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1. Introduction

Quantum field theory, in the special form of the so-called Standard Model,
describes elementary particle physics very well and provides a basis from which,
at least in principle, other branches of physics, in particular nuclear and atomic
physics, but also condensed matter physics and chemistry can be derived. The only
visible part of physics which is not included is gravitational physics. The main
reason for the difficulty in incorporating gravity into quantum field theory is the
different role spacetime plays in both theories, quantum field theory and General
Relativity. In quantum field theory, spacetime is a background on which fields live;
actually, the interpretation of field theory in terms of particles heavily relies on an
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analysis of the spacetime structure of scattering events, as most clearly illustrated
by the multiple traces recorded in modern particle detectors. It is crucial, that the
events themselves have to be analyzed by statistical means. General Relativity, on
the other side, considers spacetime as dynamical and strongly influenced by the
distribution of matter. But if matter is governed by the laws of quantum physics,
also geometry had to be quantized, so the interpretation of scattering events would
be difficult.

In addition to the conceptual differences, both theories are rather complex, a
fact which slows down all approaches towards a solution. Moreover, in spite of
the impressive experimental confirmations of both theories, no effect has been
identified which hints towards a possible theory of quantum gravity.

There are courageous attempts to overcome these difficulties as e.g. string theory
and loop quantum gravity. But up to now, it is not known whether any of them
will lead to a valid theory of quantum gravity. A good criterion such a theory
should fulfil would be that it describes in a certain limit quantum field theory on
a generic curved spacetime. Actually, most of the presently observable physics
should be covered by this limit. It is the aim of these lectures to discuss how
quantum field theory can be defined on generic curved spacetime.

Interest on quantum field theory on curved spacetime started essentially in the
1970’s and culminated in Hawking’s prediction of black hole evaporation. What
became gradually clear in these years was that various concepts on which quantum
field theory on Minkowski space is based cannot easily be transferred to generic
curved spacetime.

The first of these concepts one has to give up is the concept of the vacuum. Orig-
inally, the vacuum was understood as empty space where all particles are removed.
But this idea does not take into account the unavoidable presence of fluctuations
in quantum physics, the simplest example being the null point fluctuations of the
harmonic oscillator. As a matter of fact, even in free quantum field theory there
is no state where the quantum fields do not fluctuate, as a consequence of the
canonical commutation relations between the basic fields. Consider e.g. the free
scalar field at time zero and its time derivative. They satisfy the commutation
relation

[ϕ(x), ϕ̇(y)] = i~δ(x− y) .

Now consider the smeared field ϕ(f) :=
∫
dxf(x)ϕ(x). Then we have the uncer-

tainty relation

∆(ϕ(f))∆(ϕ̇(f)) ≥ ~
2
||f ||2

with the squared L2-norm ||f ||2 =
∫
dx|f(x)|2. A similar relation holds for the

product of the uncertainties of the magnetic and the electric field.
These fluctuations are an unavoidable consequence of the laws of quantum

physics. They are also visible in several physical effects, as e.g. the Casimir effect.
They imply that the vacuum, defined as a ground state with respect to the total
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energy, is not a ground state for the energy density in a given point of spacetime.
But on a spacetime without time translation symmetry the total energy cannot be
defined, hence there is no obvious candidate for a vacuum state.

Even in cases where a spacetime has time translation symmetry the ground
state for the total energy might have unwanted properties. This happens e.g. in
Schwarzschild spacetime. Schwarzschild spacetime has the metric

ds2 = (1− 2m

r
)dt2 − (1− 2m

r
)−1dr2 − r2dΩ2

where dΩ2 is the invariant metric on the 2-sphere S2 with total area 4π, and r is
restricted to values > 2m. This metric is invariant under time translations. It has
the form

ds2 = a2dt2 − h
where the spacetime is R × Σ with t a variable on R, h a Riemannian metric
on the 3-manifold Σ and a a positive smooth function on Σ. Spacetimes of this
form are called static. In the case of the Schwarzschild spacetime Σ is given by
(2m,∞)× S2. The Klein-Gordon equation on a spacetime with metric g is

(�g +m2)ϕ = 0

with the d’Alembertian

�g = | det g|−1/2∂µg
µν | det g|1/2∂ν .

On a static spacetime we obtain

g00 = a−2 , gij = −hij , g0j = 0 , | det g| = a2 deth ,

hence the d’Alembertian takes the form

�g = a−2∂2
t − |a2 deth|−1/2∂ih

ij|a2 deth|1/2∂j .

Let ĥ = a−2h be a new Riemannian metric on Σ, and let ∆ĥ be the Laplacian on

Σ with respect to ĥ,

∆ĥ = det ĥ−1/2∂iĥ
ij det ĥ1/2∂j .

Then the d’Alembertian is

�g = a−2(∂2
t − a−1∆ĥa+ (∆ĥ ln a) + ĥ−1(d ln a, d ln a)) .

The Klein-Gordon equation can then be written in the form

a−2(∂2
t + A)ϕ = 0

with the differential operator A = −a−1∆ĥa+(∆ĥ ln a)+ ĥ−1(d ln a, d ln a))+a2m2

on Σ. The Laplacian, multiplied by (−1), on complete Riemannian spaces is a
selfadjoint positive operator on the Hilbert space L2(Σ, dvolĥ). The same holds
true for A on L2(Σ, a2dvolĥ) under mild conditions on a which are satisfied in
the case of the Schwarzschild metric.. In the case of the Schwarzschild metric the
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Riemannian space Σ is not complete with respect to the metric h. Actually, the
distance of a point with radial coordinate r from the horizon at r = 2m is

d =

∫ r

2m

(1− 2m

r′
)−1/2dr′ = 2m

(√
r

2m
(
r

2m
− 1) + ln

(√
r

2m
+

√
r

2m
− 1

))
.

The manifold Σ is, however, complete with respect to the metric ĥ. In fact, the
distance to a point at the horizon with respect to ĥ is given by the logarithmically
divergent integral

d̂ =

∫ r

2m

(1− 2m

r
)−1 =∞ .

We can now use the functional calculus for selfadjoint operators for constructing
Green’s functions for the Klein Gordon operator. The retarded propagator is

(GRf)(t) =

∫ t

−∞
ds

sin (t− s)
√
A√

A
a2f(s)

where t 7→ f(t) is a continuous, compactly supported function with values in the
Hilbert space L2(Σ, advolh) and a2 acts by multiplication. Namely,

(∂tGRf)(t) =

∫ t

−∞
ds cos ((t− s)

√
A)a2f(s)

and
(∂2
tGRf)(t) = a2f(t)− A(GRf)(t) .

Analogously, the advanced propagator is

(GAf)(t) = −
∫ ∞
t

ds
sin (t− s)

√
A√

A
a2f(s)

The difference GR −GA =: G is the commutator function

[ϕ(t, x), ϕ(s, y)] = iG(t, x; s, y) = i
sin(t− s)

√
A√

A
(x, y) .

Here the integral kernel of an operator T on L2(X, dµ) is defined by∫
dµ(x)

∫
dµ(y)f(x)T (x, y)g(y) = 〈f, Tg〉 .

The ground state with respect to time translations is obtained as a quasifree state
with 2-point function the positive frequency part of the commutator. It is given
by

ω2(ϕ(t, x)ϕ(s, y)) =
e−i
√
A(t−s)

2
√
A

(x, y) .

The correlations at equal times in the ground state vanish between points whose
d̂-distance diverges. So measurements at the horizon are completely uncorrelated
with measurements outside of the horizon, in spite of the fact, that the horizon is
at finite d-distance. Therefore the ground state has a singular behavior. Actually,
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one can show that correlations at finite temperature are different, and they give
the expected value exactly at the Hawking temperature.

The nonapplicability of the concept of a vacuum also implies that there is no
distinguished notion of particles. For a free theory, one can always decompose the
field into a sum of two terms, one interpreted as a creation operator for a particle
and the other as an annihilation operator. But such a split is highly ambiguous
and might have physically unwanted properties, even in cases where a preferred
notion exists as on static spacetimes.

Often quantum field theory is presented as a way to compute the S-matrix,
which describes the collision of incoming particles in terms of configurations of
outgoing particles. But as should be clear form the discussion above the S-matrix
looses its meaning in the generic case.

One can add to this list more technical items, as e.g. the absence of a dis-
tinguished momentum space formulation or the impossibility of a Wick rotation
by which in many cases the light cone singularities of Lorentzian spacetimes are
avoided.

The path integral formulation of quantum field theory seems at the first sight
to be better behaved, but also there similar problems occur as will be discussed
later.

The solution of the difficulties described above is the adoption of the concepts of
algebraic quantum field theory. In this formalism, the algebraic relations between
the fields of the theory are used as a starting point. These relations make it possible
to construct the algebra of local observables as an abstract operator algebra. States
are then identified with expectation value functionals on the observables, and the
traditional Hilbert space formulation of quantum theory is obtained by the so-
called GNS construction.

This approach was originally proposed by Haag [H1957] in order to clarify the
origin of the particle structure in quantum field theory on Minkowski space. It
was recognized in the late 1970’s mainly by Dimock [Di1980] and Kay, that it is
the appropriate framework for quantum field theory on curved spacetime.

It took time to get agreement that no distinguished vacuum exist; instead one
identified the so-called Hadamard states as states which locally look like a state
in the Fock space of a theory on Minkowski space, but are far from being unique.

A breakthrough was obtained by the work of Radzikowski [R1996]. He observed
that the Hadamard condition, previously defined by a cumbersome explicit charac-
terization of the singularities of the 2-point function (most precisely in a paper of
Kay and Wald [KW1991]), can equivalently be replaced by a positivity condition
on the wave front set of the 2-point function. Wave front sets are a crucial concept
in the theory of partial differential equations [H2003].

Based on this finding, for the first time composite fields could be defined as op-
erator valued distributions (Brunetti, Fredenhagen and Köhler [BFK1996]). This



6 KLAUS FREDENHAGEN

made it possible to start the program of constructing interacting quantum field
theories on generic spacetimes.

For this purpose one had to use a method of renormalization which is formu-
lated algebraically and on position space. Such a method, the so-called causal
perturbation theory, was developed by Epstein and Glaser [EG1973], on the basis
of older ideas of Stückelberg [St1953] and Bogoliubov [BP1957]. It was further
developed by Stora (mainly unpublished) and by Scharf, Dütsch and collabora-
tors. Its generalization to curved backgrounds was achieved in a series of papers
by Brunetti and Fredenhagen [BF2000] and by Hollands and Wald [HW2001]. A
crucial step in this program was a new concept of covariance adapted to quantum
field theory, called local covariance [BFV2003]. The inclusion of gauge theories
was done after earlier work by Scharf et al. in papers of Dütsch, Fredenhagen,
Hollands and Rejzner (2000-2011).

The plan of these lectures is as follows: After a brief review of the algebraic
formulation of quantum theory and of Lorentzian geometry we present the axioms
of locally covariant quantum field theory.

We then construct in the same spirit classical field theory on curved spacetime.
There the main structure is the so-called Peierls bracket, by which a Poisson
bracket on classical observables can be introduced.

In a next step we apply deformation quantization to free quantum field theory
and discuss the concept of covariant composite fields. For the construction of
interacting fields we introduce a modified version of causal perturbation theory.

If time permits I will discuss the generalization to gauge theories and the first
steps towards perturbative quantum gravity.

2. Algebraic quantum theory

After these introductory remarks we want now to describe the algebraic formu-
lation of quantum theory. Every quantum system is characterized by two notions:
observables and states. In the ordinary formulation of quantum mechanics, one
considers observables as self-adjoint operators acting on a Hilbert space, while
states are unit vectors of the chosen Hilbert space. However, as we will see below,
this turns out to be a special implementation of a much richer algebraic structure.

2.1. Algebraic notion of observables. It starts from the canonical commuta-
tion relation

[q, p] = i~
and considers the associative unital algebra A over the complex numbers generated
by p and q with the commutation relation above. This algebra has an involution
A → A∗, i.e. an antilinear map with (AB)∗ = B∗A∗ and (A∗)∗ = A, uniquely
determined by p∗ = p, q∗ = q. The algebra is simple, i.e. every nonzero ideal is
the whole algebra.
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Definition 1. An ideal I of an algebra A is a subspace with the property AI, IA ∈
A if I ∈ I and A ∈ A.

Theorem 1. The unital algebra A generated by two elements p and q fulfilling the
canonical commutation relation above is simple.

Proof. The algebra A has the basis (qkpn−k)n∈N0,k=0,...n. Every element of A ∈ A
has a unique expansion in this basis

A =
∑
n,k

λnk(A)qkpn−k .

Let now I be a nonzero ideal of A, and let I ∈ I be nonzero. Let (n, k) be
maximal such that λnk(I) 6= 0 and λn′k′(I) = 0 if n′ > n or, if n′ = n and k′ > k.
We now form first the k-fold commutator of I with p. This annihilates all terms
λn′k′q

k′pn−k
′

with k′ < k. We then form the (n− k)-fold commutator with q. This
annihilates all terms with n′ < n. We obtain

[q, . . . [q︸ ︷︷ ︸
n−k

[p, . . . [p︸ ︷︷ ︸
k

, I ] . . . ]︸︷︷︸
n

] = (−1)kk!(n− k)!in~nλnk(I)1 .

Hence the ideal contains the unit of the algebra and therefore coincides with the
whole algebra. �

Unfortunately, there is no algebra norm on A, i.e. a norm satisfying the in-
equality ||AB|| ≤ ||A|| ||B||. This follows from the iterated canonical commutation
relation

[p, . . . [p︸ ︷︷ ︸
n

, qn] . . . ] = n!in~n1 .

If there would be an algebra norm || · || the norm of the left hand side would be
bounded by 2n||p||n ||q||n whereas the norm of the right hand side is n!~n||1||.

2.1.1. The Weyl Algebra. If one wants to go beyond the polynomials in p and q,
it is convenient to consider the exponential series

W (α, β) = ei(αp+βq)

defines as formal power series in α and β. They satisfy the relations (Weyl rela-
tions)

W (α, β)W (α′, β′) = e−
i~
2

(αβ′−α′β)W (α + α′, β + β”) .

Since the numerical coefficient in the Weyl relation is a convergent power series,
we replace it by its limit and interpret this relation as a definition of a product on
the linear span of the elements W (α, β) for real α and β. The obtained algebra
W is called the Weyl-algebra. It is unital with the unit 1 = W (0, 0), and for real
α and β

W (α, β)∗ = W (−α,−β) = W (α, β)−1 .

Hence these elements are unitary. Also this algebra is simple.
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For later purposes we generalize the notion of a Weyl-algebra in the following
way. Let L be a real vector space with a symplectic form σ, i.e. a bilinear form σ
on L which is antisymmetric,

σ(x, y) = −σ(y, x) ,

and nondegenerate,

σ(x, y) = 0 ∀ y ∈ L implies x = 0 .

We consider the unital *-algebra W(L, σ) of complex linear combinations of ele-
ments W (x) with the product

W (x)W (y) = eiσ(x,y)W (x+ y)

the involution

W (x)∗ = W (−x)

and the unit 1 = W (0). In the case above L = R2 and σ(x, y) = −1
2
~(x1y2−x2y1).

To show thatW(L, σ) is simple we consider a nonzero ideal I. If 1 ∈ I then I =
W(L, σ). Now let A =

∑n
i=1 λiW (xi) ∈ I with n > 1, λ1 6= 0 and pairwise different

xi. Then B = λ−1
1 W (−x1)A = 1 +

∑
i=2 µiW (zi) ∈ I with µi = λ−1

1 λie
iσ(−x1,xi)

and zi = xi − x1 6= 0. We now use the fact that σ is nondegenerate. Therefore
there exists some y ∈ L such that σ(y, zn) = π

2
. We conclude that

C = W (y)BW (−y) = 1 +
n−1∑
i=2

µ′iW (zi)− µnW (zn) ∈ I

with µ′i = µie
2iσ(y,zi), and hence also D = 1

2
(B + C) = 1 + 1

2

∑n−1
i=2 (µi + µ′i)W (zi).

Iterating the argument we finally arrive at 1 ∈ I, hence I = A.
The Weyl algebra admits the norm

||
n∑
i=1

λiW (xi)||1 =
n∑
i=1

|λi| .

This norm satisfies the condition ||AB||1 ≤ ||A||1||B||1 of an algebra norm. More-
over, the involution is isometric, ||A∗||1 = ||A||1.

2.1.2. C∗-algebra. We are looking for a so-called C*-norm, i.e. a norm satisfying
the condition

||A∗A|| = ||A||2 .
An example for a C*-norm is the operator norm of Hilbert space operators. In our
case, we obtain a C*-norm in the following way. We have the inequality

||A∗A||1 ≤ ||A||21 .
From this we conclude that

an = ||(A∗A)2n||2−(n+1)

1
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is a monotonically decreasing sequence of positive numbers. The C*-norm of A is
then defined by

||A|| = lim
n→∞

an .

By construction, || · || satisfies the C*-condition. It is certainly nonzero, since
||1|| = 1. One can show that it is the unique C*-norm onW(L, σ). The completion
makes it to a C*-algebra, often also called the Weyl-algebra over (L, σ).

Another useful algebra based on the canonical commutation relations was re-
cently found by Buchholz and Grundling. It is generated by the resolventsR(α, β, z) =
(αp+ βq − z1)−1, z ∈ C.

Physically, a unital C*-algebra is interpreted as the algebra of observables. The
selfadjoint elements A represent real valued observables, and their spectrum, i.e.
the set of real numbers λ such that A−λ1 has no inverse, is interpreted as the set
of measurable values.

2.2. Algebraic notion of states. States, interpreted as an association of expec-
tation values to each observable, can be defined as linear functionals ω on the
algebra with the positivity condition

ω(A∗A) ≥ 0

and the normalization condition

ω(1) = 1 .

If A is an algebra of Hilbert space operators, with the adjoint as the involution,
every unit vector Φ induces via

ω(A) = 〈Φ, AΦ〉

a state.

2.3. GNS construction. We will now observe that the usual formulation of quan-
tum mechanics as self-adjoint operators and vectors in a Hilbert space can be
realized as a particular representation of the C∗-algebra. In other words, it is
gratifying that the converse of the above statement holds as well: every state ω
arises from a unit vector in a Hilbert space representation of the algebra. This is
the content of the so-called GNS construction.

Theorem 2. Let ω be a state on the unital *-algebra A. Then there exists a
pre-Hilbert space D, a representation π of A by operators on D and a unit vector
Ω ∈ D such that

ω(A) = 〈Ω, π(A)Ω〉
and

D = π(A)Ω .
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Proof. By
〈A,B〉 := ω(A∗B)

we define a positive semidefinite scalar product on A. The null set

Nω = {A ∈ A, ω(A∗A) = 0}
is a left ideal. Hence the quotient space A/Nω is a pre-Hilbert space D on which
the algebra acts by left multiplication,

π(A)(B +Nω) = AB +Nω .

The unit vector Ω is the class of the unit. Hence,

〈Ω, π(A)Ω〉 = ω(1∗A1) = ω(A) .

�

The construction is unique (up to a unitary transformation) in the following
sense: given an other triple (D′, π′,Ω′) with the same properties, then there is a
unitary operator U : D→ D′ such that

Uπ(A) = π′(A)U ∀ A ∈ A

and
UΩ = Ω′ .

In case A is a C*-algebra, one can show that the operators π(A) are bounded and
can therefore uniquely be extended to bounded operators on the completion of the
pre-Hilbert space.

2.4. Examples. Let us discuss examples of states and the corresponding GNS-
representation. We consider the Weyl algebra as the C∗-algebra of observables
and study certain states in terms of the symplectic space (L, σ). While many of
such states are considered physically pathological in the ordinary formulation of
quantum field theory, in the algebraic framework they are mathematically well-
defined.

2.4.1. A trace state ω0. Our first example is the linear functional ω0 on the Weyl-
algebra W(L, σ), defined by

ω0(W (x)) =

{
0 for x 6= 0
1 for x = 0

.

To see it is actually a state, let us check continuity and positivity: Consider A a
generic element of W(L, σ): A =

∑
finite λxW (x). Then we have:

ω0(A) = λ0 ⇒ |ω0(A)| = |λ0| ≤
∑
x

|λx| = ||A||1.

Also,

ω0(A∗A) =
∑
x

|λx|2 > 0.
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ω0 is a so-called trace state, i.e. it fulfils the condition

ω0(AB) = ω0(BA) .

The GNS-Hilbert space is the space of square summable sequences l2(L), i.e. maps
Φ : L→ C such that

||Φ||2 :=
∑
x∈L

|Φ(x)|2 <∞ ,

and W (x) acts on l2(L) by

π((W (x))Φ)(y) = eiσ(x,y)Φ(x+ y) .

The cyclic vector Ω is given by

Ω(x) = δx0 .

ω0 is not pure. Namely let 0 < B < 1 with 0 < ω0(B) < 1. Then ωB =
ω0(·B)/ω0(B) is also a state, and ω0 can be written as a convex combination of
other states,

ω0 = ω(B)ωB + ω(1−B)ω1−B ,

provided, B is not a multiple of the identity.

2.4.2. Lagrangian subspaces. The second example depends on the choice of a La-
grangian subspace K ⊂ L, i.e. a maximal subspace K of L such that σ(x, y) =
0 ∀ x, y ∈ K.

Recall that in classical mechanics, the phase space consists of all positions and
their conjugate momenta (p, q) which constitute a symplectic space. A Lagrangian
subspace of phase space is the space of all coordinates. Of course one could perform
a canonical transformation on phase space and mix the ps and qs, but the defining
property of such a subspace would still hold which leads to many Lagrangian
subspaces. Here, we consider one Lagrangian subspace K and define:

ωK(W (x)) =

{
1 for x ∈ K
0 for x 6∈ K .

Quantum mechanically, this state corresponds to an extreme case ∆q = 0, ∆p =∞
since the Weyl operator on the Lagrangian subspace of all qs has the form eiβq,
and setting this equal to 1 means that the particle is at origin.
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The positivity of ωK follows from

ωK((
∑
x

λxW (x))∗(
∑
y

λyW (y)) =
∑
x,y

λxλyωK (W (−x)W (y))

=
∑
x,y

λxλye
−iσ(x,y)ωK(W (y − x))

=
∑

[z]∈L/K

∑
y∈[z]

λxλye
−iσ(x,y)

=
∑

[z]∈L/K

|
∑
y∈[z]

λye
eiσ(y,z)|2 ≥ 0 .

where in the last step, we have used the fact that for x, y ∈ [z] ∈ L/K we have
σ(x, y) = σ(z + (x− z), z + (y − z)) = σ(x, z) + σ(z, y).

The state ωK is pure. Namely, let ωK = λω1 + (1− λ)ω2 with 0 < λ < 1. Then
for x ∈ K we have

1 = λω1(W (x)) + (1− λ)ω2(W (x)) .

Since the expectation value of a unitary operator is bounded by 1, we must have
ω1(W (x)) = ω2(W (x)) = 1.

Now let x 6∈ K. For every y ∈ K we have

|ω1(A(W (y)− 1)|2 ≤ ω1(AA∗)ω1(|W (y)− 1|2) = 0 ,

since ω1(|W (y)− 1)|2) = ω(2−W (y)−W (−y)) = 0. Then

ω1(W (x)) = ω1(W (y)W (x)W (−y)) = e2iσ(y,x)ω1(W (x)) .

It follows from the maximality of K that there exists some y ∈ K with e2iσ(x,y) 6= 1.
Hence ω1(W (x)) = 0, hence ω1 = ωK = ω2. Thus ωK is pure.

The GNS-Hilbert space is l2(L/K), the Weyl operators act on this space by

(π(W (x))Φ) ([z]) = eiσ(x,z)Φ([x+ z])

where we had to choose a system of representatives L/K → L, [z] 7→ z.

2.4.3. Quasifree (Gaussian) states. Another class are the quasifree (also called
Gaussian) states. They are of the form

ωµ(W (x)) = e−
1
2
µ(x,x)

with a real scalar product µ on L. The positivity condition on the state requires
the bound

σ(x, y)2 ≤ µ(x, x)µ(y, y)

Namely, we have

ωµ(|
∑
x

λxW (x)|2) =
∑
x,y∈L

λxλye
−iσ(x,y)− 1

2
µ(x−y,x−y) .
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We define a complex scalar product on the complex vector space LC = L⊕ iL by

〈x, y〉 = µ(x, y) + iσ(x, y) .

The Cauchy-Schwarz inequality then requires the condition above on µ.
ωµ is a pure state if and only if the map L→ LC/Ker(〈., .〉) is surjective.
The GNS-Hilbert space turns out to be the bosonic Fock space:

H =
∞⊕
n=0

(H⊗n1 )symm ; H1 = LC/Ker(〈., .〉)

3. Lorentzian geometry

3.1. Globally hyperbolic space-times. According to the principles of General
Relativity, our spacetime is a 4 dimensional manifold M equipped with a metric g
with signature (+ - - -). On the tangent space TpM at a point p ∈M we distinguish
timelike (g(ξ, ξ) > 0), lightlike (g(ξ, ξ) = 0) , and spacelike (g(ξ, ξ) < 0) vectors
∀ξ ∈ TpM . A smooth curve with timelike or lightlike tangent vectors is called
causal.

A Cauchy surface is a smooth hypersurface with spacelike tangent vectors such
that every nonextendible causal curve hits it exactly once. A standard example
of a Cauchy surface is the time zero hyperplane in Minkowski space. A spacelike
hypersurface which fails to be a Cauchy surface is the hyperboloid g(x, x) = 1 in
Minkowski space.

Spacetimes M with a Cauchy surface are called globally hyperbolic. They have a
number of nice properties, some of them were derived only recently by Bernal and
Sanchez. In particular, they are diffeomorphic to R×Σ, such that ({t}×Σ)t∈R is
a foliation of M by Cauchy surfaces.

For our application, most important is that normally hyperbolic differential
equations have a well posed initial value problem on globally hyperbolic space-
times. Here a second order differential operator on a Lorentzian manifold is called
normally hyperbolic if its principal symbol is the inverse metric (i.e. the term with
the highest order in a given coordinate system is gµν∂µ∂ν). In particular, there
exist unique retarded and advanced Green’s functions,

3.2. Microlocal analysis. These Green’s functions are distributions, and it will
be important to understand their singularity. The framework in which the sin-
gularity structure of Green’s functions are studied systematically is called the
microlocal analysis. An appropriate concept for doing this is the wave front set.

3.2.1. Wave front set. Let t be a distribution on Rn. We are interested in un-
derstanding the singularity of t in the neighborhood of a point x ∈ Rn. For this
purpose we multiply t by a test function f with compact support and f(x) 6= 0.
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Then ft is a distribution with compact support and therefore has a smooth Fourier
transform

f̂ t(k) = t(feik·) .

ft is a smooth function if and only if its Fourier transform is rapidly decreasing.

We now call (x, k) a regular point of t, if f̂ t is rapidly decreasing in an open
cone containing k for some f with f(x) 6= 0. The complement of the set of regular
points in Rn × (Rn \ {0}) is called the wave front set WF(t) of t:

WF(t) = {(x, k), k 6= 0, x ∈ Rn(x, k) is not a reg. pt. of t}

3.2.2. Examples. Let us illustrate the concept of the wave front set in two simple
but important examples.

The first one is the δ-function. We find∫
dxf(x)δ(x)eikx = f(0)

hence WF(δ) = {(0, k), k 6= 0}.
The second one is the function

x 7→ (x+ iε)−1

in the limit ε ↓ 0. We find

lim
ε↓0

∫
dx

f(x)

x+ iε
eikx = −i

∫ ∞
k

dk′f̂(k′) .

lim
ε↓0

∫
dx

f(x)

x+ iε
eikx = i

∫
dxf(x)

eik(x+iε)

i(x+ iε)
ekε

= −i
∫
dxf(x)

∫ ∞
k

dk
′
eik
′
(x+iε)

= −i
∫ ∞
k

dk
′
∫
dxf(x)eik

′
xe(k

′−k)ε

= −i
∫ ∞
k

dk
′
f̂(k

′
)e(k

′−k)ε → −i
∫ ∞
k

dk
′
f̂(k

′
)

Since the Fourier transform f̂ of a test function f is strongly decreasing, also∫∞
k
dk′f̂(k′) is strongly decreasing for k → +∞; but for k → −∞ we obtain

lim
k→−∞

∫ ∞
k

dk′f̂(k′) = 2πf(0) ,

hence
WF(lim

ε↓0
(x + iε)−1) = {(0, k), k < 0} .

For distribution on a manifold, one can perform the same construction within
a given chart. But the property of rapid decrease turns out to be independent of
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the choice of a chart, therefore the regular points can be understood as elements
of the cotangent bundle. We thus obtain the wave front set of a distribution as a
closed subset of the cotangent bundle, with the zero section removed.

3.2.3. Applications. For our analysis, two propositions are important. Recall that
in functional analysis one can multiply a distribution and a function, and obtain
another distribution. However, there is no notion of pointwise product of two
distributions. Nevertheless, with the aid of the wave front set one can define
multiplication of distributions in the following sense:

Proposition 1. Let s and t be distributions such that the sum of their wave front
sets

WF(s) + WF(t) := {(p, k + k′)|(p, k) ∈WF(s), (p, k′) ∈WF(t)}
does not intersect the zero section. Then the pointwise product of the distributions
st can be defined in the following way:

Let f and g be test functions with sufficiently small compact support. Then

(st)(fg) :=

∫
dkf̂s(k)ĝt(−k)

The integrand is strongly decreasing since at least one factor is strongly decreasing
and the other factor is polynomially bounded.

Proof. For a generic test function h with compact support we choose a sufficiently
fine, but finite covering of the support of h, choose a subordinate partition of unity

1 =
∑

χj

and write each summand hχj as a product of test functions fjgj with sufficiently
small compact support. We then set

(st)(h) :=
∑
j

(st)(fjgj) .

(see [H2003] for more details.) �

The second proposition we need characterizes the propagation of singularities.
Before stating it, we need to define our notation to write down a differential oper-
ator on Rn.

Notation 1. Let α be a multi-index i.e. α = (α1, . . . , αn) ∈ N0. Then,

∂α :=
∂α1+···+αn

∂xα1
1 . . . ∂xαnn

|α| = α1 + · · ·+ αn

α! = α1! . . . αn!

.
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A differential operator on Rn can then be written as D =
∑

α aα∂
α. We call

maxaα 6=0 |α| the order of D. The principal symbol of D is defined by

σp(x, k) =
∑
|α|=r

aα(x)(ik)α,

with kα := kα1
1 . . . kαnn and where r is the order of D

On manifolds, differential operators can be defined in terms of coordinates within
a given chart. First order operators are vector fields X = Xµ∂µ and can be
interpreted as functions on the cotangent bundle

X(x, k) = Xµ(x)kµ

This is no longer true for higher order operators. If we consider e.g. a second
order differential operator on manifolds, then under coordinate transformations
one finds additional terms of first order. The highest order term, however, have
an invariant meaning. We have the following proposition:

Proposition 2. Under a diffeomorphism, the principal symbol of a differential
operator transforms as a function on the cotangent bundle.

The cotangent bundle has a natural Poisson structure. Namely, the identity map
on the tangent bundle may be interpreted as a 1-form on the cotangent bundle,

θ =
∑

ki ⊗ dxi

where ki ≡ ∂xi is the function ki(dx
j) = δij on the cotangent bundle. The differ-

ential of θ is a symplectic form

ω = dθ =
∑

dki ∧ dxi .

The inverse is the bivector

ω−1 =
∑

(∂xi ⊗ ∂ki − ∂ki ⊗ ∂xi)

The Poisson bracket of functions on the cotangent bundle is

{f, g} = m ◦ ω−1(f ⊗ g)

with the pointwise multiplication m of two functions.
For any function f on the cotangent space one defines the Hamiltonian vector

field Xf by

Xfg := {f, g}
Now, using proposition 2, we can consider the principal symbol as our function

f on the cotangent bundle (Hamiltonian) and look at the flow induced by this
Hamiltonian which will characterize the propagation of singularity.
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Theorem 3. Let D be a differential operator with real principal symbol σP , and
let u be a distributional solution of the equation Du = f with a smooth function
f . Then the wave front set of u is contained in the zero set of σP and is a union
of orbits of the flow of the Hamiltonian vector field associated to σP .

The points of cotangent bundle move in time subject to Hamilton’s equations.
The above theorem states that if one point is in the wavefront set then all points
which can be reached by the Hamiltonian flow must also be within the wavefront
set.

We apply this theorem to the case of normally hyperbolic differential operators.
Their principal symbol is the inverse metric, the associated Hamiltonian flow is the
geodesic flow on the cotangent bundle. , i.e. a union of a set Γ of nonextendible
null geodesics γ, together with their cotangent vectors,

WF(u) =
⋃
γ∈Γ

{(γ(t), g(γ̇(t), ·)), t ∈ R}.

We now discuss the Green’s functions of a normally hyperbolic operator D. We
assume that the spacetime M is globally hyperbolic. The crucial property of a
globally hyperbolic spacetime is the existence of a unique solution of the initial
value problem (”the Cauchy problem is well posed”). In particular, one finds
unique retarded and advanced Green’s function. The retarded Green’s function is
a linear operator

GR : D(M)→ E(M)

mapping compactly supported smooth functions f to smooth functions GR such
that

GR ◦Df = D ◦GRf = f , f ∈ D(M) ,

and

suppGRf ⊂ J+(suppf)

where J+(N) (the future of the set N ⊂ M) is the closure of the set of all points
which can be reached by future directed causal curves starting in N .

The advanced Green’s function GA is analogously defined by replacing the future
J+ by the past J−. The difference

G = GR −GA

is a distributional solution of the differential equations

DxG(x, y) = 0 = Dt
yG(x, y)

where Dt is the transpose differential operator. In case of a formally selfadjoint
differential operator (Dt = D), the retarded Green’s function is the transposed of
the advanced Green’s function, hence G is antisymmetric.

The wave front set of G is

WFG = {(x, y; k, k′)|∃ a null geodesic γ connecting x and y, k and k′ are coparallel
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to γ such that the parallel transport Pγk of k along γ satisfies Pγk + k′ = 0} .

Exercise 1. Check Theorem 3 by comparing the wave front set of the distributional
solution to the wave equation on Minkowski space-time obtained as a result of the
proposition and by explicit calculation.

�GR(x, y) = δ(x, y);GR(x, y) =
1

4π|~x|
δ(t− |~x|)

�GA(x, y) = δ(x, y);GA(x, y) =
1

4π|~x|
δ(t+ |~x|)

�G(x, y) = δ(x, y);G(x, y) = GR(x, y)−GA(x, y)

4. Free scalar field

As the first case in studying a field theory, we begin with the simplest one,
namely a free scalar field. The free scalar field on a globally hyperbolic manifold
M with metric g is a solution of the Klein-Gordon equation

Pϕ = 0

with the Klein-Gordon operator P = �g+m2 +ξR. Here R is the scalar curvature,
and ξ and m are real valued constants. A quantum field is a distribution D(M) 3
f 7→ ϕ(f) ∈ A(M) with values in the algebra of observables, hence we understand
the field equation in the sense of distributions,

ϕ(Pf) = 0 .

The canonical commutation relations are obtained from G, the difference of the
retarded and the advanced Green’s function for the Klein-Gordon equation, and
has the form

[ϕ(f), ϕ(h)] = i〈f,Gh〉 1 = i~
∫
dxdyf(x)G(x, y)h(y)1.

In this part we illustrate two strategies to study free scalar field. The first one,
introduced in section 4.1 is a generalization of notion of algebra of observables
discussed in part 2. We start from the algebra of canonical commutation relations
and construct an abstract algebra. The second, presented in section 4.3 is to give
explicit construction of the algebra as a set of linear functionals, and then defining
a suitable product which captures the more computational features of QFT.

4.1. Algebra of observables. We have the following choices for the algebra of
observables. The first choice is the algebra generated by elements ϕ(f), f ∈ D(M)
which depend linearly on f and are subject to the relations above. This algebra is
an infinite dimensional version of the algebra of canonical commutation relations.
The antisymmetric bilinear form on D(M)

σ(f, h) = 〈f,Gg〉
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is degenerate. It vanishes for h = Ph0 with h0 ∈ D(M). On the quotient space
L = D(M)/P (D(M)) it becomes a (weak) symplectic form σ. As a consequence,
the algebra of the free field is simple.

The elements of the quotient space can be identified with a smooth solution
with compactly supported Cauchy data, since the map

G : D(M)→ E(M)

has as the kernel the image of P (restricted to D(M) and as the image the kernel
of P .

Recall that on a globally hyperbolic space-time, each solution of the Klein-
Gordon equation is characterized by it’s Cauchy data on a Cauchy surface Σ:

f is a solution↔ (f |Σ, ∂nf |Σ) ≡ (f1, f2),

where, ∂n is the normal derivative on Σ (∂nf = nµ∂µf , nµξµ = 0 for ξ ∈ TΣ,
nµnµ = 1.) We can also express the canonical commutation relations in terms of
Cauchy data:

〈f,Gh〉 =

∫
Σ

dx(f1h2 − f2h1),

where f1, f2 and h1, h2 are Cauchy data of Gf and Gh respectively. This suggest
to choose the algebra of observables as Cauchy data.

Theorem 4. Let M be a globally hyperbolic space-time. Let Σ be a Cauchy surface
of M. Let f1, f2 ∈ D(Σ). Then, there exists a unique solution f of the equation
Pf = 0, such that f |Σ = f1, (∂nf)|Σ = f2.

Corollary 1. f , the unique solution to Pf = 0, vanishes outside of J+(Suppf1 ∪
Suppf2) ∪ J−(Suppf1 ∪ Suppf2).

To sum up, there are three different choices to construct a symplectic (L, σ)
vector space for real scalar field.

(1)
L = D(M)/ImP = PD(M),

σ(f, g) = 〈f,Gh〉
(2) We can consider it as the space of solutions with compact support on each

Cauchy surface.

L1 = {f ∈ C∞(M), Pf = 0 s.t. initial data have cmpt. Supp.}

σ(f, g) =

∫
Σ

dvolΣ(f(∂ng)− (∂nf)g).

(3)
L2 = {(f1, f2) ∈ C∞(Σ)× C∞(Σ)}

σ2((f1, f2), (g1, g2)) =

∫
Σ

dvolΣ(f1g2 − f2g1).
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Theorem 5. There exist the following isomorphisms between the above choices for
symplectic space, which preserve the symplectic form:

α : L→ L1; f 7→ Gf,

β : L1 → L2; f 7→ (f |Σ, ∂nf |Σ).

Proof. We show the surjectivity of α. Let f be a solution, χ ∈ C∞(M), and Σ1,Σ2

be Cauchy surfaces such that Σ1 ∩ J+(Σ2) = ∅. Assume χ(x) = 0 for x ∈ J−(Σ1)
and χ(x) = 1 for x ∈ J+(Σ2). Then Pχf = 0 outside Σ1,Σ2 (χ =const. there)
which implies Pχf has compact support. Hence,

GPχf = GRPχf +GAP (1− χ)f = f.

�

4.1.1. Construction of Retarded Propagator. Let R× Σ→M be a foliation of M
by Cauchy surfaces (Σt = {t} × Σ). Let Gt : D(Σt → C∞(M)) be a solution of
Pf = 0 with initial data f |Σt = 0, (∂nf)|Σt = f2, Gtf2 = f .

Set GR : D(M)→ C∞(M) be defined by

(GRh)(t, x) =

∫ t

−∞
dt
′
(G
′

tht′ )(x),

with ht(x) = h(t, x).

Exercise 2. (1) Prove that PGR = GRP = id.
(2) Construct the advanced propagator GA.

Requiring the additional conditions:

Supp(GRh) ⊂ J+(Supph),

Supp(GAh) ⊂ J−(Supph),

would make GR and GA unique.
Let χ ∈ C∞(M), and Σ1,Σ2 be Cauchy surfaces such that Σ1 ∩ J+(Σ2) = ∅.

Assume χ(x) = 1 for x ∈ J−(Σ1) and χ(x) = 0 for x ∈ J+(Σ2). Then Gχ =
GR(1− χ) +GAχ is a Green’s function.

4.2. Hadamard function. As in section 2.1.1, it would be more convenient to
introduce the Weyl algebra over the symplectic space (L, σ) instead of the algebra
of commutation relations.

(L, σ)→W(L, σ).

It is a simple algebra with a unique C*-norm. We can now choose as our states
the quasifree state. Let µ be a real scalar product on L, satisfying

µ(f, f)µ(g, g) ≤ 1

4
(σ(f, g))2.
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Then, quasifree states would be of the form ωµ(W (f)) = e−
1
2
µ(f,f), for W ∈ W .

Now, µ + i
2
σ is a complex scalar product on LC, which can be used to construct

the one particle Hilbert space H1 = (LC, µ+ i
2
σ)/null space.

The GNS triplet (H, π,Ω) becomes:

H =
∞⊕
n=0

(
H⊗n1

)
symm.

Fock Space,

a(f)Ω = 0, [a(g), a(f)∗] = 〈g, f〉, f, g ∈ H, a(f)an anti-linear function of f,

π(φ(f)) = a(f) + a(f)∗.

Now the natural question which arises would be how to find such a scalar product
µ? In Minkowski space it exists and explicitly can be given.

G(t, x, t
′
, x
′
) = ∆(t− t′ , x− x′)

=
1

(2π)3

∫
d3~p√
m2 + p2

sin(
√
p2 +m2(t− t′))ei~p.(~x−~x

′
)

(µ+
i

2
σ)(f, g) =

1

(2π)3

∫
d3~p

2
√
m2 + p2

f̂(
√
p2 +m2, ~p)ĝ(

√
p2 +m2, ~p).

∆+ =
1

(2π)3

∫
d3~p√
m2 + p2

e
√
p2+m2(t−t′ )ei~p.(~x−~x

′
)

Notice that while the wave front set of ∆ is the full light cone (because of the sin
function, two signs of mass shell are present: ~p||~x, p0 > 0, p0 < 0 ), the wave front
set of ∆+ constitutes only V+, the future light cone (where only the positive sign
of mass shell is present: ~p||~x, p0 > 0). In the case of Minkowski, we encounter a
happy coincidence. (µ + i

2
σ) not only defines a positive definite scalar product,

but also satisfies the positive energy condition (recall that these two have totally
different meanings: the positivity of scalar product implies the that of probability,
while the positivity of energy implies stability of the quantum system).

We now intend to generalize this to the case of arbitrary curved space-times. In
fact, we want to find some other function H with the following property:

WF (H +
i

2
G) = {(x, k;x

′
, k
′
) ∈ WF (G), k ∈ V+}

H, the so-called Hadamard function, annihilates the part of WF(G) which lies in
the past light cone. Given such an H, we can now define a real scalar product µ:

µ(f, g) =

∫
dxdyf(x)H(x, y)g(y).

In this regard, H can be seen as an integral kernel which must satisfy the following:

(1) H is a bi-solution of the Klein-Gordon equation,
(2) H is symmetric (in order for µ to form a scalar product),
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(3) (first positivity condition) H is positive, in the sense that∫
dxdyf(x)(H(x, y) +

i

2
G(x, y))f(y) ≥ 0,

(4) (second positivity condition) The wave front set should be chosen in such
a way that compensates the negative part of WF(G).

WF (H +
i

2
G) = {(x, k;x

′
, k
′
) ∈ WF (G), k ∈ V+}.

Exercise 3. Let H
′

be another Hadamard function. Show that H−H ′ is a smooth
bi-solution of the Klein-Gordon equation.

We will sketch the proof of existence of such an H, which can be found in [].
Consider a deformation of a space-time M to an ultra-static one N in the early

past:

gM = a(t)dt2 − ht → gN = dt2 − h.
Now we insert an intermediate space-time L (gL = a

′
(t)dt2 − h′t) between M and

N such that:

for t > t1 :

{
a
′
(t) = a(t)
h
′
(t) = ht

, for t < t2 :

{
a
′
(t) = 1

h
′
(t) = h

(t1 > t2).

On N , we can choose H(t, x; s, y) = cos
√
A(t−s)

2
√
A

(x, y), where A = −4h+m2 +ξR,

and x, y ∈ Σ.

(H +
i

2
G)(t, x; s, y) =

(
ei(t−s)

√
A

2
√
A

)
(x, y)

∫
dtdsdxdyf(t, x)

(
ei(t−s)

√
A

2
√
A

)
(x, y)f(s, y) =

∫
dtds〈f t,

ei(t−s)
√
A

2
√
A

fs〉,

⇒ 〈
∫
dt

e−it√
2
√
A
ft,

∫
ds

e−is√
2
√
A
fs〉 ≥ 0.

As an ansatz for Hadamard function, one can use

H =
u

σ
+ v lnσ,

where u, v ∈ C∞(M2), and σ is the “squared geodesic distance”: σ(x, y) =

±
(∫ t2

t1
dt
√
|g(γ̇, γ̇)|

)2

with γ being a geodesic from x to y and +, − signs de-

note time-like and space-like geodesics respectively. Note that this is well-definedd
on a geodesically convex set (every two points inside the set can be joined by a
unique geodesic).
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4.3. Functional formalism. In this section, we introduce the functional formu-
lation of field theory. The functional formalism makes the comparison of classical
and quantum theory more clear, and it opens up the possibility to compare the
algebraic and the path integral formulation of quantum mechanics. Moreover, the
functional formalism has the advantage that it is less abstract than algebraic one,
and makes it possible to do more concrete calculations; it is a concretization of al-
gebraic framework but still does not make use of the Hilbert space representation.
We begin with stating basic definitions.

Space of Field Configurations. We admit all field configuration φ ∈ C∞(M) which
are smooth functions of space-time (not necessarily solutions).

Functionals. Observables of the theory, made out of fields, can be represented as
functionals. They associate to each field configuration a number:

F (φ) =
N∑
n=0

∫
dx1 . . . dxnfn(x1, . . . , xn)φ(x1) . . . φ(xn).

Based on different choices for fn, we have the following types of functionals:

• F is called regular if fn ∈ D(Mn)symm
• F is called local if supp fn ⊂ diagn(M) = {(x, . . . , x) ∈Mn, x ∈M}

For example, consider the functional F (φ) =
∫
dxf(x)φ(x)2. This can be written

as
∫
dxdyf2(x, y)φ(x)φ(y), with f2(x, y) = f(x)δ(x − y) which has support only

where x = y, and hence F is a local functional.
Note that F can be both regular and normal only if n = 0 or n = 1.

?-product. We aim to construct the algebra of observables. To this end, we need
to introduce a notion of product on the space of functionals. Such a ?-product is
defined via,

(F1 ? F2)(φ) :=
∞∑
n=0

(
i~
2

)n
1

n!
〈δ

nF1

δφn
[φ], G⊗n

δnF2

δφn
[φ]〉 ,

with the notation,

〈δ
nF1

δφn
[φ], G⊗n

δnF2

δφn
[φ]〉 =

∫
dx1 . . . dxndy1 . . . dyn

δnF1[φ]

δφ(x1) . . . δφ(xn)

×G(x1, y1) . . . G(xn, yn)
δnF2[φ]

δφ(y1) . . . δφ(yn)
.
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δnF
δφn

[φ], the n-th functional derivative of F with respect to φ, is a distribution of

n variables, therefore must be evaluated at test functions of n variables:

〈δ
nF1

δφn
[φ], ψ⊗n〉 =

∫
dx1 . . . dxn

δnF (φ)

δφ(x1) . . . δφ(xn)
ψ(x1) . . . ψ(xn)

:=
dn

dλn
F (φ+ λψ)|λ=0.

Examples.

(1) Lets F be a regular functional of the form

F (φ) =

∫
dx1, . . . dxkf(x1, . . . xk)φ(x1) . . . φ(xk)

〈δ
nF1

δφn
[φ], ψ⊗n〉 =

dn

dλn
|λ=0

∫
dx1, . . . dxkf(x1, . . . xk)φ(x1 + λψ(x1)) . . . φ(xk + λψ(xk))

=
k∑
j=0

(
k

j

)∫
dx1 . . . dxkf(x1 . . . xk)φ(x1) . . . φ(xj)

×ψ(xj+1) . . . ψ(xk)
dn

dλ
λk−j|λ=0

=

(
k

n

)
n!

∫
dx1 . . . dxkf(x1 . . . xk)φ(x1) . . . φ(xk−n)ψ(xk−n+1) . . . ψ(xk).

(2) Lets calculate the ?-product of two functionals which are both regular and
local,

F1(φ) =

∫
dxf1(x)φ(x), F2(φ) =

∫
dxf2(x)φ(x)

(F1 ? F2)(φ) = F1(φ)F2(φ) +
i~
2
〈f1, Gf2〉 .

In order to show that the algebra of functionals generated by ?-product is the
algebra of observables, we must show that the ?-product is associative. Here, we
present two arguments to do so.

First argument: Define the Weyl functional W (f) by

W (f)[φ] = ei
∫
dxf(x)φ(x), f ∈ D(M).
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Then for this functional we have:

〈δW (f)

δφ
[φ], h〉 =

d

dλ
(W (f)(φ+ λh)) |λ=0

=
d

dλ
ei

∫
dxf(x)(φ(x)+λh(x))

λ=0

=

(
i

∫
dxf(x)h(x)

)
W (f)[φ].

〈δ
nW (f)

δφn
[φ], h⊗n〉 =

(
i

∫
dxf(x)h(x)

)n
W (f)[φ].

Inserting this into the ?-product formula, we find,

W (f) ? W (g) =
∞∑
n=0

(
i~
2

)n
(−1)n

n!
(dxdyG(x, y)g(y))n .W (f + g)

= e−
i~
2
〈f,Gg〉W (f + g),

which are precisely the Weyl relations defined in 2.1.1. Now the associativity of
?-product can be checked easily:

(W (f1) ? W (f2)) ? W (f3) = e−
i~
2

(〈f1,Gf2〉+〈f1+f2,Gf3〉)W (f1 + f2 + f3)

= W (f1) (W (f2) ? W (f3)) .

Weyl functionals generates all regular functionals; we can take the derivatives of
this functional with respect to test functions and get polynomials in φ. And all
such polynomials satisfy the associativity of product.

Second Argument: We can redefine the ?-product as:

F1 ? F2 = m ◦ eΓ(F1 ⊗ F2)

where,

• (F1 ⊗ F2)(φ1, φ2) := F1(φ1)F2(φ2)
• m(F1 ⊗ F2)(φ) := F1(φ)F2(φ) (pointwise product)
• Γ := i~

2

∫
dxdyG(x, y) δ

δφ(x)
⊗ δ

δφ(y)
≡ Γ12

To check the associativity, note that the Leibniz rule states

δ

δφ
◦m = m ◦

(
δ

δφ
⊗ id + id⊗ δ

δφ

)
Therefore,

Γ ◦ (m× id) = (m⊗ id) (Γ13 + Γ23) ,

and

eΓ ◦ (m× id) = (m⊗ id)e(Γ13+Γ23).
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Now we have,

(F1 ? F2) ? F3 = m ◦ eΓ(m ◦ eΓ ⊗ id)(F1 ⊗ F2 ⊗ F3)

= m ◦ (m⊗ id)e(Γ13+Γ23) ◦ eΓ12(F1 ⊗ F2 ⊗ F3)

= m ◦ (id⊗m)eΓ13 ◦ e(Γ23+Γ12)(F1 ⊗ F2 ⊗ F3)

= F1 ? (F2 ? F3).

What is the advantage of the functional formalism compared to the abstract
algebra of observables? There is one basic problem with the abstract algebra of
commutation relation, namely the most interesting observables, such as φ(x)2, are
not in this algebra, simply because such observables are singular. However, in
the functional formalism such objects are prototypes of local functional: F (φ) =
1
2

∫
dxf(x)φ(x)2. Nevertheless, the difficulty in working with such objects is now

manifest in defining the product of them:

F (φ) ? F (φ) = F (φ)F (φ) +
i~
2

∫
dxdyf(x)φ(x)f(y)φ(y)G(x, y)

+

(
i~
2

)2

.
1

2

∫
dxf(x)G(x, y)2f(y),

while G(x, y)2 is ill-defined. Circumventing such a problem is normally done by
representing the fields on a Fock space, decomposing them into annihilation and
creation operators, and applying the normal ordering prescription, meaning to
subtract the singular terms, which leads to the normal ordered fields. Apparently,
this method depends on the choice of the Fock space representation which in
general is not unique.

In order to overcome such pathological behavior in a general framework, we
can change the definition of ?-product in such a way that leads to an isomorphic
algebra. This can be done by using the Hadamard function in definition of product.

(F1 ?H F2)(φ) =
∞∑
n=0

〈δ
nF1

δφn
, (H +

i~
2
G)⊗n

δnF2

δφn
〉 ,

where H is the Hadamard function introduced in section 4.2. By methods discussed
above, one can check that ?H is associative as well. Below, we first prove that the
two algebras A = (Freg, ?) and A

′
= (Freg, ?H) are isomorphic, with Freg being

the space of regular functionals.

Theorem 6. ?H is equivalent to ?, i.e. there exists a linear isomorphism eγ :
Freg → Freg, such that eγ(F1 ? F2) = eγF1 ?H e

γF2.
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Proof. Take γ = ~
2

∫
dxdyH(x, y) δ2

δφ(x)δφ(y)
and γjk = ~

2

∫
dxdyH(x, y) δ2

δφj(x)δφk(y)
.

Then

F1 ?H F2 = eγ ◦m ◦ eΓ(e−γ ⊗ e−γ)(F1 ⊗ F2)

= m ◦ eγ11+γ12+γ21+γ22 ◦ eΓ ◦ e−γ11−γ22

= m ◦ e(2γ12+Γ)

= F1 ?H F2.

where we have made use of the symmetry of the Hadamard function in its argu-
ments which implies γ12 = γ21, and 2γ12 + Γ ≡ ~

∫
dxdy(H + i

2
G) δ2

δφ1(x)δφ2(y)
. �

We can now extend this product to local functionals.

Exercise 4. Show that the algebra generated by local functionals is independent of
the choice of H. In addition, show that ?H and ?H′ are equivalent on this algebra.

4.3.1. States. Recall that states of a theory associate to observables real numbers
which can be interpreted as the expectation value of measuring them. In func-
tional formulation of scalar field, observables are linear functionals of field, hence
using the star-product, we can construct different states satisfying its defining
conditions introduced in 2.2. There exists an interesting connection between the
new ?H-product and the notion of states. Since H + i

2
G is of positive type (i.e.∫

dxdyf(x)(H + i
2
G)(x, y)f(y) ≥ 0), it induces a scalar product on space of test

functions. Below, we introduce two types of such states .

Gaussian states. We define a state directly related to the Hadamard function as

ωH(F ) = F (0).

It satisfies:

(1) F 7→ ωH(F ) = F (0) is linear;
(2) ωH(1) = 1;

(3) ωH(F † ?H F ) =
∑∞

n=0
~n
n!
〈F (n)[0], (H + 1

2
G)⊗nF n[0]〉 ≥ 0.

This is very similar to states in classical physics which are the value of observ-
ables (functions of phase space) at a certain point of phase space. Such states
could not have been realized according to the original ?-product, since quantum
uncertainties avoid us of evaluating F at a specific value of fields. Such states are
indeed the Gaussian (quasi-free) states we have already encountered. To see this,
consider a Weyl function W (f) = exp?H (i

∫
dxf(x)φ(x)) defined with respect to

?H-product,

W (f)[φ] = e~γo exp? oe
−~γ(i

∫
dxf(x)φ(x))

= e~γo exp?(i

∫
dxf(x)φ(x)),
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where in the last step, we have used γ(i
∫
dxf(x)φ(x)) = 0. Now using the anti-

symmetry of G(x, y), we have:∫
dxφ(x)f(x) ?

∫
dyφ(y)f(y) =

∫
dxdyφ(x)f(x)φ(y)f(y) +

i~
2

∫
dxdyG(x, y)f(x)f(y)︸ ︷︷ ︸

0

,

and similarly for higher powers. Thus, we get

exp?

(
i

∫
dxφ(x)f(x)

)
=

∞∑
n=0

1

n!

(
i

∫
dxφ(x)f(x)

)?n
=

∞∑
n=0

1

n!

(
i

∫
dxφ(x)f(x)

)n
= exp

(
i

∫
dxφ(x)f(x)

)
.

This leads to,

ωH(W (f)) = e~γei
∫
dxf(x)φ(x)

φ=0

= e
1
2

∫
dxdyH(x,y)f(x)f(y),

which is a Gaussian state. Hence once we have chosen a suitable ?-product, the
Gaussian states will emerge naturally.

Coherent states. Let ψ be a real-valued solution of the Klein-Gordon equation.
Then,

ωH,ψ(F ) = F (ψ)

is called a coherent state. Acting on a Weyl functional, we have

ωH,ψ(W (f)) = e−
1
2

∫
dxdyH(x,y)f(x)f(y)+i

∫
dxf(x)ψ(x).

Now we want to see How Gaussian states change if we use another Hadamard
functional H

′
?

Consider H
′

= H + w be a different Hadamard functional, wehre w(x, y) is a
symmetric, smooth bi-solution. To see why w is smooth, we look at the wavefront
set WF (H

′ −H). Since H and H
′

are symmetric, WF (H
′ −H) is symmetric as

well.

WF (H
′

+−H+) ⊂ WF (H+)symm = {(x, k, x′ , k′) ∈ WF (G), k ∈ V+(x), k
′ ∈ V−(x)}symm = ∅,

and thus H
′ −H is smooth. Now we, have the isomorphism

eγw : aH′ → aH ,

with γw = 1
2

∫
dxdyw(x, y) δ2

δφ(x)δφ(y)
. Now, ωH′oe

γw is a state on aH ,

ωH′e
γw(F ) = (eγwF )(0)
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To check that H
′

is of positive type, a sufficient condition would be the positivity
of w. As a simple example of w, consider w(x, y) = ψ(x)ψ(y) with ψ being a real
valued smooth solution. Then,

ωH′ (W (f))ωH,ψ(W (f)) = e−
1
2

∫
dxdyH(x,y)f(x)f(y)+i

∫
dxf(x)ψ(x).

This observation has a generalization.

Exercise 5. Show that ωH can be obtained as a (continuous) convex combination
of the coherent states ωH,λψ, λ ∈ R:

ωH′ (W (f)) =

∫
dλh(λ)ωH,λψ(W (f))

This exercise shows that the Gaussian state can be written as a mixture of
coherent states.

5. Locally covariant field theory

5.1. Haag-Kastler axioms. After the great success of renormalization theory for
QED in the late 1940’ the difficulties in extending the theory to strong and weak
interactions motivated several attempts to formulate axioms for QFT. These ax-
ioms should summarize the essential properties a theory should have. Among these
systems of axioms are the LSZ (Lehmann-Symanzik-Zimmermann) framework by
which the S-matrix is expressed in terms of vacuum expectation values of time or-
dered products, the Wightman framework, which characterizes the quantum fields
(considered as operator valued distributions) by the vacuum expectation values of
their products (the so-called Wightman functions), and the Osterwalder-Schrader
axioms which were formulated somewhat later and characterize the theory in terms
of the analytic extension of Wightman functions to imaginary times (the so-called
Schwinger functions). More recently, mathematicians formulated axioms for 2d
conformal field theory and for topological field theory. The axiomatic system
which is best suited for the extension of the theory to curved spacetimes is the
algebraic framework which was developed by Haag, Araki, Schroer and Kastler
and was formalized in a programmatic paper by Haag and Kastler. Later it was
generalized to globally hyperbolic spacetimes by Dimock.

5.1.1. Algebras of local observables. Crucial for this approach is that the principle
of locality is incorporated in an new and very general way by just considering for
every bounded region of spacetime the algebra A(O) of observables which can be
measured within O. One may think of this algebra as the algebra generated by
fields ϕ(x) with x ∈ O but this plays no role for the general structure. A(O) is
assumed to be a unital C*-algebra.
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5.1.2. Isotony. Observables measurable in a regionO1 are also measurable in every
region O2 ⊃ O1. In the formalism this is incorporated by requiring the existence
of embeddings (i.e. injective homomorphisms) ιO2O1 : A(O1) → A(O2) with the
compatibility condition

ιO3O2 ◦ ιO2O1 = ιO3O1

if O1 ⊂ O2 ⊂ O3. The bounded regions form a directed set with respect to
inclusions (i.e. for two bounded regions there exists a third one containing both).
The system of algebras (A(O)) therefore is called a net, usually called the local
net or the Haag-Kastler net.

Given such a net, one can construct the algebra of all observables as a so-called
inductive limit of the net. Roughly speaking, the inductive limit is the completion
of the union of all local algebras. More precisely, the inductive limit of a net
of unital C*-algebras (Ai)i∈I where I is a directed set, is a unital C*-algebra A
together with embeddings ιi : Ai → A such that

ιi ◦ ιij = ιj

for i ≥ j and with the following universality condition: If B is another unital
C*-algebra with embeddings κi : Ai → B fulfilling κi ◦ ιij = κj for i ≥ j then there
exists an embedding κ : A→ B such that κi = κ ◦ ιi for all i ∈ I.

The universality condition guarantees that the inductive limit is unique up to
isomorphy, provided it exists.

The existence can be shown as follows: Consider sequences (Ai)i≥i0 with Ai ∈ Ai

and Ai = ιij(Aj) for i ≥ j ≥ i0. Consider sequences as equivalent if they coincide
for sufficiently large i. The classes of sequences get the structure of a unital *-
algebra by pointwise operations. The algebra is equipped with a unique C*-norm
||(Ai)i≥i0|| = ||Aj|| for some j ≥ i0 (the norm is independent of the choice of j since
the embeddings are norm preserving). The inductive limit is then the completion
A of this algebra. The embeddings ιi are given by

ιi(A)j = ιji(A) .

The universality condition is satisfied by setting κ((Ai)i≥i0) = κj(Aj) where the
right hand side is independent of the choice of j ≥ i0.

5.1.3. Covariance. Let G be the group of isometries of the spacetime which pre-
serve time orientation and orientation. Then there should be a representation α
of G by automorphisms of A such that

αg(A(O)) = A(gO)

One may wonder about the appropriate continuity condition on α. A natural
condition would be to require that the maps G 3 g 7→ αg(A) are continuous for all
A ∈ A (strong continuity). Unfortunately, it turns out, that this condition is not
satisfied in all examples of interest. Another condition would be that the maps G 3
g 7→ ω(αg(A)) are continuous for all A and all states ω (weak continuity). Even
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this condition is not always fulfilled. In typical cases one requires the continuity
only for a subset of states.

5.1.4. Einstein causality (local commutativity). According to the principles of rela-
tivity, no signal can travel faster than light. This is taken into account by requiring
that observables localized in spacelike separated regions commute. Sending a sig-
nal from a region O1 may be described by the application of a unitary U ∈ A(O1).
An observable A ∈ A(O2) is transformed by this operation to U∗AU . The axiom
then states that

U∗AU = A

if the regions O1 and O2 cannot be connected by a causal curve.
The anticommutativity of fermionic fields cannot be directly interpreted as a

consequence of causality. On the contrary, the argument for commutativity shows
that fermionic fields do not correspond to observables.

5.1.5. Timeslice axiom. Up to now there is no specification of dynamics. A weak
version of the existence of a dynamical law is the timeslice axiom. It states that
for a globally hyperbolic region O with a Cauchy surface Σ the observables in any
neigbourhood O1 of Σ already contain the information about the observables in
O,

A(O) ⊂ A(O1) .

5.1.6. Stability (spectrum condition). This is the only axiom which has no nat-
ural formulation on general spacetimes. On Minkowski space it says that there
exists a faithful representation π of A on some Hilbert space H and a unitary
strongly continuous representation U of the translation group on H such that
U(x)π(A)U(x)∗ = π ◦ αx(A) and such that the spectrum of U is contained in the
closed forward lightcone.

5.2. Local covariance. On a curved spacetime, there does not exist a meaningful
version of the spectrum condition. One may, however, find a weaker version in
terms of conditions on wave front sets. While this can be done for expectation
values of products of fields (”microlocal spectrum condition”), a purely algebraic
version is not known.

But also the covariance axiom is problematic since in the generic case the sym-
metry group is trivial. This turns out to be a problem when one wants to remove
singularities by renormalization. One would like to do the “same” subtraction
everywhere, but it is not clear how to formulate such a condition.

This problem was discussed e.g. by Wald for the definition of the energy mo-
mentum tensor. It became urgent when renormalization of interacting quantum
field theory was performed [BF2000]. It was solved by developing a new concept
for quantum field theory, termed local covariance.
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5.2.1. QFT as a functor. The basic ansatz is that one should no longer try to
formulate QFT on a specific spacetime. Instead, one should construct it simul-
taneously on all spacetimes of a given class by requiring appropriate coherence
conditions. The basic idea is that a globally hyperbolic subregion of a given space-
time should be considered as a spacetime in its own right. In particular, the
observables localized within this subregion should not depend on the fact that the
region is part of a larger spacetime.

In the formulation, one must be precise with the admissible embeddings of a
spacetime into another spacetime. When we embed a spacetime M isometrically
into another one N by means of χ, it is in general possible that two different points
x and y of a Cauchy surface of M can be connected by a causal curve γ in N . To
avoid such a situation, we require the embedding to be causality preserving, in the
sense that every causal curve γ in N connecting χ(x) and χ(y) must be contained
in χ(M).

We now want to formulate postulates a quantum field theory on generic globally
hyperbolic spacetimes should fulfil. We assume that to every contractible oriented
and time oriented globally hyperbolic spacetime M we can associate a unital C*-
algebra A(M). Moreover, if χ : M → N is an admissible embedding of manifolds,
i.e. it is isometric and orientation and causality preserving as described above, we
require the existence of an injective homomorphism αχ : A(M) → A(N). This
expresses the idea that measurements done within χ(M) cannot see any difference
to the corresponding measurements done in M . Moreover, if we first embed M
into N by a map χ and then N into L by ψ we require that the measurements in
the subregion ψ ◦χ(M) of L are unaffected by the split of the embedding into two
subsequent maps, hence we impose the condition

αψ◦χ = αψ ◦ αχ .

The structure described above is that of a functor between a category of spacetimes
Loc and a category of observable algebras Obs. The category of spacetimes has as
its objects the spacetimes with the properties listed above and as its morphisms
the admissible embeddings. The category of observable algebras has as its objects
unital C*-algebras and injective homomorphisms as its morphisms. A quantum
field theory is a functor

A : Loc→ Obs.

between these categories with the action Aχ = αχ on morphisms.
The functorial picture of quantum field theory generalizes the concept of a local

net of observable algebras. To see the connection we restrict our category Loc to
those objects which are subsets O of a given spacetime M such that the inclusions
ιMO are morphisms. We then define the local algebras by

AM(O) = αιMO(A(O))
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We first observe that the axiom of isotony is fulfilled. Namely, let O1 ⊂ O2 ⊂M .
Then

AM(O1) = αιMO1
(A(O1)) = αιMO2

◦ιO2O1
(A(O1))

= αιMO2
◦ αιO2O1

(A(O1)) ⊂ αιMO2
(A(O2)) = AM(O2)

While this was to be expected, it is somewhat surprising that also the axiom of
covariance is automatically satisfied. Let g ∈ G be a symmetry of M . Then g is
a morphism from M to M and αg is an automorphism of A(M). Moreover, the
functoriality of A implies that g 7→ αg is a group homomorphism. Let us now look
at the action of αg on the local subalgebras of A(M). Let O be an object in LocM .
Then

αg(AM(O)) = αg ◦ αιMO(A(O)) = αg◦ιMO(A(O)) = αιMgO◦g�O(A(O))

= αιMgO ◦ αg�O(A(O)) = αιMgO(A(gO)) = AM(gO)

The axiom of Einstein causality is related to a tensor structure of our functor.
Namely we extend the category Loc of spacetimes to finite disjoint unions. The
extended category Loc⊗ has a tensor (also called monoidal) structure, i.e. a bi-
functor

⊗ : Loc⊗ × Loc⊗ → Loc⊗

with ⊗(M,N) = M t N and χ ∈ Mor(M,N) if χ is a map from M → N such
that the restriction to a connected component of M is an admissible embedding
into one of the connected components of N and such that embedded components
within one component of N are mutually spacelike to each other.

The time slice axiom, implying the existence of dynamics, in this functorial
picture of QFT expresses the diffeomorphism invariance of the theory. To see
this, we look at the relative Cauchy evolution of two Cauchy surfaces Σ− and Σ+

embedded into spacetimesM1 andM2 by means of χi−, χi+ respectively for i = 1, 2.
The dynamics of χ1−(Σ−) as it evolves in M1 amounts to the automorphism

β = αχ1+ ◦ α−1
χ2+ ◦ αχ2− ◦ α−1

χ1− ∈ Aut(A(M1)).

In particular, a realization of such a situation could be a change in the metric of
M1:

M1 = (M, g),M2 = (M, g + h),

with h having sufficiently small support. Then, one can show that the change of
β = βh with respect to hµν is a covariantly conserved quantity:

∇µ

(
δβh
δhµν

)
= 0,

which reflects the fact that the automorphism βh is independent of the choice of
coordinates.
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5.2.2. Locally covariant QFT. Having formulated QFT on an arbitrary spacetime
as a functor, we now may define the concept of a locally covariant quantum field
A as a natural transformation between two functors:

A : D → A.

Here D : Loc→ Vec is a functor to the category of vector spaces which associates
to each spacetime its space of test functions and acts on morphisms as Dχ = χ∗,
where χ∗ denotes the pushforward of test functions. The requirement on A of being
a natural transformation means that there is for each spacetime M a quantum field
(i.e. an A(M)-valued distribution) AM , and these fields on different spacetimes
are related by the commutative diagram:

D(M)
AM−−−→ A(M)

χ∗

y yαχ
D(N)

AN−−−→ A(N)

.

This means

αχ(AM(f)) = AN(χ∗f),

or representing the distribution A by an integral A(f) =
∫
dxA(x)f(x),

αχ(AM(x)) = AN(χ(x)), x ∈M.

In Minkowski spacetime, one may insert for χ a Lorentz transformation. Then, the
above requirement simply stands for the covariance of scalar fields under Lorentz
transformations (with obvious generalizations for other types of fields). This means
that the notion of a locally covariant quantum field theory contains the usual notion
of fields transforming covariantly under some spacetime symmetry, however it still
makes sense even if there is no single symmetry. Using this new concept, we can
say what it means to have the “same” field on different spacetimes. In particular,
when we have two points on the same spacetime, which are not connected by any
symmetry, we can give meaning to having the same observation at both points.

5.3. Locally covariant free scalar field. We now reformulate the quantum
field theory of a free scalar field on generic spacetimes (discussed in Section 4) as
a functor. As the algebra of observables A(M), we choose the Weyl algebra WM

over the symplectic space (LM , σM), where LM = D(M)/PD(M), and σM(f, g) =
〈f,GMg〉. The superscript M on the commutator function GM indicates that it
is the difference between the unique retarded and advanced Green’s functions on
the spacetime M : GM = GM

R −GM
A .

Now consider the functor A : Loc→ Obs, with χ : M → N , χ ∈MorLoc(M,N),
and Aχ ≡ αχ : WM → WN , αχ ∈ MorObs(WM ,WN). The requirement of local
covariance takes the form

αχ(WM(f)) = WN(χ∗f),
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for f ∈ D(M).The condition above is in fact the requirement of a (nonlinear) nat-
ural transformation of D → A. We want to check whether αχ is a homomorphism,
i.e. to verify

αχ (WM(f1)WM(f2)) = αχ (WM(f1))αχ (WM(f2)) .

The left hand side reads

αχ

(
e−

i~
2
σM (f1,f2)WM(f1 + f2)

)
= e−

i~
2
σM (f1,f2)WN(χ∗f1 + χ∗f2),

while for the right hand side we get

WN(χ∗f1)WN(χ∗f2) = e−
i~
2
σN (χ∗f1,χ∗f2)WN(χ∗f1 + χ∗f2).

Thus we should show

〈f1, G
Mf2〉 = 〈χ∗f1, G

Nχ∗f2〉 .
As a result of uniqueness of GM,N , the following diagram is commutative:

D(M)
GM−−−→ E(M)

χ∗

y xχ∗
D(N)

GN−−−→ E(N)

.

Here E(M), E(N) are spaces of smooth functions on the respective spacetimes.
They are objects of the category of vector spaces Vec, and E is a contravariant
functor which acts on morphisms by pullbacks Eχ ≡ χ∗ : E(N)→ E(M), φ 7→ φ◦χ,
φ ∈ E(N) (in other words, the above commutative diagram can be seen as the
requirement of G being a natural transformation between D : Loc → Vec and
E : Locop → Vec). It leads to

GM = χ∗ ◦GN ◦ χ∗,
and consequently

〈f1, G
Mf2〉 = 〈f1, χ

∗ ◦GN ◦ χ∗f2〉
= 〈χ∗f1, G

Nχ∗f2〉 ,
as desired.

As discussed in Section 4.3, the algebra of the free scalar field can also be
constructed out of functionals on the configuration space C∞(M) equipped with
the ?-product as introduced in Section 4.3. Consider the spaces of all regular
functionals on M, F(M), as objects of the category of vector spaces Vec. F is
a functor F : Loc → Vec, Fχ ≡ αχ, (αχ(F ))(φ) = F (φ ◦ χ). The ?-products
associated to the different spacetimes fulfil the condition αχ(F1 ? F2) = αχ(F1) ?
αχ(F2) as follows from the above commutative diagram. Thus A = (F, ?) where
A(M) = (F(M), ? is a vector space equipped with the ?-product, is a functor to
the category Obs which satisfies all axioms of a locally covariant quantum field
theory up to the time slice axiom.
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5.3.1. Extended algebra. Recall that in order to define products of more singular
functionals, in particular on the nonlinear local functionals, we introduced a new
star product ?H , by means of a Hadamard function (see section 4.2). In the stan-
dard formulation of quantum field theory on Minkowski spacetime, this amounts
to normal ordering of the fields. Now, we intend to incorporate this in the locally
covariant formulation of a free scalar field.

Let H be a Hadamard function on N . Then, the corresponding Hadamard
function on M is

Hχ = χ∗ ◦H ◦ χ∗.
Therefore the following relation holds:

αχ
(
F1 ?Hχ F2

)
= αχ(F1) ?H αχ(F2).

But there are many Hadamard functions on a given spacetime. It is not possible
to choose on every spacetime M a Hadamard function HM in such a way that
HM = χ∗ ◦HN ◦ χ∗ holds for all admissible embeddings between spacetimes (i.e.
there is no natural Hadamard function).

This problem is directly related to the nonexistence of a vacuum. To circumvent
it we take a radical step and use all Hadamard functions.

Let F(M) be the set of consistent families of functionals on M , labeled by
Hadamard functions, i.e. F = (FH)H ∈ F(M), such that the consistency condition
FH′ = e

γ
H
′−HFH is satisfied (note that H

′−H is smooth). We define the ?-product
on F(M) by

(F1 ? F2)H = F1,H ?H F2,H

The product is again a consistent family, due to the equivalence between the ?H
products as discussed in Section 4.3. F becomes a functor by setting Fχ = αχ
with

αχ(F )H(φ) := FHχ(φ ◦ χ).

In this way we obtain a locally covariant quantum field theory where now also
the local functionals are included. In concrete calculations we usually work with a
specific Hadamard function. The formalism described above tells us what happens
if we change the Hadamard function.

References

[Di1980] J. Dimock, Algebras of local observables on a manifold, Commun. Math. Phys. 77 (1980)
219.

[H1957] R. Haag, Discussion des “axiome” et des propriétés asymptotiques d´une théorie des
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