(A ∪ α(A)).

The intersection matrix of a quasiplanar contraction is in general non-trivial, and therefore, a
quasiplanar contraction is in general not completely planar.

Proposition 5.5 A contraction K
(A,α)
n (q;x1, . . . , xn) is q-local if it is quasiplanar. If it is q-

local, it is automatically q-local of order u = n− 2|A|.

Proof: First, let 2|A| = n. As U = N\(A ∪ α(A)) = ∅, K has a trivial enclosure matrix. Since
K is a Q-distribution, it is q-local of order 0. Likewise, the n-fold tensor product of q-fields (i.e.
the contraction Kn with A = ∅, |A| = 0, E trivial) is q-local of order n.

Now let 0 < 2|A| < n. Assume K
(A,α)
n to have a trivial enclosure matrix, Eil = 0, for all

i ∈ A, l ∈ U . By Proposition 4.12, K
(A,α)
n = φ⊗(n−2|A|) ◦ γ, where

(γ(g))(xU ) = (2π)−4|A|
∫
dxAdxα(A) g(xN )

∫
dkA I(kA)

∏

i∈A
i ∆̂+(ki) e

−iki(xi−xα(i)) .

Now, γ obviously satisfies the locality condition (5.3) if g is a tensor product of two functions,
g(xN ) = f(xA, xα(A))h(xU ), as in this case (γ(g))(xU ) = c · h(xU ) with

c = (2π)−4|A|
∫
dkA f̂(−kA, kA)

∏

i∈A
i ∆̂+(ki)I(kA)

such that supp γ(g) = supp h. Recall now that a general function g ∈ S(R4n ,Z) with compact
support can be written in terms of tensor products as

∑
j fj(xA, xα(A))hj(xU ), and hence, by

the continuity of γ, (5.3) holds for g. We thus conclude that K is q-local of order u = n− 2|A|.
�
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Proposition 5.6 A contraction K which has at least one non-vanishing entry in the enclosure
matrix is equal to φ⊗u ◦ γ with a linear, continuous map γ : S(R4n ,Z) → S(R4u ,Z) violating
the locality condition (5.3) given in Definition 5.1 for some testfunction g(xN ) =

∏
i∈N gi(xi).

Should it be impossible to use the freedom in the definition of γ as per Remark 5.3 to render the
map γ appearing in the above proposition local, it would follow that q-locality implies triviality
of the enclosure matrix, such that the “if” in Proposition 5.5 could be replaced by an “if and
only if”.

Proof of Proposition 5.6: The simplest contraction with nonvanishing enclosure matrix is
given by the pairing (A,α), where 1 ∈ A, α(1) = 3, and 2 /∈ A,

K(A,α)
n = ❛ ❛ ❛ K(B,β)

n−3

with B = A\(1), β = α|B . By Proposition 4.12,

〈K(A,α)
n , g〉 = 1

(2π)3

∫
dxN

∏

i∈N
gi(xi)

∫
dk

2ωk

e−ik(x1−x3) φ(q + x2 −Qk)K(B,β)
n−3 (q;x4, . . . , xn)

=

∫
dx4 . . . dxn

∫
dx2 (γ(g))(x2, x4, . . . , xn)φ(q + x2)K

(B,β)
n−3 (q;x4, . . . , xn) ,

where we have performed the fibrewise-defined coordinate transformation x2 → x2 + σk such
that

(γ(g))(x2, x4, . . . , xn) =
1

(2π)3

∫
dk

2ωk

∫
dx1dx3 g1(x1)g2(x2 +Qk)g3(x3)

∏

i≥4

gi(xi) e
−ik(x1−x3)

We immediately infer that γ(g) does not have compact support, as long as supp g2 6= ∅. There-
fore, its support cannot be embedded in supp g, and we deduce that γ is not local.

This procedure can be directly applied to the general case. Let L ⊂ U = N\(A ∪ α(A)) denote
the index set labelling the q-fields which are enclosed by some contraction (i.e. ∀ l ∈ L ∃ i ∈ A:
Eil 6= 0). Then the (fibrewise) change of integration variables xl → xl + σ

∑
i∈A Eilki for all

l ∈ L yields

γ(g)(xU ) = (2π)−3|A|
∫

dkA

2ωkA

∫
dxN\U

∏

s∈N\L
gs(xs)

∏

l∈L
gl(xl+Q

∑

j∈A
Ejlkj)

∏

i∈A
e−iki(xi−xα(i)) I(kA)

and γ(g) will in general not have compact support with respect to the variables xL. �

It is now shown that the freedom in the definition of γ cannot be used to render the nonlocal
contraction K = ❛ ❛ ❛ local by adding a correction from the range of the Klein-Gordon
operator, which provides evidence for the general case. In the proof, K is considered in the
limit of coinciding points, 〈K, gc〉, with gc(x1, x2, x3) =

∫
dx g(x) δ(x − x1) δ(x − x2) δ(x − x3),

which by the remarks at the beginning of this chapter is well-defined,

〈K, gc〉 =
∫
dx ❛

x
❛
x

❛
x
g(x) = (2π)−3

∫
dx

∫
dk

2ωk

g(x+Qk)φ(q + x) = 〈φ, γ(gc)〉 . (5.5)
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Proposition 5.7 The freedom in the definition of γ as per Remark 5.3 cannot be used to render
the nonlocal map γ,

(γ(gc))(x) = (2π)−3

∫
dp

2ωp

g(x +Qp) ,

local.

Proof: By contradiction. Suppose that 〈φ, γ(gc)〉 = 〈φ, f〉, where f has compact support. Then
γ(gc) − f = (� +m2)h for some h and thus, in particular, γ(gc) ×∆ = f ×∆ where ∆ is the
commutator function. Go to the frame of reference where Q = σ(0). Let g be symmetric with
respect to x0 = 0. Then the Cauchy data of γ(gc)×∆ are

γ(gc)×∆(0,x) = c

∫
dk

2ωk

eikx (ĝ(ωk,k)− ĝ(−ωk,k))∆+(σ
(0)k) |k∈H+

m
= 0

∂x0( γ(gc)×∆)(x) |x0=0 = c̃

∫
dk eikx ĝ(ωk,k)

1√
m2 + 2k2⊥

K1

(
m
√
m2 + 2k2⊥

)

︸ ︷︷ ︸
def
= h(k⊥)

with k⊥ = (k1, k3) as before and with irrelevant constants c, c̃. Now, ∂x0(f × ∆)(0,x) is a
function with compact support. In order for ∂x0 (γ(gc) ×∆)(0,x) to have compact support as
well, ĝ(ωk,k)h(k⊥) must be an analytic function for k→ ξ + iη. But h(ξ⊥ + iη⊥) is ill-defined
if 2(ξ⊥ + iη⊥)2 = −m2, which is satisfied, for instance, if ξ⊥η⊥ = 0 and ξ2⊥ = η2⊥ −m2/2 ≥ 0.
The attempt to fix this by allowing only for testfunctions g whose Fourier transforms are not
supported in the region where h is not analytic will only result in ĝ(ωk,k)h(k⊥) ≡ 0, as ĝ is
analytic, and, being zero in an open subset in C4 , it will be zero everywhere.
Hence, ĝ(ωk,k)h(k⊥) is not analytic for all η, ξ, so γ(gc) does not have compact Cauchy data.
Therefore, the initial assumption must be wrong. �

The nonlocal maps γ which appear in non-quasiplanar contractions do not in general behave
properly when the limit of coinciding points is taken. Consider again the nonlocal contraction
K = ❛ ❛ ❛ . This being a typical non-q-local contraction the claim is expected to hold in a
similar manner also for general non-q-local contractions.

Remark 5.8 Let g
(x)
r (w, y, z) = hr(w)hr(y)hr(z) approach δ(x−w) δ(x− y) δ(x− z). Evaluate

K = ❛ ❛ ❛ in g
(x)
r which yields a q-distribution ur(q;x) =

∫
dy γ(g

(x)
r )(y)φ(q + y), where

γ(g(x)r )(y) = c

∫
dwdz hr(w)hr(z)

∫
dk

2ωk

hr(y +Qk) e−ik(w−z)

= c

∫
dk

2ωk

hr(y +Qk) ĥr(−k) ĥr(k) .

Then γ(g
(x)
r )(y) does not approach δ(x− y). In fact, there is a finite neighbourhood of x which

is not necessarily in the support of γ(g
(x)
r ), even as r →∞.

Proof: Consider the frame where Q = λP σ
(0). Let the support of hr be contained in the

box [−a0 + x0, x0 + a0] × · · · × [−a3 + x3, x3 + a3] ⊂ R4 , where 0 < aµ <
1
2λP m. Note that

H+
m∩ supp ĥr 6= ∅ since hr has compact support such that ĥr is analytic and hence, cannot vanish

in an open subset without being identically 0. Then x is not in the support of γ(g
(x)
r ). To see

this, consider the second spatial component y2. Clearly, supp γ(g
(x)
r ) ⊂ supp (hr( · +Qk) |k∈H+

m
)

and in order to have hr(y +Qk) |k∈H+
m
6= 0, the second spatial component y2 must be such that
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x2 − a2 ≤ y2 + λP
√
m2 + k2 ≤ x2 + a2. However, since by assumption a2 <

1
2λP m, a finite

neighbourhood of y = (y0, y1, x2, y3) is not in the support of γ(g
(x)
r ). And since this remains

true for increasing r, we may conclude that γ(g
(x)
r )(y) does not approach δ(x− y). �

It is interesting to note that the nonlocal map arising in (5.5),

γ(gc)(x) = (2π)−3

∫
dk

2ωk

g(x+Qk) ,

does not take values in S(R4 ,Z). To see this, consider the Fourier transform

γ̂(gc)(p) = (2π)−3

∫
dx eipx

∫
dk

2ωk

g(x+Qk) ∝ ∆+(−Qp) ĝ(p) .

As pointed out in the beginning of this chapter, for p on the mass-shell, ∆+(−Qp) is a bounded
function of p. However, allowing for arbitrary p, the singular support of ∆+(−Qp) is not empty
such that ∆+(−Qp) ĝ(p) is not a Schwartz function on R4 and, therefore, neither is γ(gc).

Let us give one further motivation as to why q-locality should be considered a natural physical
property of q-distributions. In [27], it was shown that the commutator of two massless free
q-fields, evaluated in best-localized states ω(eipq) = e−λ2

P |p2|/2, decreases as a Gaussian function
in spacelike directions,

[ω(φ(q + x)), ω(φ(q + y))] = −i λP

4π
√
8π |x−y|

(
e
− 1

8λ2
P

((x0−y0)−|x−y|)2
− e

− 1

8λ2
P

((x0−y0)+|x−y|)2 )

def
= Cω(x− y) . (5.6)

In the limit λP → 0, C converges to the commutator function D of the massless field.

Remark 5.9 Let K
(A,α)
n and K

(B,β)
m be two quasiplanar contractions, each with one uncon-

tracted q-field, N\(A ∪ α(A)) = (l) and M\(B ∪ β(B)) = (k). Then, in the massless case, their
commutator is proportional to the product of Cω(xl − xk) with a Q-distribution depending on
xN\(l) and xM\(k). It therefore falls off like a Gaussian function if x l − xk is spacelike. If one of
the contractions is not quasiplanar, the commutator does not have this property.

Proof: A q-local contraction with one uncontracted q-field can be written as

K(A,α)
n (q;xN ) = K

(A,α)
n−1 (Q;xN\(l))φ(q + xl) .

Since l /∈ A ∪ α(A), the same symbols (A,α) are used on the right-hand side and on the
left-hand side of the equation, although strictly speaking, on the right-hand side A ⊂ N\(l),
α : A→ N\(l). As the q-fields commute with the Q-distributions, it follows immediately that

[
ω
(
K(A,α)

n (q;xN )
)
, ω
((
K(B,β)

m (q;xM )
)]

= K
(A,α)
n−1 (Q;xN\(l)) K

(B,β)
m−1 (Q;xM\(k)) Cω(xl − xk) .

Now consider a contraction which is not q-local, for instanceK = K
(A,α)
3 with A = (1), α(1) = 3,

where

ω
(
K(q;x1, x2, x3)

)
= (2π)−3

∫
dk

2|k| e
−ik(x1−x3) ω(φ(q + x2 −Qk)) .

A direct calculation shows that the commutator with ω(φ(q + y)) is proportional to

∫
dk

2|k| e
−ik(x1−x3) Cω(x2 −Qk − y)
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Even in the limit of coinciding points, where x i = x, this commutator does not fall off for space-
like x−y as in (5.6). This behaviour is shown by any contraction with |A| > 1, N\(A∪α(A)) = (l)
and non-vanishing enclosure matrix, whose commutator with ω(φ(q + y)) is proportional to

∫
dkA

2|kA|
∏

i∈A
e−iki(xi−xα(i)) I(kA)Cω(xl −Q

∑

i∈A
Eilki − y)

and, again, does not decrease like a Gaussian for spacelike xl − y. �

Note, however, that the argument only applies to contractions with only one uncontracted field,
|U | = 1. A commutator of a product of q-fields (with or without contractions),
[ω(φ(q + x1) . . . φ(q + xn)) , ω(φ(y))], does not satisfy (5.6).

5.2 Quasiplanar Wick products

In this section, products of q-fields are defined, where only quasiplanar subtraction terms are
admitted. Again, some combinatorial prerequisites are necessary, and the notion of a connected
contraction is introduced. In terms of index sets, the characterization of this property turns out
to be quite technical, but, fortunately, an alternative simple characterization in terms of graphs
can be given.

Definition 5.10 “Connectedness” Let (A,α) be a pairing in N , and let Is be the symmetrized
intersection matrix of (A,α),

Isij =





Iij for i < j
0 for i = j
Iji for i > j

Then two pairs (i, α(i)) and (j, α(j)), i 6= j ∈ A, are connected by contractions in A if either
they intersect or if there exist pairs (jl, α(jl)), jl ∈ A, l = 1, . . . , κ, such that

Isi j1

( κ−1∏

l=1

Isjl jl+1

)
Isjκ j 6= 0 .

Here, jk is not necessarily smaller than jk+1.
The connected pairings in (A,α) are given by all (B, β) with β = α|B, where B 6= ∅ is an ordered
subset of A such that for all i, j ∈ B (i, β(i)) and (j, β(j)) are connected by contractions in B
and ∪B = A.

A connected component of a contraction K
(A,α)
n is defined to be a contraction C

(B,β)
m , where

(B, β) is a connected pairing in (A,α). The connected component contains all uncontracted
q-fields which are enclosed, i.e. all q-fields labelled by the index set U ′ ⊂ U = N\(A ∪ α(A)),

U ′ = {l ∈ U | ∃ i ∈ B s.t. Eil 6= 0} = {l ∈ U | ∃ i ∈ B with i < l < β(i)} ,

such that, by construction, a connected component is a q-distribution on S(R4m ,Z) with m =
2|B|+ |U ′|.
In terms of the graphs introduced before, the connected components of a contraction can be
characterized in a much simpler way: a connected component is given by all connecting curves
which can be drawn “without lifting the pencil” (drawing backwards along a curve is allowed)
together with all enclosed points.

Example: The contraction K
(A,α)
9 where A = (1, 2, 4, 5), and α(A) = (9, 7, 6, 8) has two con-

nected components, labelled by B1 = (1) and B2 = (2, 4, 5). Indeed, (2, 7) is connected to (4, 6)
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by (5, 8) as Is25 I
s
54 6= 0. In terms of graphs, this can be understood more easily: the connected

components of ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
1 2 3 4 5 6 7 8 9

are K
(B1,β1)
3 (x1, x3, x9) = ❛ ❛ ❛

1 3 9
and K

(B2,β2)
7 (q;x2, . . . , x8) = ❛ ❛ ❛ ❛ ❛ ❛ ❛

2 3 4 5 6 7 8
.

Let us now prove the main theorems of this chapter on which the definition of q-local Wick

products will rely. Roughly speaking, it is shown that a contraction :K
(B,β)
n (q;x1, . . . , xn) :,

whose connected components are not quasiplanar and whose uncontracted q-fields are normally
ordered, is well-defined in the limit of coinciding points (in the sense of Definition 4.8).
Before proving this, we need to put the contractions’ explicit expression as given in Proposi-
tion 4.12 in a slightly different form. First replace the Fourier transforms of the fields φ̂(kl),
l ∈ V = N\(B ∪ β(B)) by the inverse Fourier transforms (2π)4 φ̌(−kl) and perform a change of
integration variables in the external momenta, kV → −kV . Write out the uncontracted fields
φ̌(kl), l ∈ V , in positive and negative mass-shell components,

φ̌(k) = (2π)−3/2

∫
dp

2ωp

(
a(ωp,p) δ(p + k) + a†(ωp,p) δ(p − k)

)
= φ̌−(k) + φ̌+(k) ,

and write the product of uncontracted fields in :K : as the sum,

:
∏

s∈V
φ̌(ks) : =

∑

V1,V2
V1∪V2=V

∏

l∈V1

φ̌+(kl)
∏

r∈V2

φ̌−(kr) . (5.7)

Now rename the indices labelling the external and internal momenta such that the smallest
indices are assigned to the external momenta on the positive mass shell, the largest ones to the
external momenta on the negative mass-shell, and the ones in between to the internal momenta:

Remark 5.11 Let again small letters abbreviate the length of a set. Let ρ be a map from the
ordered sets V1, B, V2, where v1+b+v2 = n, to an ordered set U1×A×U2 ⊂ Nn , U1 = (1, . . . , v1),
A = (v1+1, . . . , v1+b), U2 = (v1+b+1, . . . , n), U = U1 ∪ U2, with

ρ(ls) =





s for ls the s-th element of V1
v1 + s for ls the s-th element of B
v1 + b+ s for ls the s-th element of V2

Let π be the inverse of ρ. Then the redefinition of integration variables ki → kρ(i) yields

:K(B,β)
n (q;x1, . . . , xn) : =

= cn,b
∑

U1,U2

∫
dkU1dkU2

∏

s∈U1

φ̌+(ks)
∏

r∈U2

φ̌−(kr) exp
(
+i
∑
l∈U

kl (q + xπ(l)) − i
2

∑
l,l′∈U

π(l)<π(l′)

klQkl′
)
·

·
∫
dkA J (kU1 , kA, kU2)

∏

j∈A
i ∆̂+(kj) e

−ikj(xπ(j)−xβ(π(j)))

︸ ︷︷ ︸
= F (x(π(A)∪β(π(A))) ; kU1 , kU2)

. (5.8)

Here, the twisting J is of the form

J (kU1
, kA, kU2

) = exp
(
− i ∑

r<i
r∈U1,i∈A

Eri krQki
)
exp

(
− i ∑

i<j
i,j∈A

IijkiQkj
)
exp

(
+ i

∑
i<r

i∈A,r∈U2

Eir kiQkr
)

def
= exp

(
− i ∑

s<t
s,t∈U1∪A∪U2

Jst ksQkt
)
,
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where the intersection matrix I and the enclosure matrix E are calculated from the intersection
matrix Ĩ and the symmetrized enclosure matrix Ẽs of K

(B,β)
n as follows: Iij = Ĩπ(i)π(j) for

i, j ∈ A, Eri = Ẽs
π(r)π(i) for r ∈ U1, i ∈ A, r < i, and Eir = Ẽs

π(i)π(r) for r ∈ U2, i ∈ A, i < r.

The symmetrized enclosure matrix Ẽs is defined analogously to I s in Definition 5.10.

Proof: The proof is straightforward. The twisting between internal momenta follows immedi-
ately, since ρ respects the order of B. As for the calculation of the enclosure matrix, one has
to be careful, since ρ does not respect the order of the external momenta. For the same reason,
one has to take care not to change the order of the noncommuting exponentials eikq. �

In order to write out the explicit expression in a clearer way, the order of integration has been
changed. This is justified by the fact that the integrals are well-defined when smeared with a
testfunction g and a state ω.
Let us now analyse a contraction :K (B,β) :, whose connected components are not quasiplanar,
in the limit of coinciding points. We will explicitly investigate the limit of coinciding points in
the variables xi, i ∈ (π(A) ∪ β(π(A))). Since the external fields are normally ordered, it then
follows that the limit of coinciding points may also be performed with respect to the arguments
of the uncontracted fields, xl, l ∈ U1 ∪ U2.

Proposition 5.12 Consider a contribution to a normally ordered contraction :Kn : which does
not possess any quasiplanar connected components and where all external momenta are on the
positive mass-shell. Let F be defined as in (5.8) and let gm be a sequence of compactly supported
testfunctions which converges to δ(x − x1) . . . δ(x − x2a) such that supp gm ⊂ supp gm+1 and⋂
supp gm = {(x, . . . , x)} ⊂ R8a . Then in

F (gm; kU1)
def
=

∫
dx1... dx2a F (x1, ... , x2a ; kU1) gm(x1, ... , x2a)

the integrations over the internal momenta dkA in F and the integrations over dxi may be
interchanged and, in the limit m→∞ the integrations over the internal momenta remain finite,

∫
dkA J (kU1 , kA)

∏

j∈A
i ∆̂+(kj) <∞ ,

for fixed external momenta kU1 .

Proof: Assume K (and hence F ) to be connected. This may be done without loss of generality;
the general case only involves more tedious notation. Let, moreover, gm be symmetric in its
arguments in order to further simplify the notation. By assumption, U2 = ∅.
Introduce hyperbolic coordinates on the mass-shell, kµ = (w cosh θ, v1, w sinh θ, v2), with w =√
v2 +m2, v = (v1, v2) ∈ R2 , and θ ∈ R, such that

∫
dk
2ωk

f(ωk,k) = 1
2

∫
d2v dθ f(k(v, θ)). Let

x abbreviate (x1, ... , x2a). Go to a Lorentz frame such that Q = σ(0). Then, up to numerical
constants, F (gm; kU ) is equal to
∫
dx gm(x)

∫
d2vA dθA exp

(
−i∑

s<t
Jst(wswt sinh(θs − θt) + vs ∧ vt)

)∏

j∈A
e−i(xj−xj+1) kj(vj ,θj) ,

(5.9)
where vs ∧ vt = vs,1vt,2 − vs,2vt,1 and where the indices s, t are elements of the index set U1 ∪A.
The arguments of the exponentials which originally appear in the expression,

∏

j∈A
exp

(
− ikj(xπ(j) − xβ(π(j)))

)
,
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have been renamed which is possible since the gm are symmetric in their arguments.
Now consider the integrations over θr in (5.9) to be cut off at finite values ±Rr. Shift the
integration over the rapidity variables θr, r ∈ A, into the complex plane, θr + iηr, where

0 < ηu1+1 < · · · < ηu1+a < π .

By the residue calculus, the integrations around the rectangles of lengths 2Rr and heights ηr
will be zero. This is now used to replace the original integrations over θ r by integrations along
the curves given by α(θr) = θr + iηr. Set ηs∈U1 = 0. Then, using the formulas

sinh(θ + iη) = sinh θ cos η + i cosh θ sin η and cosh(θ + iη) = cosh θ cos η + i sinh θ sin η ,

we replace the integral (5.9) with cutoffs Rr by the following integrals,

∫
dx gm(x)

∫
d2vA

∫ ′
dθA exp

(
− i∑

s<t
Jst (wswt sinh θst cos ηst + vs ∧ vt) +

∑
s<t
Jst wswt cosh θst sin ηst

)
·

·
∏

j∈A
exp

(
− i wj cos ηj (cosh θj ξj,0 − sinh θj ξj,2)+ i (vj,1, vj,2)(ξj,1, ξj,3)

)
·

·
∏

j∈A
exp

(
wj sin ηj (sinh θjξj,0 − cosh θjξj,2)

)

+ boundary terms (RA) ,

where ξj abbreviates xj − xj+1 and where
∫ ′

indicates that the integrations over θr∈A are cut
off by ±Rr. The boundary terms are the integrals along the edges of the rectangle (from 0 to
the respective ηr), whose integrands are given by the same expression as above with θr = ±Rr.
With increasingm, the support of gm becomes smaller and smaller. Hence, for any δ > 0, there is
anM ∈ N, such that for allm > M , the support of gm is contained in the set {|xµ−xj,µ| < δ

2} for
all j ∈ A and all µ = 0, ... , 3, where {(x, . . . , x)} = ⋂ supp gm. In that case, |xj,µ − xj+1,µ| < δ,
and for δ > 0 sufficiently small, the above integrand is bounded by

exp
(∑

Jstwswt cosh θst sin ηst
)
|gm(x1, ... , x2a)| exp

(
−∑

j∈A
wj sin ηj e

−θjδ
)
. (5.10)

This decreases fast in θ1, . . . , θa, since by construction,

Jstwswt sin ηst < 0 for all s < t ∈ U1 ∪A .

By the same mechanism, the boundary terms vanish as the side lengths Rr tend to infinity. To
see this, we first perform the integration over ηu1+a with all other ηj fixed at 0, then the one
over ηu1+a−1 and so on. Then the integrals vanish for Rr →∞.
Hence, F (gm; kU ) can be replaced by the integral along the shifted integration variables, and the
result is independent of the particular values of ηr. Due to the boundedness of the integrand,
the integration over the momenta and the one over dxi commute, and we can pass to the limit
m→∞ before performing the momentum integrations.
It thus remains to be shown that in this limit, where xj = x for all j ∈ A, and, hence, xj−xj+1 =
0, the integral

∫
d2vA

∫
dθA exp

(
− i∑

s<t
Jst (wswt sinh θst cos ηst + vs ∧ vt)

)
exp

(∑
s<t
Jst wswt cosh θst sin ηst

)

indeed remains well-defined. That this is true relies on the fact that the contraction K is
connected and not quasiplanar. For one thing, connectedness ensures that all θj, j ∈ A, appear
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in the exponential exp
(∑

Jst wswt cosh θst sin ηst
)
= exp

(
−∑|Jst wswt cosh θst sin ηst|

)
by which

the integrand is bounded. This, however, is not sufficient for the integrals over kA to exist. If
K were quasiplanar, the exponential would only depend on differences of the internal rapidity
variables. Hence, it would be possible to eliminate one of the θr by introducing relative rapidity
variables θr1 − θr2 , such that the integration over one of the rapidity variables would diverge.
This is prevented in a contraction which is not quasiplanar. In this case, the enclosure matrix
E has at least one nontrivial entry, Es

rt 6= 0 for some r ∈ A, t ∈ U1, and hence, the exponential
does not depend on the differences of the rapidity variables alone. This proves the claim. �

Trying to prove the same claim for a normally ordered contraction in which also uncontracted
fields on the negative mass-shell appear (U2 6= ∅), one encounters the following difficulty. In the
above proof it was crucial that Jstwswt sin ηst < 0 for all s < t ∈ U1∪A. Now, if U2 6= ∅, we find
the following twisting between internal momenta and external negative mass-shell momenta

exp
(
+ i

∑
i<r

i∈A,r∈U2

Es
ir kiQkr

)
.

Since for t ∈ U2, k
µ
t = (wt cosh θt, vt,1, wt sinh θt, vt,2), wt = −

√
v2 +m2, the analytic continua-

tion in θr, r ∈ A, as in the proof above yields +Es
rtwr|wt| cosh θrs sin(ηr − ηt) which is greater

than zero if ηt = 0, and 0 < ηr < π.

If all external momenta are on the negative mass-shell, this can be fixed by choosing a sequence
−π < ηr < ηr+1 < 0, for r ∈ A, and ηt = 0 for t ∈ U2, and proceed as in the proof above.
However, if both negative and positive mass-shell momenta appear, this is impossible, and it
turns out that we have to perform an analytic continuation also in the rapidity variables θ l,
l ∈ U2.

Proposition 5.13 Consider a contribution to a normally ordered contraction :Kn : which does
not possess any quasiplanar connected components and where both U1 6= ∅ and U2 6= ∅. Let F
be defined as in (5.8), and let, as in Proposition 5.12, gm be a sequence of compactly supported
testfunctions which converges to δ(x − x1) . . . δ(x − x2a) such that supp gm ⊂ supp gm+1 and⋂
supp gm = {(x, . . . , x)} ⊂ R8a . Then in

∫
dkU2

∏

t∈U2

φ̌−(kt) exp
(
+i
∑
l∈U

kl (q + xπ(l))− i
2

∑
l,l′∈U

π(l)<π(l′)

klQkl′
)
·

·
∫
dx1... dx2a F (x1, ... , x2a ; kU1 , kU2) gm(x1, ... , x2a)

the integrations over the internal momenta dkA in F , as in (5.8), and the integrations over dxi
may be interchanged, if, after evaluation in a suitable state ω and a testfunction h, it is possible
to analytically continue the above integrand with respect to the rapidity variables θt, t ∈ U2,
with 0 ≤ Im θt ≤ π, where kµt = (wt cosh θt, vt,1, wt sinh θt, vt,2), wt = −

√
v2 +m2. In the

limit m → ∞, the integrations over the internal momenta then remain finite for fixed external
momenta kU1 .

Proof: Regarding the integration over the internal momenta, the proof is similar to the one of
Proposition 5.12, the only difference being that we now consider a continuation in the rapidity
variables θl, l ∈ A ∪ U2, with

0 < ηu1+1 < · · · < ηu1+a < ηu1+a+1 < · · · < ηu1+a+u2 < π ,
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and consider the integral
∫
dx gm(x)

∫
d2vA

∫ ′
dθA exp

(
− i∑

s<t
Jst (wswt sinh θst cos ηst + vs ∧ vt) +

∑
s<t
Jst wswt cosh θst sin ηst

)
·

·
∏

j∈A
exp

(
− i wj cos ηj (cosh θj ξj,0 − sinh θj ξj,2)+ i (vj,1, vj,2)(ξj,1, ξj,3)

)
·

·
∏

j∈A
exp

(
wj sin ηj (sinh θjξj,0 − cosh θjξj,2)

)

+ boundary terms (RA, RU2) ,

where the twisting now includes an enclosure matrix between positive and negative mass-shell
momenta.
It remains to be shown that the analytic continuation in the rapidity variables θ t, t ∈ U2, makes
sense. This is not trivial, since, for instance, the twisting between the external momenta may
contain parts which diverge exponentially,

exp(−1
2 ws|wt| cosh θst sin(−ηt) , s ∈ U1 , t ∈ U2 .

That the integrations remain well-defined nonetheless and that the boundary terms vanish,
follows, if the testfunction h and the state ω are chosen such that the integrands are still
analytic and decrease fast enough.
The above integral may then be replaced by the integral along the shifted integration variables
and the claim follows in the same manner as in the proof of Proposition 5.12. In the resulting
integral, we may set ηl = π for all l ∈ U2, such that the twisting between external momenta will
remain unchanged. �

We have thus seen that the infinite momentum integrations over internal momenta kj∈A in a
contraction remain finite in the limit of coinciding points, if they are part of a non-quasiplanar
connected component. It was essential in the proof that the external momenta are on-shell and,
hence, that they always have a non-vanishing energy-component. Setting one of the qr, r ∈ U ,
equal to zero in such an ultraviolet-finite term would produce an infrared singularity. This effect,
which was encountered in the context of the modified Feynman rules, is absent as long as the
external momenta are on the (positive or negative) mass-shell.

Remark 5.14 From the proof of Proposition 5.13 we conclude that the domain on which the
q-fields are defined has to be modified. It is no longer sufficient that the wavefunctions be
Schwartz (or L2), but, furthermore, their Fourier transforms must be analytic in the rapidity
variable and decrease fast enough such that in the above proof the integrations remain finite
and the boundary terms vanish. The resulting space of wavefunctions is denoted Da. It is
expected to be a subset of S (or L2), since the request made on analyticity and fast decrease
in the rapidity variable is an additional restriction, which does not contradict the properties of
Schwartz functions. Therefore, Da still is a space of testfunctions for q-distributions.

It remains to be proved that the resulting domain Da is invariant under application of q-fields.
To see that this is most likely true, consider a state |ϕ〉 ∈ H with wavefunctions ∈ Da and apply
a field operator which is smeared in a testfunction f and a state ω with ψω(k) = ω(eikq) ∈ Da

and f̂ ∈ Da to |ϕ〉 as in (4.5). Since taking products and integrating out one of the momentum
variables should not change the defining properties of Da, no problems are anticipated here.
If the limit of coinciding points is also performed with respect to the arguments of the nor-
mally ordered fields, then it must also be required that ĝm ∈ Da for the compactly supported
testfunctions gm which define this limit.
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Note that the best-localized states are not admissible states, if an analytic continuation in θ t as
in the above proof is to be performed. This follows by a direct calculation which shows that the
analytic continuation in the rapidity variable of a Gaussian function results in a function having
parts which increase too rapidly.
From Proposition 5.13 together with the above remarks we can immediately infer the following
result:

Proposition 5.15 Consider the normally ordered q-distribution :φn(q;x1, . . . , xn) :. Then the
q-distribution which arises by revoking the subtraction of non-quasiplanar counterterms,

:φn(q;x1, . . . , xn) : +

[n−1
2

]∑

k=1

∑

(A,α), |A|=k
non−quasiplanar

:K(A,α)
n (q;x1, . . . , xn) : , (5.11)

is a well-defined q-distribution on Da in coinciding points. Here, the second sum runs over all
non-quasiplanar pairings, i.e. over all pairings in which none of the connected components are
quasiplanar.

Proof: The claim follows from the fact that the non-quasiplanar contractions are finite. There-
fore, we change the q-distribution only by finite mass renormalizations, if we refrain from sub-
tracting them. �

The sum runs from one to
[
n−1
2

]
, since at least one field in K must remain uncontracted, such

that for n even, the sum runs to n
2 − 1 and for n odd, it runs to n−1

2 . Proposition 5.15 allows
for the following definition of quasiplanar Wick products.

Proposition 5.16 “Quasiplanar Wick products” Let a quasiplanar Wick monomial, de-
noted ❵❵❵φn(q, x1, . . . , xn) ❵❵❵ or ❵❵❵φ(q + x1) . . . φ(q + xn) ❵❵❵ , be defined recursively as the following q-
distribution,

❵❵❵φn(q;x1, . . . , xn) ❵❵❵ def
= φ(q + x1) ❵❵❵φn−1(q;x2, . . . , xn) ❵❵❵ (5.12)

−
[n
2
]∑

k=1

∑

(A,α), |A|=k
connected

K
(A,α)
2k (Q;x1, ..., x2k) ❵❵❵φn−2k(q;x2k+1, ..., xn) ❵❵❵ ,

in shorthand notation,

❵❵❵φ⊗n ❵❵❵ def
= φ ⊗ ❵❵❵φ⊗(n−1) ❵❵❵ −

[n
2
]∑

k=1

∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k) ⊗ ❵❵❵φ⊗(n−2k) ❵❵❵ .

Then ❵❵❵φn(q;x1, . . . , xn) ❵❵❵ is a quasiplanar (thus q-local) q-distribution.

Furthermore, a quasiplanar Wick product can be written in terms of ordinary Wick products,
where the subtraction of non-quasiplanar counterterms has been revoked as in (5.11),

❵❵❵φ⊗n ❵❵❵ = :φ⊗n : +

[n−1
2

]∑

k=1

∑

(A,α), |A|=k
non−quasiplanar

:K
(A,α)
⊗n : , (5.13)

and in the limit of coinciding points it is a well-defined q-distribution on Da.
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Proof: Observing that only quasiplanar subtractions are admitted in the definition, we conclude
that the quasiplanar Wick product is indeed a quasiplanar q-distribution. q-locality then follows
from Proposition 5.5.
That the quasiplanar Wick products are indeed q-distributions of the form (5.11), is demon-
strated in appendix B.1. Well-definedness in coinciding points then follows from Proposi-
tion 5.15. �

Note that, contrary to the behaviour of an ordinary Wick product, the quasiplanar Wick product
is not symmetric in its arguments,

❵❵❵φn(q;x1, . . . , xn) ❵❵❵ 6= ❵❵❵φn(q;xπ(1), . . . , xπ(n)) ❵❵❵ , π ∈ Sn ,

unless it were defined with such a complete symmetrization. As in the ordinary case, however,
vacuum expectation values of quasiplanar Wick products vanish,

〈Ω| ❵❵❵φn(q;x1, . . . , xn) ❵❵❵ |Ω〉 = 0 .

Observing that in (5.13) at least one uncontracted field appears in every term, this follows
immediately from the fact that the vacuum expectation values of ordinary Wick products vanish.

Proposition 5.17 “Quasiplanar Wick theorem”: The product of two quasiplanar Wick
monomials of order n and m is a quasiplanar (thus q-local) q-distribution which may be written
as a sum of Wick monomials of order ≤ n+m, multiplied with Q-distributions ∆kl,

❵❵❵φn(q;x1, . . . , xn) ❵❵❵ ❵❵❵φm(q; yn+1, . . . , yn+m) ❵❵❵
= ❵❵❵φn+m(q;x1, . . . , xn, yn+1, . . . , yn+m) ❵❵❵

+

n∑

k=1

m∑

l=1

∆kl(Q;xn−k+1, . . . , xn, yn+1, . . . , yn+l)

× ❵❵❵φn+m−l−k(q;x1, . . . , xn−k, yn+l+1, . . . , yn+m) ❵❵❵ ,
where ∆kl = 0 for k + l odd, and for k + l even,

∆kl(Q;xn−k+1, . . . , yn+l) =
∑

(A,α) with
property (∗)

K
(A,α)
k+l (Q;xn−k+1, . . . , yn+l) ,

with property (∗) denoting: A and α(A) ⊂ {n−k+1, . . . , n+l} and in every connected component
(C, γ) of (A,α), ∃ i ∈ C with i ∈ {n − k + 1, . . . , n} and γ(i) ∈ {n+ 1, . . . , n+ l}.

Proof: The right-hand side of the above is obviously quasiplanar, and, hence, by Proposition 5.5,
it is q-local. The proof that the right-hand side is indeed equal to the left-hand side may be
found in appendix B.2. �

Before proceeding, note that the Q-distributions which appear above, K
(A,α)
k+l with |A| = k + l,

are translation-invariant. This follows directly from the explicit form of a general contraction
as given in Proposition 4.12, and we have seen this already in the discussion of the n-point
functions in the previous section.

Conjecture 5.18 “Quasiplanar Wick Theorem for coinciding points”: Let gr ∈
Da(R

4(n+m) ,Z) be a sequence of compactly supported testfunctions which converges to
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δ(x−x1) . . . δ(x−xn)δ(y−xn+1) . . . δ(y−xn+m) such that supp gr ⊂ supp gr+1 and
⋂

supp gr =
{(x, . . . , x, y, . . . , y)} ⊂ R4(n+m) . Then, in the limit r → ∞ the right-hand side of the quasi-
planar Wick theorem yields a well-defined q-distribution which maps testfunctions in Da(R

8 ,Z)
to closable operators affiliated to F ⊗ E. Analogous results hold for the evaluation on the par-
tial diagonal, where gr converges to

∏
i∈I δ(x − xi)

∏
j∈J δ(y − xj) for some selection of indices

I ⊂ {1, . . . , n} and J ⊂ {n+ 1, . . . n+m}.

Steps towards a Proof:

It has to be shown that ∆kl is a well-defined Q-distribution in the limit r →∞, and that it may
be multiplied with the field monomials ❵❵❵φn+m−l−s ❵❵❵ .
• The Q-distributions ∆kl are well-defined in the limit of coinciding points. The proof goes

analogously to the one of Proposition 5.12:

Consider one of the connected components of ∆kl, labelled by (A,α). First we note that
only positive mass-shell integrations appear and that, by Proposition 5.17, for at least one
of the momenta kr, r ∈ A, an exponential eikr(x−y) is part of the integrand.

The proof then is the same as the one of Proposition 5.12 with only one minor difference.
In Proposition 5.12, it was necessary that at least one external field was enclosed by one
of the contractions in each of the contraction’s connected components. This prevented the
integrand from depending only on the differences of the internal rapidity variables which
would have rendered one of the rapidity integrations infinite.

Here, this role is played by the contraction of two fields which appears in each connected
component connecting one of the first k indices with one of the last l indices, i.e. the
contraction of two fields labelled by the pair (j, γ(j)) with j ∈ {n − k + 1, . . . , n} and
γ(j) ∈ {n + 1, . . . , n + l}, which yields an exponential e−kj(x−y) (instead of the twisting
e−ikjQp with an external momentum p used in the proof of Proposition 5.12).

• Now recall that the quasiplanar Wick products ❵❵❵φn+m−l−s(q;x, . . . , x, y, . . . , y) ❵❵❵ can be
rewritten in terms of ordinary Wick products. As a result, twisted convolution products
of fields and 2-point functions at x − y appear (and additionally, some integrations over
internal momenta which are connected to the 2-point functions by means of a twisting but
have 0 as their arguments).

• The Q-distributions ∆kl may indeed be multiplied with these products, since the twistings,
being bounded and smooth, do not enlarge the set of directions in which the Fourier
transform of a distribution does not decrease fast. As ∆+ may be multiplied with itself,
we conclude that this is also true for ∆kl and the twisted convolution products of ∆+

which appear in the quasiplanar Wick product ❵❵❵φn+m−l−s ❵❵❵ . Moreover, the Q-distributions
∆kl are translation-invariant with respect to the commuting variables and by Theorem 0
in [35], translation-invariant distributions may be multiplied with ordinary Wick products.

But, strictly speaking, the theorem used above has only been proved for numerical (or at best for
vector-valued) distributions, and does not necessarily hold for Z-valued distributions. Moreover,
as was pointed out in Remark 5.14, it has not yet been proved that the domain Da is invariant,
although as pointed out, no problems are anticipated here. However, it has to be emphasized
that the above yields very strong evidence as to the well-definedness of the quasiplanar Wick
theorem for coinciding points.

Remark 5.19 The application of quasiplanar Wick products in the framework of the Yang-
Feldman equation is straightforward. In the rules given in section 4.4 the change amounts to



100 CHAPTER 5. QUASIPLANAR WICK PRODUCTS

replacing the ordinary Wick products by quasiplanar Wick products, and the application of the
ordinary Wick theorem by the application of the quasiplanar Wick theorem.

5.3 The dispersion relation

The requirement that only quasiplanar counterterms should be subtracted has important conse-
quences for the asymptotic behaviour of the theory, resulting in a distorted dispersion relation.
In a more realistic theory than self-interacting bosonic fields such as quantum electrodynamics,
this is a measurable quantity. A first analysis of this point is to be the last line of thought
pursued in this thesis.

Assume that the interacting field may indeed be renormalized by subtracting quasiplanar coun-
terterms. Then we derive the renormalized field equation for a φn-self-interacting theory, involv-
ing, in particular, a finite mass m. As discussed at the end of chapter 4, we may calculate the
vacuum expectation value of two interacting fields at different, mutually commuting “points”,

〈φ(q1)φ(q2)− φ(q2)φ(q1)〉0 , (5.14)

the result of which is the dressed commutator function at q1−q2. Taking the Fourier transform of
the above in ordinary quantum field theory one would obtain ǫ(p0)δ(p

2−m2) = (p0/|p0|) δ(p2 −
m2) plus the Källén-Lehmann integral, if the mass renormalization was done with respect to
the physical mass. Suppose now that we had chosen to perform the mass renormalization with
respect to a finite but unphysical mass m2, then we would allow for additional finite mass
counterterms δm2 in the field equation. The Fourier transform of the dressed commutator
would then yield the following expansion,

ǫ(p0)δ(p
2 −m2) + ǫ(p0)δ

′(p2 −m2) δm2 +
1

2
ǫ(p0)δ

′ ′(p2 −m2) (δm2)2 + . . . , (5.15)

which as usual can be summed up to give ǫ(p0)δ(p
2−m2− δm2). If, however, quasiplanar Wick

products are employed, the calculation of (5.14) is expected to be different, since we will find
unusual contractions in the non-q-local tadpoles which have not been subtracted. For instance,
in φ4-theory, where the effect is more easily calculated than in φ3-theory, the finite tadpole at
first order is ❛ ❛ ❛ = i

∫
dk∆+(Qk) φ̌(k) e

ikq .

It leads to the mass renormalization ǫ(p0)δ
′(p2 − m2)∆+(Qp). It follows, in particular, that

∆+(Qp) results in a modification of the mass which is not Lorentz-invariant. Hence, the disper-
sion relation will be modified. Similar discussions in the context of space-space-commutativity,
which are not founded on the general construction of quasiplanar Wick products, may be found
in [64, 4, 17].

Taking the concept of q-locality serious, this contraction can indeed not be subtracted to recover
the ordinary dispersion relation, since it was proved in Proposition 5.7 that this contraction is
not q-local.

Assuming that higher orders in g can be added up consistently as in (5.15),

ǫ(p0)δ(p
2 −m2 − g i∆+(Qp)− . . . ) ,

we deduce that p20 = p2 +m2 + g i∆+(Qp) + . . . . Allowing for additional counterterms, α and
βp2, the dispersion relation at this order is found to be

p2 −m2 − g (i∆+(Qp;m) + α1 + β1p
2) = 0 .



5.3. THE DISPERSION RELATION 101

Now choose the frame of reference where Q = σ(0) and (Qp)2 = λ4P (−p20+p22−p2⊥) = λ4P (−p2−
2 p2⊥) with p⊥ = (p1, p3), such that for timelike p2 we find

i∆+(Qp;m) =
m

4π2 λ2P

√
p2 + 2 p2⊥

K1

(
λ2P m

√
p2 + 2 p2⊥

)
.

Hence, the transversal velocity is given by

dp0
dp⊥

=
p⊥
p0

1 + g
2 p⊥ (1−gβ1)

∂
∂p⊥

(
m

4π2
√

−(Qp)2
K1

(
m
√
−(Qp)2

))

1− g
2 p0 (1−gβ1)

∂
∂p0

(
m

4π2
√

−(Qp)2
K1

(
m
√
−(Qp)2

) )

=
p⊥
p0

1 + g
1−gβ1

η((Qp)2)

1− g
1−gβ1

η((Qp)2)
,

where

η((Qp)2) = −m
2 λ4P K2(λ

2
Pm

√
−(Qp)2)

−8π2 (Qp)2 = −m
2K2(λ

2
Pm

√
p02 − p22 + p⊥2)

8π2 (p02 − p22 + p⊥2)
.

Now let us set the momentum p on the physical mass-shell, p2 = M2, which may be done
consistently by fixing the constant α1 above accordingly. Then

η((Qp)2)
∣∣
p2=M2 = −

m2K2(λ
2
PmM

√
1 +

2 p2⊥
M2 )

8π2M2
(
1 +

2 p2⊥
M2

) .

If the mass m and the physical mass are of the same order of magnitude, the resulting deviation
from the usual dispersion relation is much too large. Even assuming that M and m are of the
order of the Planck mass, much larger than that of any known theory’s particle, the resulting

deviation
1+ g

1−gβ1
η((Qp)2)

1− g
1−gβ1

η((Qp)2)
of the group velocity in the perpendicular directions p⊥ is

0.5 1 1.5 2

0.992

0.994

0.996

0.998

plotted with Mathematica.

as a function of p⊥ (one-dimensional), where β1 = 0, g = 1/5, m = M = 1, and λP = 1 such
that all quantities are measured in Planck units. Surprisingly, the maximal deviation occurs not
at high momenta but at p⊥ = 0. In the above numerical setting, this point of maximal deviation
is very large,

(1 + gη0)/(1 − gη0) ≃ 0.991802 , η0 = η((Qp)2)
∣∣
p2⊥=0

p2=m2

= η(−m2) .
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Using a smaller mass m, the deviation becomes even larger, as we can see in the following plot,

where the minimum of the above function, 1+g η(−m2)
1−g η(−m2)

, (i.e. the maximal deviation from 1) is

plotted against the mass m, ranging from 0 to 1, (with M = m, β1 = 0, g = 1/5, λP = 1),

0.2 0.4 0.6 0.8 1

-1

-0.5

0.5

1

plotted with Mathematica.

We see that for small masses, the group velocity may even become negative. Integrating over,
say, Σ1 would not improve the situation, since the scale λP remains fixed.
Taking into account however, that m and M may differ from one another, it is possible to allow
for small physical masses M , while taking m to be very large. To see this, recall that at p⊥ = 0
and p2 =M2,

η((Qp)2) = −m
2K2(λ

2
PmM)

8π2M2
∝ −m

2

M2
K2(λ

2
P M

2 m

M
)

and since (cf. for instance [47]),

α2K2(β α) −→ 0 for α large enough ,

it is possible to make the deviation arbitrarily small even for small masses by choosing m large
enough. It remains to be investigated whether this scheme can be applied consistently to all
orders.
However small, the modification of the dispersion relation has serious consequences. In ordinary
local quantum field theory, the Hilbert space of the asymptotic fields is the Fock space of the
free fields with fixed (constant) mass. The above analysis shows that this cannot be true for the
asymptotic fields in the framework considered here, since their mass will in general depend on
the momentum.
The distorted dispersion relation could provide predictions which are very sensitive to exper-
imental data and put serious restrictions on the scale of noncommutativity, which was taken
to be of the order of the Planck scale in the above. Depending on how questions concerning
the consistency of the renormalization procedure as sketched above can be solved, it is not im-
possible that in a realistic model such as quantum electrodynamics, where phenomenological
calculations so far have provided lower bounds for the energy scale of noncommutativity, an
upper bound for the energy scale could be derived in this way.



Outlook

Future work certainly should focus on the application of quasiplanar Wick products to the Yang-
Feldman perturbative approach. It is reasonable to hope that q-local counterterms suffice to
treat all ultraviolet divergences consistently. Furthermore, the quasiplanar Wick products could
also be applied within the Hamiltonian framework.
Regarding the modified dispersion relation, different lines of thought are possible. One is that
the dispersion relation should be calculated for a realistic theory such as quantum electrody-
namics on the noncommutative Minkowski space to get predictions which might eventually
be experimentally tested. Another possibility is to consider supersymmetric extensions, where
quadratic divergences may cancel each other, and, possibly, the ordinary dispersion relation
could be restored.
In more general terms, the modified dispersion relation means that the asymptotic behaviour of
the theory is considerably changed compared to the ordinary case. In particular, the ordinary
Fock space, whose definition relies on a mass which is independent of the momentum, cannot
serve as the Fock space of incoming and outgoing fields, and a modification of the asymptotic
conditions becomes necessary. The effect clearly pertains to the theory’s infrared behaviour,
and the distorted dispersion relation should be seen as a subtle form of the infrared-ultraviolet
mixing property.
A similar effect was hinted at in the framework of the regularized Hamiltonian approach. Here,
the necessity to use dressed propagators in order to be able to remove the adiabatic cutoff in
the time-variable, forces one to allow for a mass renormalization which is not Lorentz-invariant.
This in turn is due to the fact that a Lorentz frame had to be chosen in order to define the
best-localized states. The renormalized theory then is expected to possess a distorted dispersion
relation. The same is anticipated for the other Hamiltonian approaches, since in these cases, it
is not clear whether the mass renormalization will lead to an ordinary dispersion relation. These
questions certainly deserve further study.
On a more fundamental level, one of the most challenging problems is to gain a better under-
standing of the spectrum of the commutators, which is deeply connected with the quest for
Lorentz invariance.
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Appendix A

Conventions and useful formulas

The Fourier transform:

f̌(k) = (2π)−n

∫
dnx e−ikx f(x)

f̂(k) =

∫
dnx eikx f(x)

δ(n)(x− y) = (2π)−n

∫
dnk e+ik(x−y)

The free field:

φ(q) =

∫
dk eikq φ̌(k) =

∫
dk eikq (2π)−4

∫
dx e−ikx φ(x)

=

∫
dk eikq (2π)−3/2

∫
dp

2ωp

(
a(p) δ(4)(k + p) + a†(p) δ(4)(k − p)

)

= (2π)−3/2

∫
dp

2ωp

(
a(p) e−ipq + a†(p) eipq

)

with [a(p), a†(q)] = 2ωp δ
(3)(p− q)

The 2-point function:

〈Ω|φ(x)φ(y)|Ω〉 = i∆+(x− y) = (2π)−3

∫
dk

2ωk

e−ik(x−y)

〈Ω|φ(x)φ(y)|Ω〉 − 〈Ω|φ(y)φ(x)|Ω〉 = i∆(x− y) =: i
(
∆+(x− y) + ∆−(x− y)

)

= i∆+(x− y)− i∆+(y − x)

such that

i∆−(x− y) = −i∆+(y − x) = −(2π)−3

∫
dk

2ωk

e+ik(x−y)

∆̂+(p) =

∫
dx eipx

1

i(2π)3

∫
dk

2ωk

e−ikx = (2π)4
1

i(2π)3

∫
dk

2ωk

δ(4)(p− k)

for spacelike argument:

i∆+(x) =
m

4π2
√
−x2

K1(m
√
−x2 )

with the Bessel function K of the second kind of order 1.
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The commutator function:

i∆(x) =
i

2π
ǫ(x0) δ(x

2)− im

4π
√
x2
θ(x2) ǫ(x0)J1(m

√
x2)

The causal (Feynman) propagator

∆F (x) = θ(x0)∆+(x) + θ(−x0)∆+(−x) = θ(x0)∆+(x)− (1− θ(x0))∆−(x)

Green’s functions:

∂2t T (φ(x)φ(x
′)) = ∂t

(
δ(t− t′)

(
φ(x)φ(x′)− φ(x′)φ(x)

)
︸ ︷︷ ︸

=0

)

+ ∂t

(
θ(t− t′) ∂tφ(x)φ(x′) + θ(t′ − t)φ(x′)∂tφ(x)

)

Replace ∂2t φ(x) by (∆x −m2)φ(x):

(�x +m2)T (φ(x)φ(x′)) = δ(t− t′)
(
∂tφ(x)φ(x

′)− φ(x′)∂tφ(x)
)

= δ(t− t′) i ∂t ∆(x− x′)
= −i δ(4)(x− x′) .

Similarly for ∆ret(x) = θ(x0)∆(x):

∂2t ∆ret(x− x′) = ∂t

(
δ(t− t′)∆(x− x′)︸ ︷︷ ︸

=0

)
+ ∂t

(
θ(t− t′) ∂t∆(x− x′)

)

= −δ(4)(x− x′) + θ(t− t′) ∂2t ∆(x− x′)

and thus

(�x +m2)∆ret(x− x′) = − δ(4)(x− x′)



Appendix B

Formal proofs

B.1 Proof of Proposition 5.16

It is shown that the recursive definition of the quasiplanar Wick product (5.12) coincides with
the prescription (5.11), where the subtraction of non-quasiplanar counterterms from the ordinary
Wick product is revoked.

Proof by induction: For n = 2, there is no non-quasiplanar pairing, and the quasiplanar Wick
product coincides with the ordinary one,

❵❵❵φ2(q;x1, x2) ❵❵❵ = φ(q;x1)φ(q;x2)−K2(Q;x1, x2) = :φ(q;x1, x2) :

where K2 is the connected contraction K
(A,α)
2 = ❛ ❛ with A = (1), α(1) = 2, K2(Q;x1, x2) =

i∆+(x1 − x2). Here, φ(q;x1) stands for φ(q + x1). For n = 3 we find that the recursive
definition (5.12) coincides with (5.11), since

❵❵❵φ3(q;x1, x2, x3) ❵❵❵ = φ(q;x1) ❵❵❵φ2(q;x2, x3) ❵❵❵ −K2(Q;x1, x2)φ(q;x3)

= φ(q;x1) :φ
2(q;x2, x3) :−K2(Q;x1, x2)φ(q;x3)

= :φ3(q;x1, x2, x3) : + :K
(A,α)
3 (q;x1, x2, x3) :

where A = (1), α(1) = 3, which yields the only non-quasiplanar contraction at this order. The
last line follows by application of the ordinary Wick theorem. Assume now that for l ≤ n the
claim is true. At order n+ 1, the recursive definition yields

❵❵❵φ⊗(n+1) ❵❵❵ = φ ⊗ ❵❵❵φ⊗n ❵❵❵ − [n+1
2

]∑

k=1

∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k) ⊗ ❵❵❵φ⊗(n+1−2k) ❵❵❵ ,

whereK
(A,α)
⊗2k with k = |A| is a shorthand notation for the theQ-distributionK

(A,α)
2 |A| (Q;x1, . . . , x2 |A|).

Note that it is not necessary to indicate by some additional symbols that all fields in a contraction
K⊗2k are contracted, if the respective sum runs only over pairings with |A| = k.
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Now replace ❵❵❵φ⊗n ❵❵❵ and ❵❵❵φ⊗(n+1−2k) ❵❵❵ according to the induction hypothesis to obtain

❵❵❵φ⊗(n+1) ❵❵❵ = φ ⊗ :φ⊗n : + φ ⊗
[n−1

2
]∑

m=1

∑

(A,α), |A|=m
non−quasiplanar

:K
(A,α)
⊗n :

−
[n+1

2
]∑

k=1

∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k) ⊗ :φ⊗(n+1−2k) :

−
[n+1

2
]∑

k=1

∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k) ⊗

[n−2k
2

]∑

m=1

∑

(A,α), |A|=m
non−quasiplanar

:K
(A,α)
⊗(n+1−2k) :

Note that for n odd, the second summation in the last line is empty for k =
[
n+1
2

]
= n+1

2 and
k =

[
n+1
2

]
− 1 = n−1

2 . Similarly, for n even, the second summation in the last line is empty
for k =

[
n+1
2

]
= n

2 . In these cases, the sum is assumed to have the value 0. This notation is
a shorthand which, in particular, makes it unnecessary to distinguish between the cases n even
and n odd.
By application of the ordinary Wick theorem, we obtain for the first term in the above formula:

φ ⊗ :φ⊗n : = :φ⊗(n+1) : + K⊗2 ⊗ :φ⊗(n−1) : +

n+1∑

j=3

:K
(1,α(1)=j)
⊗(n+1) : .

As for the second term, three different kinds of contractions arise, when the field on the left is

contracted with the uncontracted fields in :K
(A,α)
⊗n :. The first possibility is that the first field

on the left is contracted such that the resulting contraction is still non-quasiplanar. The second
possibility is that the resulting contraction is a product of a connected contraction with no
more uncontracted fields and a field monomial (or merely a connected contraction with no more
uncontracted fields), and the last possibility is that the resulting contraction is a product of a
connected contraction with no more uncontracted fields and a non-quasiplanar contraction. In
terms of the shorthand notation from above,

φ ⊗
[n−1

2
]∑

m=1

∑

(A,α), |A|=m
non−quasiplanar

:K
(A,α)
⊗n : = :φ ⊗

[n−1
2

]∑

m=1

∑

(A,α), |A|=m
non−quasiplanar

K
(A,α)
⊗n :

+

[n
2
]∑

m=2

∑

(A,α)
|A|=m, 1∈A

non−quasiplanar

:K
(A,α)
⊗(n+1) : +

[n+1
2

]∑

k=2

∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k) ⊗ :φ⊗(n+1−2k) :

+

[n+1
2

]∑

k=1

∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k) ⊗

[n−2k
2

]∑

m=1

∑

(A,α), |A|=m
non−quasiplanar

:K
(A,α)
⊗(n+1−2k) :

and we obtain

❵❵❵φ⊗(n+1) ❵❵❵ = :φ⊗(n+1) : +

[n
2
]∑

k=1

∑

(A,α), |A|=k
non−quasiplanar

:K
(A,α)
⊗(n+1) :

�
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B.2 Formal proof of the quasiplanar Wick Theorem

Let C⊗(2k) be the Q-distribution
∑

(A,α), |A|=k
connected

K
(A,α)
⊗(2k).

First we prove the following formula for the product of two quasiplanar Wick monomials:

❵❵❵φ⊗m ❵❵❵ ❵❵❵φ⊗n ❵❵❵ = ❵❵❵φ⊗(m+n) ❵❵❵ +

m∑

l=1

[n+l
2

]∑

k=[ l
2
]+1

❵❵❵φ⊗(m−l) ❵❵❵ ⊗ C⊗(2k) ⊗ ❵❵❵φ⊗(n−2k+l) ❵❵❵ (B.1)

Proof: Application of the recursive definition (5.12) yields

❵❵❵φ⊗m ❵❵❵ ❵❵❵φ⊗n ❵❵❵ = ❵❵❵φ⊗(m+n) ❵❵❵ +
m∑

l=1

[n+l
2

]∑

k=1

❵❵❵φ⊗(m−l) ❵❵❵ ⊗ C⊗(2k) ⊗ ❵❵❵φ⊗(n+l−2k) ❵❵❵
−

m∑

l=1

[m−l+1
2

]∑

k=1

❵❵❵φ⊗(m−l−2k+1) ❵❵❵ ⊗ C⊗(2k) ⊗ ❵❵❵φ⊗(n+l−1) ❵❵❵
Since the last sum can be rewritten equivalently as

−
m∑

l=2

[ l
2
]∑

k=1

❵❵❵φ⊗(m−l) ❵❵❵ ⊗ C⊗(2k) ⊗ ❵❵❵φ⊗(n+l−2k) ❵❵❵
the claim follows. �

Applying (B.1) recursively, until all products in (B.1) are quasiplanar Wick products, we derive
the quasiplanar Wick theorem. �

In the two examples which follow, the graphs introduced in chapter 4 are employed. Quasipla-
nar Wick products are symbolized by boxes, and the underscore symbolizes quasiplanar Wick
ordering of fields which are not neighbours in the tensor product.

Example:❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ = ❛ ❛ ❛ ❛❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛❛ ❛ ❛ ❛
+ ❛ ❛ ❛ ❛❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛❛ ❛ ❛ ❛
+ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ +

C6❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
+ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
+

C6❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛
+

C6❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ +
∆44❛ ❛ ❛ ❛❛ ❛ ❛ ❛

where C6 is the Q-distribution

C6 =
∑

(A,α), |A|=3
connected

K
(A,α)
6 = ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ ❛
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and where ∆44 is the Q-distribution

∆44 =
∑

(A,α) with
property(∗)

K
(A,α)
2|A| =

∑

A=(1,2,3,4)

K
(A,α)
2|A|

+
*∑

A=(1,2,4,5)
α(1)=3,α(5)=7

K
(A,α)
2|A| +

*∑

A=(1,2,4,5)
α(1)=3,α(5)=8

K
(A,α)
2|A| +

*∑

A=(1,2,4,6)
α(1)=3,α(6)=8

K
(A,α)
2|A|

+
*∑

A=(1,2,3,5)
α(2)=4,α(5)=7

K
(A,α)
2|A| +

*∑

A=(1,2,3,5)
α(2)=4,α(5)=8

K
(A,α)
2|A| +

*∑

A=(1,2,3,6)
α(2)=4,α(6)=8

K
(A,α)
2|A|

+
*∑

A=(1,2,3,5)
α(1)=4,α(5)=7

K
(A,α)
2|A| +

*∑

A=(1,2,3,5)
α(1)=4,α(5)=8

K
(A,α)
2|A| +

*∑

A=(1,2,3,6)
α(1)=4,α(6)=8

K
(A,α)
2|A|

where, for instance,

*∑

A=(1,2,4,5)
α(1)=3,α(5)=7

K
(A,α)
2|A| = ❛ ❛ ❛ ❛❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛❛ ❛ ❛ ❛

Example:

❛ ❛ ❛ ❛ ❛ = ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ +

+ ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛ + ❛ ❛ ❛ ❛ ❛
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