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Abstract

The aim of this thesis is to discuss quantizations of the free Maxwell field

in flat and curved spacetimes. First we introduce briefly some notions from

tensor analysis and the causal structure of spacetime. As an introduction

to the main topic, we review some aspects of the two axiomatic quantum

field theories, Wightman theory and algebraic quantum field theory. We

also give an introduction into concepts of the quantization of fields on

curved spacetime backgrounds. Then the wave equation and quantization

of the Maxwell field in flat spacetimes is discussed. It follows a review of

J. DIMOCK’s quantization of the Maxwell field on curved spacetimes and

then we come to our main result:

We show explicitly that the Maxwell field, defined by dF = 0 and

ÆF = 0, has a well posed initial value formulation on arbitrary globally

hyperbolic spacetime manifolds. We prove the existence and uniqueness

of fundamental solutions without employing a vector potential. Thus our

solution is also applicable to spacetimes not satisfying the Poincaré lem-

ma and should lead to a quantization of the Maxwell field on non-trivial

spacetime backgrounds. This in turn provides the opportunity to investi-

gate physical states on non-trivial spacetime-topologies and could lead to

the discovery of new quantum phenomena.

Zusammenfassung

Das Ziel dieses Arbeit ist es, die Quantisierung des Maxwell-Feldes

in flacher und gekrümmter Raumzeit zu diskutieren. Wir führen zunächst

in aller Kürze einige Begriffe aus der Tensor-Analysis und zur kausalen

Struktur der Raumzeit ein. Als Einführung in das Haupthema wiederholen

wir einige Aspekte der zwei axiomatischen Feldtheorien, der Wightman-

Theorie und der algebraischen Quantenfeldtheorie. Wir geben ebenfalls

eine Einführung in die Konzepte der Feldquantisierung in gekrümmter

Raumzeit. Danach diskutieren wir die Wellengleichung und die Quantisie-

rung des Maxwell Feldes in flacher Raumzeit. Es folgt eine Besprechung

der Ergebnisse von J. DIMOCK zur Quantisierung des Maxwell-Feldes in

gekrümmter Raumzeit. Dann kommen wir zu unserem Hauptresultat:

Wir zeigen explizit, daß das Maxwell-Feld, definiert durch dF = 0

und ÆF = 0, ein wohldefiniertes Anfangswertproblem auf einer belie-

bigen global hyperbolischen Raumzeit darstellt. Wir beweisen die Exi-

stenz und Eindeutigkeit der Fundamentallösungen, ohne Zuhilfenahme ei-

nes Vektorpotentials. Daher ist unsere Lösung auch gültig im Raumzeiten,

die das Poincaré-Lemma nicht erfüllen. Dieses wiederum erlaubt die Ana-

lyse von physikalische Zuständen auf nicht-trivialen Raumzeit-Topologien

und könnte zur Entdeckung neuer Quantenphänomene führen.
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Introduction

This work is concerned with the quantization of the Maxwell field in curved spacetimes

within the framework of algebraic quantum field theory.

Quantum field theory in curved spacetimes is the appropriate theory for the analysis

of quantum phenomena, where the effects of gravitation have to be taken into account,

but where the quantum nature of gravitation itself can be neglected. Gravitation is thus

described by a classical, curved spacetime, as in general relativity. This leads to a

theory where quantum fields propagate on a curved background manifold. A similar

approach has already proved valuable in quantum electrodynamics, where in the early

days many calculations were made regarding the electromagnetic field as a background

field interacting with quantized matter. Some of the results obtained by this approxi-

mation are in complete accordance with the full theory of quantum electrodynamics.

Quantum mechanical effects in the theory of gravitation are expected to be relevant near

the Planck scale, 10�35m, whereas the present standard model, describing elementary

particles, is appropriate for scales � 10

�19m. Thus the range of validity of quantum

field theory in curved spacetimes is quite large and should include a wide variety of

interesting phenomena. The most popular example is certainly the Hawking radiation;

Hawking discovered that particle creation should occur in the vicinity of Black holes.

Another field of research within this theory are phenomena occurring in the very early

universe.

There is another reason [AS80], why the inclusion of gravitational effects into

quantum theory might be interesting. One could argue that the gravitational coupling

constant is so weak, that it should provide only minute corrections to the quantitative

results of Minkowskian quantum field theory, if one allows spacetime to be curved.

However, gravitational interaction might also introduce qualitatively new features into

quantum theory, which are measurable already at laboratory scale. We know that spe-

cial relativity is a theory of high velocities, comparable to the velocity of light. But,

the theoretical prediction of antiparticles by special relativity introduced a qualitatively

new feature into physics, which is not at all connected to the velocity of the involved

particles. Why shouldn’t general relativity have a similar impact on laboratory physics?

The structure of spacetime in general relativity is that of a 4-dimensional mani-

fold M with Lorentzian metric g
��

. The metric determines almost every property of

spacetime and thus is the central object of general relativity. Minkowski spacetime,

the spacetime of standard quantum field theory, is included in the theory as a special

spacetime without curvature. In particular it has a symmetry group, the Poincaré group,

consisting of Lorentz transformations, i.e. four-dimensional rotations, and translations.
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2 INTRODUCTION

Quantum field theory in Minkowski space relies heavily on plane wave expansion. The

field is assumed to be an infinite collection of decoupled, time-independent, harmonic

oscillators. The Poincare Group plays a key role in the definition of a preferred vac-

uum state and the particle interpretation of the theory. However, the Poincaré group

is not a symmetry group of general spacetimes. No analogue of either a plane wave

basis or a positive frequency subspace is available in a general curved spacetime. The

particle interpretation, though under appropriate circumstances available, does not play

a fundamental role anymore.

The primary difference between a quantum system of particles and quantum field

theory is that the latter has infinitely many degrees of freedom. In case of finite degrees

of freedom, the Stone-von Neumann theorem assures, that the canonical commuta-

tion relations for position and momentum operators completely determine a choice of

Hilbert space H and a choice of selfadjoint operators on H corresponding to position

and momentum observables. Unfortunately the Stone-von Neumann theorem does not

hold for systems with infinitely many degrees of freedom. In fact, infinitely many uni-

tarily inequivalent, irreducible representations for the canonical commutation relations

exist in quantum field theory.

As already indicated, the Poincaré symmetry of Minkowski space manifests itself in

the possibility to choose a preferred vacuum state and particle notion. These properties

get lost in the transition to curved spacetimes. On some non-compact spacetimes, it is

still possible to define a particle notion in the asymptotic future and in the asymptotic

past; but the representations of the canonical commutation relations for these regions

will in general be unitarily inequivalent.

The apparent incompatibility of quantum field theory and curved spacetimes dis-

solves if ones uses the algebraic approach to quantum field theory. Algebraic quantum

field theory allows one to consider simultaneously all unitarily inequivalent Hilbert

space constructions of the physical system. This in turn, leads to a mathematically

rigorous construction of quantum field theory without the need to pick out a preferred

representation of the canonical commutation relations, in particular, without the need

of an a priori particle notion. This suggests that quantum field theory has to be treated

truly as a field theory and not as a particle theory in disguise.

The preferred model of quantum field theory in curved spacetime is, of course, the

scalar (Klein-Gordon) field. Almost all investigations regarding the structure of the the-

ory are carried out using this model. This is mainly justified by the mathematical sim-

plicity of the scalar field, compared to the Dirac or Maxwell field. However, a series of

papers by J. DIMOCK is concerned with the quantization of all of these fields on curved

manifolds [Dim80, Dim82, Dim92]. We shall explicitly have to deal with [Dim92], in

which a rigorous quantization of the Maxwell field on arbitrary globally hyperbolic

Lorentzian manifolds with a compact Cauchy surface is developed. A similar line is

followed by E. FURLANI [Fur99]. Both papers introduce a globally defined electro-

magnetic vector potential and thus restrict their result to simply-connected portions of

spacetime. The purpose of this thesis is to start an extension of this theory which is

suitable for topologically nontrivial manifolds. The existence of a globally definable

vector potential is only guaranteed, if the spacetime is contractible. This is already not

the case for Schwarzschild-Kruskal spacetime, which is certainly an interesting physi-

cal spacetime. A. ASHTEKAR and A. SEN [AS80] discuss source free Maxwell fields



3

on Schwarzschild-Kruskal spacetime and show that there exists a two-parameter family

of unitarily inequivalent representations of the canonical commutation relations. This

is a consequence of the nontrivial topology of Schwarzschild-Kruskal spacetime.

Layout of the work. The course of this thesis runs as follows. In the first chapter

we introduce some basic notions of general relativity. Manifolds and tensors are in-

troduced as well as differential forms and some operations on differential forms. Cur-

vature and the causal structure of spacetime is discussed briefly. The 3+1-splitting of

spacetime as a method to investigate dynamics is explained.

The second chapter begins with some generalities of axiomatic quantum field the-

ory and then provides a very short introduction into the concepts of algebraic quantum

field theory to the readers not familiar with it. We give some mathematical definitions

needed to understand this approach. It follows the general quantization scheme of

quantum field theory in curved spacetime for a hermitian real scalar field. Furthermore

a review of the symplectic structure of classical dynamics is given and it is investigated

how this approach leads to what we call ’symplectic quantization’. This method is then

applied to the scalar field.

In chapter three we review basic facts from classical Maxwell theory on flat space-

time. We introduce the Maxwell tensor and the field equations. The standard treatment

of the source-free wave equation in Minkowski spacetime leads to explicit solutions for

electromagnetic waves. We demonstrate then the Minkowski space quantization of the

Maxwell equations, which is an example of a field theory with indefinite metric. We

shall not use the Fock space approach here. This somewhat non-standard in the usual

quantum field theory literature.

Chapter four deals with the Maxwell field in curved spacetimes and demonstrates

its quantization, as carried out by J. DIMOCK. This quantization is necessarily car-

ried out in the spirit of chapter four and is rather different from the indefinite metric

quantization in Minkowski space.

In the second part of this chapter we address the Cauchy problem for the Maxwell

field and prove it’s well posedness using the methods of chapter one. This is our contri-

bution to the quantization of the Maxwell field. At last we give an outlook on possible

future projects that could follow.
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Chapter 1

Curved Spacetimes

In this chapter we review the mathematical framework of Einstein’s general relativ-

ity and also some results of this theory, which we will need in later chapters. First

we define the manifolds representing spacetime and introduce tensors and differential

forms on manifolds as the basic objects of general relativity. We equip the manifold

with a Lorentzian metric and discuss the resulting causal structure of spacetime. Then

we state an important result from differential geometry, the Poincaré lemma. The last

section is a review of a special method used to analyze the time evolution of physical

objects in general relativity, known as the 3+1-splitting.

1.1 Manifolds and Tensor Fields

In the framework of general relativity, spacetime is described as a 4-dimensional dif-

ferentiable manifold. Basically a manifold is a topological space, that locally looks

like Rn. The existence of infinitely differentiable coordinate systems makes the mani-

fold differentiable. Contrary to a Euclidean space, on a curved manifold M the naive

notion of a vector as an arrow pointing from one point to another does not make sense

anymore. Thus, one defines a vector to be a tangent vector to to a curve inM. This def-

inition leads to the theory of fiber bundles, which has proved valuable in many theories

in physics, such as general relativity and gauge theory.

1.1.1 Vectors on a manifold

A differentiable Manifold M is a paracompact Hausdorff space with an atlas [Fred].

We could abandon paracompactness at this stage, since we will equip the manifold

with a Lorentzian metric and a Hausdorff manifold with a Lorentzian metric is always

paracompact [HE]. On the manifold we need smooth maps in order to define smooth

curves. A map from a subset M � R

m into a subset N � R

n, with p-times contin-

uously differentiable components �
i

(x); (i = 1; 2; : : : ;m), is said to be of class Cp.

The infinitely differentiable maps C1 are called smooth. By the existence of an atlas,

5



6 CHAPTER 1. CURVED SPACETIMES

we can define smooth functions on any differentiable manifold. Let us denote the space

of all smooth functions f on M, i.e. C1-functions f :M! R

m by E(M).

Now consider a smooth curve 
(t) on M, i.e. a continuous map from an interval

on the real line R into the ManifoldM, such that f Æ
 is a C1 map for any f 2 E(M).

At each point p = 
(t) the curve has a tangent vector

_
 =

d


dt

: (1.1)

We identify the tangent vector _
 at p with the Operator

X : E(M)! C

f 7!

d

dt

(f Æ 
(t)) :

(1.2)

Due to the product rule, X has the property X(fg) = (Xf)g + f(Xg) in common

with all derivatives. Conversely one can show that all linear maps X : E(M) ! C,

satisfying this equation, are represented as tangent vectors in p.

The collection of all tangent vectors to all possible curves passing through a given

point p in M is called the tangent space to M at p, and is denoted by T
p

M. On an n-

dimensional manifoldT
p

M is an n-dimensional vector space with �
�

=

�

�x

�

providing

a coordinate basis of M. Hence we can write any tangent vector as X = X

�

�

�

.

The collection of all tangent spaces to all points p inM is called the tangent bundle

of M, denoted by

TM =

[

p2M

T

p

M : (1.3)

The individual tangent spaces are called the fibers of the bundle. The tangent bundle

TM of a smooth n-dimensional manifoldM is a smooth manifold of dimension 2n.

To any vector space V we call the vector space of all linear functionals f : V !

R the dual space V � of V . The dual space of a tangent space T
p

M is called the

cotangent space and is denoted T �
p

M. The cotangent bundle T �M is defined as in

(1.3). An appropriate basis for the cotangent spaces is provided by the gradients dx�

of the coordinate functions. (The exterior derivative d will be introduced later). Hence,

any cotangent vector X is written X = X

�

dx

�. In the finite dimensional case, the

dual spaces are isomorphic to each other. But since there is in general no natural

isomorphism, it makes sense to distinguish between the spaces. As it is common we

denote tangent vectors by lower indices, V
�

, and cotangent vectors by upper indices,

V

�.

Consider a set of vectors with exactly one at each point in a space. We call this

a vector field. An integral curve of a vector field V is a smooth parameterized curve


(t) = 


�

(t)�

�

whose tangent vector at any point coincides with the value of V at that

same point

(t)

dt

= V j


(t)

: (1.4)

This means the integral curve 
(t) of V can be obtained as the solution to the au-

tonomous system of ordinary differential equations

d


�

dt

= V

�

: (1.5)
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1.1.2 Tensors

In this section we introduce tensors as straightforward generalizations of vectors and

dual vectors. However, tensors on curved spacetime bring about the question of how to

define a derivative that is independent from the local coordinate system. The covariant

derivative is a tool that serves this need. But one has to be careful, since in general

covariant derivatives do not commute. Furthermore we note that covariant derivatives

depend on ’connections’, of which a particular interesting one is the Levi-Civita con-

nection.

The definitions given here, can be found in any book treating tensor analysis, e.g.

[Nak], and in almost every book on general relativity, e.g. [Wala, Wei, MTW] (See

also [Car97] for a non-rigorous introduction). A classic text is also [HE].

The notion of a tensor. As noted before, a tensor is the straight forward general-

ization of vectors and dual vectors. A tensor of type (k; l) is a multilinear map on

Cartesian products of vector spaces and dual vector spaces:

T : V

�

� � � � � V

�

| {z }

k�times

�V � � � � � V

| {z }

l�times

! R : (1.6)

Scalar functions are treated as tensors of type (0; 0). The collection T (k; l) of all

tensors of type (k; l) has the structure of a vector space with dimension (k + l). Con-

sequently the multilinearity property allows to specify a tensor by giving it’s values in

a basis fv
(�)

g of V and it’s dual basis fv(�)g of V �.

Given a Tensor T of type (k; l) and a tensor T 0 of type (k

0

; l

0

) one can construct a

new tensor T 
 T

0 of type (k + k

0

; l + l

0

) by demanding that

T 
 T

0

(V

(1)

; : : : ; V

(k+k

0

)

; V

(1)

; : : : ; V

(l+l

0

)

)

= T (V

(1)

; : : : ; V

(k)

; V

(1)

; : : : ; V

(l)

)T

0

(V

(k+1)

; : : : ; V

(k

0

)

; V

(l+1)

; : : : ; V

(l

0

)

) : (1.7)

The operation 
 is known as the tensor product. Every tensor T of type (k; l) can be

expressed in the form

T = T

�

1

:::�

k

�

1

:::�

l

v

(�

1

)


 v

(�

k

)


 v

(�

1

)


 v

(�

l

)

; (1.8)

where the coefficients T �

1

:::�

k

�

1

:::�

l

are the components of T in the given basis. The

transformation law for a tensor under a coordinate transformation is

T

�

0

1

:::�

0

k

�

0

1

:::�

0

l

=

�x

�

0

1

x

�

1

: : :

�x

�

0

k

x

�

k

�x

�

1

x

�

0

1

: : :

�x

�

l

x

�

0

l

T

�

1

:::�

k

�

1

:::�

l

: (1.9)

Abstract index notation. Throughout this text we will use the so called ’abstract

index notation’, which is a slight modification of the usual component notation for

tensors. The idea is to work without specification of any basis, but to use a notation

that mirrors the expressions for the basis components, if we had introduced one. A

tensor of type (k; l) is denoted by a letter followed by k upper (contravariant) and l

lower (covariant) indices, e.g. T ��

���

stands for a (2; 3) tensor. We also accept the
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widespread convention, that indices written with Greek letters take values 0; 1; 2; 3 and

indices with Roman letters go from 1 to 3. Furthermore we employ the summation

convention. This means indices appearing twice, once as an upper index and once as

a lower index, denote summation over the given index range; e.g. T ��

���

denotes the

(1; 2) tensor obtained by calculating the contraction
P

3

�=0

T

��

���

. Further discussion

of this notation can be found in [Wala].

Covariant differentiation. When we use Cartesian coordinates in a flat spacetime,

the partial derivative operator �
�

is is a map from from (k; l) tensor fields to (k; l + 1)

tensor fields. Curved spacetimes are represented by manifolds with nonzero curvature.

On such manifolds the partial derivative no longer maps tensors to tensors anymore.

(This is already the case with non-Cartesian coordinates in a flat spacetime). Hence, a

covariant derivative for contravariant vectors is defined by

r

�

V

�

= �

�

V

�

+ �

�

��

V

�

: (1.10)

The ��
��

are n� n matrices, where n is the dimension of the manifold considered and

are called connection coefficients. The associated covariant derivative for a covariant

vector, using the the same connection coefficients, is given by

r

�

!

�

= �

�

!

�

� �

�

��

!

�

: (1.11)

We also give a general expression for the covariant derivative of arbitrary rank

tensors:

r

�

T

�

1

:::�

k

�

1

:::�

l

= �

�

T

�

1

:::�

k

�

1

:::�

l

+ �

�

1

��

T

��

2

:::�

k

�

1

:::�

l

+ �

�

2

��

T

�

1

��

3

:::�

k

�

1

:::�

l

+ : : :

� �

�

��

1

T

�

1

:::�

k

��

2

:::�

l

� �

�

��

2

T

�

1

:::�

k

�

1

��

3

:::�

l

� : : : :

(1.12)

The ��
��

are n� n matrices, where n is the dimension of the manifold considered and

are called connection coefficients.

As required for any derivative, the covariant derivative is linearr(T +S) = rT +

rS, and satisfies the Leibnitz rule: r(T 
 S) = (rT )
 S + T 
 (rS).

Commutation relation for covariant derivatives. The use of covariant derivatives

instead of partial derivatives poses the problem of commutativity of derivatives. We

know that partial derivatives commute, �
�

�

�

= �

�

�

�

, but covariant derivatives in

general do not. For an arbitrary tensor field X�

1

:::�

p

�

1

:::�

q

the commutator is

[r

�

;r

�

℄X

�

1

:::�

p

�

1

:::�

q

= �T

��

�

r

�

X

�

1

:::�

p

�

1

:::�

q

+R

�

1

���

X

��

2

:::�

p

�

1

:::�

q

+R

�

2

���

X

�

1

�:::�

p

�

1

:::�

q

+ : : :

�R

�

�

1

��

X

�

1

:::�

p

��

2

:::�

q

�R

�

�

2

��

X

�

1

:::�

p

�

1

�:::�

q

� : : :

(1.13)

Here T
��

� is the torsion tensor as before and R�

���

is the Riemann tensor:

R

�

���

= �

�

�

�

��

� �

�

�

�

��

+ �

�

��

�

�

��

� �

�

��

�

�

��

: (1.14)
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We note some key properties of the Riemann tensor with lower indices, R
����

=

g

��

0

R

�

0

���

:

� R

����

= �R

����

,

� R

����

= R

����

,

� R

����

+R

����

+ R

����

= 0.

Levi-Civita connection. To any given connection one can associate a torsion tensor

defined by

T

��

�

= �

�

��

� �

�

��

: (1.15)

A connection which is symmetric in its lower indices, that is if T �

��

= 0, is called

torsion free. A further property of some connections is metric compatibility. In section

1.2 we will introduce the metric tensor g
��

. The metric g
��

is naturally used to raise

or lower Tensor indices: g
��

T

��

= T

�

�. For now it is sufficient to note, that metric

compatibility means that the covariant derivative associated with a connection satisfies

r

�

g

��

= 0 : (1.16)

An important property of metric-compatible covariant derivatives is, that they commute

with the raising and lowering of indices:

g

��

r

�

V

�

= r

�

V

�

: (1.17)

A connection, which is torsion-free and metric-compatible, exists on any manifold and

it can be proved that it has the components:

�

�

��

=

1

2

g

��

(�

�

g

��

+ �

�

g

��

+ �

�

g

��

) : (1.18)

The unique torsion-free, metric compatible connection defined above is known as the

Levi-Civita connection and the associated connection coefficients �

�

��

are called the

Christoffel symbols.

The covariant divergence of a contravariant antisymmetric tensorA�� , with respect

to the Christoffel connection, can be expressed in terms of the metric determinant g =

det(g

��

) [Wei]:

r

�

A

��

=

1

p

jgj

�

�

(

p

jgjA

��

) : (1.19)

1.1.3 (Anti-) Symmetrization

A tensor which remains the same after permutation of some of its indices is called sym-

metric in the chosen set of indices. If the tensor changes sign under odd permutations

of indices but remains the same under even permutations it is antisymmetric in this set

of indices.
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Any given tensor can be symmetrized in any number of indices by the following

procedure: take the sum of the permutations of the relevant indices and divide by the

number of terms.

T

(�

1

:::�

p

)

=

1

p!

(T

�

1

:::�

p

+ sum over permutations of �
1

: : : �

p

) : (1.20)

To get an anti-symmetrized tensor any permutation which is the result of an odd number

of index exchanges is subtracted (this is called the alternating sum):

T

[�

1

:::�

p

℄

=

1

p!

(T

�

1

:::�

p

+ alternating sum over permutations of �
1

: : : �

p

) : (1.21)

We use round brackets for symmetric and square brackets for anti-symmetrization of

tensors. If we want to exclude indices we put these indices between vertical bars:

T

(�j�j�)�

� means it is not summed over �; � and �.

The definition of anti-symmetrization, as it is given above, is not very handy when

it comes to explicit calculations. A more compact notation for anti-symmetrization is:

T

[�

1

:::�

p

℄

=

1

p!

Æ

�

1

:::�

p

�

1

:::�

p

T

�

1

:::�

p

(1.22)

where we used the generalized Kronecker-Æ symbol:

Æ

�

1

:::�

p

�

1

:::�

p

=

8

>

<

>

:

+1 if (�
1

: : : �

p

) is an even permutation of (�
1

: : : �

p

)

�1 if (�
1

: : : �

n

) is an odd permutation of (�
1

: : : �

p

)

0 otherwise :

(1.23)

This definition is equivalent to

Æ

�

1

:::�

p

�

1

:::�

p

=

�

�

�

�

�

�

�

�

Æ

�

1

�

1

Æ

�

1

�

2

: : : Æ

�

1

�

p

Æ

�

2

�

1

Æ

�

2

�

2

: : : Æ

�

2

�

p

: : : : : : : : : : : :

Æ

�

p

�

1

Æ

�

p

�

2

: : : Æ

�

p

�

p

�

�

�

�

�

�

�

�

(1.24)

where Æ�
�

is the simple Kronecker-Æ symbol and the right side is a determinant.

1.1.4 The Levi-Civita tensor

Some important objects, that look line tensors at first sight, do not transform like ten-

sors. An Object g that transforms according to the law g(x

�

0

) =

�

�

�x

�

0

�x

�

�

�

�w

g(x

�

) is

called a tensor density of weight w. There are some important objects that are tensor

densities. On of them is the Levi-Civita symbol (or completely antisymmetric symbol):

~�

�

1

:::�

n

=

8

>

<

>

:

+1 if �
1

: : : �

n

is an even permutation of 0 1 : : : (n� 1)

�1 if �
1

: : : �

n

is an odd permutation of 0 1 : : : (n� 1)

0 otherwise:

(1.25)
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The Levi-Civita symbol is of weight 1. It has the same components in any coordi-

nate system. One can also define a Symbol with upper indices, which has the same

components as the one with lower indices:

~�

�

1

:::�

n

= ~�

�

1

:::�

n

: (1.26)

Note that we could also have defined:

~�

�

1

:::�

n

= Æ

1::::::n

�

1

:::�

n

and ~�

�

1

:::�

n

= Æ

�

1

:::�

n

1::::::n

: (1.27)

Another example for a tensor density is the determinant of the metric g = det(g

��

),

which is a density of weight 2.

Tensor densities become honest tensors when multiplied by jgjw=2, where w is

again the weight of the density, and jgj is the absolute value of the metric determinant.

Now we can define the Levi-Civita tensor by

�

�

1

:::�

n

=

p

jgj ~�

�

1

:::�

n

: (1.28)

These are the components of the Levi-Civita tensor in an arbitrary basis (e
0

; e

1

; e

2

; e

3

),

with e
0

pointing towards the future and e
1

; e

2

; e

3

right-handed. A manifold on which

the Levi-Civita tensor can be defined unambiguously is orientable.

We collect some more useful relations of the introduced quantities. Note that

�

�

1

:::�

n

=

1

g

�

�

1

:::�

n

(1.29)

and

�

�

1

:::�

n

=

(�1)

s

p

jgj

~�

�

1

:::�

n

; (1.30)

where s is the number of minuses appearing in the signature of the metric (The signa-

ture is introduced in section 1.2).

The contraction of two Levi-Civita symbols can be calculated in terms of the gen-

eralized Kronecker delta from

~�

�

1

:::�

j

�

j+1

:::�

n

~�

�

1

:::�

j

�

j+1

:::�

n

= (�1)

s

j! Æ

�

j+1

�

j+1

: : : Æ

�

n

�

n

: (1.31)

From this it is easily seen that the Levi-Civita symbol is subject to the normalization

condition

~�

�

1

:::�

n

~�

�

1

:::�

n

= (�1)

s

n! : (1.32)

On a four dimensional Lorentzian manifold (see section 1.2) equation (1.31) is

equivalent to [LL]:

~�

����

~�

����

= �

�

�

�

�

�

�

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

�

�

�

�

�

�

�

�

; ~�

����

~�

����

= �

�

�

�

�

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

Æ

�

�

�

�

�

�

�

�

; (1.33)

~�

����

~�

����

= �2(Æ

�

�

Æ

�

�

� Æ

�

�

Æ

�

�

); ~�

����

~�

����

= �6 Æ

�

�

; (1.34)

~�

����

~�

����

= �24 : (1.35)
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Since a contraction with the Levi-Civita tensor has the effect of anti-symmetrization,

the complete contraction with an an already anti-symmetrized tensor gives:

~�

�

1

:::�

n

A

[�

1

:::�

n

℄

= ~�

�

1

:::�

n

A

�

1

:::�

n

: (1.36)

1.1.5 Differential forms

A completely antisymmetric tensor of type (0; p) is called a differential p-form, or just

p-form. The smooth differential p-forms on M are denoted 


p

(M), or 
p




(M) in the

case of compact support.

Wedge Product. The wedge product maps a p-form A and a q-form B to a (p+ q)-

form (A ^ B):

(A ^B)

�

1

:::�

p+q

=

(p+ q)!

p!q!

A

[�

1

:::�

p

B

�

p+1

:::�

p+q

℄

: (1.37)

The wedge product is not commutative but it is possible to alter the order of the factors

if one is careful with signs:

A ^ B = (�1)

pq

(B ^ A) : (1.38)

Exterior derivative. The exterior derivative d maps p-forms to (p+ 1)-forms:

(dA)

�

1

:::�

p+1

= (p+ 1)�

[�

1

A

�

2

:::�

p+1

℄

: (1.39)

The simplest example of an exterior derivative is the gradient, which is the exterior

derivative of a 0-form:

(d�)

�

= �

�

� : (1.40)

From the commutation property of partial derivatives, �
�

�

�

= �

�

�

�

, it follows that

ddA = 0 (1.41)

for any p-formA.

Star operator. On an n-dimensional manifold the (Hodge) star operator � sends

p-forms to (n� p)-forms:

(�A)

�

1

:::�

n�p

=

1

p!

�

�

1

:::�

p

�

1

:::�

n�p

A

�

1

:::�

p

: (1.42)

Note that this is a very natural operation, since the number of linearly independent p-

forms on an n-dimensional vector space is n!=(p!(n� p)!) and thus the space 
p

(M)

is isomorphic to the space 


(n�p)

(M). Contrary to the exterior derivative and the

wedge product, the star operator is metric dependent. The metric enters the definition

via the Levi-Civita-Tensor ��1:::�p =

p

jgj ~�

�

1

:::�

n

(1.28). Applying the �-operator

twice returns the original form or its negative:

� �A = (�1)

s+p(n�p)

A : (1.43)

Here s is again the number of minuses in the signature of the metric and n is the

dimension of the manifold.
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Inner product. The inner product on 


1




(M) is defined by

h!; �i =

Z

M

! ^ �� =

Z

M

!

�

�

�

jgj

1=2

: (1.44)

Coderivative. The codifferential (inner derivative)

Æ = �d� (1.45)

maps p-forms to (p� 1)-forms. The operator Æ is the generalization of the divergence

and in a sense can be treated as the adjoint of d since hÆ!; �i = h!; d�i.

1.1.6 Pullbacks and pushforwards

Consider two manifoldsM and N with coordinate systems x� and y� respectively. If

we have a map � : M! N and a function f : N ! R we can compose � with f to

get a map (f Æ �) :M! R. This special map is called the pullback of f by �:

�

�

f = (f Æ �) : (1.46)

We need the pullback of a function to define the pullback and pushforward of tensors

in general. If V (p) is a vector at a point p on M the pushforward of V at the point

�(p) is

(�

�

V )(f) = V (�

�

f) : (1.47)

The pullback of a 1-form on is given by

(�

�

!)(V ) = !(�

�

V ) : (1.48)

In coordinate based language these operations can be expressed by the matrix of partial

derivatives:

(�

�

V )

�

= (�

�

)

�

�

V

�

(�

�

!)

�

= (�

�

)

�

�

!

�

(�

�

)

�

�

= (�

�

)

�

�

=

�y

�

�x

�

: (1.49)

The next step is to define the pullback and pushforward of completely covariant or

contravariant tensors:

(�

�

T )(V

(1)

; V

(2)

; : : : ; V

(l)

) = T

�

(�

�

V

(1)

; �

�

V

(2)

; : : : ; �

�

V

(l)

)

(�

�

T )(!

(1)

; !

(2)

; : : : ; !

(l)

) = T

�

(�

�

!

(1)

; �

�

!

(2)

; : : : ; �

�

!

(l)

) :

(1.50)

If � is a diffeomorphism, that means if � is invertible and the inversion ��1 is smooth,

we can pullback or pushforward tensors of any type:

(�

�

T )(!

(1)

; : : : ; !

(k)

; V

(1)

; : : : ; V

(l)

) =

T (�

�

!

(1)

; : : : ; �

�

!

(k)

; [�

�1

℄

�

V

(1)

; : : : ; [�

�1

℄

�

V

(l)

) :

(1.51)
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1.2 Spacetime Structure

In modern physics spacetime is assumed to be a differentiable manifold equipped with

a Lorentzian metric. The metric imposes a particular causal structure on the space-

time, which we shall review briefly. We are especially interested in globally hyperbolic

spacetimes, since they allow the existence of well posed initial value formulations for

wave equations. One global property of manifolds is their contractibility. The as-

sumption of non-contractibility of the considered spacetimes is one key element of this

thesis. The most important difference between contractible and non-contractible spaces

is characterized by the Poincaré lemma. In the last part we introduce the 3+1-splitting

of a spacetime, and collect important equations needed later on.

1.2.1 The metric tensor

LetM be any differentiable manifold. A metric tensor g
��

at a point p 2M is a sym-

metric tensor of type (0,2) at p. The metric assigns to each pair of vectors V;W 2 T

p

M

a scalar g(V;W ) = g

��

V

�

W

� . This is the natural generalization of the Euclidean

scalar product to metric manifolds. The metric is non-degenerate if there is no nonzero

vector V 2 T

p

M such that g(V;W ) = 0 for all W 2 T

p

M. A non-degenerate metric

is called a Riemannian metric. If the metric is non-degenerate we can define a unique

inverse of the metric-tensor by

g

��

g

��

= Æ

�

�

: (1.52)

The metric and it’s inverse provide an isomorphism between the covariant and con-

travariant components of any tensor. This means one can raise and lower indices with

the help of g�� and g
��

[HE].

A result from the theory of quadratic forms says, that a real quadratic form g

��

, at a

point p, can be put into a canonical form, which has the property of being diagonal and

only having components +1 and �1. This is done by diagonalization and subsequent

scaling of the basis vectors [Nak]. After that, the diagonal of the matrix (g

��

) at p

looks like (+ � � � + � � � ��). The number of plus and minus signs accounts to the

number of positive and negative eigenvalues of (g
��

). The signature of g
��

at p is the

sum of the signs of the eigenvalues of (g
��

). Sometimes one refers to the n-tuple of

characterizing signs (+ � � �+� � � ��) as the signature.

A metric with only positive eigenvalues, i.e. a metric with signature n, where n is

the dimension of the underlying manifold, is a positive definite metric. A metric with

signature (n�2) or (n+2), is called a Lorentz metric. A pair (M; g

��

) consisting of a

differentiable manifoldM and a Lorentzian metric g
��

is called a Lorentzian manifold.

We adopt the conventional metric in quantum field theory, which is a Lorentzian

metric with signature (+ � ��). In the absence of gravitational fields, i.e. in flat

spacetime, the metric becomes

g

��

= �

��

=

0

B

B

�

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C

C

A

: (1.53)
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The metric �
��

is called Minkowski metric and consequently the spacetime manifold

M = (M; �

��

) is known as Minkowski space.

1.2.2 The causal structure of spacetime

Let (M; g

��

) be a Lorentzian manifold. Thanks to the Lorentzian metric, the elements

of T
x

M, that is the vectors v at any point x 2 M, are divided into three classes as

follows:

� timelike , g(v; v) > 0

� lightlike , g(v; v) = 0

� spacelike , g(v; v) < 0.

All lightlike vectors in in x define the open lightcone V (x) = V

+

(x) [ V

�

(x).

Here V
+

comprises the future directed and V
�

the past directed lightlike vectors. A

curve that is timelike or lightlike in every point x is called causal. For a given point

x 2 M we define the causal future J+(x) of x to be the set of all points which can be

reached by a future directed causal curve through x. All points which can be reached

by a past directed causal curve define the causal past J�(x). Restricting ourselves to

timelike curves we define the chronological future I+(x) and the chronological past

I

�

(x) of x 2M in a similar way.

The future domain of dependenceD+

(O) of a connected subset O 2M, is the set

of all points p 2 M such that every past-moving, causal , inextendible curve through

p must intersect O. The past domain of dependence D�

(O) is defined similarly by

changing past moving to future moving.

Definition 1.1 A possibly curved spacetime (M; g

��

) with a hypersurface� such that

every inextendible curve inM intersects� precisely once is called globally hyperbolic.

The hypersurfaces � are called Cauchy surfaces.

Inextendible means that the curves do not end in a finite point.

The topological structure of globally hyperbolic spacetimes allows the choice of a

global time coordinate:

Theorem 1.2 Let (M; g

��

) be a globally hyperbolic spacetime. On M there exists a

(non-unique) smooth global time coordinate t 2 R, such that each ftg�� is a Cauchy

surface.

Or to put it in other words: topologically one has the identity M = R � �. On a

globally hyperbolic spacetime the entire history of the universe can be predicted from

conditions at the instant of time represented by the Cauchy surface �. This promotes

causality and is the reason why most of the papers on quantum field theory in curved

spacetime assume global hyperbolicity of spacetime. So do we. However one should

note that there exist exact solutions to Einstein’s field equations which do not admit

Cauchy surfaces [HE].
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1.2.3 Poincaré group

A point x� = (t;x) on the spacetime manifoldM corresponds to a specific time t and

a specific location x and thus deserves the name event. One introduces the spacetime

interval s between two points (or events) x�; x� by

s

2

= g

��

x

�

x

�

: (1.54)

The set of all transformations x� ! x

�

0 that leaves the interval s between any pair of

points of the Minkowski space M = (M; �

��

) invariant is called the Poincaré Group

P . A general Poincaré transformation (�; a) of a point x = x

� has the form

x! x

0

= �x+ a (1.55)

where � = �

�

�

are four-dimensional transformation matrices and a = a

� is a fixed

translation vector. The group operation of the Poincaré group is

(a

1

;�

1

)(a

2

;�

2

) = (a

1

+�

1

a

2

;�

1

�

2

) : (1.56)

The requirement that s has to be left invariant by the transformation imposes the

condition

� = �

T

�� (1.57)

on the transformation matrices �. The matrices � which satisfy (1.57) are known as

the Lorentz transformations and they form the Lorentz group L which is a subgroup of

P .

The Lorentz group is disconnected; It consist of four connected components dis-

tinguished by the properties det� = �1 and �

0

0

� 1 or �0

0

� 1. Only L
"

+

, i.e. the

component with det � = 1 and �

0

0

� 1, is a subgroup of the Lorentz group (since it

contains the identity element). L
"

+

is called the proper Lorentz group. The correspond-

ing subgroup P
"

+

of the Poincaré group is considered to be the correct symmetry group

in relativistic field theory. Later we will see that the lack of Poincaré symmetry is the

main problem of quantum field theory in curved spacetimes.

1.2.4 The Poincaré lemma

A p-form A is called closed if dA = 0. It is called exact if A = dB for some (p �

1)-form B. Since d

2

= 0, an exact form is always closed but the converse is not

necessarily true. Dealing with the Maxwell field we need the converse statement, that

a closed form is exact, in order to define a vector potential A by the formula F =

dA, where F is the field strength tensor. The situation in which we can propose the

existence of such a potential is provided by the Poincaré lemma. A necessary condition

for the validity of the Poincaré lemma is contractibility of the spacetime manifold:

Definition 1.3 A topological space X is contractible, if there exists a point x
0

2 X

and a smooth map � : X � [0; 1℄ ! X , such that �(x; 0) = x

0

and �(x; 1) = x for

all x 2 X .
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Contractible spaces are simply connected, i.e. on such spaces every closed curve can

be continuously deformed to a point. Not all admissible spaces are simply connected.

There are solutions for Einstein’s equations which allow spacetime to be multiply con-

nected. On contractible manifolds the following theorem holds:

Theorem 1.4 (Poincaré lemma) If a coordinate neighborhoodO of a manifold M is

contractible to a point x
0

2M , any closed p-form on O is also exact.

A nice proof of this can be given within the theory of deRham cohomology [Nak].

On multiply connected spaces one still has the statement that any closed form is

exact at least locally. However this makes patching arguments necessary when a global

property has to be proved.

1.2.5 Splitting spacetime into space and time

Sometimes it is desirable to split the 4-dimensional spacetime into three spatial and

one time dimension. Then the metric 

ij

of the spatial part becomes a dynamical

variable changing with time. But of course this procedure can be used for any quantity

on the Cauchy surfaces changing with time, like e.g. the components of the Maxwell

tensor. We will need the 3+1 splitting, in the analysis of the Cauchy problem for the

field strength tensor. For a deeper discussion on lapse and shift vectors see [MTW] or

[Wala]. Our notation is compatible with that of [DK82] and [Wip98].

The induced spatial metric. Let �
t

be a Cauchy surface in (M; g

��

). We intro-

duce unit normal vector fields n� to �

t

. The 4-dimensional metric g
��

with signature

(+���) induces a 3-dimensional positive definite metric 

��

, i.e. a metric with

signature (+ ++), on �

t

by

g

��

= n

�

n

�

� 


��

: (1.58)

The spatial components of these metrics are related to each other by

g

ij

= �


ij

: (1.59)

Global hyperbolicity and thus the existence of a global time coordinate t suggests the

definition of a vector field t� by

t

�

r

�

t = 1 : (1.60)

This vector field represents the time evolution of the Cauchy surfaces �

t

. It joins

infinitesimally distant Cauchy surfaces to each other.

Shift and lapse functions. We are interested in the relation between the vector fields

t

� and n�. It is evident that the vector field t� can be decomposed into normal and

tangential parts with respect to �

t

:

t

�

= Nn

�

+N

�

: (1.61)
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The shift function N is the projection of t� onto n� and the lapse functions N i are

the projections of t� onto �

t

. Next we introduce adapted coordinates x� = (t; x

i

),

satisfying t�r
�

x

i

= 0, so that [Wip98]:

t

�

r

�

= �

t

and N

�

�

�

= N

i

�

i

: (1.62)

In this coordinate system one finds the following relations for the shift function:

N

2

=

1

g

00

= �

g




: (1.63)

The determinant of the Lorentz metric g
��

is negative and thus this equation reads

N =

p

jgj

p




: (1.64)

The lapse functions are given as

N

i

= �

g

i0

g

00

and N

i

= �g

0i

(1.65)

where the lapse functions with upper and lower indices are related by the spatial metric:

N

i

= 


ij

N

j

: (1.66)

Of course there are also direct relations between lapse and shift functions:

g

00

= N

2

�N

i

N

i

(1.67)

g

ij

= �


ij

+

N

i

N

j

N

2

: (1.68)



Chapter 2

Local Quantum Physics

In this chapter we shall begin with some remarks on axiomatic quantum field theory

and its application to curved spacetimes. This is followed by the axioms of quantum

field theory on curved spacetimes. We explain the transition between usual quantum

mechanics and the algebraic approach, and mention the problem of constructing physi-

cal states. The practical procedure of quantization is addressed next. In the last section

we show how a coordinate independent Poisson bracket formulation leads to commu-

tation relations for the fields in curved spacetime.

2.1 Axiomatic Quantum Field Theory

Quantum field theory (QFT) is the basic theory of relativistic quantum systems. It

describes the whole range of elementary particles and to some extent their interactions.

It is a synthesis of quantum theory and special relativity, supplemented by the principle

of locality and the spectral condition.

While constructive QFT and perturbation theory works on the explanation and pre-

diction of experiments, axiomatic QFT is the attempt to analyze the abstract structures

of relativistic quantum systems. Axiomatic QFT is interested in the qualitative features

and the fundamental theorems underlying the theory.

Two main lines of axiomatic theories evolved in quantum field theory, both to some

extend complementary, the Wightman theory in the fifties and algebraic quantum field

theory (AQFT) in the sixties. The central object of Wightman theory are quantum

fields in a Hilbert space, whereas algebraic quantum field theory emphasizes the role

of algebraic relations between the observables, represented as selfadjoint operators on

a Hilbert space. The universality of the algebraic language allows deeper insights into

the universal principles of physics. However the Wightman approach is usually pre-

ferred when it comes to explicit calculations. The transition between the two theories

is still investigated, but it is known for sure, that the algebraic approach allows quan-

tum systems which do not support actual fields. This is why the name ’local quantum

physics’ is more appropriate than algebraic quantum field theory [FR].

19
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The foundations of AQFT were laid by R. HAAG and D. KASTLER, based on ear-

lier work of J. VON NEUMANN and I. SEGAL, and culminated in their famous 1964 pa-

per [HK64]. Significant further developments came, among others, by H. J. BORCHERS

and H. ARAKI. Originally formulated in Minkowski spacetime, J. DIMOCK proposed

a curved spacetime version of AQFT in 1980 [Dim80]. The contemporary reference

for local quantum physics is [Haa].

Quantum field theory in curved spacetimes

A unification of quantum theory and general relativity into a theory of ’quantum grav-

ity’ is still not constructed in a satisfying manner. But it is possible to analyze phe-

nomena where quantum and gravitational effects are important within the semiclassi-

cal theory of quantum field theory on curved spacetime. The realm of such a theory

lies between the scale where quantum effects become important, i.e. the Planck scale

� 10

�35

m, and the appropriate scale for the standard model � 10

�19

m. Within this

range we can work with a theory of quantum fields propagating on a classical curved

spacetime background.

The transition from flat Minkowski space to a curved space leads to some seri-

ous problems in QFT. Curved spacetimes lack Poincaré symmetry. Thus there is no

(global) Fourier transformation available anymore. Field expansions into positive and

negative frequency solutions are no longer possible. Connected to this is the problem

that no unique vacuum state can be defined in a curved spacetime. This happens be-

cause the vacuum state in the Wightman formalism is explicitly defined by it’s Poincaré

invariance and the spectrum condition. Furthermore, having no vacuum state we can-

not establish a unique Fock space, and thus have no means to describe particle creation

and annihilation.

It turns out that these curved spacetime problems are best addressed within the

algebraic approach to QFT. Since the theory is based on the abstract algebras of the

quantum system, one can treat all representations of the system on an equal footing.

All states in all possible (unitarily inequivalent) Hilbert space constructions are treated

simultaneously. Later on one can single out the physical states by a spectrum condition.

This leads to the definition of Hadamard states.

We refer the readers interested in quantum field theory in curved spacetimes to the

textbooks [Walb, BD, Ful].

2.2 The Algebraic Approach

Usually one describes quantum mechanics in terms of a Hilbert space on which the

vectors correspond to physical states. Self adjoint operators represent the observables

of the system. The operators act in the Hilbert space and provide the physically relevant

quantities. In the algebraic approach, quantum mechanics is described by C�-algebras.

For some applications the use of a �-algebra would be sufficient. But the representa-

tion of a �-algebra on a Hilbert space is not necessarily bounded, hence not defined

everywhere.
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The use of C�-algebras is not only restricted to quantum mechanics and quantum

field theory. It has also been very fruitful in the study of statistical mechanics and pure

mathematics (see [Lan92] and references therein).

Some fundamentals of operator algebras

Before we state the axioms of local quantum physics in curved spacetimes, we list

some related, non-rigorous definitions from the theory of operator algebras.

� An algebra A over C is a vector space over C with a multiplication A� A! A

which is bilinear and associative.

� An involution on a complex algebra is an anti-linear map �

: A ! A satisfying

A

��

= A and (AB)

�

= B

�

A

� for all A;B 2 A. By anti-linearity we mean

that (�A)� = �A

� for all A 2 A and � 2 C (the overline denotes complex

conjugation). A� is called the adjoint of A.

� A �-algebra is a complex algebra with involution.

� An algebra is called a normed algebra if it possesses a vector space norm k k

which satisfies kABk � kAk � kBk for all A;B 2 A.

� A normed and complete algebra is called a Banach algebra.

� If an algebra A is both a �-algebra and a Banach algebra and if we have kA�k =

kAk for all A 2 A then A is called a Banach �-algebra.

� Finally a Banach �-algebra which also satisfies kA�Ak = kAk

2 for all A 2 A is

a C�-algebra.

2.2.1 The axioms of local quantum physics on curved spacetimes

The essential feature of QFT is the principle of locality. This principle states that phys-

ical effects have to propagate somehow through time and space. Effects only propagate

from one point to a neighboring point. The concept of fields is the appropriate tool to

put this principle into mathematics.

Of course locality must be implemented into the algebraic approach somehow. First

we associate to the observables, elements of a C�-algebra A. Locality says that it is

meaningful to talk of observables, which can only be measured in a specific spacetime

region. Hence we do not only need one single C�-algebra A, but also distinguished

subalgebras A(O) corresponding to local regions O of spacetime. These algebras are

generated by all �(f), the fields smeared out with appropriate test functions f having

their support in O [Haa].

The fundamental object needed to describe the observables is a net of local alge-

bras, which assigns to each bounded open setO �M a C�-algebraA(O). The closed

set-theoretic union of all A(O),

A =

[

O

A(O) ; (2.1)
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forms a C�-algebra, which is called the algebra of local observables. So far these are

purely mathematical requirements. If we want the algebra A to describe a physical

theory in curved spacetimes, it has to fulfill the following five axioms [Dim80]:

1. Isotony: If O � O

0 then A(O) � A(O

0

).

2. Primitivity: There is a faithful irreducible representation of A.

3. Locality: If O is spacelike separated from O

0 then [A(O);A(O

0

)℄ = 0.

4. Causality: If O is causally dependent on O0 then A(O) � A(O

0

).

5. Covariance: For any isometry � : (M; g) ! (




M; bg) there is an isomorphism

�

�

: A !

b

A such that �
�

[A(O)℄ =

b

A

�

�(O)

�

. Furthermore one requires �
id

=

id and �
�

1

Æ �

�

2

= �

�

1

Æ�

2

.

The first three of these axioms are essentially the Haag-Kastler axioms [HK64]. The

last two were added to the system by J. DIMOCK in order to incorporate curved space-

times into the framework.

2.2.2 Quantum mechanics in terms of C�-algebras

Suppose we have a C�-algebra A. We assume that the observables correspond to the

self-adjoint elements of the algebra. The states then are defined to be the normalized,

positive, bounded, linear forms onA. This means a state ! is any expectation functional

which assigns to each A 2 A a number !(A) such that

� !(�

1

A

1

+ �

2

A

2

) = �

1

!(A

1

) + �

2

!(A

2

) (linearity),

� !(A

�

A) � 0 (positivity),

� !(1) = 1 (normalization).

Now what is the connection between the usual approach to quantum fields and the

algebraic one? Two propositions explain the transition between the different formula-

tions:

Proposition 2.1 LetH be a Hilbert space andA a subalgebra of theC�-algebraL(H)

of bounded linear maps on H. Any density matrix state � on H gives rise to an alge-

braic state !(A) = tr(�A) for all A 2 A.

Conversely we can produce a representation from a state by:

Proposition 2.2 (GNS-Construction) Let ! be a state on aC�-algebraA. Then there

exists a GNS-triple (H; �;	), consisting of a Hilbert space H, a vector 	 2 H and a

representation � of A by means of bounded operators on A, such that

1. h	 j �(A) j 	i = !(A) 8A 2 A.

2. �(A)	 is dense in H, that is 	 is cyclic.

The GNS-triple is unique up to unitary equivalence.

This means every state in the algebraic sense corresponds to a state in the usual sense

in some Hilbert space construction.
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2.2.3 Hadamard States

In section 2.4.1 we will discuss the scalar field on a globally hyperbolic spacetime.

However it turns out, that not all algebraic states constructed in this theory are phys-

ically acceptable. One needs a criterion to pick out the sensible ones. In Minkowski

space the crucial point is the spectral condition, i.e. the existence of a strongly unitary

representation of the translations in M, with generators P
�

which satisfy

spP

�

� V

+

: (2.2)

This is equivalent to the statement that there exists a complete system of states with

non-negative energies, in the corresponding Hilbert space [BLOT].

Two different approaches to the characterization of physical states are available,

that demand similar local properties for the curved spacetime solutions to the Minkowski

space solutions. The first is due to L. PARKER, who introduced the adiabatic vacua,

that minimize the particle production in an expanding universe. The second approach

goes back to B. DE WITT and R. BREHME [DB60]. It restricts physically nonsingular

states in curved spacetimes by the requirement that their two-point function satisfy the

Hadamard condition. The Hadamard condition insures that the ultra-violet behaviour

of the state is similar to that of the vacuum state in Minkowski spacetime, and that the

expected stress energy tensor in the state is finite [Wal95]. The first mathematical pre-

cise definition of the Hadamard states was given in [KW91]. W. JUNKER showed that

the adiabatic vacua are indeed Hadamard states [Jun96], and thus the two approaches

are compatible.

The construction of Hadamard states, even with the methods of [KW91], is cum-

bersome. It was a great breakthrough for the theory, when M. RADZIKOWSKI found

a characterization of Hadamard states for scalar quantum fields on a 4-dimensional

globally hyperbolic spacetime in terms of a specific form of the wavefront set of their

2-point functions [Rad96, Rad]. This so called ’wavefront set spectrum condition’ ini-

tiated a major progress in the development of quantum field theory in curved spacetime.

An extension of this result from scalar fields to vector fields by H. SAHLMANN and

R. VERCH can be found in [SV00].

We shall not go into detail here, since we will not get so far to characterize Hadamard

states of the Maxwell field. We refer the interested reader to a forthcoming paper by

W. JUNKER and F. LLEDO on the Hadamard states for the vector potential on a mani-

fold [JL].

2.3 Quantization Axioms in Curved Spacetime

After L. GÅRDING and A. WIGHTMAN the fields �(f) of a physical theory should

be subject to a system of axioms [GA64], usually called the Wightman axioms. (See

[SW] for a thorough discussion of the axioms. Their consequences within the algebraic

approach are discussed in [Haa] and [BLOT]). We shall not give the Wightman axioms

here, but the requirements on a quantized, hermitian scalar field �(f) on a curved

manifoldM derived from them.
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Quantizing a classical field � means to construct a Hilbert space H of physical

states and an operator valued distribution �(f) acting on H which describes the field

observables localized in supp f � M. (f 2 D(M) is a test function, i.e. a smooth

function with compact support on M, where the support, supp f , is the closure of all

points on M where f does not vanish). The quantized field is subject to the following

axioms [Jun97]:

1. Operator-valued distribution: For all f 2 D(M) the distribution �(f) is a lin-

ear (unbounded) closable operator on H with dense domain D � H such that

�(f)

�

� �(f) (hermiticity) and �(f)D � D.

2. n-point functions: For all  2 D one defines

!

n

(f

1

; : : : ; f

n

) = h ; �(f

1

) : : : �(f

n

) i 2 D

0

(M

n

) : (2.3)

D

0

(M

n

) denotes the space of distributions overMn. The n-point functions are

sometimes called Wightman functions.

3. Commutation relations: For all f
1

; f

2

2 D(M) we require

[�(f

1

); �(f

2

)℄ := �ihf

1

; Ef

2

i ; (2.4)

whereE := E

+

�E

� is the fundamental solution (see 3.2) of the field equations

and E+

; E

� are the retarded and advanced solutions.

4. Field equations: For all f 2 D(M) the field equations have to be satisfied:

�((�+m

2

)f) = 0 : (2.5)

5. Poincaré-covariance: In Minkowski space one demands that the translations T
a

:

x

�

! x

�

+ a

� can be implemented inH by a strongly continuous unitary group

U(a) = exp(ia

�

P

�

) whose generator has spectrum in the positive forward light

cone V +. The vacuum state is the unique eigenstate  
0

2 D � H of P � to the

eigenvalue 0:

U(a;�) 

0

=  

0

: (2.6)

In early formulations of field theory the field has been treated as an operator-valued

function �(x) acting on Hilbert space vectors. Soon it became apparent (by the anal-

ysis of field measurements in quantum electrodynamics) that the fields �(x) are very

singular objects, thus suggesting a distributional treatment. This becomes particularly

apparent in the commutation relations where Æ-functions are involved. To make this

statement more precise, we note that there is a physical as well as a mathematical rea-

son why the quantum field at a point cannot be an honest observable. From the physical

point of view, a measurement at a point would require infinite energy. Mathematically

the field �(x) is not an honest operator on the Hilbert spaceH. One considers �(x) as a

sesquilinear form on some dense domainD 2 H, i.e. the matrix element h 
2

j�(x)j 

1

i

is a finite number if  
1

;  

2

2 D and depends linearly on  
1

and conjugate linearly on

 

2

.
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To obtain an operator defined on the vectors inD one has to smear out � with a smooth

function f:

�(f) =

Z

�(x)f(x)d

4

x : (2.7)

If f belongs to the test function space then �(f) is an (unbounded) operator acting

on H defined on D [Haa]. For most purposes the test function space is chosen to be

the space of fastly decreasing smooth functions (Schwartz space) S(M) := f� 2

C

1

(M) : supjx

�

�

�

�(x)j < 1 8multi-indices �; �g rather than the space of all test

functions D(M) = C

1




(M). The objects obtained by smearing out with functions

f 2 S are called temperate distributions. The reason for this choice is the apparatus of

Fourier transform, which is easier to handle in the space of temperate distributions.

The second axiom can be understood by a principal theorem of axiomatic quan-

tum field theory, the reconstruction theorem. It asserts, that the theory is completely

characterized, up to unitary equivalence, by the vacuum expectation values, i.e. the

n-point functions of the vacuum state. In H. BORCHERS alternative formulation of

Wightman’s theory the reconstruction theorem becomes just a natural modification of

the GNS-theorem.

The first four conditions stated here can equally well be formulated on an arbitrary

spacetime manifoldM. However this is not straightforward with the last axiom, since

it depends essentially on the special global structure of Minkowski space.

Connected to this is the fact, that the vacuum state defined here does in general

not exist in a curved spacetime. It has been the main problem of quantum field theory

on curved spacetimes to find a substitute for the last condition. In order to study this

question one considers only quasifree states  2 D. A quasifree state is, by definition,

completely characterized by its two point-function !
2

. The odd n-point functions of

a quasifree state vanish and the even n-point functions of higher order can be decom-

posed into two-point functions.

!

2n

=

X

�

n

Y

j=1

!

2

(f

�(j)

; f

�(j+n)

) ; n 2 N ; (2.8)

where the sum goes over all permutations � of f1; : : : ; 2ng with �(1) < �(2) <

: : : �(n) and �(j) < �(j+n); j = 1; : : : ; n. The restriction to quasifree states is a pri-

ori not physically motivated but by the fact that they form a class of states that is easily

tractable. This class comprises the usual vacuum state on stationary spacetimes as well

as the ’frequency splitting vacua’ obtained by mode decomposition of the field opera-

tors [BD]. But it also contains all sorts of unphysical states that have to be removed by

the Hadamard condition.

2.4 Symplectic Quantization

Quantization of a classical system is usually obtained by ’quantizing’ the Poisson

brackets of the classical system. The main problem on curved spacetimes is the co-

ordinate dependency of the usual Poisson brackets. It is not clear what to do with the



26 CHAPTER 2. LOCAL QUANTUM PHYSICS

global canonical coordinates when we quantize on a curved spacetime. A reformula-

tion of the Poisson brackets in a coordinate independent manner is necessary. This is

in fact possible for linear dynamical systems with a Lagrangian formulation.

A very good pedagogical introduction into this matter is [Walb] on which we base

the following treatment. A brief introduction is given in [Wal95]. R. WALD treats the

scalar field as the simplest example of a linear field. A. CORICHI gives an analogous

treatment of the Maxwell field [Cor98]. We shall stick to the scalar field, in order to

clarify the structure of the theory.

Symplectic quantization of a classical system

In classical dynamics a system with finitely many degrees of freedom n is described

by generalized coordinates (q

1

; : : : ; q

n

) and conjugated momenta (p

1

; : : : ; p

n

) in a

phase spaceP = (q

1

; : : : ; q

n

; p

1

; : : : ; p

n

) of dimension 2n. Observables are smooth,

real valued functions f : P ! R on the phase space. An outstanding observable

is the Hamilton function H(q

i

; p

i

) = p

i

q

i

� L(q

i

; _q

i

), (L is the Lagrangian), since

the whole dynamical evolution of a classical physical system can be obtained from the

Hamiltonian equations:

_q

�

=

�H

�p

�

; _p

�

= �

�H

�q

�

: (2.9)

In the absence of constraining forces and time dependenceH is the total energy of the

system.

From a more abstract point of view, emphasizing the geometrical aspects of the

theory, the configuration variables (q1; : : : ; qn) are coordinates on an n-dimensional

manifold Q. The phase space P of the dynamical system then corresponds to the

cotangent bundle of Q, that is P = T

�

Q. The crucial object one needs to describe

physical dynamics is a symplectic form:

Definition 2.3 A symplectic form on a manifold M of dimension 2n is a (weakly)

non-degenerate, antisymmetric closed two-form � on M . A pair (M;�) is called a

symplectic manifold.

In local coordinates (q1; : : : ; qn) one may identify the canonical momentum variables

(p

1

; : : : ; p

n

) with the cotangent vectors in the coordinate basis of (q1; : : : ; qn). Then,

by the Darboux theorem, a symplectic form onP is given by

� =

n

X

�=1

dp

�

^ dq

�

; (2.10)

and the pair (P ; �) is a symplectic manifold. That � is non-degenerate means, that

for any tangent vector V 2 P we have �
��

V

�

= 0 if and only if V �

= 0. This

also implies the existence of a unique inverse ��� of the symplectic form, satisfying

�

��

�

��

= Æ

�

�

.

The observables of the system are (smooth) real-valued functions f :P ! R. The

set of all observables, denoted O, is a vector space and becomes a Poisson-algebra if
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we define as a product the Poisson bracket

ff; gg = �

��

r

�

fr

�

g : (2.11)

The canonical coordinates q�; p
�

are fundamental in the sense that all other observables

are functions of them. Their Poisson brackets are

fq

�

; p

�

g = Æ

��

(2.12)

fq

�

; q

�

g = 0 = fp

�

; p

�

g : (2.13)

SinceP is assumed to be a vector space we can identify the tangent space at any

point y 2 P with P . In this case the symplectic form, �
ab

, becomes a bilinear

function, � :P �P ! R, onP . This map, �, is independent of the choice of y and

is referred to as a symplectic structure onP and the pair (P ; �) is called a symplectic

vector space. For any two points y; ~y 2P this symplectic form is given explicitly by

�(y; ~y) =

n

X

�=1

(p

�

~q

�

� ~p

�

q

�

) : (2.14)

For a fixed point y 2 P we define a linear function, �(y; �) : P ! R, on P . If

we choose y = (0; : : : ; 0; q

�

= 1; 0; : : : ; 0) we have �(y; �) = p

�

. Similarly for y =

(0; : : : ; 0; p

�

= 1; 0; : : : ; 0) we have �(y; �) = q

�. Thus any relation involving linear

combinations of the coordinates (q1; : : : ; qn; p
1

; : : : ; p

n

) can be rewritten in terms of

the functions �(y; �). The fundamental Poisson brackets (2.12) are then equivalent to

the single relation:

f�(y

1

; �); �(y

2

; �)g = ��(y

1

; y

2

) : (2.15)

We have made no particular choice of coordinates on P to formulate this equation,

therefore this is a coordinate independent formulation of the Poisson brackets. But

unlike (2.12) this relation generalizes straightforwardly to curved spacetimes, in which

caseP is infinite dimensional.

On linear dynamical systems the Hamiltonian H is a quadratic function on P .

Then the equations of motion are linear in the canonical coordinates and the manifold of

solutionsS acquires a natural vector space structure. Let y
1

(t); y

2

(t) 2 S be two so-

lutions of the equations of motion. Define the symplectic product s = �(y

1

(t); y

2

(t)).

Then we have ds

dt

= 0 (proof in [Walb]), i.e. the symplectic product of two solutions is

conserved. As a consequence the symplectic structure � : P �P ! R onP gives

rise to a symplectic structure � : S �S ! R onS .

As pointed out already, the quantization of a classical field means finding a Hilbert

space H and self adjoint operators bf
i

corresponding to the classical observables f
i

. It

is far from obvious how to define the correspondence map b: O !

b

O from the space

of classical observables, O, into the set of quantum observables, bO. However, the

comparison of classical and quantum dynamics guides us in this question. In classical

mechanics the rate of change of an observable f is given by the Poisson bracket with

the Hamiltonian H:
�f

�t

= ff;Hg : (2.16)
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On the other hand, in the Heisenberg representation of quantum mechanics we have

�

b

f

�t

= �i[

b

f;

b

H℄ : (2.17)

This suggests a correspondence map b, such that for any pair of classical observables

f; g we have

[

b

f; bg℄ = i

\

ff; gg : (2.18)

The Poisson bracket f�; �g defines an algebra on the space of classical observablesO

and the commutator [�; �℄ defines a similar algebra on on the set of quantum observables
b

O.

It is well known that in general no map b exists, which implements (2.18) on all

observables. However, in case ofP = T

�

Q it is always possible to choose H and a

map b such that for the canonical coordinates onP we have

[bq

�

; bp

�

℄ = i

\

fq

�

; p

�

g = iÆ

��

1 (2.19)

[bq

�

; bq

�

℄ = 0 = [bp

�

; bp

�

℄ : (2.20)

Inserting (2.15) yields

[b�(y

1

; �); b�(y

2

; �)℄ = �i�(y

1

; y

2

)1 : (2.21)

Some potential technical difficulties arise when we attempt to work with this rela-

tion. The operator b�(y; �) should be unbounded and hence can only be defined on a

dense domain. Therefore compositions, for example commutators, are not automati-

cally well defined. These difficulties are dealt with by working with an exponentiated

version of equation (2.21). For each y we define the classical observableW (y) by

W (y) = exp

�

�i�(y; �)

�

(2.22)

Then equation (2.21) together with the self adjointness of �(y; �) is formally equivalent

to the Weyl relations:




W (y

1

)




W (y

2

) = exp

�

1

2

i�(y

1

; y

2

)

�




W (y

1

+ y

2

) (2.23)




W

y

(y) =




W (�y) : (2.24)

The Weyl relations can be viewed as a precise statement of the Poisson bracket relations

which avoids operator domain problems.

2.4.1 Application to the real scalar field

Using the methods of the last section we can easily construct the quantum field theory

of the Klein-Gordon scalar field in a globally hyperbolic spacetime (M; g

��

).

First of all one needs a well posed initial value formulation. In [Dim80] the Cauchy

problem for the Klein-Gordon equation is addressed and a proof for the existence
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and uniqueness of solutions on arbitrary globally hyperbolic manifolds and arbitrary

Cauchy surface is given. We quote the theorems as stated in [Dim92]. Let (M; g

��

) be

a globally hyperbolic manifold with a compact Cauchy surface �. The Klein-Gordon

equation for a scalar field � 2 


0

(M) on M is

(�+m

2

)� = 0 : (2.25)

Let i : � ! M be the identity map. One defines two operators �
0

(�); �

1

(�) 2




0

(�) by

�

0

(�) = i

�

(�) (2.26)

�

1

(�) = (�1) � i

�

(�d�) : (2.27)

The operator �
0

(�) is the restriction of � to the Cauchy surface � and �
1

(�) is the

forward normal derivative of � on �. If (e
1

; e

2

; e

3

) is an orthonormal basis at a point

on � and n is the forward normal to � at that point, then (n; e

1

; e

2

; e

3

) is an oriented

orthonormal basis for the tangent space at that point. One finds

�

1

(�) = i

�

(�d�)(e

1

; e

2

; e

3

)

= (�d�)(e

1

; e

2

; e

3

)

= d�(n) :

(2.28)

Proposition 2.4 (Cauchy problem) Let (M; g) be globally hyperbolic with compact

Cauchy surface �. For any �; � 2 


0

(�) there exists a unique � 2 


0

(M) such that

�� = 0; �

0

(�) = �; �

1

(�) = �.

Here � and � serve as initial data for the wave equation.

Proposition 2.5 (Fundamental solutions) There are operatorsE� : 


0




(M)! 


0

(M)

such that

�E

�

= E

�

� = 1 (2.29)

and

supp(E

�

f) � J

�

(supp f) : (2.30)

The operators E� extend to f with supp f compact to the past/future and for such

f; u = E

�

f is the unique solution of �u = f with suppu compact to the past/future.

The initial values can equally be characterized as the pair of functions (�; �) on the

Cauchy surface �, where � = n

�

r

�

�, with n� the unit normal to �. Then the space

of solutions is defined by

S = f(�; �)j�; � 2 C

1




(�)g : (2.31)

Hence the Klein-Gordon equation gives rise to a well defined, conserved symplectic

structure � : S �S ! R onS by

�((�

1

; �

1

); (�

2

; �

2

)) =

Z

�

(�

1

�

2

� �

2

�

1

)d

3

x : (2.32)
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The fundamental solutions E are actually maps from the space of test functions into

the space of solutions: E : D(M) ! S . Then for all � 2 S and all f 2 D, we have

[Walb]
Z

�(x)f(x)d

4

x = �(Ef; �) : (2.33)

This means, that for each test function f , the function �(Ef; �) on S is equal to the

solution smeared out in spacetime. From this we see that the corresponding Heisenberg

observable b�(y; �) has an alternative interpretation as a smeared out field operator. This

provides the field interpretation as required in the Wightman formalism.



Chapter 3

The Maxwell Field

In this chapter we introduce the Maxwell field, the main object of this thesis. The

Maxwell equations, published in their original form by JAMES CLERK MAXWELL in

1862, have been the germ of more than one physical theory. The Michelson-Morley

experiment and the impossibility to prove the existence of the ’aether’, led to the formu-

lation of special relativity. The quest for a quantum theory, respecting special relativity

and incorporating the field properties of the Maxwell equations, led to quantum elec-

trodynamics as the first quantum field theory. Within modern quantum field theory one

is still interested in quantum electrodynamics, since it provides the simplest example

of a gauge field theory.

We begin this chapter with the definition of the Maxwell field in the language of

differential geometry. The Maxwell equations pose a wave equation, which we solve

explicitly in Minkowski space. After that, we review the usual quantization procedure

of the Maxwell field in Minkowski space. This is the so called Gupta-Bleuler quanti-

zation.

3.1 Maxwell’s Equations

The electric and the magnetic field treated as 3-dimensional vectors E;B in classical

electrodynamics can be implemented in the Maxwell field strength tensor F
��

in rela-

tivistic electrodynamics. The Maxwell equations are then formulated in terms of this

new quantity. Since the Maxwell tensor is a differential form one can use the operations

on differential forms to obtain a final beautified version of these equations.

We start with the well known classical Maxwell equations:

r�B�

�E

�t

= j (3.1)

r � E = � (3.2)

r�E+

�B

�t

= 0 (3.3)

r �B = 0 : (3.4)

31
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E and B are the 3-dimensional electric and magnetic field strength vectors, j is the

electric current density and � is the charge density. r denotes the conventional nabla-

operator ( �

�x

1

;

�

�x

2

;

�

�x

3

), implying that r� and r� are the curl and divergence op-

erators respectively. This is a system of eight coupled differential equations. It can

be shown that these equations are invariant under Lorentz transformations. The charge

density � and the current density j form the current four-vector J� = (J

0

; J

1

; J

2

; J

3

) =

(�; j

1

; j

2

; j

3

). We define the electromagnetic field strength tensor or Maxwell tensor,

as the following antisymmetric (0,2) tensor:

F

��

=

0

B

B

�

0 �E

1

�E

2

�E

3

E

1

0 B

3

�B

2

E

2

�B

3

0 B

1

E

3

B

2

�B

1

0

1

C

C

A

: (3.5)

Sometimes one also needs the dual-field strength tensor �F , which in Minkowski space

is simply

(�F )

��

=

0

B

B

�

0 B

1

B

2

B

3

�B

1

0 �E

3

E

2

�B

2

E

3

0 �E

1

�B

3

�E

2

E

1

0

1

C

C

A

: (3.6)

For calculations it is helpful to notice that

F

i0

= �F

0i

= E

i

(3.7)

F

ij

=

X

k

~�

ijk

B

k

: (3.8)

With the help of these new objects we can combine the two inhomogeneous Maxwell

equations and the two homogeneous equations into single tensor equations respec-

tively:

�

�

F

��

= �J

�

(3.9)

�

[�

F

��℄

= 0 : (3.10)

A further simplification is obtained if we make use of the exterior derivative and

the star operator

d(�F ) = �J (3.11)

dF = 0 : (3.12)

The action of the star-operator on (3.11) gives ÆF = J . Mathematically equation (3.12)

simply says, that F
��

is a closed two-form on the spacetime manifold M. Assuming

contractibility ofM, the Poincaré lemma says that F is exact and thus we can write F

as the exterior derivative dA of a one-formA on M:

F

��

= �

�

A

�

� �

�

A

�

: (3.13)

The quantity A is called the vector potential or gauge field. F

��

can be viewed as

the ’four-dimensional rotation’ of A. The identity dF = ddA = 0 follows directly
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from d

2

= 0 and is known as the Bianchi identity. From this we see that the theory is

invariant under the transformation

A! A+ d� (3.14)

for some zero-form (scalar) �. This property of the electromagnetic field is called

gauge invariance. As we are only interested in source free Maxwell fields, we can put

the four-current J equal to zero and get:

ÆF = 0 (3.15)

dF = 0 : (3.16)

Henceforth we will call these the Maxwell equations and refer to (3.1)-(3.4) as the

classical Maxwell equations.

3.2 The Homogeneous Wave Equation

In Minkowski space it is possible to construct the solutions of the homogeneous wave

equation explicitly. Whereas on generic curved spacetimes we can only give exis-

tence and uniqueness theorems. This will be the main result of this work, but let us

first recall the construction of the solutions in flat spacetime. We follow the notes of

K. FREDENHAGEN [Frec], but similar constructions are found in many books on dif-

ferential equations or quantum field theory, e.g. [BLT].

First we solve the homogeneous wave equation for an arbitrary scalar field u(x) in

Minkowski space M. The wave equation reads

�u(x) = 0 : (3.17)

In Minkowski space the d’Alembertian is simply

� =

�

2

�

2

t

�

3

X

i=1

�

2

�x

i

2

: (3.18)

Since (3.17) is a second order linear partial differential equation, to find the solution for

arbitrary initial values u
0

(x) = u(0;x) and v
0

(x) =

�

�t

u(0;x), it is sufficient to find

the fundamental solution of the equation. The fundamental solution of a differential

equation�f(x) = 0 is a distribution D(x) which fulfills

�D(x) = 0 ; D(0;x) = 0 ;

�D

�t

�

�

�

�

t=0

= Æ(x) : (3.19)

Inserting the separation ansatz:

u(t;x) = f(t)e

ikx (3.20)

into the wave equation yields
�

f + jkj

2

f = 0 : (3.21)
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The general solution to this differential equation is

f(t) = f(0) 
os(jkjt) +

1

jkj

_

f(0) sin(jkjt) : (3.22)

Suppose that the initial values are given as a superposition of monochromatic waves.

Then they have a Fourier expansion:

u

0

(x) = (2�)

�

3

2

Z

d

3

k bu

0

(k)e

ikx (3.23)

v

0

(x) = (2�)

�

3

2

Z

d

3

k bv

0

(k)e

ikx

: (3.24)

In this case the solution of the wave equation is itself a superposition of monochromatic

waves

u(t;x) = (2�)

�

3

2

Z

d

3

k

�

bu

0

(k) 
os(jkjt) +

1

jkj

bv

0

(k) sin(jkjt)

�

e

ikx

: (3.25)

Now let u
0

(x); v

0

(x) be arbitrary initial conditions. Inserting their Fourier trans-

forms

bu

0

(x) = (2�)

�

3

2

Z

d

3

k u

0

(x)e

�ikx (3.26)

bv

0

(x) = (2�)

�

3

2

Z

d

3

k v

0

(x)e

�ikx (3.27)

into (3.25) yields

u(t;x) = (2�)

�3

Z

d

3

k d

3

y

�

u

0

(y) 
os(jkjt) +

1

jkj

v

0

(y) sin(jkjt)

�

e

ik(x�y)

=

Z

d

3

y

�

�

�t

D(t;x� y)u

0

(y) +D(t;x � y)v

0

(y)

�

(3.28)

with

D(t;x) = (2�)

�3

Z

d

3

k

sin(jkjt)

jkj

e

ikx (3.29)

=

1

4�jxj

�

Æ(t� jxj) � Æ(t+ jxj)

�

: (3.30)

(Note: In the field theory context the distributionD(x) is usually defined with negative

sign, but this is not necessary here)

Application toE andB. So far we worked with an arbitrary field u(t;x). Taking the

curl of equation (3.1), setting j = 0 and using (3.3), one obtains the wave equation for

the magnetic field �B = 0. By a similar procedure the wave equation for the electric

field, �E = 0, is obtained.
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The solutions to these wave equations are given by inserting the Maxwell equations

with vanishing �; j into the solution (3.28)

E(t;x) =

Z

d

3

y

�

�

�t

D(t;x� y)E

0

(y) +D(t;x� y)

�

�t

E

0

(y)

�

(3.31)

B(t;x) =

Z

d

3

y

�

�

�t

D(t;x� y)B

0

(y) +D(t;x� y)

�

�t

B

0

(y)

�

: (3.32)

However, the initial valuesE
0

(y);B

0

(y) are not free. They have to satisfy the source-

less classical Maxwell equations. If we assume r � E = 0 and r �B = 0 at the time

t = 0, then �
t

E and �
t

B are completely fixed and the solution is

E(t;x) =

Z

d

3

y

�

�

�t

D(t;x � y)E

0

(y) +D(t;x� y)

�

r�B

0

(y)

�

�

(3.33)

B(t;x) =

Z

d

3

y

�

�

�t

D(t;x � y)B

0

(y)�D(t;x� y)

�

r�E

0

(y)

�

�

: (3.34)

3.3 Quantization of the Maxwell field in Minkowski Space

3.3.1 General considerations

The quantization of the Maxwell field in flat spacetime leads already to some spe-

cial problems, that are not existent for a scalar field. First, the theory contains two

candidates for the field operators A
�

and F
��

. Second, there seems to be a general

incompatibility between Lorentz invariance and the use of a Hilbert space. Additional

problems arise when quantizing the field in curved spacetimes. But these problems are

not specific to the Maxwell field and have been discussed to some extent in the last

chapter, and will be dealt with in detail in the following chapter.

Concerning the first problem, it is well known, that the classical state of a free elec-

tromagnetic field in spacetime M is defined by the field tensor F
��

. In the quantized

theory the vector potential A
�

becomes essential, since there is no Lagrangian the-

ory of the electromagnetic field without a vector potential. Due to gauge invariance the

quantum characterization has some redundancy. Two vector potentialsA
�

; A

0

�

with the

same field strength tensor F
��

define the same physical state, i.e. they are physically

equivalent. In the mathematical formulation this leads to gauge equivalence classes.

One can say that the configuration A
�

of the vector potential is a virtual state of the

classical electromagnetic field and that the physical field is the equivalence class of the

virtual states [BLOT].

The incompatibility of Lorentz covariance and simultaneous use of a Hilbert space,

as illustrated in [SW74], leads to a theory with an indefinite metric. This approach,

usually named Gupta-Bleuler theory [Gup50, Ble50], is a completely consistent theory

of a quantized electromagnetic field in an extended Wightman formalism. It also has

been rigorously constructed in a C*-algebra context by H. GRUNDLING [Gru88] and

further refined by H.GRUNDLING and F. LLEDÓ [GL00].
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3.3.2 Quantization of the vector potential

The covariant quantization of the vector potential is treated in all books on quantum

field theory. Nevertheless we hope to clarify the mathematical structure of the heuristic

Gupta-Bleuler theory by reciting the most important steps. The following treatment is

extracted from various sources: [Freb, Roe98, BLOT, Gru88, GL00].

The source free Maxwell equations can be derived from the Lagrangian density

L = �

1

4

F

��

F

��

: (3.35)

The components A
�

of the gauge field are taken to be independent field coordinates.

They satisfy F

��

= �

�

A

�

� �

�

A

�

. The field equations that follow from this are

�

�

F

��

= 0, or in terms of A

�A

�

� �

�

(�

�

A

�

) = 0 : (3.36)

The origin of the difficulties with the vector potentialA
�

is, that it has four independent

components and at this stage is ambiguous. We can conclude, that the quantum field,

associated with A
�

, has less than four degrees of freedom. The ambiguities can be

resolved by imposing a gauge condition onA
�

. One possibility is to impose the Lorentz

gauge

�

�

A

�

= 0 (3.37)

This reduces the independent components of A
�

from four to three. We also note that

the condition (3.37) is Lorentz covariant. However, even after imposing the Lorentz

condition, the vector field is still not unique. If A
�

satisfies the Lorentz condition,

any A
�

+ �

�

� with �� = 0 will satisfy it too. The conjugated momenta also pose a

problem:

�

�

=

�L

�(�

0

A

�

)

=

(

0 � = 0;

�F

0i

= E

i

; � = i; i = 1; 2; 3:

(3.38)

Since �
0

= 0 we cannot express �
0

A

0

as a function of the momenta and spatial deriva-

tives. Therefore a transition to the Hamiltonian formalism is impossible. With the

Lagrangian density (3.35) it is impossible to quantize covariantly.

It was E. FERMI who proposed another Lagrangian for the Maxwell equations,

with an already fixed gauge:

L = �

1

4

F

��

F

��

�

�

2

(�

�

A

�

)

2

; � 6= 0 : (3.39)

The new Lagrangian yields the Maxwell equations in case of the Lorentz gauge (3.37)

is satisfied. The field equations, which follow from the new Lagrangian are

�A

�

+ (�� 1)�

�

(�

�

A

�

) = 0 : (3.40)

With the new Lagrangian all momenta are nonzero:

�

�

=

�L

�(�

0

A

�

)

=

(

��(�

�

A

�

) � = 0;

�F

0i

= E

i

; � = i; i = 1; 2; 3:

(3.41)
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The equation (3.40) can be simplified by the choice of special value for �. The setting

� = 1 is known as the Feynman gauge and leads to the equation of motion

�A

�

= 0 : (3.42)

This can be interpreted as the wave equations of four massless Klein-Gordon fields.

Hence we require for A
�

and �
�

canonical equal time commutation relations:

[A

�

(0;x); �

�

(0;y)℄ = ig

��

Æ(x� y) (3.43)

[A

�

(0;x); A

�

(0;y)℄ = 0 = [�

�

(0;x); �

�

(0;y)℄ : (3.44)

The dynamics of the Maxwell field in the Feynman gauge can also be derived from

the Lagrangian L = �

1

2

�

�

A

�

�

�

A

� . The momenta then become �
�

= ��

0

A

�

. Using

this we obtain the commutation relation between A
�

and _

A

�

:

[A

�

(0;x);

_

A

�

(0;y)℄ = �ig

��

Æ(x� y) : (3.45)

Now compare this equation with the scalar case, where the commutator is

[�(0;x);

_

�(0;y)℄ = iÆ(x� y) : (3.46)

The fields A� can be treated exactly like a scalar field, but the field A0 has a commu-

tation relation with wrong sign. This is a direct consequence of the covariance of the

equations, expressed by the metric tensor. In a rigorous quantum theoryA� must be an

operator valued distribution in a Hilbert space H. The wrong sign of the commutation

relation for A0 has consequences on the structure of the Hilbert space. It leads to a

’Hilbert space’ with indefinite metric.

Before we investigate the indefinite metric Hilbert space, let us first introduce the

Fourier transform of the Field. We express A
�

as a superposition of plane waves:

A

�

(x) =

1

(2(2�)

3

)

1=2

Z

C

+

d

3

k

k

0

�

a

�

(k) e

�ikx

+ a

�

�

(k) e

ikx

�

(3.47)

where C
+

:= fk 2 M : k

�

k

�

= 0; k

0

� 0g is the mantle of the positive light cone,

k

0

= jkj. The canonical commutation relations calculated from this are

[A

�

(x); A

�

(x

0

)℄ = �ig

��

D(x� x

0

) ; (3.48)

with

D(x) = �

1

(2�)

3

Z

C

+

d

3

k

k

0

e

ikx

sin(k

0

x

0

) : (3.49)

Now we interpretA� as an operator valued distribution in an Hilbert space, i.e. we

consider smeared out field operators

A(f) =

Z

A

�

(x)f

�

(x)d

4

x : (3.50)
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If we insert equation (3.47) into (3.50) we obtain

A(F ) =

p

�

Z

C

+

d

3

k

k

0

(a

�

(k)

b

f

�

(k) + a

�

�

(k)

b

f

�

(k)) (3.51)

=

1

p

2

(a(f) + a

�

(f)) (3.52)

where F = (f

0

; f

1

; f

2

; f

3

) 2 S

4

(R

4

) and

b

f

�

(k) = (2�)

�2

Z

d

4

xe

�ikx

f

�

(x) 2 S

4

r

(R

4

) (3.53)

with S4

r

(R

4

) := fF 2 S

4

C

(R

4

) j F (k) = F (�k)g. The operators a(f); a�(f) are

defined by

a(f) :=

p

2�

Z

C

+

d

3

k

k

0

a

�

(k)

b

f

�

(k) (3.54)

and

a

�

(f) :=

p

2�

Z

C

+

d

3

k

k

0

a

�

�

(k)

b

f

�

(k) : (3.55)

The usual interpretation of this equation is that the f� are wavefunctions in the momen-

tum representation in a Hilbert spaceH(1) and the a(f); a�(f) are creation and annihi-

lation operators for particles. The wavefunctions are required to be square-integrable,

i.e.
R

d

3

kjf

�

(k)j

2

< 1. This is not in contradiction to our assumption f� 2 S(R4),

since the square-integrable functions are just a special class of temperate distributions.

The one-particle Hilbert space H(1) is the direct sum of the spaces

H

�

= ff

�

: R

3

! C j

Z

d

3

k

2k

0

jf

�

(k)j

2

<1g; � = 0; : : : ; 3 : (3.56)

This space has a Hilbert topology defined by the scalar product

(f; g) =

Z

C

+

d

3

k

2k

0

3

X

�=0

f

�

(k)g

�

(k) (3.57)

whereas the natural ’scalar product’ h ; i of this space is indefinite, since the first com-

ponent has negative sign:

hf; gi =

Z

C

+

d

3

k

2k

0

f

�

(k)f��

��

gg

�

(k) (3.58)

Thus we don’t really have a Hilbert space, but a pseudo-Hilbert space, i.e. a space with

Hilbert topology that is also endowed with an indefinite scalar product. The Hilbert

topology of H(1) and the scalar product h ; i are compatible in the sense that there
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exists a bounded linear operator bO (in our case the negative metric ��) with bounded

inverse bO�1 in H(1) that is hermitian with respect to ( ; ) and satisfies

hf; gi = (f;

b

Og) : (3.59)

Furthermore the Hilbert topology of a pseudo-Hilbert space is uniquely defined by the

condition of compatibility. Hence it must be possible to construct a true Hilbert space

of physical states from the given indefinite form.

The statistical interpretation of quantum mechanics implicitly requires the positiv-

ity of the scalar product (3.58). The lack of positivity can only mean that we have

unphysical states of photons in the theory. The vector potential A(x) as a four vector

allows four degrees of freedom (independent polarizations). Two of them turn out to

be spurious states.

Now we construct a physical Hilbert space with physical photons and a positive

scalar product.

Proposition 3.1 Let k and q be four-vectors satisfying k2 = 0 and k 6= 0.

1. From kq = 0 it follows that q2 � 0.

2. From kq = 0 and q2 = 0 it follows q = 
k with 
 2 R.

In the first step we define a subspace of the Hilbert space H(1) by

H

(1)

0

= ff 2 H

(1)

j k

�

f

�

(k) = 0g : (3.60)

By the first point of the proposition, the indefinite scalar product is semi-positive,

hf; fi � 0, in the space H(1)

0

. However this scalar product is still degenerate. We

have to factor out the zero-norm part to obtain a positive definite scalar product. Thus

in a second step consider the space

H

(1)

00

= ff 2 H

(1)

j k

�

f

�

(k) = k

�

f

�

(k)g (3.61)

which is a subset of H(1)

0

. By the second part of proposition 3.1 the space H(1)

00

consists of the states f 2 H

(1)

0

with hf; fi = 0. The physical Hilbert space is then

obtained as the quotient space

(3.62)

where the overline denotes the closure of the space. The full Hilbert space is the direct

sum

H =

1

M

n=0

H

(n) (3.63)

whereH(0) is a one-dimensional Hilbert space andH(n) is the symmetric tensor prod-

uct H(n)

= (H

(1)�n

)

s

of H(1) with itself n times [SW74]. The construction of the

physical full Hilbert space is then similar to the one-particle case.

It is standard in quantum field theory to introduce the Fock spaceF
H

right from the

start and then consider the subspaceF
H

0 comprising the states � that satisfy ��A
(+)

�

� =

0. Then one still has to factor out the zero norm states and consider the quotient space

[Roe98].
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Chapter 4

The Maxwell Field in Curved

Spacetime

4.1 Quantized Electromagnetic Field on a Manifold

In this section we present results obtained by J. DIMOCK [Dim92]. He carries out

the quantization of the electromagnetic field on manifolds, as a generalization of his

own results on scalar fields [Dim80] and Dirac fields [Dim82]. A similar approach

is followed by E. FURLANI [Fur99]. We want to emphasize, however, that these pa-

pers only deal with simply connected spacetimes, since they assume the existence of

a globally definable vector potential A. This is acceptable as far as one is interested

in local effects; It is always possible to choose a local region of spacetime, which is

simply connected; Then there exists a uniquely defined vector potential in that region.

To work with a vector potential is even necessary, if one wants to introduce an inter-

action with other fields. It seems to be impossible to formulate a theory of interacting

quantum electrodynamics without the use of the vector potential A.

4.1.1 Existence and uniqueness theorem

Henceforth we denote the electromagnetic gauge field and the field strength tensor on

M by A andF respectively. The Maxwell equations on M then read

ddA = 0 ; ÆdA = 0 : (4.1)

The first equation is trivial because d

2

= 0 always. So we only have to deal with the

second equation.

Initial data. Let � be a compact Cauchy surface on M and i : �!M the identity

map. We define two maps �
0

(A ); �

1

(A ) in 


1

(�):

�

0

(A ) = i

�

(A )

�

1

(A ) = (�1) � i

�

(�dA ) :

(4.2)

41
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The left star-operator in �
1

refers to the Manifold (�; 
) where 
 = i

�

g is negative

definite. For the gauge-fieldA we define A = �

0

(A ) and � = �

1

(A ):

A = i

�

(A )

� = (�1) � i

�

(�dA ) :

(4.3)

In the case of a scalar field ', �
0

(') would be the restriction of ' to � and �
1

(') would

be the forward normal derivative (see section 2.4.1). Here dA = i

�

(dA ) represents

the magnetic field as a 2-form on �, and � represents the electric field as a 1-form on

�. A and � are considered to be suitable data for the Cauchy problem.

It is easy to prove that Æ� = 0 follows directly from ÆdA = 0. With (1.43) we

have:

Æ� = �di

�

(�dA )

= �i

�

(d � dA )

= �i

�

(� � d � dA )

= �i

�

(�ÆdA )

= 0 :

(4.4)

Proposition 4.1 (Existence) For any A;� 2 


1

(�), with Æ� = 0, there exists A 2




1

(M) such that

ÆdA = 0; �

0

(A ) = A; �

1

(A ) = � : (4.5)

A has compact support on any other Cauchy surface.

Two potentials A ;A

0

2 


1

(M) are said to be gauge equivalent, A � A

0, if

A = A

0

+ d� for some � 2 


0

(M). Gauge equivalence in � is defined similarly.

Proposition 4.2 (Uniqueness)

1. Let A;� 2 


1

(�) with Æ� = 0. If A ;A

0

2 


1

(M) are solutions of ÆdA = 0

with this data thenA � A

0.

2. Let A;�; A0;�0 2 


1

(�) with Æ� = Æ�

0

= 0. If A ;A

0 are solutions of

ÆdA = 0 with these data then A � A

0

;� � �

0 if and only if A � A

0.

This proposition shows the well-posedness of the Cauchy problem for gauge equiva-

lence classes. For an equivalence class [A℄ in 


1

(�) and � 2 


1

(�) with Æ� = 0

there is a unique equivalence class [A ℄ in 


1

(M) such that Æd[A℄ = 0; �

0

([A℄) = [A℄

and �
1

([A ℄) = �.

Proposition 4.3 (Fundamental Solutions)

1. Let S 2 
(M) with ÆS = 0 and supp(S ) compact to the past/future, then

A = E

�

S solves ÆdA = S .

2. If A 2 


1

(M); supp(A ) is compact to the past/future, and ÆdA = S (so

ÆS = 0 and supp(S ) compact to past/future), then A � E

�

S .

3. A 2 


1

(M) satisfies ÆdA = 0 if and only if A � E

�

S for some S 2




1




(M) with ÆS = 0.
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4.1.2 Phase space for quantization

Phase space on the Cauchy surface

As we have shown in chapter 2 we need a phase space for quantization. The phase

space needs to be a symplectic manifold (P ; �). First pick a compact Cauchy surface

� and define a phase space by

P

0�

= f(A;�) 2 


1

(�)� 


1

(�) : Æ� = 0g : (4.6)

This is simply the set of all points A;� for which the Maxwell equation ÆdA = 0

holds. Furthermore we need a symplectic form on the phase space, which we could

define by

�

0�

(A;�;A

0

;�

0

) = hA;�

0

i � h�; A

0

i

=

Z

�

A ^ ��

0

�

Z

�

� ^ �A

0

:

(4.7)

This symplectic form is degenerate, since for Æ� = 0we have that hd�;�i = h�; Æ�i =

0 even though d� 6= 0. As a consequence of this the map A ! hA;�i and the sym-

plectic form �

0�

are gauge invariant. One can remove the degeneracy by going to

equivalence classes.

Definition 4.4 Let P
�

denote an equivalence class in P
0�

; a point in P
�

is a pair

([A℄;�) with Æ� = 0. We define the symplectic form �

�

:

�

�

([A℄;�; [A

0

℄;�

0

) = h[A℄;�

0

i � h�; [A

0

℄i : (4.8)

Proposition 4.5 �

�

is (weakly) non-degenerate onP
�

.

This proposition means that (P
�

; �

�

) is a suitable phase space for the Maxwell equa-

tions on the Cauchy surface �.

Dynamical phase space

It is necessary to reformulate these definitions in order to incorporate time evolution.

LetP
0

be the space of all solutions to Maxwell’s equations in M:

P

0

= fA 2 


1

(M) : ÆdA = 0g : (4.9)

OnP
0

�P

0

we define a new symplectic form � for any Cauchy surface �:

�(A ;A

0

) =

Z

�

i

�

[A ^ �dA

0

�A

0

^ �dA ℄ : (4.10)

Let �
�

:P

0

!P

�

map a solution to its data on �:

�

�

(A ) = (�

0

(A ); �

1

(A )) = (i

�

A ; (�1) � i

�

� dA ) : (4.11)
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The new form is connected to the old form by � = �

�

Æ �

�

.

�(A ;A

0

) = �

�

(�

�

(A ); �

�

(A

0

)) : (4.12)

Let P be the gauge equivalence class in P
0

. The gauge invariance of �
�

leads to

gauge invariance for �:

�([A ℄; [A

0

℄) = �

�

(�

�

([A ℄); �

�

([A

0

℄)) : (4.13)

We can now state that (P ; �) is a symplectic space and �
�

: (P ; �)! (P

�

; �

�

) is a

symplectic isomorphism. The new representation has a crucial advantage over the old

one:

Proposition 4.6 � defined by (4.10) is independent of �.

Time evolution on M can be regarded as the symplectic isomorphism �

�

1

;�

2

=

�

�

2

�

�1

�

1

from (P

�

1

; �

�

1

) to (P

�

2

; �

�

2

).

In the representation (P ; �) we consider functions on P of the form [A ℄ !

�([A ℄; [u℄) for [u℄ 2P and find the Poisson bracket

f�([A ℄; [u℄); �([A ℄; [u

0

℄))g = �([u℄; [u

0

℄) : (4.14)

Any solutionS 2 


1




with ÆS = 0 can be expressed in terms of its data on a Cauchy

surface:

Proposition 4.7 For [A ℄ 2P ;S 2 


1




(M) and ÆS = 0

h[A ℄;S i = �([A ℄; [ES ℄) : (4.15)

4.1.3 Quantization

To quantize we have to replace functions on (P ; �) by self-adjoint operators on a com-

plex Hilbert space. These operators have to be chosen in such a way that the Poisson

bracket becomes (�i) times the commutator. For this we need operators b�([A ℄; [u℄)

on some Hilbert space H with [u℄ 2P satisfying

[b�([A ℄; [u℄); b�([A ℄; [u

0

℄)℄ = �i�([u℄; [u

0

℄) (4.16)

on some dense domain.

The field operators are quantizations of the functions [A ℄ ! h[A ℄;S i for S 2




1




(M); ÆS = 0. The corresponding operator is given by

[A ℄(S ) = b�([A ℄; [ES ℄) : (4.17)

Proposition 4.8 ForS 2 


1




(M); ÆS = 0:

1. [A ℄(S ) satisfies Maxwell’s equation Æd[A ℄ = 0 in the weak sense that

[A ℄(Æd[S ℄) = 0
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2. [[A ℄(S ); [A ℄(S

0

)℄ = ihS ; ES

0

i. In particular if suppS ; suppS

0 are space-

like separated the commutator is zero.

The field strength tensor is defined byF = d[A ℄. The smeared out field operator

is then F (!) = d[A ℄(!) = [A ℄(Æ!) for ! 2 


2




(M ). The Maxwell equation reads

ÆF (�) = F (d�) = 0 for any � 2 


1




(M ). One finds the Lichnerowicz commutator

[Lic61] forF :

[F (!);F (!

0

)℄ = ih!; dEÆ!

0

i : (4.18)

Algebraic construction

As explained before we can pass to an exponential form of the commutation relations

introducing

W ([u℄) = exp

�

ib�([A ℄; [u℄)

�

: (4.19)

A representation is now a collection of unitary operators W ([u℄); u 2 P on some

Hilbert space satisfying the Weyl relation

W ([u℄)W ([u

0

℄) =W ([u℄ + [u

0

℄) exp

�

�

1

2

i�([u℄; [u

0

℄)

�

(4.20)

The exponential of the field operator is defined by

exp(i[A ℄(S )) =W ([ES ℄) : (4.21)

Let A be the C�-algebra generated by exp

�

i[A ℄(S )

�

. The algebraic structure of the

pair
�

exp(i[A ℄(S ));A

�

is independent of the representation:

Proposition 4.9 IfW
1

;W

2

are two representations giving rise to (exp(i[A ℄(S ))

1

;A

1

)

and (exp(i[A ℄(S ))

2

;A

2

), then there is a �-isomorphism � : A

1

! A

2

such that

�(exp(i[A ℄(S ))

1

) = exp(i[A ℄(S ))

2

.

4.2 Cauchy Problem for F
��

In our review we have seen that there is a completely satisfying theory for the elec-

tromagnetic vector potential on curved manifolds. But as already pointed out we are

not satisfied with this theory, because of the restriction to topologically trivial space-

times. Schwarzschild-Kruskal spacetime is an important example for a topologically

non-trivial spacetime but not the only one. C. MISNER and J. WHEELER describe

wormhole solutions to Einstein’s equations [MW57]. They interpret charge in terms

of source-free electromagnetic fields that are subject to Maxwell’s equations for free

space but which are trapped in the “worm holes” of a space with multiply connected

topology. On the quantum level the influence of these wormholes manifests itself via

the presence of spontaneous symmetry breaking and non-Fock representations of the

canonical commutation relations and leads to superselection rules for electric and mag-

netic charges [AS80]. Hence it is important to develop a theory of a directly quantized

field strength tensor. As a prerequisite for this, we shall now solve the Cauchy Problem

for the field strength tensor.
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Well posedness

In classical electrodynamics the evolution of a physical system is uniquely determined,

if initial values for the electric field E and the magnetic field B are given (section 3.2).

In the free field situation these values are only subject to the constraints r � E = 0

and r � B = 0. We see that two Maxwell equations form the constraints, while the

other equations,r�B� �

t

E = 0 and r�E+ �

t

B = 0 determine the dynamics. A

theory which has uniquely determined solutions, depending on appropriate initial data,

possibly subject to constraints, is said to possesses an initial value formulation. Two

more properties are needed if the theory is to be physical. First, one requires that small

changes in the initial data produces only small changes in the solution over any fixed

compact region of spacetime. Second, causality must be preserved, that is changes

in the initial data in a region S should not produce changes outside the the causal

future J+(S), of this region. A theory which possesses an initial value formulation

and satisfies these additional requirements has a well posed initial value formulation

[Wala].

4.2.1 The wave equation in curved spacetime

Let (M; g

��

) be a Lorentz manifold. The d’ Alembertian � on a Lorentz manifold is

defined in terms of the operators d and Æ as

� = dÆ + Æd: (4.22)

Since the Maxwell tensor satisfies dF = 0 and ÆF = 0 it it also satisfies the wave

equation on 2-forms

�F = 0: (4.23)

In a flat spacetime with a Cartesian local coordinate system this reduces to

�

�

�

�

F

��

= 0 : (4.24)

Explicit d’Alembertian

On curved spacetimes the metric has nontrivial entries and consequently the d’Alembert

operator has no longer the simple form (4.24). The wave equation gains extra terms,

depending on the order of the p-form considered. We give here a rigorous derivation

of the d’Alembert operator � in local coordinates, acting on an arbitrary p-form, on

an arbitrary differentiable manifold, following [Lic]. Our result only differs in sign

from A. LICHNEROWICZ and is adapted to our notation. Then we apply the solution to

2-forms. The resulting equation determines the Cauchy problem for the Maxwell field

tensor in curved spacetimes.

Let us first calculate the expressions for d and Æ acting on a p-form. Note that

the partial derivatives used to define the exterior derivative in (1.39), can be replaced

with covariant derivatives, since the operator d is covariant. This can be demonstrated

by choosing the Christoffel connection: the contribution of Christoffel symbols, that

appear in the covariant derivatives, vanish upon antisymmetrization. So we have

(dA)

�

1

:::�

p+1

= (p+ 1)r

[�

1

A

�

2

:::�

p+1

℄

: (4.25)
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Given a p-formA, using (1.22), we can write:

(dA)

�

1

:::�

p+1

=

1

p!

Æ

��

1

:::�

p

�

1

:::�

p+1

r

�

A

�

1

:::�

p

: (4.26)

For the coderivative of a p-form a very short notation is obtained:

(ÆA)

�

2

:::�

p

= r

�

A

�

�

2

:::�

p

: (4.27)

The operator Æd. Putting (4.26) and (4.27) together yields

(ÆdA)

�

1

:::�

p

=

1

p!

Æ

��

1

:::�

p

��

1

:::�

p

r

�

r

�

A

�

1

:::�

p

: (4.28)

Now we sorts terms within the sum. The term with � = � is the diagonal term

r

�

r

�

A

�

1

:::�

p

: (4.29)

If � is equal to one of the �
1

, we obtain

�

1

(p� 1)!

Æ

��

2

:::�

p

�

1

:::�

p

r

�

r

�

A

��

2

:::�

p

: (4.30)

Thus the whole expression is

(ÆdA)

�

1

:::�

p

= r

�

r

�

A

�

1

:::�

p

�

1

(p� 1)!

Æ

��

2

:::�

p

�

1

:::�

p

r

�

r

�

A

�

�

2

:::�

p

: (4.31)

The operator dÆ. For this operator we readily find

(dÆA)

�

1

:::�

p

=

1

(p� 1)!

Æ

��

2

:::�

p

�

1

:::�

p

r

�

r

�

A

�

�

2

:::�

p

: (4.32)

The operator�.

(�A)

�

1

:::�

n

= r

�

r

�

A

�

1

:::�

p

�

1

(p� 1)!

Æ

��

2

:::�

p

�

1

:::�

p

r

�

r

�

A

�

�

2

:::�

p

+

1

(p� 1)!

Æ

��

2

:::�

p

�

1

:::�

p

r

�

r

�

A

�

�

2

:::�

p

= r

�

r

�

A

�

1

:::�

p

�

1

(p� 1)!

Æ

��

2

:::�

p

�

1

:::�

p

[r

�

;r

�

℄A

�

�

2

:::�

p

:

(4.33)

Here we have the commutator of two covariant derivatives. This means now the curva-

ture comes in via (1.13):

[r

�

;r

�

℄A

�

�

2

:::�

p

= R

�

���

A

�

�

2

:::�

p

�

p

X

i=2

R

�

�

i

��

A

�

�

2

:::�

i�1

� �

i+1

:::�

p

: (4.34)
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The Tensor R�

���

is the Riemann tensor which, by contraction, reduces to the Ricci

Tensor: R�

���

= R

��

. We now have
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where we have set
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: (4.36)

Let us calculate one of the terms:

(one term of T
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We can do the same with any of the (p�1) terms in the sum, obtaining the same result.

Adding all these terms up gives
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By the properties of the Riemann tensor we have:
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This yields
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And thus the whole expression for �A is
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The wave equation for the Maxwell field. We apply (4.41) to the 2-formF
��

and

obtain:
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And finally
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4.2.2 Initial values

Let (M; g

��

) be be a globally hyperbolic manifold. Global hyperbolicity guarantees

the existence of a smooth time coordinate t on M. As a consequence M admits a

foliation by a one parameter family of Cauchy surfaces ftg � �

t

, that is topologically

we have M = R� � [Wala, Walb]. We denote byF the field strength as a 2-form on

M. Maxwell’s equations are dF = 0 and ÆF = 0. On M we have the injection map

i : �!M. We define two maps, the pullback �
0

(F ) and the forward normal �
n

(F )

by

�

(0)

: 


2

(M)! 


2

(�)

F 7! i

�

(F )

(4.44)

and

�

(n)

: 


2

(M)! 


1

(�)

F 7! �i

�

(�F ) :

(4.45)

The quantities B = �

(0)

(F ) and E = �

(n)

(F ) are considered to be the Cauchy data

on � [Fur99]:

B = i

�

(F ) (4.46)

E = �i

�

(�F ) : (4.47)

Initial constraints. Since E and B should serve as initial data they have to satisfy

initial constraints. Indeed we find:

ÆE = �d � �i

�

(�F )

= � � di
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(�F )
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(d �F )

= � � i

�

(� � d �F )

= � � i

�

(�ÆF )

= 0

(4.48)

and

dB = d � i

�

(F )

= i

�

(dF )

= 0 :

(4.49)

The field components on �. For the formulation of the existence and uniqueness

theorem we need expressions of B and E in local coordinates on �. The desired

expressions are

B

ij

= F

ij

(4.50)

E

i

= NF

0i

: (4.51)
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The first is clearly the pullback of F . The second needs a little bit of calculation.

Note that the 3+1-splitting gives N =

p

jgj=

p


 (1.64). Furthermore on � we have
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= 2!Æ
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l

from (1.31). Using these relations we can calculate E
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(4.52)

We can easily check if our definition makes sense in Minkowski space. Using the

obvious relations F
i0

= F

0i

; N = 1 and noting that E
i

= 


li

E

l

= E

l we find

E

i

=F

i0

, which is exactly (3.7).

The normal derivatives on �. Now we have the values of the field strength compo-

nents on any Cauchy surface. What we need next are the values of n�r
�

F

��

on the

Cauchy surface. We follow Sorkin’s treatment [Sor79], but refrain from introducing

tensor densities. The idea of the following treatment is to distinguish between time and

space coordinates in the Maxwell equations dF = 0 and ÆF = 0, in order to obtain

two initial value constraint and two evolution equations similar to the ones familiar

from flat spacetime. But our equations will contain information about the curvature of

space.

Consider the sourceless Maxwell equations:

�

�
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��

+ �

�

F

��

+ �

�

F

��

= 0; (4.53)

�

�

F

��

= 0 : (4.54)

Each of these equations gives one initial constraint and one evolution equation. For

this one has to separate the time derivatives from the rest. For (4.53) we obtain by this

procedure

�
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jk
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ij
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�
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F
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k

F
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= 0 (evolution) : (4.56)

Similarly for (4.54) we have

�

i

F

i0

= 0 (constraint) (4.57)

�

0

F
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+ �

i

F

ij

= 0 (evolution) : (4.58)
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Inserting (4.50) and (4.51) into the constraint equations (4.55) and (4.57) leads to

�

i

B

jk

+ �

j

B

ki

+ �

k

B

ij

= 0 (4.59)

�

i

E

i

N

= 0 : (4.60)

With the same insertions the evolution equations (4.56) (4.58) become

�
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k
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= 0; (4.61)
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+ �

i

F

ij

= 0: (4.62)

Our aim is to describe the evolution of the field completely by objects defined on

the Cauchy surface �. Hence, we need to expressF
k0

andF ij in terms of B and E.

First we note that
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and
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: (4.64)

Subtracting (4.63) from (4.64), dividing by g00 and reordering yields
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leading to

F

k0

= NE

k

�N

j

B

jk

: (4.67)

We have now expressed F
k0

by E and B. Let us try to do the same with F jk .

First decomposeF
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:
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Next use (1.59)(1.65) and (4.51) to obtain
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(4.69)

Using (4.50) and the wedge product this becomes

B

jk
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jm




kn

F

mn

+N

j

^

E

k

N

(4.70)
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or equivalently

F

jk

= B

jk

�N

j

^

E

k

N

: (4.71)

This is the desired equation for F jk . By putting (4.67) and (4.71) into (4.61) and

(4.62) we find the interim solution:

�

�t
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^ (NE
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i
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ik

) = 0 (4.72)
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E
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+ �
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(B

jk

+N

j

^

E

k

N

) = 0 : (4.73)

It is easily seen that we have here a generalization of the flat spacetime case. If we

choose the vector field t� to be a perpendicular unit vector field to �, then N i

= 0 and

N = 1. This leads to

�

�t
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jk
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^ E

k

(4.74)

�

�t

E
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j
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kj

: (4.75)

These are clearly the ordinary free Maxwell equations (3.1)(3.3). Evaluating (4.72)

and (4.73) with the help of (1.62) yields

t
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i
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ik

) = 0 (4.76)
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Now setting t� = Nn

�

+N

� we have the final result
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: (4.79)

A note on SORKIN’s result. In [Sor79] R. SORKIN works with initial values B
ij

=

F

ij

and E k

= F

0k, where F
��

is the Maxwell field,F��

=

p

�gg

��

g

��

F

��

. By in-

terpreting �=�t as the Lie-derivative$
t

, setting N = (N

1

; N

2

; N

3

), �yF = �

�

F

��

and a few more technical assumptions he obtains the index-free notation

$

t

B + � ^ (NE �NyB) = 0 (4.80)

$

t

E + �y(NB �N ^ E ) = 0 : (4.81)

4.2.3 Existence and uniqueness

We are now ready to formulate the existence and uniqueness of the solution to the

Cauchy problem, analogous to the existence theorem (4.1). Our proof applies to the

electromagnetic field strength tensorF without employing a gauge field A . This is a

more general approach, since our proof holds on multiply-connected spacetimes.
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Proposition 4.10 For any B 2 


2

(�); E 2 


1

(�), with ÆE = 0 and dB = 0, there

existsF 2 


2

(M) such that

dF = 0; ÆF = 0; �

0

(F ) = B; �

n

(F ) = E : (4.82)

Proof: dF = 0 and ÆF = 0 gives the wave equation �F = 0. In local coordi-

nates (x�) = (x

0

;x) in which the Cauchy surface � is given by x0 = 0 we have the

following equations: The field equation:
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�R

��

F

�

�
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+R
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��

= 0 : (4.43)

The field components on the Cauchy surface:

F

ij

(0;x) = B

ij

(4.50)

F

0i

(0;x) =

E

i

N

: (4.51)

The normal derivatives on the Cauchy surface:
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: (4.79)

Once this data is given, a unique solution is provided by the following theorem on

globally hyperbolic differential equations [Wala], also guaranteeing the well posedness

of the initial value formulation:

Theorem 4.11 Let (M; g

��

) be a globally hyperbolic spacetime (or a globally hyper-

bolic region of an arbitrary spacetime) and let r
�

be any derivative operator. Let �

be a smooth, spacelike Cauchy surface. Consider the system of linear equations for n

unknown functions �
1

; : : : ; �

n

of the form

g

��

r

�

r

�

�

i

+

X

j

(A

ij

)

�

r

�

�

j

+

X

j

B

ij

�

j

+ C

i

= 0: (4.83)

(This equation is referred to as a linear, diagonal second order hyperbolic system.)

Then this equation has a well posed initial value formulation on �. More precisely,

given arbitrary smooth initial data, (�
i

; n

�

r

�

�

i

) for i = 1; : : : ; n on � there exists

a unique solution of this equation throughout M. Furthermore, the solutions depend

continuously on the initial data. Finally, a variation of the initial data outside of a

closed subset S of � does not affect the solution in D(S).
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4.3 Outlook

We have shown that the electromagnetic field strength tensor has a well posed initial

value formulation on arbitrary globally hyperbolic spacetimes. By this, the existence

of retarded and advanced solutions to the inhomogeneous wave equation is guaranteed.

Our result is by no means unexpected, and, as we have seen, the components for our

proof were available in various publications. But no one, as far as we know, carried out

the whole piece of work in one place.

The next step would be now the introduction of commutation relations for the field

strength tensor, but this has to remain undone in this thesis. Since the commutator is

local object, what we expect is the commutator (4.18) already anticipated by A. LICH-

NEROWICZ [Lic61] and derived by J. DIMOCK [Dim92].

The algebra constructed in section 4.1.3, is valid locally in any spacetime. It is not

so clear, what happens when the global algebra is constructed on multiply-connected

spacetimes. The symplectic form used to construct the Weyl algebra might be degener-

ate under such circumstances and lead to the superselection sectors already constructed

by A. ASHTEKAR and A. SEN [AS80] in Schwarzschild-Kruskal spacetime. The ex-

pected structure could be similar to a structure which can be found in 2-dimensional

conformal chiral field theory, considered as a theory on the circle S1 [Frea].

M. RADZIKOWSKI’s characterization of Hadamard states for scalar quantum quan-

tum fields globally hyperbolic spacetime in terms of the wavefront set has not been ap-

plied to the Maxwell field so far. The construction of Hadamard states of the Maxwell

field on curved spacetime, using methods from microlocal analysis is an open issue.

This could in principle be done analogously to the scalar field as in [Jun96]. For the

vector potential this is already in preparation by W. JUNKER and F. LLEDÓ [JL].
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Schliesslich geht der größte Dank an meine Eltern, für ihre Unterstützung und ihr
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