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Summary

I Cosmological Scenario

I Semiclassical Einstein’s equation

I Stress-Energy Tensor regularization

I Solution with scalar conformal fields as sources

I Solution with massive fields as sources
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Cosmological scenario: geometry

I Physical input: Universe is homogeneous and isotropic.
Then FRW metric:

ds2 = −dt2 + a(t)2

(
dr2

1 + κr2
+ r2dΣ2

)
.

κ = 0 flat, κ = ±1 open or closed.

I recent observation: a(t) ' CeHt , and κ ' 0.

Solutions that have the FRW form.
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Cosmological scenario: matter

I We model Tab as a perfect fluid

Tab = ρuaub + P(gab + uaub).

Homogeneity and isotropy =⇒ u = ∂
∂t , ρ(t) and P(t)

I Einstein’s equations become FRW equations H = ȧa−1

3H2 = 8πρ− 3κ

a2
(1)

3Ḣ + 3H2 = −4π (ρ+ 3P) (2)

I Type of fluids: P = wρ and conservation equation
I Radiation: w = 1

3 , ρR ∼ a(t)−4

I Dust: w = 0, ρM ∼ a(t)−3

I Cosmological constant: w = −1 ρΛ = C
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Cosmological scenario: observation

I If we use this to model the present day observation:
I Radiation is not important.
I We look for a mixture of ρM and ρΛ

I To model CMB and Supernovae red-shift observation:

We have a problem

At the present time:
Energy density: ∼ 70% Dark Energy, ∼ 30% Matter.
Known matter: only ∼ 4%.

I Let’s try to see the role of quantum effects.
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Gravity: semiclassical approximation

I We would like to have a quantum theory of gravity.

I Too difficult.

I At least we would like to have a theory of backreaction.

I We try semiclassically.

Gab = 8π〈Tab〉.

I It should work in some regimes. As in atomic physics:
quantum mechanical electron with external classical field.
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Range of validity of semiclassical approximation

I A complete satisfactory semiclassical description is impossible.
(quantum matter is a source for gravity).

I It should be valid whenever quantum fluctuations are
negligible.

I In some models, backreaction is unavoidable: Particle
creation.
(Ex: black holes radiates)

I Are there quantum effects that can be seen?
I How is modified the vacuum energy?
I How can be treated the backreaction effects?
I Are they a small effect?
I What implication has the quantum origin of matter on the

solutions?
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Wald Axioms
In QM Tab are singular objects 〈Tab〉 → ∞.

We need a renormalization prescription for Tab on CST.

Wald axioms =⇒ meaningful semiclassical approx.
[Wald 77] [Wald 78]

(1.) It must agree with formal results for Tab

(For scalar: (Φ,TabΨ), can be found formally if (Φ,Ψ) = 0).

(2.) Regularization of Tab in Minkowski coincide with “normal
ordering”.

(3.) Conservation: ∇a〈Tab〉 = 0.

(4.) Causality: 〈Tab〉 at p depends only on J−(p).

(5.) Tab depends on derivatives of the metric up to the second
order (or third).
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Nice Environment

Problem:
How can we treat matter without fixing the spacetime?

I We can quantize simultaneously and coherently on all
spacetimes. [Brunetti Fredenhagen Verch 2003].

I Quantum Fields are particular observables that transform
suitably under isomorphisms.

I We need another ingredient:
“reference states” on every spacetime.

I Einstein’s eq.
I Consistency criterion.
I Selects particular elements in the category of local Manifolds.
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What we need to search for in a quantum theory

Instead of considering FRW equation we use the following.

−R = 8πT , ∇aTab = 0

I Up to some initial condition
(it remains the freedom of fixing a(t0) = a0).

I But it is simpler to perform quantum computations.
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Matter: Scalar free field theory

Equation of motion

P := −� + ξR + V , Pφ = 0 .

We will be interested in the case V = m2 and ξ = 1/6.
Stress-Energy Tensor:

Tab := ∂aφ∂bφ−
1

6
gab

(
∂cφ∂

cφ+ Vφ2
)
− ξ∇(a∂b)φ

2

+ξ

(
Rab −

R

6
gab

)
φ2 +

(
ξ − 1

6

)
gab�φ

2.

It differs by the usual one by terms of the form φPφ [Moretti 2003].
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Remarks on Tab

I Trace

T = −3

(
1

6
− ξ
)

�φ2 − Vφ2 ,

where we have used φPφ = 0 to simplify.

I Conservation equation

∇aT
a
b = −1

2
φ2∂bV .

I Classical Ambiguity: φPφ = 0

T ′ab = Tab + Cgab (φPφ+ Pφφ) .

I Tab can be written by means of balanced derivatives and
derivatives of the field φ2 [Buchholz Ojima Roos 2002].
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Quantum field theory
States become distribution,

I QFT described by n−point functions.
I Quasi free states ω described by the two-points function

ω2(x , y) = 〈φ(x)φ(y)〉

thought as distribution in D′(M ×M).
I Tab arises as an operation on ω2 and a coinciding point limit.
I It is not well defined...
I Quasifree states that possess Hadamard property

[Radzikowski 1995] [Brunetti Fredenhagen Köhler 1996]

WF(ω2) = {((x1, k1), (x2, k2)) ∈ T ∗M2/{0} : −Pγk2 = k1 > 0}

I Physically: The fluctuations of the field are always finite on
Hadamard states.
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Hadamard Two-points function

ω2 =
1

8π2

(
u

σε
+ v log σε + w

)
.

I u v w are smooth functions,

I u depends only upon the geometry via gab

I v depends upon gab, ξ and V

I w characterizes the state.

Some notations: σ is half of the square of the geodesic distance

v =
∑∞

n=0 vnσ
n [v ](x) = v(x , x)

The singular Structure H is fixed and does not depend on the state.
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Regularization of the two-points function
Regularization with point splitting: Minimal requirement.

〈φ(x)φ(y)〉ω := ω2(x , y)− H(x , y)

It reduces to normal ordering for flat spacetime.
Tab build on it. [Hollands Wald, Brunetti Fredenhagen Verch, Moretti]

8π2〈φPφ〉ω = 6[v1], 8π2〈(∇aφ)(Pφ)〉ω = 2∇a[v1]

Conservation equation for Tab are satisfied quantum mechanically

∇a〈T a
b〉ω = −1

2
〈φ2〉ω∂bV = −1

2

[w ]

8π2
∂bV

but unfortunately the trace is different from the classical one.

〈T 〉ω :=
2[v1]

8π2
+

(
−3

(
1

6
− ξ
)

�− V

)
[w ]

8π2
.
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Some computations.......

with V = m2

2[v1] =
1

360

(
CijklC

ijkl + RijR
ij − R2

3
+ �R

)
+

1

4

(
1

6
− ξ
)2

R2+

+
m4

4
− 1

2

(
1

6
− ξ
)

m2R +
1

12

(
1

6
− ξ
)

�R.
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Remaining freedom
In the trace c�R. Wald’s fifth axiom does not hold!

I We can add conserved tensors tab build out of curvature only.

I It must behave as Tab under “scale” transformations.

I Some possibilities arises from the variation of

tab =
δ

δgab
C

∫ √
gR2 + D

∫ √
gRabR

ab

I ta
a = α�R

I We use this freedom to cancel the �R term from 〈T 〉.
Wald’s fifth axiom partially holds for 〈T ′ab〉 = 〈Tab〉 − ctab

f (R) gravity .....
NB: tab alone does not guaranty stable solutions.
[Cognola Elizalde Odintsov Zerbini 05, Cognola Zerbini 06]
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Equation of the universe
Assuming κ = 0, we write the equation −R = 8π〈T 〉 as follows

−6
(
Ḣ + 2H2

)
= 8πG

(
−3

(
1

6
− ξ
)

�−m2

)
〈φ2〉ω+

+
G

π

(
− 1

30

(
ḢH2 + H4

)
+ 9

(
1

6
− ξ
)2 (

Ḣ2 + 4H2Ḣ + 4H4
))

+
G

π

(
m4

4
− 3

(
1

6
− ξ
)

m2
(
Ḣ + 2H2

))
If ξ = 1/6, namely for the conformal coupling it simplifies a lot:

−6
(
Ḣ + 2H2

)
= −8πGm2〈φ2〉ω +

G

π

(
− 1

30

(
ḢH2 + H4

)
+

m4

4

)
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Conformal invariant theory

If ξ = 1
6 , m2 = 0, the equation does not depend on the state.

Ḣ

(
H2 − H2

c

2

)
= −H4 + H2

c H2, H2
c =

360π

G

H2 = H2
c and H2 = 0 are solutions (de Sitter, Minkowksi).

They are both stable as seen by the full solution

Ce4t = e2/H

∣∣∣∣H + Hc

H − Hc

∣∣∣∣1/Hc

I It is as in the Starobinsky model but now with stable de
Sitter. [Starobinsky 80, Vilenkin 85]
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Clearly H = 0 and H = Hc = H+ are stable solutions.

0 1 2

1

2

H/H+

t H+

I H = Hc is order of magnitude to big to describe the present
expansion velocity of the universe.

I Two fixed points instead of one, a length scale is introduced
(proportional to G ).
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Particle horizon
R+ × Σ, in t0 singularity. τ =

∫ t1

t
dt

a(t) Where is τ(t0)?

ds2 = −dt2 + a2dx2 ds2 = a2
(
−dτ2 + dx2

)
Maximal comoving distance (if c = 1) it is τ .

I Radiation dominated:
τ = τ0 − A(t − t0)1/2 → τ0

for t → t0

I Matter dominated:
τ = τ0 − A(t − t0)1/3 → τ0

for t → t0

I ρ = 1/a(t)2

τ = τ0 − log(t − t0)→ −∞
for t → t0
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Massive model
Important: The quantum states enter in the equation.
〈φ2〉 = [w ]

8π2 + Am2 + BR. We assume [w ] = 0.

Ḣ
(
H2 − H2

0

)
= −H4 + 2H2

0H2 + M

where H0 and M are two constants with the following values

H2
0 =

180π

G
− B, M =

15

2
m4 − 240π2m4A

At most two fixed point (de Sitter phases)

H2
± = H2

0 ±
√

H4
0 + M,

they appear to be both stable.
We want to have Minkowski H− = 0, =⇒ A = (32π2)−1.
Freedom in m and B to “Fine tune” H+.
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0 1 2

1

2

H/H+

t H+

I H+ can be made small by suitable choices of m2 and A,B

I It could model dark energy.

I Quantum effects are hardly negligible.

I Smooth exit form rapid expansion in the past. [Shapiro Sola 02]
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Massive models and adiabatic vacuum 〈φ2〉

On the Bunch-Davies state in dS 〈φ2〉 is a constant.

We would like to choose “ground states”.

Impossible. Adiabatic states, have similar properties.
[Parker, Parker and Fulling, Lüders Roberts, Junker Schrohe, Olbermann]

I Minimize the particle creation rate. [Parker]

I Are states of minimal energy in the sense of Fewster.
[Olbermann]

I They can be thought as approximated ground states.

Let’s see how they are constructed.
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Two-points function
We consider ξ = 1/6, we use the conformal time:

τ =

∫
dt

a(t)
, f ′(τ) = a(τ)ḟ (τ)

Two-points function:

ω(x1, x2) =
1

8π3

1

a(τ1)a(τ2)

∫
d3kTk(τ1)Tk(τ2)e ik·(x1−x2);

with

T ′′k + k2Tk + m2a(τ)2Tk = 0, TkT ′k − TkTk
′

= i .

WKB approximation:

Tk(τ) =
1√

2Ωk(τ)
e
i

R τ
τ0

Ωk (τ ′)dτ ′
.
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Recursive relations

Then Ω2
k must satisfy the following equation

Ω2
k = k2 + m2a(τ)2 +

5

16

(
(Ω2

k)′

Ω2
k

)2

− 1

4

(Ω2
k)′′

Ω2
k

Recursively Ω
(0)
k

2
= k2 + m2a(τ)2 and Ω

(n+1)
k plugging Ω

(n)
k on the

right.

The approx. two-point function is ω
(n)
2 (x , y) is found using Ω

(n)
k .

〈φ2〉(n)(x) = lim
y→x

(ω
(n)
2 (x , y)− H(x , y)) + α′′R + β′′m2

ω(n) becomes closer to an Hadamard state n→∞.
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The expectation value of 〈φ2〉

If Ω(n)2 ≥ 0

〈φ2〉(n) =
1

4π2 a(τ)2

∫ ∞
0

dk k2

(
1

Ω
(n)
k (τ)

− 1

Ω
(0)
k (τ)

)
+α′R+β′m2.

Problem: we have a good control only in the k >> 1.
We expand the integral in powers of 1/m2

〈φ2〉(n) = αm2 + βR + O

(
1

m2

)
The regime m2 >> R is what we need. If m = 1GeV m2

R ∼ 1082
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Summary
I Semiclassical solutions of Einstein’s equation.

I The solutions depend upon the quantum states.

I The de Sitter phases could be stable only fixing the
renormalization freedom.

I That solution shows a phase of rapid expansion at the
beginning.

Open Questions
I How can we choose a nicer state?

I Fluctuations?

I Connection with f (R) gravity?

I Origin of R2 terms in the action? An hint on quantum
gravity?
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