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Abstract

A formula describing finite renormalizations is derived in the Epstein-Glaser for-

malism and an calculation of finite counterterms in �

4-theory is performed. The

Zimmermann identities and the action principle for changes of parameters in the in-

teraction are presented independent of the adiabatic limit. Additionally a comparison

with BPHZ renormalization is presented including a derivation of the Hopf algebra

structure of renormalization in the Epstein-Glaser approach.

Zusammenfassung

Im Epstein-Glaser Formalismus wird eine Formel für endliche Umrenormierun-

gen hergeleitet. Eine Berechnung endlicher Counterterme wird in der �

4 Theorie

durchgeführt. Die Zimmermann Identitäten und der Teil des Wirkungsprinzips, der

Änderungen von Parametern in der Wechselwirkung beschreibt, werden unabhängig

vom adiabatischen Limes hergeleitet. Zusätzlich wird das Epstein-Glaser Verfahren

mit der BPHZ Renormierung verglichen, dabei wird die Hopf Algebra Struktur der

Renormierung im Epstein-Glaser Zugang hergeleitet.
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Chapter 1

Introduction

Renormalization is an old art of removing divergencies which occur unavoidably in

QFT. In course of time many calculational techniques, more or less mathematical,

were developed. Usually the more mathematical formulations of renormalization

were too abstract for practical purposes, like the Epstein-Glaser approach [EpGl1] of

renormalization. Apart from the work of Scharf [Scha] and Stora [PoSt] [Sto] nothing

was done in this framework for a long time. Nevertheless a further development of

the Epstein-Glaser method is worth-wile because it turned out that this method is

best suited for the construction of theories on curved space times [BrFr] [DüFr]. Its

advantages are the local character and the formulation in position space.

Another more abstract formulation of renormalization theory is the BPHZ- renormal-

ization. In this framework some fundamental results of the structure of renormaliza-

tion were achieved, namely the forest formula and the action principle. The latter de-

scribes how Green’s functions change by a variation of parameters in a theory. In the

derivation of the action principle Lowenstein [Low] used the Gell-Mann-Low formula

to express Green’s functions in terms of free fields. In this context the action prin-

ciple is a consequence of simple properties of free field insertions into the S-matrix.

In the present work we call these properties action principle because they describe

the underlying basic structure and can be proved independent of the adiabatic limit.

The properties for the Green’s functions theirselves then follow in the adiabatic limit

because the Gell-Mann-Low formula is valid if this limit can be performed.

Dütsch and Fredenhagen [DüFr2] give another derivation of the action principle. In

contrast to our derivation they use insertions into time-ordered products (T -products)

of interacting fields. Using the fact that interacting fields are up to a factor insertions

in the S-matrix one can transform the two formulations into each other. In their com-

parison with the usual action principle they only consider variations of the interact-

ing part of the Lagrangian with mass dimension 4. In this case their action principle

coincides with the usual one in the adiabatic limit. Breitenlohner and Maison [BrMa]

succeeded in formulating the action principle also in dimensional renormalization.

In this work we will give a formulation of finite renormalizations in the Epstein-

Glaser approach corresponding to the forest formula. Furthermore we give a for-

mulation of T -products and insertions in the Epstein-Glaser formalism so that the

derivation of the part of the action principle concerning changes in the interaction is

analogous to that of Lowenstein [Low]. To fill the gap between theoretical formula-
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tion and practical calculations we demonstrate how to renormalize the S-matrix in

�

4 theory up to the third order.

Many calculations concerning renormalization can be found in the book of Zavialov

[Zav]. Often they are similar to the results presented here, but they are not formu-

lated in the sense of distributions. In this sense the structure of the renormalization

presented in [Zav] corresponds to the formulas given in the theorems (6.1) and (6.2).

In [Pra3] the energy momentum tensor and an operator product expansion of two

time ordered fields is discussed in the Epstein-Glaser theory.

A part of the content of this work can be found in [BrPiPr] and [Pin]. Additionally we

discuss in this work comparisons with other renormalizations. We hope it is helpful

for the reader to get a better understanding of the methods.

This work is divided into seven chapters. After this introduction we briefly repeat

the basics of causal perturbation theory in the framework of the Wightman axioms.

In the third chapter we give a mathematical description of the time-ordered product.

The inductive construction of Epstein and Glaser [EpGl1] is described. The main re-

sult of this section is the description of finite renormalizations by a family of functions

�

n

.

Chapter 4 prepares the calculations of section 5 and contains a short summary of

[Scha] [EpGl1] [Fre] [BrFr]. After some microlocal analysis we see that renormaliza-

tion is nothing else than an extension of distributions on an appropriate space of test

functions. We repeat the calculation of the Lorentz invariant form of the extension

presented in [BrPiPr] which is used in the calculations and discuss some properties

of the W -operator. Finally we compare Epstein-Glaser renormalization with differ-

ential and BPHZ renormalization. Recently Kreimer discovered the structure of a

Hopf algebra in the usual momentum space renormalization [Kre]. A connection to

noncommutative geometry [CoKr1] and the unsolved mathematical Riemann-Hilbert

problem [CoKr2] was worked out by Connes and Kreimer. With our results of chapter

5 and the fourth-order terms in �

4 theory Gracia-Bondı́a and Lazzarini [GBLa] have

found the same Hopf algebra structure also in Epstein-Glaser renormalization of �4

theory. We give another mathematical more rigorous derivation of this Hopf algebra

structure based on the formula for finite renormalizations.

In chapter 5 we show how renormalization of the S-matrix of �4 theory is done up

to the third order. In the results we only list terms surviving in the adiabatic limit,

but the calculation can be performed without using the existence of this limit. In

contrast to other renormalizations in momentum space the complexity does not grow

with the number of loops but with the number of vertices in a diagram. Thus the

second order calculation is simple because subdivergencies first appear in the third

order calculation. To come back to the abstract formulation of the Epstein-Glaser

approach we list the normalization conditions for a scalar theory. Some of them are an

abstract form of the rules used in the calculations. With the Gell-Mann-Low formula

we derive the Dyson-Schwinger equations (DSE) from the normalization condition

N4 in �

4 theory.

In the next chapter we derive the action principle for changes of parameters in the

interaction analogously to [Low]. The first subsection is based on the theorem of per-

turbative renormalization theory [PoSt]. Using the form of finite renormalizations

of section 2 we are able to determine explicitly the counterterms in the Lagrangian
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compensating a change of renormalization. Then we define insertions into T -products

and show that they have some of the properties of the insertions of [Low]. Relations

between insertions of different degrees are described by the Zimmermann identities

[Zim] that are formulated in the framework of Epstein-Glaser renormalization. Fi-

nally we prove the formulation of the part of the action principle describing changes

in the interaction in terms of insertions in the S-matrix independent of the adiabatic

limit. The action principle for changes in the parameters of the free Lagrangian turns

out to be more complicated, so we postpone it.

These results and the missing part of the action principle allow a derivation of the

renormalization group equations (RGE) as in [Low]. But to derive this a better un-

derstanding of the role of the mass term and its derivations is needed. The RGE and

the DSE are also valid outside perturbation theory. They provide an important tool

for nonperturbative constructions and methods, see for example [Zin] and [Sti]. The

action principle is used in algebraic renormalization [PiSo] which leads to a system-

atic renormalization of the standard model of electroweak interaction to all orders of

perturbation theory [Kra]. This work is a first step of a translation of these methods

into the Epstein-Glaser formulation of renormalization.

We always use the manifold R4 with Minkowski metric for spacetime. With the work

of [Fre], [BrFrKö], [BrFr], [Rad] it should be easy to formulate the arguments on

curved space times; often one only has to replace R4 by an arbitrary Lorentz manifold

M.
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Chapter 2

Causal Perturbation Theory and

Epstein-Glaser Renormalization

A mathematical precise formulation of a QFT was given by Gårding and Wightman

[WiGa]. They treat a QFT as a tupel

(H; U; �;D; j0i) (2.1)

of a separable Hilbert space H, a unitary representation of the restricted Poincaré

group P
"

+

, field operators �, a dense subspace D of H and the vacuum vector j0i. The

tupel has to fulfill the Wightman axioms [StWi]. Among others they state that the

fields � are local operator-valued distributions which are well-defined on the dense

domain D of the Hilbert space. D contains the vacuum. In the construction of the

S-matrix it is sufficient to regard the dense domain D

0

� D � H generated by all

vectors which can be constructed by applying a finite set of field operators to the

vacuum:

D

0

= f 2 Hj 2 span (�(f

1

) : : :�(f

n

)j0i; n 2 N)g: (2.2)

In free theories such a tupel satisfying the Wightman axioms is easily found. Here

we only treat the example of a free scalar field. In a scalar theory with particles of

mass m the Hilbert space H is the following Fock space

F =

1

M

k=0

H

k

: (2.3)

Every state is represented by a ray in this Fock space which is the direct sum of the

Hilbert spaces H
0

= C describing the vacuum, and

H

i

= f f : R3

�R

3

� : : :�R

3

�! C j f square-integrable with

respect to the measure
d

3

~

k

1

: : :d

3

~

k

i

2!(

~

k

1

) : : :2!(

~

k

i

)

; f symmetric g ; (2.4)
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consisting of all i-particle wave functions in the momentum representation.

We use

!(

~

k) =

q

~

k

2

+m

2

: (2.5)

The norm of a Fock space vector

F 3j f > =

�

f

0

; f

1

(

~

k

1

); : : : ; f

n

(

~

k

1

; : : : ;

~

k

n

); : : :

�

(2.6)

is given by

(< f j f >)

1

2

=

 

1

X

i=0

kf

i

k

2

!

1

2

=

 

j f

0

j

2

+

1

X

n=1

Z

d

3

~

k

1

: : : d

3

~

k

i

2!(

~

k

1

) : : :2!(

~

k

i

)

j f

n

(

~

k

1

: : : d

~

k

n

) j

2

!

1

2

: (2.7)

The norm of a physical state should be finite. Fock space vectors with a finite number

of non-zero components automatically fulfill this condition, they are called finite. The

set of finite vectors is dense in the Fock space.

We assign to every square-integrable function g 2 H
1

the creation operator a+ (g) and

the annihilation operator a (g) . They are defined by their action on elements of the

Fock space: the creation operator a+ (g) transforms a state with n� 1 particles into a

state with n particles:

�

a

+

(g) jf >

�

n

=

1

p

n

n

X

i=1

g(

~

k

i

)f

n�1

(

~

k

1

; : : : ;

�

~

k

i

; : : : ;

~

k

n

): (2.8)

The annihilation operator transforms a state with n + 1 particles into a state with n

particles:

�

a (g) jf >

�

n

=

p

n+ 1

Z

d

3

~

k

n+1

2!(

~

k

n+1

)

f

n+1

(

~

k

1

; : : :

~

k

n+1

)g(

~

k

n+1

); (2.9)

particularly the vacuum is annihilated. One can prove that these operators satisfy

the following commutation relations:

�

a (g

1

) ; a

+

(g

2

)

�

=

Z

d

3

~

k

2!(

~

k)

g

1

(

~

k)g

2

(

~

k); (2.10)

[a (g

1

) ; a (g

2

)℄ =

�

a

+

(g

1

) ; a

+

(g

2

)

�

= 0: (2.11)
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The field operators are now constructed with the help of the operator-valued dis-

tributions a(~k) and a

+

(

~

k). By smearing them with test functions one obtains the

annihilation and the creation operators:

a (g) =

Z

d

3

~

k

2!(

~

k)

g(

~

k)a(

~

k); (2.12)

a

+

(g) =

Z

d

3

~

k

2!(

~

k)

a

+

(

~

k)g(

~

k): (2.13)

The operator-valued distributions fulfill the following commutation relations:

h

a(

~

k); a

+

(

~

k

0

)

i

= 2!(

~

k) Æ(

~

k �

~

k

0

); (2.14)
h

a(

~

k); a(

~

k

0

)

i

=

h

a

+

(

~

k); a

+

(

~

k

0

)

i

= 0: (2.15)

a(

~

k) is an operator defined on all finite vectors in the Fock space whose wave functions

are continuous, but a+(~k) is only defined as a quadratic form on these wave functions.

This construction is the so-called Fock representation. The existence of the vacuum

and the relations (2.10), (2.11) are characteristic for it. Every irreducible represen-

tation with these properties is unitarily equivalent to the representation constructed

above. Although a

+

(

~

k) is not an operator, every bounded operator can be written as

a normal product of of a(~k) and a

+

(

~

k). There are many unbounded operators which

can be represented in the same way, for example the particle number operator N .

Free real scalar fields are operator-valued distributions satisfying the Klein-Gordon

equation in the sense of distributions:

�

�+m

2

�

� (f) = �

��

�+m

2

�

f

�

= 0 8 f 2 D

�

R

4

�

: (2.16)

They are constructed with the help of the classical solutions of this equation consist-

ing of the positive frequency solutions

u

~

k

(~x; t) = N

~

k

e

�i

(

!(

~

k)t�

~

k~x

) (2.17)

and the negative frequency solutions

u

�

~

k

(~x; t) = N

~

k

e

i

(

!(

~

k)t�

~

k~x

) (2.18)

with

N

~

k

=

�

2 (2�)

3

!(

~

k)

�

�

1

2

; (2.19)

!(

~

k) =

q

~

k

2

+m

2

: (2.20)
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Combining these functions of the classical solutions with the operator-valued distri-

butions a(~k) and a+(~k) in the following way,

�(~x; t) =

Z

d

3

~

k

�

a

+

(

~

k)u

�

~

k

(~x; t) + a(

~

k)u

~

k

(~x; t)

�

; (2.21)

one obtains free fields which are operator-valued distributions on an appropriate

space of test functions (e.g. S(R4

) or D(R4

)) and satisfy the following commutation

relations:

[�(~x; t); �(~y; t)℄ =

h

_

�(~x; t);

_

�(~y; t)

i

= 0; (2.22)
h

�(~x; t);

_

�(~y; t)

i

= iÆ(~x� ~y): (2.23)

The field operators �(f) are obtained by smearing the field distribution with the test

function f :

�(f) =

Z

d

4

x �(x)f(x): (2.24)

If the Fourier transforms of two different test functions f
1

and f

2

coincide on the

hyperboloid k2 = k

2

0

�

~

k

2

= m

2, they yield the same field: �(f
1

) = �(f

2

).

The aim of a QFT is to describe interacting fields. In this work we only treat the case

of �4

�interaction. The equation of motion of the fields in �

4-theory differs from the

Klein-Gordon equation by a nonlinear term:

�

� +m

2

�

�+

�

3!

�

3

= 0: (2.25)

One can prove that a classical solution � (~x; t) exists for all times t for reasonable

initial conditions � (~x; 0) ; _� (~x; 0).

Describing scattering experiments one assumes that long times before and after the

scattering the distance between the particles is so large that they do not interact. In

this way it is allowed to describe them in terms of free fields of the Fock representa-

tion constructed above:

lim

t!�1

�

�

int

(x)� �

in

(x)

�

= 0;

lim

t!1

�

�

int

(x)� �

out

(x)

�

= 0;

in the sense of matrix elements on a dense domain of F . As two irreducible Fock

representations are unitarily equivalent there exists a unitary operator S with

�

in

(x) = S �

out

(x) S

�1

: (2.26)
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This picture of asymptotically free fields is not exact because the self-interaction of

the fields is disregarded.

The interacting fields should have all the fundamental physical properties of the

free ones like Poincaré invariance or locality, formulated in the Wightman axioms.

A construction of the interacting fields and the S-matrix is possible up to now only

within perturbation theory.

Not every formulation of perturbation theory takes into account the distributional

character of the fields and interaction terms and makes sure that the operators are

well defined on D (or in the case of the S-matrix on D

0

). Causal perturbation theory

has all those properties. It was founded by the work of Stueckelberg [Stu], Bogoliubov

and Shirkov [BoSh]. In their formulation every interaction term is accompanied by a

test function

g 2 S

�

R

4

�

; g : R

4

�! [0; 1℄ (2.27)

which switches the interaction on and off at different space time points (S is the

Schwartz space of test-functions). g vanishes at infinity and therefore provides for

a cut-off for long-range interactions. All quantities of the causal construction are

formal power series in this function; especially the S-matrix is constructed with the

following ansatz:

S (g) = 1 +

1

X

n=1

i

n

n!

Z

d

4

x

1

: : :

Z

d

4

x

n

S

n

(x

1

; : : : ; x

n

) g (x

1

) : : :g (x

n

) : (2.28)

The coefficients S
n

are symmetric operator-valued distributions smeared with the

switching function g(x) in such a way that each term in the sum is a well-defined

operator on D
0

.

Epstein and Glaser [EpGl1] have found that the S
n

can be determined by a few phys-

ical properties of the S-matrix, namely

1. Translation covariance

2. Lorentz covariance

3. Unitarity

4. Causality

and the renormalization conditions. Actually, for the inductive construction of the

S

n

proposed by Epstein and Glaser only causality is important. To prove that the

resulting S(g) is a well-defined operator on D

0

they apply Wick’s theorem and use

translation covariance. In [BrFr] it is shown how translation covariance can be sub-

stituted by a condition on the wave-front sets of the S
n

. This makes the method work

on curved space times, too. The other properties are realized by the normalization

conditions.

With some calculations, the above properties are transferred to the following proper-

ties of the coefficients S
n

:
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1. Translation covariance: S
n

(x+ a) = U (a)S

n

(x)U

�1

(a), where U(a) is a repre-

sentation of the translation in the Fock space.

2. Lorentz covariance: S
n

(�x) = U (�)S

n

(x)U

�1

(�), where � is an element of the

proper Lorentz group and U is a representation of this group.

3. In the following, we will often work with sets of indices. We will denote with

J = f1; : : : ; ng the full set of indices and with I any subset of J . We use I = JnI .

For I = fi

1

; : : : ; i

k

g we use the notation

S

k

(x

j

jj 2 I) := S

k

(x

i

1

; : : : ; x

i

k

) : (2.29)

From the unitarity condition the following equation is obtained:

X

I�J

jIj=k

S

k

(x

i

ji 2 I)S

+

n�k

(x

j

jj 2 J n I) = 0: (2.30)

4. Causality of the S-matrix yields the factorization property:

S

n

�

x

�(1)

; : : : ; x

�(n)

�

= S

i

(x

1

; : : : ; x

i

)S

n�i

(x

i+1

; : : : ; x

n

) (2.31)

for fx
1

; : : : ; x

i

g & fx

i+1

; : : : ; x

n

g, where x & y means that y does not lie in the

forward light cone of x.

This property implies the symmetry and the locality of the S
n

:

[S

n

(x

1

; : : : ; x

n

) ; S

m

(y

1

; : : : ; y

m

)℄ = 0 if all the x
i

are spacelike to the y
j

.

The factorization property (2.31) is used to identify the coefficients S
n

with time-

ordered products. If we further demand S

1

= L

int

the higher S
n

can be constructed

inductively [EpGl1]. This is described in the next section. In this work we only treat

�

4 theory in explicit calculations, in this case we have T
1

(x) = V (x) = �

�

4!

: �

4

(x) :.

From the S-matrix the interacting fields can be obtained by the following formula of

Bogoliubov [BoSh]:

�

intL

(x) =

d

dh(x)

S

�1

(L

int

)S(L

int

+ h(x)�(x))

�

�

�

�

�=0

: (2.32)

They are formal power series in the switching function g like the S-matrix. To get rid

of this function at the end of the construction the adiabatic limit g(x) ! 1 has to be

performed. This limit bears some problems, because all infrared divergencies appear

which were avoided in the local formulation. By definition the adiabatic limit exists

in the weak sense if all Green’s functions exist in the sense of tempered distributions

for g ! 1. If it can further be shown that for g ! 1 the S-matrix is a unitary operator

11



one says that the adiabatic limit exists in the strong sense. The adiabatic limit is

constructed by choosing a sequence of functions g
n

with lim

n!1

g

n

= 1, but one has

to be careful because sometimes the result depends on the choice of the g
n

.

The weak adiabatic limit was proved to exist for massive theories [EpGl1], QED and

massless � : �

2n

: theories [BlSe]. The existence of the adiabatic limit in the strong

sense has only been proved for massive theories [EpGl2].

12



Chapter 3

The Time-Ordered Product

Usually T -products are defined as multilinear functions on Wick monomials of quan-

tized fields [BrFr]. In this section we use another definition of T -products, which was

first introduced in [Boa]. Let A be a commutative algebra generated by the so-called

classical symbolical fields �
i

and their derivatives. They are called symbols because

they are not subject to a relation like the Klein-Gordon equation. Therefore the fields

and their derivatives are linearly independent. We regard

D

�

R

4

;A

�

3 f =

X

i

g

i

(x)�

i

; (3.1)

where the sum is a finite sum over elements �
i

of the algebra A. An element f is then

given by its coefficients g
i

2 C

1

0

(R

4

).

The time-ordered product (T -product) is a family of maps T

n

; n 2 N, called T

n

-

products. They are functions from
�

D

�

R

4

;A

��


n

into the operators on H with the

following properties:

1. T
0

= 1

T

1

(f) =

P

i

: �

i

(g

i

) : 8 f 2 D

�

R

4

;A

�

;

where the sum is taken over all generators of A. Each local field is the image

of an element f 2 D

�

R

4

;A

�

under T
1

. We define the T -products such that

T

n

(g(d�)) = T

n

((d

t

g)�) is fulfilled for derivatives d up to the second order (t

means the transposition of an operator). T

1

is not injective because the Wick

products obey the wave equation. For example, in a free scalar theory we obtain

T

1

�

g2�+ gm

2

�

�

=: �

��

2+m

2

�

g

�

:= 0.

2. Symmetry in the arguments:

T

n

(f

1

; : : : ; f

n

) = T

n

(f

�

1

; : : : ; f

�

n

) 8 � 2 S

n

8 f

i

2 D

�

R

4

;A

�

; i = 1; : : :n;(3.2)

where S
n

is the set of all permutations of n elements.
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3. The factorization property:

T

n

(f

1

; : : : ; f

n

) = T

i

(f

1

; : : : ; f

i

)T

n�i

(f

i+1

; : : : ; f

n

) (3.3)

if (suppf

1

[ : : :[ suppf

i

) & (suppf

i+1

[ : : :[ suppf

n

) and f

i

2 D

�

R

4

;A

�

8 i.

Remark: The T
n

can be defined as multilinear functionals in the arguments f
i

, for

instance T
2

(f

1

+ f

2

; f

3

) = T

2

(f

1

; f

3

) + T

2

(f

2

; f

3

): The linearity depends on the mass

dimension of the arguments f

i

and the definition of the T

i

. If all arguments are

treated in the renormalization (which defines the T�product) as of the same mass

dimension the T -products are linear. In this case it is sufficient to know their values

for one kind of interaction term f (polarization identity), and we can omit the indices

of the f .

We now want to construct higher T
n

-products with the help of the factorization iden-

tity as expressions of lower T
n

-products. This is possible if \
i2J

suppf

i

= ; with

J = f1; : : : ; ng, in other words if the total diagonal

D

n

= f(x

1

; : : : ; x

n

) 2 R

4n

jx

1

= x

2

= : : : x

n

g (3.4)

is not in the support of the tensor-product of the f
i

. In calculations this is achieved

by multiplication of the distribution with a causal partition of unity:

Definition 3.0.1 A causal partition of unity in R4n

nD

n

is a set of C1-functions

p

(n)

I

: R

4n

nD

n

�! Rwith the following properties:

1. supp p

(n)

I

� f(x

1

; : : : ; x

n

) 2 R

4n

nD

n

j x

i

& x

j

8i 2 I; j 2 I



g

2.
P

I(J

I 6=;

p

(n)

I

�

�

�

R

4n

nD

n

= 1:

Since supp(f

1


 : : :
 f

n

) is contained in a compact region, supp(f
1


 : : :
 f

n

) \ C

I is

contained in a compact region where CI

= f(x

1

; : : : ; x

n

) � R

4n

j x

i

& x

j

8i 2 I; j 2 I



g.

In this region the part p
(n)

I

of the partition of unity can be written as a finite sum

of factorized terms p
(n)

I

=

P

k

p

1

I;k

(x

1

) � : : : � p

n

I;k

(x

n

). Then a T -product is constructed

according to the factorization property as follows:

T

0

n

(f

1

; : : : ; f

n

) = T

0

n

 

n

O

k=1

f

k

!

=

X

I(J

I 6=?

X

k

T

jIj

0

�

O

j2I

p

j

I;k

f

I

j

1

A

T

jI



j

 

O

l2I



p

l

I;k

f

I

l

!

: (3.5)

The last step in this construction of Epstein and Glaser [EpGl1] is the extension of

the right-hand side of (3.5), if the support of the tensor product of the f
i

contains the

total diagonal D
n

. We call this shortly the extension of the T -product to the total

diagonal. This extension is not unique, so there are several T -products differing from
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another by finite renormalizations. In renormalization theory this corresponds to the

free choice of the renormalization constants.

Now we can describe the structure of finite renormalizations with the following theo-

rem which arose from discussions with K. Fredenhagen (it can be seen as the precise

formulation of a formula given by [BoSh]):

Theorem 3.0.1 Let T; ^T be two different T -products. Then there are functions �

n

:

D

�

R

4n

;A

n

�

! D

�

R

4

;A

�

with supp �

n

� D

n

and

^

T

n

�

N

j2J

f

j

�

=

X

P2Part(J)

T

jP j

h

O

O

i

2P

�

jO

i

j

�

N

j2O

i

f

j

�i

: (3.6)

For the interpretation of the operator-valued distribution �

n

we go back to equa-

tion (3.5). The lower T -products on the right-hand side of (3.5) consist themselves of

products of lower T -products which were extended to a subdiagonal of R4n. We call

the extension to these subdiagonals the renormalization of subdivergences and the

extension to the total diagonal in the last step the renormalization of the superficial

divergence.

Fixing the extensions of all T
n

-products to the diagonals defines us a special T -

product. The distribution ~

�

n

= T

1

(�

n

) is the difference of ^

T and T in the renor-

malization of the superficial degree of divergence of (3.5) having all subdivergencies

renormalized according to ^

T .

Proof of the theorem: We construct the �

n

inductively by the following formula:

~

�

n

:=

^

T

n

�

N

j2J

f

j

�

�

X

P2Part(J)

jP j>1

T

jP j

h

O

O

i

2P

�

jO

i

j

�

N

j2O

i

f

j

�i

= T

1

�

�

n

�

N

j2J

f

j

��

: (3.7)

To show that this construction makes sense we prove by induction over n that the sup-

port of ~

�

n

is contained in D

n

. Since T
1

is surjective there is a �

n

�

N

j

f

j

�

2 D(R

4

;A)

with T
1

(�

n

) =

~

�

n

. Equation (3.6) is automatically fulfilled by this construction. Now

we show by induction that supp( ~�
n

) � D

n

.

Beginning of the induction:

� jnj = 1: ~

�

1

(f) = T

1

(f)

� jnj = 2: ~

�

2

(f

1

; f

2

) =

^

T

2

(f

1

; f

2

)� T

2

(�

1

(f

1

)�

1

(f

2

)) =

^

T

2

(f

1

; f

2

)� T

2

(f

1

; f

2

) ;

and we saw in (3.5) that two T

2

-products are equal outside the diagonal. So

supp

~

�

2

� D

2

.

Now we assume \n
i=1

suppf

i

= ; and have to show ~

�

n

(f

1

: : : f

n

) = 0. We obtain with

(3.5):

^

T

n

�

N

j2J

f

j

�

=

X

I�J

X

k

^

T

jI



j

�

N

j2I



p

j

I;k

f

j

�

^

T

jIj

�

Q

j2I

p

j

I;k

f

j

�

(3.8)
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With the induction hypothesis (supp ~�
m

� D

m

for all m < n) we also obtain a factor-

ization of the second term of ~

�

n

X

P2Part(J)

jP j>1

T

jP j

h

O

O

i

2P

�

jO

i

j

�

N

j2O

i

f

j

)

�i

=

=

X

I�J

X

k

X

S2Part(I



)

T2Part(I)

T

jSj

h

O

O

i

2S

�

jO

i

j

�

N

j2O

i

p

j

I;k

f

j

�i

T

jT j

h

O

U

i

2T

�

jU

i

j

�

N

j2U

i

p

j

I;k

f

j

�i

(3.9)

(since the support of the �

jO

i

j

is contained in a set of points belonging to a partition

I � J with O

i

� I or O
i

� I

). Therefore we obtain

~

�

jJ j

�

N

j2J

f

j

�

=

=

X

I�J

X

k

(

^

T

jI



j

�

N

j2I



p

j

I;k

f

j

�

 

^

T

jIj

 

N

j2I

p

j

I;k

f

j

!

�

X

P2Part(I)

T

jP j

h

O

O

i

2P

�

jO

i

j

�

N

j2O

i

p

j

I;k

f

j

�i

!

+

0

�

^

T

jI



j

�

N

j2I



p

j

I;k

f

j

�

�

X

P2Part(I



)

T

jP j

h

O

U

i

2P

�

jU

i

j

�

N

j2U

i

p

j

I;k

f

j

�i

1

A

�

�

X

P2Part(I)

T

jP j

h

O

O

i

2P

�

jO

i

j

�

N

j2O

i

p

j

I;k

f

j

�i

)

= 0

because the �

n

of lower order fulfill equation (3.6) �.
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Chapter 4

Renormalization as an

Extension of Distributions

4.1 Motivation

In this section we show that the extension of numerical distributions corresponds

to renormalization. We derive some properties of our extension procedure, compare

it with the usual way of renormalization in momentum space and apply it in the

next section explicitely to the renormalization of the second and third order of the

S-matrix in �

4 theory, namely:

S

(2)

(g) =

1

2

�

i�

4!

�

2

T

2

�

(g�

4

)


2

�

(4.1)

S

(3)

(g) = �

1

3!

�

i�

4!

�

3

T

3

�

(g�

4

)


3

�

: (4.2)

By means of Wick’s theorem the T
n

-products appearing in the expansion of the S-

matrix can be transformed into integrals of linear combinations of products of nu-

merical distributions with Wick products. For instance T
2

in S

(2)

(g) has the form:

T

0

2

�

g�

4

; g�

4

�

=

4

X

k=0

�

4

k

��

4

k

�

(4� k)! �

�

Z

d

4

x

1

Z

d

4

x

2

t

0

(x

1

; x

2

) : �

k

(x

1

)�

k

(x

2

) : g(x

1

)g(x

2

):

(4.3)

with t

0

(x

1

; x

2

)

x

1

6=x

2

= (i�

F

(x

1

� x

2

))

4�k

:

From theorem 0 of [EpGl1] we know that the product of a well-defined translation in-

variant numerical distribution with a Wick product is well-defined on D

0

. Therefore

we only have to take care of the numerical distributions denoted with t0 in the follow-

ing. In renormalization theory for non-coincident points t0 is a product of Feynman
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propagators and therefore it is Poincaré invariant in Minkowski space. Problems

arise from the fact that Feynman propagators are distributions and that the prod-

uct of distributions is not always defined. The domain of definition depends on the

singularities of the individual factors and are determined by methods of microlocal

analysis.

4.2 Some Microlocal Analysis

The content of this subsection can be found in [BrFrKö] [Hör] [Fre]. Let M = R

4n or

M � R

4n be a manifold of dimension 4n and D(M) be all C1-functions on M with

compact support. The singular support of a distribution u 2 D

0

(M), sing supp u, is

defined as the set of all points in M without any open neighbourhood on which the

restriction of u is a C1 function.

If a distribution v with compact support has no singularities its Fourier transform v̂

is asymptotically bounded for large � by

jv̂ (�) j � C

N

(1 + j�j)

�N

8 N 2 N; � 2 R

4n

; (4.4)

where C
N

are constants for each N . Any distribution u 2 D0(M) is regular in Y �M

if for all functions f 2 C1
0

(Y ) the Fourier transform of fu is asymptotically bounded

for large � by

j



fu (�) j � C

N

(1 + j�j)

�N

8 N 2 N; � 2 R

4n

; (4.5)

where C
N

are constants for each N . With sing supp u we denote the set of points of

M where u is not regular.

Let u be singular at x 2 X � M, x 2 sing supp u. �

x

� R

4n

n 0 is the set of all � of

the cotangent space T �
x

(X) such that (4.5) is not fulfilled for any function f 2 C

1

0

(X)

with f(x) 6= 0 in a conic neighbourhood V of �. �

x

is a cone describing the direction

of the high frequencies causing the singularities at x. The pair of x and � 2 �

x

is an

element of the wave-front set:

Definition 4.2.1 If u 2 D

0

(M), then the closed subset of M�

�

R

4n

n f0g

�

� T

�

(M)

defined by

WF (u) =

�

(x; �) 2 M�

�

R

4n

n f0g

�

j � 2 �

x

(u)

	

(4.6)

is called the wave-front set of u. The projection on M is sing supp u.

Multiplication with a smooth function a 2 C

1 and differentiation do not enlarge the

wave-front set:

WF (au) � WF (u) ; (4.7)

WF (D

�

u) � WF (u) : (4.8)
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For the existence of the pointwise product of two distributions u; v at x it is sufficient

for them to fulfill the condition

(x; 0) =2 WF (u)�WF (v) = f(x; �

1

+ �

2

)j(x; �

1

) 2 WF (u) ; (x; �

2

) 2 WF (v)g : (4.9)

Thus the product at x exists if u or v or both are regular in x. If u and v are singular

at x the product exists if the sum of the second components in the wave-front sets of

u and v at x cannot be the zero-vector. If the product exists, its wave-front set will

fulfill

WF (uv) � WF (u) [WF (v) [ (WF (u)�WF (v)) : (4.10)

We now check whether the products of Feynman propagators of scalar fields appear-

ing in (4.3),

(i�

F

(x

1

� x

2

))

n with n = 2; 3; 4 (4.11)

exist for all x
1

� x

2

. Since i�

F

(x

1

� x

2

) is for x

1

6= x

2

a solution of the Klein-

Gordon equation, its singular support is contained in the characteristic set of the

Klein-Gordon operator, the forward and backward light-cone.

The wave-front set of the Feynman propagator [DuHö] [Jun] [Rad] has the following

form:

WF (�

F

) = f(x

1

; k; x

2

; k

0

) 2 T

�

x

1

R

4

� T

�

x

2

R

4

�

�

(x

1

; k) � (x

2

;�k

0

); k 2

�

V

+

�

if x
1

2 J

+

�

(x

2

)g

[f(x

1

; k; x

1

;�k); k 6= 0g: (4.12)

Here �

V

+

�

is the closed forward respectively backward light cone and J

+

�

(x

2

) are all

points in M in the future of x
2

or its past, respectively, which can be connected with

x

2

by a causal curve . (x

1

; k) � (x

2

; m) means that x
1

and x
2

can be connected by a

light cone with cotangent vectors k and m at x
1

and x
2

.

The sum of the second components of the wave-front sets of two propagators can

vanish only at x
1

= x

2

. Therefore the products (4.11) are defined on
�

R

4

�

2

nD

2

.

With (4.10) we are also able to investigate higher products of Feynman propagators

occuring in higher orders of the S-matrix. For instance we discuss the wave-front set

of the numerical distribution

t = (i�

F

(x

1

� x

2

))

2

| {z }

u

(i�

F

(x

2

� x

3

))

2

| {z }

v

(i�

F

(x

1

� x

3

))

| {z }

w

: (4.13)

which occurs in our second order calculation of the S-matrix in �

4 theory.

WF (uvw) � WF (u) [WF (v) [WF (w)

[ (WF (u)�WF (v))[ (WF (w)�WF (v))[ (WF (u)�WF (w))

[ (WF (u)�WF (v)�WF (w)) : (4.14)
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The wave-front sets in the first line of (4.14) yield problems for x
3

6= x

2

= x

1

(in

WF (u)) and for x
2

= x

3

6= x

1

(in WF (v)), the ill-definedness of the product on this

subset is treated in the renormalization of subdivergences. The remaining sums of

wave-front sets can contain a zero component for x
1

= x

2

= x

3

. This ill-definedness

of the numerical distribution is called the superficial divergence.

4.3 Power Counting of Divergences

In momentum space calculations the ill-definedness of products of Feynman propaga-

tors corresponds to UV divergencies of loop integrals. Divergent terms can be found

by counting the powers of momenta in the loop integrals (power counting). The super-

ficial degree of divergence of a diagram corresponds in position space to the singular

order at the total diagonal of the numerical distribution belonging to this diagram.

We first introduce the definition of the scaling degree of a distribution:

Definition 4.3.1 The scaling degree of a numerical distribution t 2 D

0

(R

4n

) at the

origin is defined by

sd(t) := inf

n

!

�

�

�

lim

�!0

�

!

t (�x

1

; : : : ; �x

n

) = 0 in the sense of distributions
o

: (4.15)

The singular order is now given by

Definition 4.3.2 The singular order of a numerical distribution t 2 D

0

(R

dn

) at the

origin is defined by

sing ord t = [sd(t)℄� nd (4.16)

where d is the space time dimension.

There exist different definitions of the scaling degree in the literature. The definition

above is the Steinmann scaling degree [Ste]. The singular order of a distribution with

respect to this scaling degree is not larger than the superficial degree of divergence

obtained by power counting in momentum space [BrFr]. In [BrFr] there is also given

a definition of a scaling degree of a distribution with respect to a submanifold, called

microlocal scaling degree. With this microlocal scaling degree we obtain

sd

�

(i�

F

(x

1

� x

2

))

4�k

�

= 8� 2k: (4.17)

At x
1

= x

2

the products of Feynman propagators have the singular order

sing ord

�

(i�

F

(x

1

� x

2

))

4�k

�

= 4� 2k: (4.18)

For the distribution t in (4.13) we obtain sd(t) = 10 at x
1

= x

2

= x

3

whereas at

x

1

= x

2

6= x

3

and at x
2

= x

3

6= x

1

we have sd(t) = 4 and at x
2

6= x

1

= x

3

it holds

sd(t) = 2.

The singular order of the superficial divergence is 2, the singular orders correspond-

ing to the subdivergencies are 0 and -2.
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4.4 Extension of Distributions

In momentum space integrals of diagrams with negative degree of divergence are

finite in Euclidean calculations. To make divergent diagrams meaningful as well one

has to renormalize them, and this procedure is not unique. Correspondingly we have

the following two theorems in position space which are proved in [BrFr] on curved

space times. The first one states that the extension of a distribution of negative

singular order exists and is unique. The proof can already be found in [Fre]:

Theorem 4.4.1 If t0 (x
1

; : : : ; x

n

) 2 D

0

�

R

4n

n 0

�

has singular order Æ < 0 at the origin,

then a unique t (x
1

; : : : ; x

n

) 2 D

0

�

R

4n

�

exists with the same singular order at 0 and

t

0

(�) = t (�) 8 � 2 D

�

R

4n

n 0

�

: (4.19)

Distributions with zero or positive singular order Æ can be extended, but the extension

is not unique. We first remark that they are only defined on test functions vanishing

sufficiently fast at 0:

1 > sing ord t

0

= Æ � 0 ) t

0

2 D

0

Æ

�

R

4n

�

(4.20)

with

D

Æ

�

R

4n

�

=

�

� 2 D(R

4n

) j D

�

� (0) = 0 for all multi-indices

� = (�

1

; : : : ; �

n

) with j�j � Æg : (4.21)

Theorem 4.4.2 For all t0 (x
1

; : : : ; x

n

) 2 D

0

Æ

�

R

4n

�

with sing ord t0 = Æ at 0, 0 � Æ <1,

there exist numerical distributions t 2 D

0

�

R

4n

�

with the same singular order Æ at 0

and

t

0

(�) = t (�) 8 � 2 D

Æ

�

R

4n

�

: (4.22)

In [BrFr] this is proved on curved space times.

To construct extensions of distributions with positive singular order a projection op-

erator on test-functions is used.

Definition 4.4.1 With

W

(k)

(Æ; w; (x

1

; : : : ; x

k

)) : D

�

R

4n

�

�! D

Æ

�

R

4n

�

� (x

1

; : : : ; x

n

) 7! � (x

1

; : : : ; x

n

)�

�w(x

1

) � : : : � w(x

k

)

j�j�Æ

X

�

i

=0 8i>k

x

�

�!

D

�

� (y

1

; : : : ; y

k

; x

k+1

; : : :x

n

)

�

�

�

y

1

=:::=y

k

=0

(4.23)
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we define a projection operator on test-functions of the order Æ in x

1

: : :x

k

for each

function w 2 C

1

0

�

R

4

�

fulfilling w(0) = 1 and D

�

w(0) = 0 for all multi-indices � with

0 < j�j � Æ and �
i

= 0 for all i > k.

W

(k) is a modified Taylor subtraction operator in the k variables x
1

; : : : ; x

k

of the test-

functions. Since the function w has compact support the result is a function with com-

pact support, and vanishes up to the order Æ at 0. Therefore the singular distribution

t

0

(x) with singular order Æ is defined on all W (n)

(Æ; w; x)� (x) with x = (x

1

; : : :x

n

).

For k < n the operator W (k) is used in the renormalization of subdivergences.

The following construction of the (”superficial”) extension of a numerical distribution

t

0, well-defined outside the origin, with sing ord t

0

= Æ fulfills (4.22):

< t(x); �(x) > = < t

0

(x);W

(n)

(Æ; w; x))�(x) > +

+

X

j�j�Æ

(�1)

j�j



�

�!

< Æ

�

(x); �(x) > : (4.24)

The free constants � express the ambiguity in the extension of the distribution,

which remains after the function w(x) in the W -operator is fixed; it holds

< t; wx

�

>= 

� for j�j � Æ: (4.25)

The form of the � can further be restricted by demanding the invariance of the distri-

bution t under symmetry operations, for instance the Lorentz invariance. The most

simple choice of the � would be � = 0. But we will see that this choice is incompat-

ible with Lorentz invariance for j�j > 1. Another choice of the � leads to the form

of BPHZ subtraction at momentum q in momentum space. This choice of the � for

q 6= 0 is of course again incompatible with the Lorentz invariance for j�j > 1.

In [BrFr] it is shown that every extension of a distribution can be written as (4.24)

with the following generalized W -operation:

W� = ��

X

��Æ

v

�

�

�

�(0) (4.26)

with v
�

being smooth functions of compact support with ��v
�

(0) = Æ

�

�

. In the following

we will restrict ourselves to the treatment of extensions with W -operators of the form

(4.23).

4.5 The Lorentz Invariant Extension in Scalar Theories

It is possible to determine the free constants � of an extension, such that the result

is a Lorentz invariant distribution. In [BrPiPr] the main idea of the calculation is

introduced and an explicit result is obtained for scalar distributions in one variable.

A further development of the techniques yields an inductive formula for a Lorentz

invariant extension of an arbitrary distribution [Pra2]. In our calculations of the
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second and third order of the S-matrix in �

4-theory we only need the calculations of

[BrPiPr] which are repeated now.

We denote the action of the Lorentz group onR4n by x! D (�)x. This leads naturally

to an action on D
�

R

4n

�

and D0
�

R

4n

�

, respectively, given by

D

�

R

4n

�

3 � 7! �

�

; �

�

(x) := �

�

D

�

�

�1

�

x

�

D

0

�

R

4n

�

3 t 7! t

�

; ht

�

; �i := ht; �

�

�1
i :

According to equation (4.24), the extension has the form

ht; �i =

*

t

0

; �� w

X

j�j�!

x

�

�!

D

�

�(0)

+

+

X

j�j�!



�

�!

D

�

�(0): (4.27)

After performing a Lorentz transformation we obtain

ht

�

; �i = ht; �

�

�1i =

*

t

0

; �� w

�

X

j�j�!

x

�

�!

D

�

�(0)

+

+

X

j�j�!

(D(�))

�

�!

D

�

�(0): (4.28)

In order to be a Lorentz invariant extension, the difference of (4.27) and (4.28) has to

be zero:

X

j�j�!

D

�

�(0)

�!




t

0

; (w � w

�

) x

�

�

= �

X

j�j�!

((D(�)� 1) )

�

D

�

�(0)

�!

: (4.29)

So we have to solve




t

0

; (w � w

�

)x

�

�

= � ((D(�)� 1) )

� (4.30)

for all �, where � is a tensor of rank j�j and D(�) is the corresponding tensor repre-

sentation of the Lorentz group.

From now on, we restrict ourselves to the case of distributions in one coordinate. In

this case only the totally symmetric part of the � contributes to (4.27). Using Lorentz

indices, (4.30) reads




t

0

; (w � w

�

) x

�

1

: : :x

�

n

�

= �

�

�

�

1

�

1

: : :�

�

n

�

n

� Æ

�

1

�

1

: : : Æ

�

n

�

n

�



�

1

:::�

n (4.31)

where n = j�j. Using infinitesimal transformations we can solve these equations for

 inductively.

In the case j�j = 0, (4.30) is fulfilled for all choices of  since the 1-dimensional rep-

resentation of the Lorentz group is trivial. For j�j � 1, the solution is unique up

to Lorentz invariant contributions consisting only of symmetrized tensor products of

the metric tensor g�� (which generate Lorentz invariant counterterms like �Æ(x)).

We use the generators of Lorentz transformations

�

l

��

�

�

�

= g

��

Æ

�

�

� g

��

Æ

�

�

: (4.32)
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The representation of a Lorentz transformation on R4 has the form

�

�

�

= Æ

�

�

+

1

2

�

��

(l

��

)

�

�

+O(�

2

) (4.33)

with infinitesimal parameters �

��

satisfying �

��

= ��

��

. We obtain

w(x)� w(�

�1

x) =

1

2

�

��

(l

��

)

�

�

x

�

�

�

w(x) +O(�

2

): (4.34)

We use the abbreviations

n!! =

�

2 � 4 � : : : � n for n even

1 � 3 � : : : � n for n odd
(4.35)

and

b

(�

1

:::�

n

)

=

1

n!

X

�2S

n

b

�

�(1)

:::�

�(n) (4.36)

for the total symmetric part of a tensor b. Now we prove by induction over j�j that

the symmetric part of � for j�j > 0 is given by (up to the aforementioned ambiguity

for even j�j):



(�

1

:::�

n

)

=

(n� 1)!!

(n+ 2)!!

[

n�1

2

℄

X

s=0

(n� 2s)!!

(n� 1� 2s)!!

g

(�

1

�

2

: : :g

�

2s�1

�

2s

�

�

D

t

0

; (x

2

)

s

x

�

2s+1

: : :x

�

n�1

�

x

2

�

�

n

)

w � x

�

n

)

x

�

�

�

w

�E

: (4.37)

At the beginning of the induction we determine the � for j�j = 1 and j�j = 2.

1. j�j = 1. We obtain

((D(�)� 1) )

�

=

1

2

�

��

(l

��

)

�

�



�

(4:34)(4:30)

= �

�

t

0

;

1

2

�

��

(l

��

)

�

�

x

�

�

�

wx

�

�

; (4.38)

which yields (using the independence of �
��

)

(l

��

)

�

�



�

= �

D

t

0

; (l

��

)

�

�

x

�

�

�

wx

�

E

: (4.39)

Inserting the expression (4.32) for the (l

��

) yields

g

��



�

� g

��



�

= �

D

t

0

;

�

x

�

�

�

w � x

�

�

�

w

�

x

�

E

: (4.40)

Contracting finally with g
��

on both sides yields



�

=

1

3

D

t

0

; x

2

�

�

w � x

�

x

�

�

�

w

E

: (4.41)
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2. j�j = 2. We obtain from (4.31)




t

0

; (w � w

�

)x

�

1

x
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�

1

�

2

: (4.42)

With (4.33) and (4.34) we get

D

t

0

; (l

��

)

�

�

x

�

�

�

wx

�

1

x

�

2

E

= (l

��

)

�

1

�
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2

+ (l
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)

�

2

�



��

1

: (4.43)

Inserting the form (4.32) of the (l

��

) and contracting both sides with g

��

1

yields

4

��

2

� g

��

2
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�

= �
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; x

�

x

�

2

x

�

�

�

w � x

�

2

x

2

�

�

w

�

: (4.44)

As in the case j�j = 0 we choose �
�

= 0 and obtain (by setting � = �

1

):
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1
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2
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w� x

2

x

(�

1

�

�

2

)

w

E

: (4.45)

We now assume that (4.37) holds for all integers smaller than n and describe the

induction j�j = n� 2! j�j = n. With the examples of the beginning of the induction,

it is easy to see how the calculation is done for higher j�j. For j�j = n we obtain

instead of (4.40) the following equation:

n

X

i=1

�

g

��

i

Æ

�

�

� g

��

i

Æ

�

�

�
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1
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: : : x

�

n

E

: (4.46)

On the left-hand side only the symmetric traceless part of the � yields a contribution.

Contracting (4.46) with g

��

1

yields

(n+ 2)

��

2

::::::�

n

�

X

i�2

g

��

i



�

��
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:::��

i

:::�

n

=
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t;

�

x

�

x

�

�

�

w � x

2

�

�

w

�

x

�

2

: : : x

�

n

�

: (4.47)

The second term on the left-hand side of (4.47) is determined by the induction hypo-

thesis because it is the solution of the problem for j�j = n� 2 for the distribution x

2

t.

Setting � = �

1

and symmetrizing in the indices �
1

: : :�

n

, the form (4.37) is obtained.

This was the repetition of the calculations published in [BrPiPr].

Choosing the coefficients according to (4.37) the remaining freedom in the renormal-

ization procedure is the choice of the function w and the Lorentz-invariant countert-

erms. In the following we set all counterterms not depending on w equal to 0, so only

the contributions of (4.37) are nonvanishing. In the calculations of the next section

we need the coefficients (�) for j�j = 0 and j�j = 2, because we want to renormalize in

�

4 theory only diagrams with 2 and 4 external legs. Therefore we have sing ord t � 2.

Furthermore we only regard the case of symmetric testfunctions.

In the case j�j = 0 all choices of  are Lorentz invariant and we set  = 0. For j�j = 2

we have
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2

)

w

E

: (4.48)

In the following we denote with t

0the class of all Lorentz invariant extended distri-

butions, in this case we obtain by partial integration
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t

0

; w

E

: (4.49)

The numerical distributions t0 are products of Feynman propagators and depend only

on x2:

�

�

t

0

= 2x

�

(t

0

)

0 (4.50)

Therefore we have
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�

2

)w

�

: (4.51)

In the following calculations there contribute only terms which are even in the vari-

ables. Since only the support of the function w is important we can assume without

loss of generality that the function is even, too. It follows that the Lorentz invariant

extension of a distribution of singular order 2 with a symmetric test function has

according to (4.24) the form

ht; �i =

�

t

0

; �(x)� w(x)�(0)�

w(x)

8

x

2

2�(0)

�

: (4.52)

4.6 Properties of the W -Operator

1. As a projection operator, W (k) fulfills W

(k)2

= W

(k).

For n � l � m, Æ � Æ

0, the following relation holds:

W

(l)

�

Æ

0

; w

0

; (x

1

; : : : ; x

l

)

�

W

(m)

(Æ; w; (x

1

; : : : ; x

m

))� (x

1

; : : : ; x

n

) =

W

(m)

(Æ; w; (x

1

; : : : ; x

m

))� (x

1

; : : : ; x

n

) : (4.53)

2. The renormalization scale

Characteristic for every renormalization procedure is the occurence of a mass

scale, the renormalization scale. In the extension of the T -products the W -

operation depends on a function w(x). Since the argument of this function
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should be dimensionless it depends implicitly on a mass scale: w = w(mx).

The shape of the function w describes the subtraction procedure; in the region

of w = 1 the subtraction is the full Taylor subtraction, whereas nothing is sub-

tracted outside the support of w.

Varying the mass scale m with fixed w, we change the support region of the

function w and regulate in this way the subtraction procedure. In the limit

m! 0 we have w(mx) � 1 and the Taylor subtraction acts everywhere, whereas

in the limit m! 1 the support of w(mx) shrinks to the origin and we subtract

only at this point.

In the following, we continue to write w(x), and only if we need the dependence

on the mass scale we will write this function as w(mx).

A variation of the mass scale yields

w((m+ Æm)z)� w(mz) = Æm

�

�m

w(mz) = Æmz

�

�

�

w: (4.54)

4.7 Comparison with Differential Renormalization

Differential renormalization (DR) [FrJoLa] is another renormalization method in co-

ordinate space. The singular distributions are written as derivatives of less singular

distributions which contain a logarithmic mass scale, for instance

1

x

4

�

�

�

�

R

� �

1

4

�

ln(M

2

x

2

)

x

2

(4.55)

in massless �

4 theory. This yields:

Z

d

4

x

�

1

x

4

�

R

f(x) = �

1

4

Z

d

4

x

lnM

2

x

2

x

2

(�f(x)) ; (4.56)

In [FrJoLa] this formula was explained by saying that there are hidden counterterms

canceling the divergent surface integral. They arise in partial integrations where the

distributions are treated as functions.

In [AgCuMu] these techniques are improved by giving a set of rules for the calcula-

tions. They tell us how to expand Feynman graphs in a set of basic functions and

fix their renormalization so that the Ward identities of the theory are automatically

fulfilled at one-loop order for abelian and non-abelian gauge theories. This is called

constrained DR (CDR).

In many renormalization prescriptions a Taylor subtraction is used. In this case Za-

vialov had the idea that the remaining part after the subtraction is the residue term

of a Taylor expansion and can be written in the form of an integral operator [Zav].

Applying this to the Taylor subtraction of the W -operation formalism, it is shown in

[Pra1] that the W -operation acts on the test functions through differentiation. The

integral operator of [Pra1] is more complicated than the one given by [Zav] because
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the W -operation is not a real Taylor subtraction but modified by the function w. Ex-

plicit calculations with this more complicated formula succeeded up to now only in

the case where w(x) is assumed to be the step function �(x). Since �(x) is not a

test function this is only allowed if the singular support of the distribution does not

intersect with the singular support of �(x). In Minkowski space renormalization this

calculation is not applicable because the singular support of the Feynman propagator

lies on the whole light-cone.

Here we give another comparison of the two methods in the euclidean space which

holds for all allowed test functions but becomes unfortunately very complicated in

the case of higher singularities. Starting point of our derivation is equation (4.56):
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(4.57)

the surface term of the first partial integration vanishes. The second term on the

right-hand side yields the surface integral
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�(x); (4.58)

where B
�

(0) is a sphere of radius � around the origin and df� = �

3

x̂

�

dx̂ is the outward

normal volume element of the 3-sphere S
�

.

A Taylor expansion of �(x) for small x modified for x 6= 0 yields

�(x) = w(x)�(0) + w(x)x

�

�

�

�(0) + O(x

2

) (4.59)

with w(x) 2 C

1

0

�

R

4

�

and w(0) = 1.

Inserting (4.59) in the surface integral (4.58), only the first term yields a nonvanish-

ing contribution for �! 0:
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(4.60)
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Together with the other term of (4.57) it yields

<

1

(x

2

)

2

; �(x) >

Ren

=

Z

d

4

x

1

(x

2

)

2

(�(x)� w(x)�(0))+

1

4

Z

d

4

x �

�

w(x)�

�

ln(M

2

x

2

)

x

2

�(0)

=

Z

d

4

x

1

(x

2

)

2

W

(1)

(0; w; x)�(x)+

1

4

Z

d

4

x �

�

w(x)�

�

ln(M

2

x

2

)

x

2

�(0);

(4.61)

which is exactly the extension of 1

x

4

according to (4.24).

Fixing the function w(mx) and the scales according to M = m in (4.61), the coefficient

 corresponding to DR is determined:

� In case of w(mx) = �

�

1�m

2

x

2

�

treated in [Pra1] we obtain:

 =

1

(x

2

)

2

Z

d

4

x

�

�

�

�

�

1�m

2

x

2

��

�

�

ln(M

2

x

2

)

x

2

=

Z

d

4

x m

2

Æ

�

1�m

2

x

2

�

�

1

x

2

�

ln(M

2

x

2

)

x

2

�

=

Z

1

0

dr 2�

2

r

3

m

2

Æ

�

1�m

2

x

2

�

�

1

r

2

�

ln(M

2

r

2

)

r

2

�

= 2�

2

� 2�

2

ln

M

2

m

2

: (4.62)

We see that the renormalization of the basic function 1

x

4

differ in [FrJoLa] and

[Pra1] because in the formula of [Pra1] all the coefficients  are zero.

� With (4.61) we are moreover able to determine the coefficient  for the function

w(x) =

(

exp

�

�

1

1�m

2

x

2

�

for jmxj � 1

0 for jmxj > 1

: (4.63)

We obtain

 = �

1

4

Z

jx

2

j<m

�2

d

4

x

m

2

(1�m

2

x

2

)

2

�

1

x

2

�

ln(M

2
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2

)

x

2

�
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�

1

1 �m

2

x

2

�

= 2�

2

Z

1

0
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�

y

(1� y

2

)

2

�

y

(1� y

2

)

2

ln

M

2

y

2

m

2

�

exp

�

�

1

1� y

2

�

=

�

2

e

�

1� ln

M

2

m

2

�

+ 2�

2

Z

1

0

dy

y ln y

2

(1� y

2

)

2

exp

�

�

1

1 � y

2

�

: (4.64)

The contribution of the second integral has to be determined numerically, with

the help of the functions evalf and int of the computer program package

Maple [Map] one obtains
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 = �0:63017689�

�

2

e

ln

M

2

m

2

:

The transformation of renormalized terms with higher singularities becomes more

difficult and the meaning of the rules of CDR in the language of the W -operation also

remains an open question.

4.8 Comparison with BPHZ-Renormalization

The definition of composite operators and the Zimmermann identities [Zim] were

first formulated in BPHZ-renormalization in the version described by Zimmermann

[Zim1]. To show the connection between the BPHZ-formulation and our approach we

compare in this section these two ways of renormalization.

In BPHZ-renormalization the integrand I
�

of a divergent momentum space Feynman

integral is changed by the so called R-operation, such that only the integrand R

�

of

the finite part remains. If there are more than one divergence in a diagram the forest

formula describes the combinatorics of the R-subtraction procedures.

In the first subsection we compare the R-operation with the W -operation. It turns

out that the coefficients � of the W -operation can be chosen in such a way that

the W -operation coincides with the R-operation, in particular one obtains the same

renormalized distributions in both ways. In the second subsection we compare the

combinatorics of the two ways of renormalization. There are differences because the

definition of divergent subdiagrams is different in coordinate and momentum space.

We derive the Hopf algebra structure in Epstein-Glaser renormalization. In the last

subsection we compare the two methods in an explicit calculation of a diagram. De-

spite of the different combinatorics the result of the two methods is the same.

4.8.1 Subtraction Procedure

Bogoliubov’s R-operation is a Taylor subtraction in momentum space. More precisely,

if we have a diagram without subdivergences the R-operation is a subtraction of the

first terms of the Taylor series in the external momenta of the diagram. Performing

a Fourier transformation the external momenta are conjugate to the differences of

vertex coordinates of the diagram. These coordinate differences belong to the argu-

ments of the W -operation in Epstein-Glaser renormalization because the Feynman

propagators of a diagram depend only on these differences. If every vertex has an

external line the number of momenta in the BPHZ subtraction coincides with the

number of arguments of the W -operation. If there are vertices with no external lines

in a diagram there will be more arguments in the W -operation than in the Taylor

subtraction of the R-operation.

In [Pra1] it is shown that the BPHZ-regularized distribution with subtraction point

q corresponds to the distribution renormalized with the W -operation using the func-

tion w(x) = exp(iqx); unfortunately this function is not allowed in the W -operation

because it has no compact support. Therefore one has to prove in calculations with
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this function in each step that everything is well-defined. The advantage is that the

calculation itself becomes more easy with this function. In the case where q is totally

spacelike this choice of w(x) is allowed according to [Pra3].

The right choice of the 
�

also leads with allowed functions w(x) to a Taylor subtrac-

tion at a point q in momentum space. Under the assumption that there exists a point

q 2 R

4n where the derivative D

b

^

T (q) exists in the usual sense of functions for all

jbj � !, it is shown in [Scha] that

^

T

BPHZq

(p) :=

^

T

R

(p)�

X

jbj�Æ

(p� q)

b

b!

D

b

^

T

R

(q) (4.65)

(where ^

T

R

(p) is the distribution in momentum space renormalized with the W -

operation with coefficients 
�

= 0) fulfills the normalization condition

D

b

^

T

BPHZq

(q) = 0 8 jbj � ! (4.66)

and is further uniquely specified by this condition.

4.8.2 Combinatorics

The combinatoric in Epstein-Glaser renormalization is hidden in the structure of

finite renormalizations. We know from Theorem (3.0.1):

^

T

n

�

N

j2J

f

j

�

=

X

P2Part(J)

T

jP j

h

O

O

i

2P

�

jO

i

j

�

N

j2O

i

f

j

�i

: (4.67)

We now only regard the contribution of T
n

to a special diagram  with n vertices. A

subdiagram of  is defined by the vertices belonging to it. All lines of  between the

vertices of the subdiagram belong to the subdiagram. 

O

i

is the subdiagram with

vertices V
j

with j 2 O
i

.  n 
O

i

is the reduced diagram obtained from  by contracting

each line belonging to 
O

i

to a point. We define 
O

i

= ; if O
i

consists of only one

element. We use



P

=

jP j

Y

i=1



O

i

(4.68)

With this we obtain from (4.67):

^

T



n

�

N

j2J

f

j

�

= T



jP j

�

N

j2J

f

j

�

+

X

P2Part(J)

jP j<n

T

n

P

jP j

h

O

O

i

2P

�



O

i

jO

i

j

�

N

j2O

i

f

j

�i

; (4.69)

where �

 is defined inductively by
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T

1

�

�



n

�

N

j2J

f

j

��

=

^

T



n

�

N

j2J

f

j

�

�

X

P2Part(J)

jP j>1

T

n

P

jP j

h

O

O

i

2P

�



O

i

jO

i

j

�

N

j2O

i

f

j

�i

:

(4.70)

In the following we omit the lower indices and the arguments of the T -products.

In momentum space, a subdiagram is defined by the lines belonging to it. All ver-

tices which are endpoints of lines of a subdiagram belong to the subdiagram. So in

momentum space the set of subdiagrams is larger because not all lines between two

vertices of the diagram have to belong to the subdiagram. Proper subdiagrams of

nonegative dimension are called renormalization parts.

Zimmermann described in [Zim1] the combinatorics of BPHZ renormalization and

gave the following formula for the finite part R
�

of an integrand I

�

of a Feynman

integral belonging to a diagram �:

R

�

(K; q) = I

�

(K; q) +

X



1

:::



I

�n

1

:::



(K; q)



Y

�=1

�

�t

d(

�

)

q



�

�

R



�

�

: (4.71)

In the above formula I
�

is the integrand belonging to the diagram �, q are the corre-

sponding basic internal momenta (they are also called external momenta) and K can

be chosen as loop momenta. td
q

applied to a function f(q) denotes the Taylor series in

the components of the vectors q up to the order d. The sum is over all sets of renor-

malization parts of � which are mutually disjoint and � itself. �

R



is the integrand of

� with renormalized subdivergencies:

�

R



(K



; q



) = I



(K



; q



) +

X

0



1

:::





i

\

j

=;

I

�n

1

:::



(K



; q



)



Y

�=1

�

�t

d(

�

)

q



�

�

R



�

�

: (4.72)

Here the sum
P

0 is over all sets of renormalization parts 

a

6=  of  which are

mutually disjoint and K , q are the loop and external momenta of the diagram .

Comparing (4.72) with (4.69) we see that both renormalizations consist of a sum of

terms, each belonging to a set of renormalization parts of �. The difference between

the two formulations is the different definition of subdiagrams and that (4.69) is

formulated for finite and (4.69) for infinite renormalizations.

Kreimer [Kre] found a Hopf algebra structure hidden in the combinatorics (4.72) of

the singularities and we now show that there can be found the same structure in

Epstein Glaser renormalization.

Recently Bondı́a and Lazzarini discussed the Hopf algebra structure in Epstein

Glaser renormalization, but they adapted a formulation of the forest formula of Zim-

mermann with the following form:

R

�

f(�) =

2

4

1 +

X

F

Y

2F

(�S



)

3

5

f(�); (4.73)
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where the sum is over all nonempty sets whose elements are proper, divergent (and

may be connected) subgraphs of �. The problem with this formula is that R
�

is not

an operator defined on the space of distributions. Especially it cannot be adjoint to

give an operator on the testfunction f(�) is smeared with.

In our derivation we first describe the algebra of graphs and then we show how the

antipode is connected with the structure of renormalization given in (4.69).

We take the algebra A of graphs with multiplication and addition as in [CoKr2]:

A has a basis labelled by all Feynman graphs � which are disjoint unions of connected

graphs:

� =

n

[

j=1

�

j

: (4.74)

The empty graph � = ; is the unit element of the algebra.

The product in A is bilinear and given on the basis by the operation of disjoint union:

m : A
A ! A

m(�

1

;�

2

) = �

1

� �

2

= �

1

[ �

2

: (4.75)

This means that the product of two graphs is a graph consisting of this two discon-

nected subgraphs.

For the definition of a coproduct we need the notion of a subgraph in Epstein-Glaser

renormalization discussed above. In a graph � with n vertices labelled with the set

of indices J = f1; : : : ; ng each subset I of J defines a subgraph 

I

consisting of all

vertices labelled by I and all lines joining them.

If the set I consists of only one element, the subgraph has only one point and is

defined as the empty graph.

Every partition P of J defines a set of subgraphs, more precisely if P = fO

1

; : : : ; O

k

g

the subgraphs are those belonging to the subsets O
i

.

Now we define a coproduct on A:

 : A ! A
 A

(�) = �
 I+ I
 � +

X

0

P2PartJ

16=jP j6=n



P


 � n 

P

8� 6= ;; (4.76)

where the sum
P

0 is over all partitions with subgraphs of 
O

i

where 
O

i

is the empty

graph or has only two or four external lines. Iis the unit element of the algebra and �

is a diagram with jJ j vertices. � n
P

is obtained from � by shrinking all its nonempty

subdiagrams to a point. In the special case � = ; we define

(;) = I
 I: (4.77)

The proof of the coassociativity is analogous to that of [CoKr2].
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A counit is defined by

�e(�) = 1 for � = ;

�e(�) = 0 for � 6= ; (4.78)

The defining equation for the antipode is

m(s
 id)(�) = �e(�) � I: (4.79)

From this equation we obtain a recursion formula for the antipode:

s(�) = �� �

X

P2Part(J)

16=jP j6=n

s(

P

) � � n 

P

(4.80)

for  6= Iand

s(I) = I: (4.81)

This antipode describes the structure of singularities. We now want to show that we

can derive the same structure from the formula of finite renormalizations (4.69). We

have (omitting the lower indices of the T -products)

^

T

�

= T

�

+ �

�

+

X

P2Part(J)

1<jP j<n

T

�n

P

h

�



P

i

: (4.82)

Now we formulate this equation on the level of numerical distributions and denote

with t the numerical distribution belonging to the diagram  and with Æ the numer-

ical distribution belonging to the diagram T

1

(�



):

^

t

�

= t

�

+ Æ

�

+

X

P2Part(J)

1<jP j<n

t

�n

(i)

P

Æ



(i)

P

; (4.83)

where we sum over the multiindices (i) having one value for each connected compo-

nent of the O
i

belonging to P (compare [CoKr2]). We now assume that t are the regu-

larized but unrenormalized distributions and ^

t are the regularized and renormalized

distributions. Then Æ(t) describes the renormalization of the superficial divergence.

Taking only the parts of (4.83) which are divergent when the regularization is re-

moved and summing over all multiindices (i) which are not explicitly written down

in the following, we obtain:

Æ

�

= �t

�

�

X

P2Part(J)

1<jP j<n

t

�n

P

Æ



P

; (4.84)
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which has to be interpreted as the structure of singularities in renormalization. This

recursive equation for the singularity of Æ� has exactly the same structure as equa-

tion (4.80) for the antipode (one has to identify a diagram with the singularity of its

numerical distribution).

4.8.3 Example

In this subsection we show that the BPHZ renormalization of the setting sun yields

the same result as the Epstein-Glaser renormalization.

p+Q

�l

l �Q

p

yields the same result as the Epstein-Glaser renormalization.

In contrast to Epstein-Glaser renormalization this diagram has three subdivergen-

cies in BPHZ renormalization. We show that the contributions of the renormalization

of the subdiagrams vanish, such that the result of both renormalizations is the same.

We obtain

�

R = i

~

�

F

(l�Q)i

~

�

F

(l)i

~

�

F

(p+Q)� i

~

�

F

(l �Q)i

~

�

F

(l)i

~

�

F

(l)

�i

~

�

F

(l)i

~

�

F

(l�Q)i

~

�

F

(l�Q)� i

~

�

F

(p+Q)i

~

�

F

(l)i

~

�

F

(l) (4.85)

In the following Taylor subtraction in p all contributions not depending on p vanish.

We show that the contribution of the last term vanishes, too. We obtain from it the

expression

�

Z

d

4

Q

Z

d

4

l(i

~

�

F

(p+ Q)(i

~

�

F

(l))

2
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F
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~
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F

(l))

2

+

p

2

2

(2i

~

�

F

(Q))(i

~

�

F

(l))

2

)

(4.86)

The contributions of the renormalization of the subdiagram vanish in the momentum

integration, because of

Z

d

4

Q

Z

d

4

l i

~

�

F

(p+Q)(i

~

�

F

(l))

2

=

Z

d

4

Q

Z

d

4

l i

~

�

F

(Q)(i

~

�

F

(l))

2 (4.87)

and
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Z

d

4

Q

Z

d

4

l

p

2

2

(2i

~

�

F

(Q))(i

~

�

F

(l))

2

) = 0: (4.88)

There only remains the Taylor subtraction of the Epstein-Glaser renormalization, so

the results of the two methods are the same in this example.
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Chapter 5

Renormalization of the S-Matrix

in �

4 Theory

5.1 Introduction

In this section the second and third order of the S-matrix in �

4 theory are renor-

malized using the formalism developed in the previous section (The result of the

fourth-order calculation is presented in [GBLa]). Already in second order we will

see that the operators ~

�

n

of theorem (3.0.1) consist only of linear combinations of

: �

�

��

�

� :; : �

2

: and : �

4

:. In third order we demonstrate an explicit calculation of a

diagram with subdivergencies to make clear how the subtraction works and that the

result is indeed independent of the partition of unity used in the inductive construc-

tion. The result of the calculations is given in the adiabatic limit, otherwise there

would be many additional terms.

Before starting the calculations it is useful to make some remarks. We will have to

work with expressions of the typical form

Z

du

Z

dx t

0

(u) (W (Æ; w; u)A(x; u)g(x; u)) ; (5.1)

where t0(u) is the numerical distribution with singular order Æ, g is a test-function

with compact support and A is a Wick product of fields at x and u. With u and x

we denote a tupel of coordinates (u

1

; : : :u

n

) and (x

1

; : : :x

n

) respectively. We always

assume that the function w(u) of the W -operation is even in all components of u
�

i

for

all i. In the calculations we use the following facts:

1. All test functions are symmetric in the variables, so all odd terms in the Taylor

subtraction of W will vanish.

2. To make the extension Lorentz invariant, we use the form of the subtraction in

(4.37) and (4.52) respectively. Here again the contributions of the coefficients �

with j�j odd vanish.

37



3. For Æ � 1 there appear terms with derivatives of g in the Taylor subtraction.

These terms vanish in the adiabatic limit. Because the limit exists in massive

�

4-theory in the strong sense, we omit them from the beginning.

4. In [Düt] it is shown that the adiabatic limit of vacuum diagrams exists only for

a special choice of the �. This choice is Lorentz invariant and the contributions

of the vacuum diagrams vanish in the adiabatic limit, too.

5. We assume D

�

w(0) = 0 for all multiindices � with 0 < j�j < 3 for all test-

functions w used in the renormalization.

We denote with ()

R

the extension of a numerical distribution and with ()

E

the ex-

tension of a T

m

-product to the total diagonal D
m

. A numerical distribution without

index R stands for the whole class of its lorentz invariant extensions.

5.2 Renormalization of the Second Order

The second order term in the S-matrix has the form

S

(2)

(g) =
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2
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�i�
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2
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4
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��

4
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(4� k)! �
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(i�

F

(x

1
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4�k

�
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: �

k

(x

1

)�

k

(x

2

) : g (x

1

) g (x

2

) : (5.2)

With the singular orders (4.18) of the Feynman propagators we obtain nontrivial

contributions of the extension from terms with k = 0; 1; 2.

1. k = 0 yields a vacuum diagram. Its contribution vanishes in the adiabatic limit.

2. For k = 1 we have

S

(2)

(k=1)

(g) = �

96�

2

2!(4!)

2

Z

d

4
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1

Z

d

4

x

2

(i�
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1
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))

3

R

�

� : � (x

1

)� (x

2

) : g (x

1

) g (x

2

)

(4:52)

= �

�

2

12

Z

d

4

v

Z

d

4

u (i�

F

(u))

3

h

: �(u+ v)�(v) : g(u+ v)g(v)

�w(u) : �

2

(v) : g

2

(v)�

1

8

w(u)u

2

: �(v)2�(v) : g

2

(v)

i

: (5.3)

3. For k = 2 we obtain
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(k=2)

(g) = �

�

2

16
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4
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Z

d

4

v (i�
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(u+ v)�

2

(v) : g(u+ v)g(v)� w(u) : �

4

(v) : g

2

(v)

i

:

(5.4)

Remark: The individual terms in the square brackets are not defined, only their

sum is convergent and well-defined. The result depends on the function w(x). We

use this dependence to read off the form of the finite renormalizations ~

�

2

: to choose

another Lorentz invariant T -product with extensions of the form (4.24) we can only

change the function w. The difference of two w-functions has no support at 0 and

gives a well-defined contribution. Denoting with ^

T the renormalization at the scale

m+ Æm and with T the renormalization at m we obtain with (4.54):

~
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�
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(2)

^
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i
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(v) (5.5)

with

A
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= Æm

�

2
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Z

d
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3

u

�

(�
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= �Æm
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2

u

�
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�

w): (5.6)

At this stage we are able to see how the theoretically predicted form of the higher ~

�

n

is realized in the calculations. ~

�

n

is the difference in the superficial renormalization

of diagrams with four and two external legs. Diagrams with four external legs are

superficially logarithmically divergent and of the form

Z

du

Z

dv t

0

(v; u)W (0; w; u) : � (l

1

(u; v))� (l

2

(u; v))� (l

3

(u; v))� (l

4

(u; v)) :

g (l

5

(u; v)) : : : g (l

n+4

(u; v)) ; (5.7)

where u = (u

1

; : : : ; u

n�1

) are the difference variables and l
i

; i = 1; : : : ; n+4 are linear

combinations of v and the u
i

of the form l

i

(v; u) = v + a

i

u

i

with a

i

2 R. Varying the

mass scale in W we obtain only the following contribution

Z

dv C

(n)

: �

4

(v) : g

n

(v): (5.8)
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Diagrams with two external legs are quadratically divergent and of the form

Z

du

Z

dv t

0

(v; u)W (2; w; u) : � (l

1

(u; v))� (l

2

(u; v)) : g (l

3

(u; v)) : : :g (l

n+2

(u; v)) : (5.9)

Varying the mass scale in the W -operation yields the following contributions:

Z

dv

�

A

(n)

: �

2

(v) : +B

0

(n)

: �(v)2�(v)

�

g

n

(v): (5.10)

By partial integration we obtain the contribution

Z

dv B

(n)

: �

�

�(v)�

�

�(v) : g

n

(v); (5.11)

because the contributions with derivatives of g vanish in the adiabatic limit. Finite

renormalizations to all orders in �

4 theory consist only of shifts in the coupling con-

stant, in mass-like terms and kinetic terms of L
int

whose coefficients A(n), B(n) and

C

(n) have to be determined in the calculations.

5.3 Renormalization of the Third Order

The third order term in the S-matrix has the form

S

3
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3

3!(4!)
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�
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1
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4

; g(x
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(5.12)

and with the structure (3.5) of the higher T -products we obtain
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; (5.13)

with the factor

K(i; j

1
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2
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�

4

i
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4
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4� j

1
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��

4� i
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��
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(i)!j
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Reordering the terms in expression (5.13) we arrive at
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There are two kinds of W -operations in the calculation, that is Taylor subtractions in

one and two variables corresponding to the renormalization of superficial divergen-

cies and subdivergences. In the subtraction in one variable u we use the test-function

w(u) as before. The test-function of the W -operator in two variables u and v is chosen

to be ~w(u) ~w(v) ~w(u+ v) where ~w is a test-function in one variable. Since u and v are

difference variables the function is symmetric in all coordinates.

We now list the 14 topologically different diagrams occuring in the sum with their val-

ues of i; j
1

and j
2

. Furthermore the singular orders of the whole diagram Æ(x

1

; x

2

; x

3

)

and of the subdiagrams, Æ(x
i

; x

j

) consisting only of the vertices x
i

and x

j

are listed.

N is the number of all different diagrams in the sum with the same topological struc-

ture.

Number i j

1

j

2

Æ(x

1

; x

2

; x

3

) Æ(x

1

; x

2

) Æ(x

1

; x

3

) Æ(x

2

; x

3

) N

1 4 0 0 0 4 -4 -4 3

2 3 0 1 0 2 -4 -2 6

3 2 2 0 0 0 0 -4 3

4 2 1 1 0 0 -2 -2 3

5 3 1 1 2 2 -2 -2 3

6 2 2 1 2 0 0 -2 3

7 2 2 2 4 0 0 0 1

8 3 0 0 -2 2 -4 -4 3

9 2 1 0 -2 0 -2 -4 6

10 1 1 1 -2 -2 -2 -2 1

11 2 0 0 -4 0 -4 -4 3

12 1 1 0 -4 -2 -2 -4 3

13 1 0 0 -6 -2 -4 -4 3

14 0 0 0 -8 -4 -4 -4 1

The contributions of the diagrams 1 and 7 vanish in the adiabatic limit.
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Diagrams 2, 3 and 4 are superficially logarithmically divergent, they have four ex-

ternal legs and contribute to the renormalization of the coupling constant. Diagram

5 and 6 have two external lines and are therefore superficially quadratically diver-

gent. They yield contributions to the mass and field strength renormalization. All

the other diagrams are superficially convergent, they do not depend on ~w and yield

no contribution to ~

�

3

. Here we only demonstrate the calculation of

Diagram 6:

With i = 2; j

1

= 2 and j
2

= 1 we obtain from (5.14) K(2; 2; 1) =

(4!)

3

4

and inserting this

in (5.15) we get the following expression:
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))
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R

At first we have to perform the superficial renormalization, therefore we introduce

new variables u = x

2

�x

1

; v = x

1

�x

3

and apply the operator W (2)

(2; ~w; v; u+v) to the

Wick-monomial and the test functions. Because of remark 3 made before the calcu-

lations the derivatives in the subtraction act only on the Wick-monomial depending

only on one variable u+ v. In this case W (2) has the form of a subtraction operator in

one variable given by (4.52).
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+
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Because of (i�
F

(u+v))

R

= i�

F

(u+v)we now have to renormalize the subdivergencies

of the lines (5.16) and (5.17). Using
�

f

(3)
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(3)

3

�

u=0

= 1 we obtain from line (5.16):
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Interchanging u and v, we obtain from this the renormalization of the subdivergence

of line (5.17). Finally we obtain the following result:

43



S

(6)

3

(g) =

i�

3

8

Z

d

4

u

Z

d

4

v

Z

d

4

x

3

(i�

F

(u))

2

(i�

F

(v))

2

�

i�

F

(u+ v)

h

: �(x

3

)�(u+ v + x

3

) : g(u+ v + x

3

)g(v+ x

3

)g(x

3

)

� ~w(u) ~w(v) ~w(u+ v) : �

2

(x

3

) : g

3

(x

3

)

� ~w(u) ~w(v) ~w(u+ v)

1

8

(u+ v)

2

: �(x

3

)2�(x

3

) : g

3

(x

3

)

i

�i�

F

(v)w(u)

h

: �(x

3

)�(v + x

3

) : g

2

(v + x

3

)g(x

3

)

� ~w

2

(v) : �

2

(x

3

) : g

3

(x

3

)

� ~w

2

(v)

v

2

8

: �(x

3

)2�(x

3

) : g

3

(x

3

)

i

�i�

F

(u)w(v)

h

: �(u+ x

3

)�(x

3

) : g(u+ x

3

)g

2

(x

3

)

� ~w

2

(u) : �

2

(x

3

) : g

3

(x

3

)

� ~w

2

(u)

u

2

8

: �(x

3

)2�(x

3

) : g

3

(x

3

)

i

�

:

The renormalized diagrams 1-5 and 7-11 are given in the appendix A.

Now it becomes clear that the independence of the partition of unity proved in [BrFr]

is a consequence of the fact that the Taylor subtractions of the subdivergencies act

on the partition of unity. In this explicit third-order calculation we can see that not

only the T -products as a whole as shown in [BrFr] but also the contributions to the

individual diagrams are independent of the partition of unity.

5.4 The Normalization Conditions

We have seen how renormalization works in the Epstein-Glaser formalism in �

4-

theory. To come back to a more theoretical formulation we present the normalization

conditions for �4-theory. Some of them are an abstract formulation of techniques used

in the previous calculations. In contrast to the calculations of the previous section

the following conditions are independent of the adiabatic limit. The normalization

conditions introduced in [DüFr] and extended in [Boa] restrict the ambiguities in the

renormalization. We repeat these conditions in the more simple form fitting to �

4

theory:

� Condition N1 demands the Lorentz covariance of the T -products; it is described

in [BrPiPr] and [Pra2] how to realize this in the extension procedure.

� Condition N2 gives the form of the adjoint of T on D and makes sure that the

S-matrix is unitary:
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; i 2 p
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;
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where the sum is over the ordered partitions of J .

� It is shown in [Boa] that condition N3 is equivalent to the Wick expansion of

the time-ordered products. The Wick expansion has the form
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(5.19)

Each contribution to the sum in (5.19) corresponds to a diagram with 1

2

P

i

k

i

internal lines and
P

i

(l

i

� k

i

) external lines. Condition N3 reads
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for all f
i

containing only fields and their first derivatives with
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� y)g(y) (5.21)
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we can extend condition N3 to T -products containing one factor (2+m

2

)�.
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� Condition N4 has the form
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where the f

i

2 D

�

R

4
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�

contain only combinations of fields and their first

derivatives.

We now show that in �

4 theory the Dyson-Schwinger equations are a con-

sequence of N4. With the Gell-Mann-Low formula the Green’s functions
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By this we obtain using N4 and (5.22)
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�

G

i

(x

1

; : : :x

i�1

; z) =

=

Z

d

4

z

"

i

i�1

X

k=1

Æ(x

k

� z)G

i�2

(x

1

; : : : �x

k

: : : x

i�1

) +

�g(z)

6

G

i+2

(x

1

; : : :x

i�1

; z; z; z)

#

(5.26)

where G
i+2

(x

1

; : : :x

i�1

; z; z; z) denotes the vacuum expectation value of the field

product �(x
1

) � : : : �(x

i�1

)�

3

(z). These are the Dyson-Schwinger equations [Riv].
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Chapter 6

Topics concerning the Action

Principle

6.1 Main Theorem of Perturbative Renormalization The-

ory

The procedure of renormalization depends on the renormalization scale and we can

say that two T -products T and ^

T are renormalizations at different scales m, even

though their scale dependence is not obvious in the abstract formulation of section 3.

Given two renormalization prescriptions T and ^

T belonging to different scales m one

can pass from one to the other by a suitable change of the scale dependent quantities

in the Lagrangian. This is the content of the main theorem of perturbative renor-

malization theorywhich is proved in [PoSt] in the framework of causal perturbation

theory. Popineau and Stora give a construction of the changes of parameters which

is, due to the inductive form, not suited for calculations in higher orders. In this

section we derive the explicit form of the changes of parameters in the Lagrangian

compensating a change of renormalization T ! ^

T which corresponds to the structure

of renormalization given in [Zav]. In the following calculations we use the abbrevia-

tions

f := g(x)�

4

TE

k

(f) :=

1

X

n=k

(�i)

n

n!

T

n

�

f

N

n

�

:

Then the S-matrix reads, for example,

S = TE

0

(f) =

1

X

n=0

(�i)

n

n!

T

n

�

f

N

n

�

; and �E

k

(f) =

1

X

n=k

(�i)

n

n!

�

n

�

f

N

n

�

: (6.1)

The following theorem describes how to absorb a change in the renormalization pre-

scription ^

T ! T in a change f ! f

r

of the physical parameters in the Lagrangian:

47



Theorem 6.1.1 An S-matrix renormalized according to ^

T can be expressed by an S-

matrix renormalized according to T in the following way:

^

TE

0

(f) = TE

0

(�E

1

(f)) =: TE

0

(f

r

): (6.2)

Remark: Because of ^

TE

0

(f) = 1 + T (f) +

^

TE

2

(f) and �E

1

(f) = f + �E

2

(f) we can

derive from (6.2) the following recursion relation:

T�E

2

(f) =

^

TE

2

(f)� TE

2

(f +�E

2

(f)): (6.3)

Proof: We prove the theorem by the following calculation:

^

TE

0

(f) =

1

X

n=0

(�i)

n

n!

^

T

�

f


n

�

(3:6)

=

1

X

n=0

(�i)

n

n!

X

P2Part(J)

T

0

�

O

O

i

2P

�

�

f


jO

i

j

�

1

A

:

(6.4)

Here we sum over all partitions of the set J = f1; : : : ; ng. Now we take a fixed

partition P and denote with N

i

the number of elements O of P with jOj = i.

Then the relation n =

P

k

i=1

iN

i

is true with k � n. There are

n!

N

1

! : : :N

k

!1!

N

1

: : :k!

N

k

(6.5)

different partitions P with the same numbers N
i

. Therefore we have

^

TE

0

(V) =

1

X

n=0

(�i)

n

n!

X

P

iN

i

=n

n!

N

1

! : : :N

k

!1!

N

1

: : : k!

N

k

T

n

"

(�(f))

N

1

: : :

�

�

k

(f

N

k

)

�

N

k

#

(6.6)

and obtain

^

TE

0

(f) = lim

k!1

T

"

1

X

N

1

=0

(�i)

N

1

N

1

!

(�(f))

N

1

�

1

X

N

2

=0

(�i)

2N

2

N

2

!2!

N

2

(�(f 
 f))

N

2

� : : :

: : : �

1

X

N

k

=0

(�i)

kN

k

N

k

!k!

N

k

�

�

k

(f

N

k

�

N

k

#

= T (E

0

(�E

1

(f))) �

In renormalizable theories, f
r

= �E

1

(f) consists only of linear combinations of the

field combinations in the original Lagrangian. In scalar �

4 theory �E

1

(f) is a linear

combination of the monomials �

�

��

�

�;�

2 and �

4. The coefficients depend on the

renormalization conditions and this dependence is described by the Callan-Symanzik

equations and the renormalization group equations. The most elegant way to derive
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them uses the action principle [Low]. In the formalism of Epstein and Glaser the

partition of the Lagrangian into a free and an interacting part is important. The free

part of the Lagrangian defines the Hilbert space, fields and their masses of the free

theory. It is not clear that a contribution of a mass term to the interacting Lagrangian

�E

1

(f) can be interpreted as a shift in the mass.

6.2 Insertions

To derive the action principle we need the notion of an insertion.

Definition 6.2.1 An insertion of degree a of an element g 2 D
�

R

4

;A

�

into a T -product

is defined by

I

(a)

(g; T )

(n)

�

N

j2J

f

j

�

) := T

n+1

�

N

j2J

f

j


 g

(a)

�

: (6.7)

where g(a) means that the vertex belonging to g is treated in the extension procedure

defining T
n+1

as a vertex of mass dimension a.

Remark: If the degree a of the insertion corresponds to its physical mass dimension

M it is called a soft insertion. In the case a > M all diagrams containing the vertex

of the insertion are over-subtracted and we have a hard insertion. The relation of

two insertions of the same Wick monomial with different degrees is given by the

Zimmermann identities derived in the next section.

Since the definition of the T -product depends on the degree of a vertex and this degree

is not a linear function the T -products are not a priori linear. With the possibility to

prescribe with the index (a) how a vertex is treated in a T -product, we can define the

T -products as linear functions.

The behaviour of an insertion into the S-matrix under a change of renormalization is

given by the following theorem.

Theorem 6.2.1 An insertion into the S-matrix renormalized according to ^

T can be ex-

pressed as an insertion into the S-matrix renormalized according to T in the following

way:

I

(a)

�

g;

^

TE

0

(f)

�

= I

(a)

(�(gE

0

(f)); TE

0

(f

r

))

=: I

(a)

(g

r

(f); TE

0

(f

r

)) : (6.8)

Remark: Analogously to (6.3) we obtain after some calculation the recursion relation

T�(gE

1

(f)) = I

(a)

�

g;

^

TE

1

(f)

�

� I

(a)

(g; TE

1

(f

r

))� I

(a)

(�(gE

1

(f)); TE

1

(f

r

)) :

Proof: We know from Theorem (6.1.1) that

^

TE

0

(h) = TE

0

(�E

1

(h)): (6.9)
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Let a be the degree of the insertion g, � a parameter and h = f + g� such that the

vertex g� is treated in the subtraction procedure of the T -products as a vertex of

mass dimension a. Then we can interchange differentiation and integration in the

following calculation:

I

(a)

�

g;

^

T

�

(E

0

(f)) = i

�

��

^

TE

0

(h)

�

�

�

�=0

(6:9)

= i

�

��

T (E

0

(�E

1

(f + g�))j

�=0

)

= I

(a)

(g�(E

0

(f)); T ) (E

0

(�E

1

(f)))� (6.10)

The following properties of insertions are interesting:

� Interacting fields have up to a factor S�1 the form of an insertion:

Z

d

4

xA

intL

(x) =

Æ

Æh(x)

S

T

(L)

�1

S

T

(L+ hA)j

h=0

= S

T

(L)

�1

I (A; S

T

(L)) : (6.11)

� Insertions into the S-matrix of monomials f
j

occuring in the interaction act as

counting operators of vertices of the kind f

j

. The proof is analogous to the one

given in [Low]: The form of the S-matrix of a theory with interaction vertices

f

1

; : : :f

n

of mass dimensions a
1

; : : :a

n

,

S

T

= TE

0

�

f

(a

1

)

1

+ : : :+ f

(a

n

)

n

�

=

1

X



i

=0

(�i)

P



i



1

! : : : 

n

!

T



1

+:::+

n

�

�

f

(a

1

)

1

�




1

: : :

�

f

(a

n

)

n

�




n

�

; (6.12)

implies that the contribution of a diagram  with 
i

vertices of the kind f
i

to the

S-matrix has the form

S

(

1

;::: ;

n

)

=

(�i)

P



i



1

! : : : 

n

!

T



1

+:::+

n

�

�

f

(a

1

)

1

�




1

: : :

�

f

(a

n

)

n

�




n

�

: (6.13)

An insertion of a vertex f
j

of degree a
j

into the S-matrix yields

I

(a

j

)

(f

j

; S

T

)

def:

= I

(a

j

)

(f

j

; T )

�

E

0

�

f

(a

1

)

1

+ : : :+ f

(a

n

)

n

��

= T

 

1

X



i

=0



j

(�i)

P



i



1

! : : : 

n

!

�

f

(a

1

)

1

�




1

: : :

�

f

(a

n

)

n

�




n

!

=

1

X



i

=0



j

S

(

1

;::: ;

n

)

: (6.14)
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� Zimmermann Identities

The Zimmermann identities [Zim] are relations of insertions of different de-

grees. Comparing the two insertions

I

(a)

(g; T )

�

N

j2J

f

j

�

= T

�

N

j2J

f

j


 g

�

;

I

(b)

(g; T )

�

N

j2J

f

j

�

= T

�

�

N

j2J

f

j


 g

�

(6.15)

we obtain the operator-valued distribution � mediating between the two T -

products. Using the properties

�(f

i

) = f

i

;

�(g) = g;

�

 

O

i2J

f

i

!

= 0 for jJ j > 1 (6.16)

we obtain with (3.6) the Zimmermann identities

T

�

 

g 


O

i2J

f

i

!

= T

 

g 


O

i2J

f

i

!

+

X

O

k

�J

O

k

6=;

T

0

�

O

l62O

k

f

l


�

0

�

O

l2O

k

f

l


 g

1

A

1

A (6.17)

In case of insertions into the S-matrix this formula simplifies to

I

(b)

(g; T ) (E

0

(f))

(6:8)

= I

(a)

(�(gE

0

(f)); T )(E

0

(f))

= I

(a)

(g; T ) (E

0

(f)) + I

(a)

(�(gE

1

(f)); T ) (E

0

(f)) :

(6.18)

� The Action Principle

The action principle describes the effects of a change of parameters of a the-

ory [Sib]. Lowenstein [Low] has formulated it in terms of insertions into the

S-matrix, and we follow his derivation. In the adiabatic limit it can be trans-

formed with the Gell-Mann-Low formula into the usual formulation in Green’s

functions.

According to the main theorem (6.1) a change of the renormalization T can

be absorbed by finite counterterms shifting the quantities in the Lagrangian.

Therefore we can assume without loss of generality that the T -product is fixed.

A change of a parameter p ! p + Æp can cause changes in the free Lagrangian

L

0

! L

0

+ ÆL

0

and in the interaction part of the Lagrangian:f ! f + Æf . The
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action principle states that a change of the S-matrix caused by a variation of a

parameter p can be expressed by an insertion into the S-matrix. We only regard

the case where the interaction part f depends on the parameter p. In this case

the T -product is independent of p and we obtain by a trivial differentiation the

first part of the action principle:

�

�p

T (E

0

(f)) = I

(4)

�

�f

�p

; TE

0

(f)

�

: (6.19)
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Chapter 7

Summary and Outlook

We have derived the structure of finite renormalizations in the Epstein-Glaser for-

malism. The form of the S-matrix after a finite renormalization and the Zimmer-

mann identities followed from this result. Furthermore we were able to derive the

Hopf algebra structure in the combinatorics which was first discovered by Kreimer

[Kre]. In �4 theory we have derived the Dyson-Schwinger equations as a consequence

of N4.

Furthermore we have performed the renormalization of the S-matrix in �

4-theory up

to third order. The result depends on the test-function w used in the renormaliza-

tion, and finite counterterms can be read off. Comparing this procedure with other

renormalizations in momentum space, we can say that Epstein-Glaser renormaliza-

tion is better suited for the treatment of diagrams with few vertices and many loops,

whereas momentum space renormalization has advantages in the renormalization of

diagrams with many vertices and few loops.

Finally we defined insertions into T -products. With an extension of the normalization

condition N4 it was possible to show that our insertions have the same properties as

the insertions used by Lowenstein to derive the action principle. With this an analo-

gous derivation of the action principle in the Epstein-Glaser formalism independent

of the adiabatic limit was possible.

There are still many open questions: the action principle for changes of fields has

to be derived and a complete translation of the derivation of the Callan Symanzik

equations as in [Low] has to be worked out. One has to check further if there appear

problems in the translation of these methods on curved space times.
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Appendix A

Results of the Third Order

Calculations

The contributions of the diagrams 1 and 7 vanish in the adiabatic limit.

Diagrams 2, 3 and 4 are superficially logarithmically divergent, they have four exter-

nal legs and contribute to the renormalization of the coupling constant. Here we list

only the results, weightened with N :

Diagram 2:

S

(2)

3

(g) =

i�

3

36

Z

d

4

u

Z

d

4

v

Z

d

4

x

3

(i�

F

(u))

3

i�

F

(v)

n

: �

3

(x

3

)�(u+ v + x

3

) : g(u+ v + x

3

)g(v + x

3

)g(x

3

)

� ~w(u) ~w(v) ~w(u+ v) : �

4

(x

3

) : g

3

(x

3

)

�w(u) : �

3

(x

3

)�(v + x

3

) : g

2

(v + x

3

)g(x

3

)

+w(u) ~w

2

(v) : �

4

(x

3

) : g

3

(x

3

)

�

w(u)

8

u

2

: �

3

(x

3

)2�(v + x

3

) : g

2

(v + x

3

)g(x

3

)

+

w(u)

8

u

2

~w(v) (2 ~w(v)) : �

4

(x

3

) : g

3

(x

3

)

o

: (A.1)
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Diagram 3:

S

(3)

3

(g) =

i�

3

32

Z

d

4

u

Z

d

4

v

Z

d

4

x

3

(i�

F

(u))

2

(i�

F

(v))

2

n

: �

2

(v + u+ x

3

)�

2

(x

3

) : g(v+ u+ x

3

)g(v + x

3

)g(x

3

)

� ~w(u) ~w(v) ~w(u+ v) : �

4

(x

3

) : g

3

(x

3

)

�w(u) : �

2

(v + x

3

)�

2

(x

3

) : g

2

(v + x

3

)g(x

3
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+w(u) ~w
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3
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3
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3

)

+w(v) ~w
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4
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3
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3

)
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: (A.2)

Diagram 4:

S

(4)

3

(g) =

i�

3
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: �
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3
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3
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3

)g(x
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: �
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)
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2
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4
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3

) : g

3
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3

)

i

�

: (A.3)

We see that ~w indeed appears only in combination with the Wick monomial : �4(x
3

) :.
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Diagram 5 and 6 have two external lines and are therefore superficially quadratically

divergent. They yield contributions to the mass and field strength renormalization:

Diagram 5:

S

(5)

3

(g) =

i�

3
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: �
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: (A.4)

All the other diagrams are superficially convergent, but some of them contain subdi-

vergences. We obtain

Diagram 8:
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(A.5)
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Diagram 9:
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: �
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Diagram 11:
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The last three diagrams do not depend on ~w and yield no contribution to ~

�

3

.
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