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CHAPTER 1

Quantum systems with many degrees of freedom

1. Superposition principle and superselection sectors

In the standard formulation of quantum physics states are described
by vectors Φ of some Hilbert space H. A Hilbert space is a complex
vector space with a positive definite scalar product

H× H → C
Φ, Ψ 7→

(
Φ, Ψ

)
which is antilinear in the left and linear in the right factor (physicist’s
convention) and in terms of which a norm

‖Φ‖ =
(
Φ, Φ

) 1
2

on H can be introduced. In addition, H is assumed to be complete with
respect to this norm, i.e. all Cauchy sequences in H converge.

Observables correspond to selfadjoint operators A on H, i.e. A :
H → H is a linear continuous map which fulfils(

Φ, AΨ
)

=
(
AΦ, Ψ

)
for all Φ, Ψ ∈ H .

Every continuous linear map on H is bounded on the unit sphere

H1 = {Φ ∈ H, ‖Φ‖ = 1}
Its supremum on H1 defines a norm on the algebra of linear continuous
operators on H.

In applications often unbounded (and hence discontinuous) linear
operators occur. They are usually defined only on some dense subspace
of the Hilbert space (their domain of definition). To include them into
the set of observables leads to some mathematical subtleties which we
want to avoid. We therefore restrict ourselves, whenever possible, to
bounded operators.

The physical interpretation of quantum mechanics relies on an as-
sociation of probability measures µΦ,A1,...,An to all nonzero vectors Φ
and pairwise commuting selfadjoint operators Ai, i = 1, . . . , n. The
probability measure is uniquely determined by its moments∫

dµΦ,A1,...,Anp(a1, . . . , an) =
(
Φ, p(A1, . . . , An)Φ

)
‖Φ‖−2

for all polynomials p in n variables. For a region G ⊂ Rn the probability
that the measurement of (A1, . . . , An) yields some point (a1, . . . , an) ∈
G is then given by µΦ,A1,...,An(G).
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6 1. QUANTUM SYSTEMS WITH MANY DEGREES OF FREEDOM

The probability distributions associated to a vector Φ depend only
on the ray {λΦ, λ ∈ C}. But in a linear superposition

Ψ = αΦ1 + βΦ2

the probabilities described by Ψ depend on the choice of the vectors
Φ1 and Φ2 in their respective rays. The possibility of superposition is a
crucial property of quantum theory and is responsible for interference
effects.

Due to the possibility of interference quantum mechanical states
are quite different from states in classical physics, where a state can be
labeled by a point of phase space, or, in case of incomplete knowledge,
by a probability distribution in phase space. In principle, quantum
theory applies also to macroscopical systems and leads there to conclu-
sions which are in sharp contrast to classical physics (and experience
from daily life) as may be exemplified by the example of Schrödinger’s
cat. Even more peculiar are the restrictions on the notion of reality
which follow from the violation of Bell’s inequalities.

Though quantum mechanical states cannot always be superimposed.
Of course, the vectors in Hilbert space can be linearly combined, but
it can happen that the relative phase between the vectors cannot be
observed. This phenomenon was first observed by Wick, Wightman
and Wigner. They considered the superposition of a state of a particle
with spin 1

2
with that of a spin 0 particle,

Ψ = αΦ 1
2

+ βΦ0 .

A rotation by 2π changes the state vector of the particle with spin 1
2

by a factor of −1 and leaves the state vector of the spin 0 particle
unchanged. Thus Ψ is transformed to

Ψ′ = −αΦ 1
2

+ βΦ0 .

But a rotation by 2π has no observable effect, hence for all observables
A we find the same expectation values as before. This implies that the
matrix elements of any observable A between a spin 1

2
state and a spin

0 state must vanish. Hence the state corresponding to Ψ is equivalent
to the density matrix

% = |α|2|Φ 1
2
〉〈Φ 1

2
|+ |β|2|Φ0〉〈Φ0| .

The nonexistence of coherent superpositions leads to a decomposition of
the state space of quantum physics into so-called superselection sectors.
The Hilbert space H can be decomposed into a direct sum of mutually
orthogonal subspaces

H =
⊕

i

Hi .

Every vector Φ ∈ H has a unique decomposition Φ =
∑

i Φi with
Φi ∈ Hi. The phases of the vectors Φi have no physical meaning. The
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observables are operators which leave the subspaces Hi invariant and
may be written as diagonal block matrices

A =

 A1 0 . . . 0
0 A2 . . . 0
... 0

...
...


where Ai is the restriction of A to Hi. Only states within the same
superselection sector can be superimposed.

2. Algebraic formulation of quantum theory

The algebra of observables A consists in the presence of superselec-
tion sectors of elements of the form A =

⊕
Ai with operators Ai on Hi

and the norm ‖A‖ = supi‖Ai‖ < ∞. This algebra has the nontrivial
center Z = {A ∈ A, [A, B] = 0∀B ∈ A} =

⊕
i λi1Hi

. The subspaces Hi

are the joint eigenspaces of the elements of the center.
An easy example is the algebra generated by the components of the

angular momentum operator. The center of this algebra is generated by
the absolute square of the angular momentum. The sectors then consist
of states with a prescribed angular momentum quantum number.

In the following we will assume the point of view that a physical sys-
tem may be characterized by the set of all its observables. In quantum
theory this set has the structure of an associative involutive complex
algebra (“q-numbers”).

In the Born-Heisenberg-Jordan formulation of quantum mechan-
ics, for example, the algebra of observables is the algebra with unity
which is generated by position q and momentum p with the canonical
commutation relation

pq − qp = −i

and with the involution

p∗ = p , q∗ = q .

Quantum systems with finite dimensional state spaces, which occur
in particular in quantum information theory, have as their algebra of
observables the algebra of n × n-Matrizen with complex entries and
with involution

A∗
ik = Aki .

In the Hilbert space formulation of quantum mechanics the algebra
of observables is the set of bounded linear operators on some Hilbert
space H. Here a linear operator A is called bounded, if its norm

‖A‖ = sup
Φ∈H,‖Φ‖=1

‖AΦ‖

is finite. A∗ is the adjoint operator (often denoted A†). By definition
it is that operator which satisfies

(Φ, A∗Ψ) = (AΦ, Ψ) , Φ, Ψ ∈ H
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where (·, ·) denotes the scalar product of Hilbert space.
Starting from the algebra as the fundamental object of the theory,

we need a characterization of states which is independent of a possible
realization of the observables as operators on a Hilbert space.

Conceptually, a state is a prescription for the preparation of a sys-
tem. This concept entails in particular that experiments can be repro-
duced and is therefore equivalent to the ensemble interpretation where
the statements of the theory apply to the ensemble of equally prepared
systems.

In quantum physics, a state assigns to an observable not a single
value but, in general, a probability distribution of measured values. It
is convenient to characterize the probability distributions in terms of
their moments. But since the n-th moment is the expectation value
of the n-th power, it is sufficient to know the expectation values of
all elements of the algebra of observables. Therefore, in the algebraic
formulation of quantum physics, one identifies states with expectation
value functionals. By definition these are all linear functionals ω on
the algebra of obserables which are normalized (ω(1) = 1) and positive

(ω(A∗A) ≥ 0). Under suitable conditions (e.g. sup|ω(An)| 1n < ∞),
such a functional ω induces for a selfadjoint element A of the algebra
a uniquely determined probability measure µω,A with the property∫

andµω,A(a) = ω(An) , n ∈ N0 .

Also the spectrum of an element A of the algebra can be characterized
in purely algebraic terms. It is defined as the set of all complex numbers
λ ∈ C for which A − λ possesses no inverse in A. Let e.g. A2 = 1.
Then

(A− λ)(A− µ) = A2 − (λ + µ)A + λµ = (1 + λµ)− (λ + µ)A ,

hence for λ2 6= 1
(1− λ2)−1(A + λ)

is an inverse of A− λ. The spectrum σ(A) of A therefore is contained
in the set {±1}.

The elements of the spectrum can be interpreted as the possible
measured values of the observable. In the example above, for A selfad-
joint, the probability measure induced by a state ω is concentrated at
the points ±1, with the probabilities

p(±1) =
1

2
(1± ω(A)) .

More generally, if the spectrum of A is finite and consists of the real
numbers a1, . . . , an, then the probability p(ak) for the the measurement
of ak is

p(ak) =
ω(

∏
i6=k(A− ai))∏

i6=k(ak − ai)
.
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A nice property of the algebraic formulation is that it applies also to
classical physics. There we choose as our algebra the algebra of con-
tinuous function on the (1-point compactification) of the phase space.
Let f be such a function and let λ ∈ C be not in the range of f . Then
the function

fλ(x) = (f(x)− λ)−1

is continuous, hence an element of the algebra which is the inverse of
f − λ. If, on the other hand, λ = f(x0) for some point xO in phase
space then ((f − λ)g)(x0) = 0 for all functions g, hence f − λ has no
inverse. Thus the spectrum of f coincides with its range.

States are the normalized Radon measures which correspond to
probability measures via

µ(f) =

∫
fdµ .

In case the algebra is an algebra of Hilbert space operators, every
vector Φ of the Hilbert space with ‖Φ‖ = 1 induces a state (in the
sense of the algebraic formulation) by

ωΦ(A) =
(
Φ, AΦ

)
.

States can be mixed by applying the corresponding preparation pre-
scriptions with certain statistical weights. Let ωi be states and λi ∈ R,
λi > 0,

∑
λi = 1. Then the convex combination

ω =
∑

λiωi

is again a state.
For states ωi which are induced by Hilbert space vectors Φi, the

state ω can be represented by the density matrix

ρ =
∑

λi|Φi〉〈Φi| .

The expectation value is given by

ω(A) = Tr ρA .

Here the trace of a positive operator A is defined by the formula

Tr A =
∑

(Φi, AΦi)

with an arbitrary orthonormal basis (Φi)i. The trace is invariant under
unitary transformations,

Tr UAU∗ = Tr A ,

but can assume also the value ∞. Density matrices are by definition
posititve operators with unit trace. Operators which can be written
as finite linear combinations of positive operators with finite trace are
called trace class operators. The trace can be extended to a linear
functional on all trace class operators. Furthermore, the set of trace
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class operators is a two sided ideal I in the algebra of bounded operators
on a Hilbert space,

T trace class , A bounded =⇒ AT and TA trace class .

Therefore every density matrix induces a state on the algebra of bounded
Hilbert space operators.

3. Operator algebras

For the general discussion the most appropriate concept is that of
C*-algebras. C*-algebras possess (as the algebra of bounded Hilbert
space operators) a norm with the property

‖A∗A‖ = ‖A‖2

(a so-called C*-norm). Furthermore they are (as normed spaces) com-
plete. Actually, one can prove that every C*-algebra is isomorphic to a
norm closed algebra of bounded operators on a (not necessarily separa-
ble) Hilbert space. But, in general, the representation of a C*-Algebra
by Hilbert space operators is highly nonunique. The freedom in the
choice of the representation plays an important rôle in the theory of
superselection sectors, in the theory in background gravitational fields,
in the theory of phase transitions and, more recently, in the theory of
nonequlibrium stationary states. It is the fundamental feature of the
algebraic approach that those aspects which can be treated on the level
of the algebra of observables, can be separated from aspects which are
due to the Hilbert space representation.

An example for a concept which is meaningful already on the level
of the algebra is the spectrum of an element. The spectrum of an
element A of a C*-algebra lies inside the circle with radius ‖A‖ around
the origin and is real for selfadjoint elements.

Among the C*-algebras, an important subclass are the von Neu-
mann algebras (also called W*-algebras). They can be characterized
by the property that every monotoneously increasing bounded net of
positive elements has a supremum. Here the order relation is defined
by

A ≥ B ⇐⇒ ∃C such that A−B = C∗C .

Von Neumann algebras are isomorphic to algebras of Hilbert space
operators which are closed in the weak operator topology.

4. GNS construction

The algebraic formulation of quantum theory is closely related to
the Hilbert space formulation. To describe this connection we need the
concept of a representation.

Definition 4.1. A representation of an involutive unital algebra
A is a unital *-homomorphism π into the algebra of linear operators
on a dense subspace D of a Hilbert space.
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Here a homomorphism is called a *-homomorphism if

(Φ, π(A)Ψ) = (π(A∗)Φ, Ψ) ∀ Φ, Ψ ∈ D .

We already saw that every unit vector Φ ∈ D induces a state of the
algebra by

ω(A) =
(
Φ, π(A)Φ

)
.

Surprisingly, also the converse holds. This is the famous Gelfand-
Naimark-Segal (GNS) construction:

Theorem 4.2. Let ω be a state on the involutive unital algebra A.
Then there exists a representation π of the algebra by linear operators
on a dense subspace D of some Hilbert space H and a unit vector
Ω ∈ D, such that

ω(A) =
(
Ω, π(A)Ω

)
and D = {π(A)Ω, A ∈ A}.

The proof of this important theorem is simple. First one introduces
a scalar product on the algebra in terms of the state ω by(

A, B
)

:= ω(A∗B) .

Linearity for the right and antilinearity for the left factor are obvious.
Hermiticity (

A∗, B
)

=
(
B∗, A

)
follows from positivity of ω by using the representation of A∗B and B∗A
as linear combination of positive elements, implied by the equations

2(A∗B + B∗A) = (A + B)∗(A + B)− (A−B)∗(A−B) ,

2(A∗B −B∗A) = −i(A + iB)∗(A + iB) + i(A− iB)∗(A− iB) .

Furthermore, positivity of ω immediately implies that the scalar prod-
uct is positive semidefinite(

A, A
)

= ω(A∗A) ≥ 0 .

We now study the set

N = {A ∈ A, ω(A∗A) = 0} .

It is crucial that N is a left ideal of A. Namely, because of the Cauchy-
Schwarz inequality N is a subspace of A. Moreover, for A ∈ N and
B ∈ A we have, again because of the Cauchy-Schwarz inequality,

ω((BA)∗BA) = ω(A∗B∗BA) =
(
B∗BA, A

)
≤

√(
B∗BA, B∗BA

)√(
A, A

)
= 0 ,

hence BA ∈ N. We now define D as the quotient space A/N. Per
constructionem the scalar product is positive definite on D, thus we
can complete D and obtain a Hilbert space H. The representation π is
induced by left multiplication of the algebra,

π(A)(B + N) := AB + N .
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π is well defined, since N is a left ideal of A. Finally, we set

Ω = 1 + N .

It can easily be verified that the conditions of the theorem are satisfied.
It is also straightforward to see that the construction is unique up to
unitary equivalence. Namely, let (π′, D′, H′, Ω′) be another quadruple
satisfying the conditions of the theorem. Then we define an operator
U : D → D′ by

Uπ(A)Ω = π′(A)Ω′ .

U is well defined, since π(A)Ω = 0 if and only if ω(A∗A) = 0; but
then we have also π′(A)Ω′ = 0. Furthermore U preserves the scalar
product and is invertible and has therefore a unique extension to a
unitary operator from H to H′. Finally, the representations π and π′

are unitarily equivalent,

π′(A) = Uπ(A)U∗ , A ∈ A .



CHAPTER 2

Principles of Local Quantum Physics

1. Subsystems

A subsystem of a physical system can be identified with a subalge-
bra of the algebra of observables of the full system such that the unit
elements of the two algebras coincide. Two subsystems A1 and A2 of a
given system A may be called independent if the subalgebra of the full
system generated by them is isomorphic to the tensor product algebra
A1 ⊗ A2.

While on the level of algebras of observables a well defined decompo-
sition of a system into subsystems exists in terms of the tensor product,
the situation is more involved for states. We first observe that every
state of a system can be restricted to a subsystem just by restricting
the expectation values to the observables of the subsystem. Conversely,
every state on a sub-C*-algebra of a C*-algebra can be extended to a
state on the full algebra. This is a consequence of the Hahn-Banach
Theorem, but the extension is, in general, highly nonunique. In case
the system consists of two independent subsystems, we may asociate
to every pair ω1 and ω2 of states of the respective subsystems a state
ω1 ⊗ ω2 of the full system which is defined by

ω1 ⊗ ω2(A1 ⊗ A2) = ω1(A1)ω2(A2) .

Convex combination of these so-called product states are called sepa-
rable. It is a crucial property of noncommutative algebras that there
are also nonseparable states. These so-called entangled states are re-
sponsible for the violation of Bell’s inequalities and they are important
for quantum information.

2. The principle of locality

In relativistic field theory appropriate subsystems are the algebras
A(O) of all observables which can be measured within a given spacetime
region O. This association of regions with algebras is then to satisfy
the condition of Isotony,

O1 ⊂ O2 =⇒ A(O1) ⊂ A(O2) .

Often, the local algebras are defined independently of each other, then
the condition of isotony is encoded in a family of unit preserving injec-
tive homomorphisms iO1O2 : A(O2) → A(O1) for each pair of regions

13



14 2. PRINCIPLES OF LOCAL QUANTUM PHYSICS

O2 ⊂ O1 such that

iO1O2 ◦ iO2O3 = iO1O3 if O3 ⊂ O2 ⊂ O1 .

The regions then play merely the role of elements of a partially ordered
index set K.

One may now associate an algebra A(K) to the whole system. Ab-
stractly, this is done in the following way: One considers the free alge-
bra generated by all pairs (A,O) with A ∈ A(O) and divides out the
relations

(i) The map iO : A(O) → A(K), A 7→ (A,O) is a unit preserving
*-homomorphism.

(ii) iO1 ◦ iO1O2 = iO2 for O2 ⊂ O1

The standard situation is that the index set is directed, i.e. for each
pair O1,O2 ∈ K there exists an O3 ∈ K such that O1,O2 ⊂ O3. This is
true e.g. if K is the set of relatively compact open subsets of Minkowski
space. For a directed index set K, the algebra A(K) is just the union
of local algebras,

A(K) =
⋃
O∈K

iO(A(O)) .

This is called the inductive limit of the net of local algebras.
If the local algebras are C*-algebras the inductive limit has a unique

C*-norm inherited from the local algebras. One may then complete
A(K) and obtains the so called C*-inductive limit A(K) of the net. It
is gratifying that no new relations can occur in this process. Namely,
let φ be a homomorphism of A(K) into some C*-algebra B, and let

A ∈ A(K) with φ(A) = 0. There is a sequence On ∈ K and a sequence
An ∈ iOn(A(On)) such that ‖An − A‖ → 0 and ‖φ(An)‖ → 0. But
‖φ(An‖ = inf{‖An − Bn‖, φ(Bn) = 0, Bn ∈ iOn(A(On))}. Thus we
can find a sequence Bn ∈ iOn(A(On)) with Bn → A and φ(Bn) = 0.
In particular, if the local algebras are simple (i.e. have no nontrivial

ideal), the same holds true for A(K).
The situation changes if the index set is no longer directed. A simple

example is provided by chiral conformal field theories in 2 dimensions.
The wave equation in 2 dimensions may be separated in light cone

coordinates u = t − x, v = t + x and has as a general solution a sum
of a function of u and a function of v. Massless fields in 2 dimensional
Minkowski space which depend only on one of the light cone coordi-
nates are called chiral. They can be considered as fields on the real
axis. Moreover, because of conformal invariance, the real line may be
embedded into the circle S1. A natural index set K then is the set of
open nondense intervals I ⊂ S1. K is not directed, since the union of
two such intervals may cover the whole circle.

Let us look at the example of a chiral Majorana field. For each inter-
val I ∈ K we form the CAR-algebra over the Hilbert space L2(I) with
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complex conjugation as involution Γ. The algebra A(I) of observables
associated to I is then defined as the even subalgebra of CAR(L2(I), Γ).
For I ⊂ J , I, J ∈ K, L2(I) has a natural embedding into L2(J). This
induces an embedding

iIJ : A(I) → A(J) .

These embeddings obviously satisfy the compatibility relation

iKJ ◦ iJI = iKI , I ⊂ J ⊂ K , I, J, K ∈ K .

We now investigate the structure of the universal algebra A(K).
The local algebras A(I) are generated by bilinear expressions in the

Majorana fields,

bI(f, g) = 2χ(f)χ(g) , f, g ∈ L2(I), Γf = f, Γg = g .

The canonical anticommutation relations for the Majorana field χ,

(i) the map f → χ(f) is C-linear
(ii) the anticommutator of smeared Majorana fields is given by

{χ(f), χ(g)} = (Γf, g) ,

(iii) the involution is induced by

χ(f)∗ = χ(Γf) ,

lead to the following relations for the bilinears bI(f, g), f, g ∈ L2(I, R):

(i) the map f, g → bI(f, g) is R-bilinear,
(ii) we have

bI(f, f) = ‖f‖2 ,

(iii) for f, g, h ∈ L2(I, R) we have

bI(f, g)bI(g, h) = ‖g‖2bI(f, h) ,

(iv) the involution is induced by

bI(f, g)∗ = bI(g, f) .

These relations already determine A(I). The universal algebra A(K) is
the algebra generated by the symbols bI(f, g) with the relations above
and the additional relation

bI(f, g) = bJ(f, g) , I ⊂ J , I, J ∈ K .

Let now I1, I2 ∈ K be two intervals with disjoint closures. Then there
are 2 intervals J± ∈ K with the properties

I1 ∪ I2 ⊂ J± , J+ ∪ J− = S1 .

Let f ∈ L2(I1, R), g ∈ L2(I2, R) with ‖f‖ = ‖g‖ = 1 and consider the
element

Y = bJ+(f, g)bJ−(g, f) .

Proposition 2.1. (i) Y does neither depend on the choice
of f and g nor on the choice of the intervals I1,2, J± within
the above restrictions.
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(ii) Y 2 = 1.
(iii) Y ∈ Z(A(K)).

Proof. (i) Let g′ ∈ L2(I2, R) with ‖g′‖ = 1. Then

bJ+(f, g′) = bJ+(f, g)bI2(g, g′)

and

bJ−(g′, f) = bI2(g
′, g)bJ−(g, f) .

Since

bI2(g, g′)bI2(g
′, g) = bI2(g, g) = 1

we find

bJ+(f, g′)bJ−(g′, g) = Y ,

hence Y is independent of the choice of g. Using

bJ+(f, g)+bJ−(g, f) =
1

2
bJ+(f+g, f+g)−1

2
bJ+(f−g, f−g) = (f, g)+(g.f) = 0

we conclude that the rôle of f and g may be interchanged.
We may now deform the intervals continuously by choosing f
and g appropriately. The interchange of f and g amounts to
an exchange of J+ with J−. Together this proves the claimed
independence of Y .

(ii) In particular we have

Y = bJ−(f, g)bJ+(g, f) ,

hence

Y 2 = bJ+(f, g)bJ−(g, f)bJ−(f, g)bJ+(g, f) = 1 .

(iii) Let I ∈ K arbitrary, and choose I1, I2 such that I1 ∩ I =
∅ = I2 ∩ I. We may choose J± such that I ⊂ J±. Then
from the canonical anticommutation relations we conclude
that bJ±(f, g), f ∈ L2(I1, R), g ∈ L2(I2, R) commutes with
all elements of A(I). Since A(K) is generated by the local
algebras A(I), Y is in the center of the algebra.

�

We will later see, that the two eigenvalues of Y correspond to the
Ramond (+1) and the Neveu Schwartz (-1) sector of the theory. These
two possibilities correspond to the two real line bundles over S1, the
trivial one and the Möbius bundle. They are realized by Majorana
Fermions with periodic and antiperiodic boundary conditions, respec-
tively.
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3. Haag-Kastler axioms

We start from a system of algebras A(O), labeled by a family K of
regions of Minkowski space and satisfying the condition of isotony. In
order to represent the algebras of observables of a relativistic quantum
field theory, the system is supposed to fulfill a number of axioms which
go back to Haag and Kastler.

Locality, in the sense of independence of algebras associated to
spacelike separated regions, mainly replaced by the a priori weaker
condition of spacelike commutativity,

O1 spacelike separated from O2 =⇒ [A, B] = 0∀A ∈ A(O1), B ∈ A(O2) ,

Covariance, as the existence of a family of isomorphisms αOL : A(O) →
A(LO) with regions O and Poincaré transformations L such that for
O1 ⊂ O2 the restriction of αO2

L to A(O1) coincides with αO1
L and such

that

αLO
L′ ◦ αOL = αOL′L ,

and the Time slice axiom, which says that the algebra of a neighbour-
hood of a Cauchy surface of a given region coincides with the algebra
of the full region, thus expressing the consequence of the existence of
a hyperbolic equation of motion.

In addition to these axioms one wants to add a stability condition.
This condition may be formulated as the existence of a translation co-
variant representation, i.e. a representation π of A(K) on some Hilbert
space H together with a strongly continuous unitary representation U
of the translation group which implements the translation automor-
phisms,

U(a)π(A)U(a)−1 = π(αa(A) , a ∈ R4, A ∈ A(K) ,

such that the joint spectrum of the generators of U is contained in the
closed forward lightcone,

σ(P ) ⊂ V+ , eiaP = U(a) , aP = aµPµ .

These axioms are formulated for a theory on Minkowski space. The
condition on locality as well as the time slice axiom can easily be gener-
alized to more general spacetimes. A meaningful generalization for the
covariance condition has only recently been found, and the condition of
stability was replaced by the so-called microlocal spectrum condition.

Surprisingly, a system of algebras satisfying the Haag-Kastler ax-
ioms already fixes the theory; in particular it suffices for a determina-
tion of scattering cross sections. The argument which will later be made
more prezise may be sketched as follows. Let ω be a vacuum state, i.e.
a state which is invariant under Poincaré transformations, and whose
GNS representation satisfies the spectrum condition. A detector may
then be identified with a positive observable A with vanishing vacuum
expectation value. In addition, A should be ”almost local” in the sense
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that it possesses good approximations by local observables (to be spec-
ified). Actually, the spectrum condition forbids a vanishing vacuum
expectation value for positive local observables by the Reeh-Schlieder
theorem.

Let now ω be some state. The asymptotic particle content may be
read of from the coincidence arrangement

ω(αt,tv1(A1) · · ·αt,vn(An))

for t → ±∞ where the velocities vi are pairwise different. Typically,
these expectation values factorize for large |t|, and the expectation
values of single operators αt,tv(A) behave as the position densities of
freely moving single particles moving with velocity v, hence decay with
a power t−3. Thus multiplying the expectation values of coincidence
arrangements by |t|3n we get a probability distribution of an arrange-
ment of n particles with prescribed velocities. Comparing these results
for t →∞ with those for t → −∞ we can compute the scattering cross
sections.

4. Positive energy representations; Reeh-Schlieder Theorem

Among the huge number of representations of the algebra of ob-
servables there is an important subclass, namely the so-called positive-
energy representations.

Definition 2.1. Let A be a C*-algebra and (αt) a 1-parameter
group of automorphisms. A positive energy representation (π, U) of
the pair (A, α) is a representation π of A in some Hilbert space Hπ and
a strongly continuous unitary representation U of R (as an additive
group) in Hπ such that

(i) U implements α, i.e.

U(t)π(A)U(t)−1 = π(αt(A)) .

(ii) The generator of U ,

K :=
1

i

d

dt
|t=0U(t)

is a positive (in general unbounded) selfadjoint operator.

We would like to identify the operator K with the observable “en-
ergy”. But a priori it is not clear whether K can be approximated
by observables in the algebra A. Fortunately, we have the following
theorem:

Theorem 2.1. Let (π, U) be a positive energy representation of
(A, α). Then there exists a strongly continuous 1-parameter group of
unitaries V (t) ∈ π(A)′′, such that (π, V ) is a positive energy represen-
tation.
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This theorem justifies the name positive energy representation, since
the spectral projections of the generator H of V are contained in the
weak closure of the algebra of observables. H is not unique; one may
add to H an arbitrary positive operator from the center of π(A)′′.





CHAPTER 3

Particle aspects of local quantum physics

1. The concept of a particle

One of the main motivations for quantum field theory is the de-
sire to understand the dynamics of relativistic particles. Contrary to
the nonrelativistic situation where particles are a priori given and can
neither be destroyed nor generated, in relativistic particle physics par-
ticle production and annihilation are generic phenomena. One may
describe this situation in terms of the Fock space where the Hilbert
space of states is the direct sum of all finite number particle spaces,
and where the operators can be composed of annihilation and creation
operators. Actually, for the free field such a representation can be
given, and for the interacting case one may hope to find a similar sit-
uation which can be treated within perturbation theory. The question
however is whether the whole particle structure must be imposed as a
condition on physically relevant field theories or whether field theories
are generically theories of particles.

In the axioms of local quantum physics, no condition on the particle
structure was imposed. In this general framework, one may ask the
following questions:

• What is a particle? Under which conditions does a particle
exist within a given model?

• Provided single particle states exist, do there then also states
exist which can be interpreted as multiparticle states? (Be-
cause of the possibility of annihilation and creation the notion
of a multiparticle state can be only an asymptotic concept for
early or late times.)

• Are all states in positive energy representations interpretable
as multiparticle states?

According to Wigner, the state space of an elementary particle is the
representation space of an irreducible, strongly continuous positive en-
ergy representation of the Poincaré group. Positive energy represen-
tation means that the joint spectrum of the generators of the trans-
lation subgroup is contained in the closure of the forward lightcone.
These representations have been classified by Wigner; besides the triv-
ial representation which may be interpreted as the vacuum one finds
the following types: representations with positive mass m > 0 and,
in the restframe of the particle, an irreducible representation s of the

21
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spin group, s ∈ 1
2
N0, representations with mass zero and an irreducible

representation of the isotropy group of some lightlike vector where the
latter occur in two types: since the isotropy group of a lightlike vector
is the euclidean group, one obtains the so-called helicity representations
where the translations of the euclidean group are trivially represented
and the representation of the rotation subgroup is labeled by the he-
licity h ∈ 1

2
Z, and the representations where the joint spectrum of the

generators of translations is a circle with radius ρ > 0. The latter
representations seem not to occur in nature. This is in agreement with
the fact that no quantum field theory is known which contains such
particle states.

In the following we assume that particle states are eigenstates of
the mass operator. The behaviour under Lorentz transformation does
not play an important rôle in the analysis. We assume in particular
that the mass of the particle is an isolated point in the spectrum of the
mass operator.

Given a positive energy representation of the algebra of observables
with a unique and cyclic vacuum vector Ω and a subspace H1 corre-
sponding to the isolated eigenvalue m > 0 of the mass operator, one
may ask whether there exist local observables which create a single
particle state out from the vacuum,

AΩ ∈ H1, A ∈ A(O) .

This happens in free field theory where the free field itself has this
property. Unfortunately, this is the only case; one can show that par-
ticles which can be created by local observables cannot interact (Jost-
Schroer-Theorem). But according to the Reeh-Schlieder Theorem, ev-
ery state can be arbirarily well approximated by vectors of the form
AΩ with a local A. We now show that there are so-called almost local
observables which indeed can create single particle states out of the
vacuum.

Definition 3.1. An operator A ∈ A is called almost local if there
exists a sequence AR ∈ A(OR), OR = {x ∈ R4, |x0|+ |x| < R} with

lim
R→∞

Rn‖A− AR‖ = 0 ∀n ∈ N0 .

Namely, let A ∈ A(O) with P1AΩ 6= 0, where P1 is the projection
onto the single particle space H1. Choose a function f ∈ D(R4) with
the property

supp f ∩ σ(P ) ⊂ {p ∈ R4, p2 = m2, p0 > 0} .

such that f(P )AΩ 6= 0. Then f(P )AΩ ∈ H1. Using the translation
invariance of Ω we get

f(P )AΩ =

∫
d4xf̂(x)αx(A)Ω
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The operator A(f̂) =
∫

d4xf̂(x)αx(A) is an almost local operator. We
first convince ourselves that the integral is well defined in the weak
operator topology, since the matrix elements of αx(A) are continuous
and bounded functions of x due to the assumed continuity properties
of the translations, and f̂ is an element of the Schwartz space S(R4).
We may then look for a sequence gR ∈ D(OR) such that gR converges

to f̂ in the sense of the topology of S(R4) and such that gR coincides

with f̂ within OR
2
. We estimate

‖A(f̂)− A(gR)‖ ≤ ‖A‖
∫

d4x|f̂(x)− gR(x)|

≤ ‖A‖ 2n

Rn

∫
d4x(|x0|+ |x|)n|f̂(x)− gR(x)|

which proves the assertion. Moreover, the function x 7→ αx(A(f̂)) is
infinitely differentiable in the norm sense, and all derivatives are almost
local.

2. Haag-Ruelle construction of multiparticle states

We start from a positive energy representation with the following
properties: The energy momentum spectrum contains an isolated point
zero (the vacuum) and an isolated mass shell {p ∈ R4, p2 = m2, p0 >
0} with m > 0. Moreover, the vacuum vector Ω is unique (up to
a phase) and cyclic. From the previous section we know that under
these conditions there exist almost local and smooth (with respect to
translations) observables which create single particle vectors from the
vacuum. Let Ψ = AΩ be a single particle vector with compact support
in momentum space. We now exploit the fact that the same particle
state can be generated also at earlier or later times by using the known
time evolution of a solution of the Klein-Gordon equation. Namely, let

f(t,x) = (2π)−3

∫
d3p e−i(ω(p)t−p·x)h(p) ,

with a test function h ∈ D(R3) with h(p) = 1 on the momentum
support of Ψ. Let

Af (t) =

∫
d3x f(t,x)α(t,x)(A) .

Then, since αx(A)Ω = eiPxAΩ because of the translation invariance
of the vacuum, it follows from the functional calculus for selfadjoint
operators that

Af (t)Ψ =

∫
d3x f(t,x)eitP0−P·xΨ = h(P)e−i(ω(P)−P0)tΨ = Ψ .

The localization properties of the almost local operators Af (t) are de-
termined by the corresponding properties of the wave function f . As
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one might expect f is concentrated in the region which can be reached
from the origin by velocities

v ∈ V (f) = {v = grad ω(p) for some p ∈ supp h} .

The argument is based on the principle of stationary phase by which
oszillatory integrals can be approximately evaluated. More precizely,
we have the following theorem:

Theorem 3.1. Let ε > 0 and d(v) = dist(v, V (f)). Then there
are constants c, c′, cn > 0, n ∈ N0 such that

|f(t, tv)| < cn|t|−nd(v)−n , t 6= 0, d(v) > ε∫
d3x |f(t,x)| < c + c′|t|3)

Let now A1, . . . , An be almost local and smooth single particle gen-
erators such that the velocity supports of the single particle states
Ψi = AiΩ are compact and pairwise disjoint. Then we choose as
described above positive frequency solutions fi of the Klein Gordon
equation such that also the velocity supports V (fi) are compact and
pairwise disjoint and such that

Ai,fi
(t)Ω = Ψi , i = 1, . . . , n .

Set Ai(t) = Ai,fi
(t). These operators have the following properties:

Lemma 2.1.

‖Ai(t)‖ ≤ c + c′|t|3

‖[Ai(t), Aj(t)]‖ < cn|t|−n , i 6= j .

We now define the Haag-Ruelle approximants of scattering states
by

Ψ(t) := A1(t) · · ·An(t)Ω .

Theorem 3.2. (i) Ψ(t) converges for t → ∞ and for t →
−∞ .

(ii) The limit depends only on the single particle states Ψi, i =
1, . . . , n.

The limit states are therefore multilinear functionals on the sin-
gle particle space with values in the full Hilbert space. We therefore
introduce the notation

lim
t→±∞

Ψ(t) = (Ψ1 × · · · ×Ψn)out,in .

Theorem 3.3. (i) The scattering states (Ψ1× · · ·×Ψn)out,in

are symmetric under permutations of the single particle states.
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(ii) The scalar product of scattering states is determined by the
scalar product of the occuring single particle states,(

(Ψ1 × · · · ×Ψn)out,in, (Φ1 × · · · × Φm)out,in

)
= δnm

∑
σ∈Pn

n∏
i=1

(
Ψi, Φσ(i)

)
.

We thus obtain two isometric embeddings Wout,in of the bosonic
Fock space built over the single particle space into the Hilbert space
of our theory. Originally, we had to restrict ourselves to the dense
subspace of states with nonoverlapping velocities, but in view of the
fact that the operators Wout,in are continuous we can extend them to
the full Fock space. In particular, we obtain also scattering states for
overlapping velocities. The S-matrix elements are now defined by(

Φ, SΨ
)

=
(
WoutΦ, WinΨ

)
.

Here Φ, Ψ are vectors in Fock space.
In general, one has to expect that the operators Wout,in are not

unitary and that their ranges might be different. In these cases the
S-matrix as defined above is not unitary. A possible reason could be
the existence of particles which are charged, in the sense that the single
particle space is not contained in the cyclic space generated from the
vacuum. One therefore has to extend the analysis to this more general
situation. This leads to the study of superselection sectors.





CHAPTER 4

Theory of superselection sectors

1. Localized sectors and their products

In addition to the vacuum representation π0 of the algebra of ob-
servables there might be other positive energy representations which
describe charged particles. We already saw that single particle states in
the vacuum sector are necessarily bosons because of the spacelike com-
mutativity of observables. Formally, one could obtain fermionic statis-
tics by admitting also spacelike anticommutativity, but while commu-
tativity has a physical meaning as the impossibility of influence over
spacelike distances, the requirement of anticommutativity would be
completely ad hoc.

Let π be a representation of A which has the property that its states
coincide with those of the vacuum representation if one restricts oneself
to the observables localized in the spacelike complement of an arbitrary
double cone O (DHR condition). The idea behind this condition is
that the charge might be localized within O and is thus invisible for
observations in the spacelike complement (“particle behind the moon
argument”). While plausible at the first sight, one should be aware
of the fact that the argument cannot be applied to the electric charge
which can, due to Gauss law, be detected from the electric flux within
the spacelike complement of O. One can, however, in the case of mas-
sive particles with an isolated mass shell, prove that a slightly weaker
condition is satisfied, namely that in the complement of a spacelike
cone the states of the charged representation cannot be distinguished
from those of the vacuum representation. One may imagine that the
reason is that a possible electric flux can be concentrated within the
spacelike cone.

In the following we will use the DHR condition. In case of a lo-
calization in a spacelike cone esssentially the same analysis can be
performed.

The DHR condition says that the representation π becomes quasiequiv-
alent to π0 after restriction to A(O′) for any double coneO. This means
that there are sufficiently many partial intertwiners F ∈ Fππ0 ,

Fππ0 = {F : Hπ0 → Hπ, Fπ0(A) = π(A)F ∀ A ∈ A(O′)}

in the sense that Fππ0Hπ0 is dense in Hπ.

27
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Let Fππ0 =
⋃
O∈KFππ0 and A0 =

⋃
O∈K A(O). Then Fππ0 becomes

a bimodule over A0 by setting

B · F · A := π(B)Fπ0(A) , A, B ∈ A0 .

Let us consider Fπ0π0 . By definition

Fππ0(O) = π0(A(O′))′ .

By locality, π0(A(O)) ⊂ π0(A(O′))′. We require now that the two
algebras are even equal (“Haag duality”). This condition expresses
the maximality of the local algebras in the sense that they cannot be
enlarged without violating locality. It is known that Haag duality holds
in typical cases. An exception are theories where a global symmetry is
spontaneously broken.

Under the condition of Haag duality, one finds the equality Fπ0π0 =
π0(A0). We can use Haag duality to equip Fππ0 with an A0 valued
hermitean product,

〈F, G〉 = π−1
0 (F ∗G)

where F ∗G ∈ Fπ0π0 = π0(A0) and where we assumed that π0 is injec-
tive. The latter assumption is harmless since by the DHR condition π
and π0 have the same kernel.

The representation spaces Hπ are by definition A0 left modules,

A · Φ := π(A)Φ , A ∈ A0, Φ ∈ Hπ .

We may obtain this left module as the tensor product of the bimodule
Fππ0 with the vacuum Hilbert space Hπ0 .


