Geometrical torque on magnetic moments coupled to a correlated antiferromagnet
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Section A: SO(2) symmetry analysis. The retarded

spin susceptibility is defined as

Xiit,aar (t) = —iO()([sia(t), si7a(0)]) , (7)

where © is the step function, s;,(t) = e'feits; e et
and (---) is the ground-state expectation value. Fourier
transformation to frequency space yields the Lehmann

representation in terms of an energy eigenbasis {|¥,,)}:

5 <<wosm|wn><wn|si/af|%>

w+in— (B, — Ep)

Xii! et (W) =

n

(Po[sira/|Un)(Vn|sia| Vo) (8)
w+i77_(E0_En) .

We have the relation xii/ aa'(W)* = Xii/,aa’(—w). The

spectral density —(1/m)Imx;ir 0o’ (W) = Xiv,aa (W) —

Xii', o (—w) /21 is an antisymmetric function of w.

In the AF phase with order parameter m = me,,
there is a remaining SO(2) symmetry of the nonde-
generate energy eigenstates under spin rotations around
e., which is unitarily represented by Ur = e #Stots¥
on the Fock space with the z-component of the total
spin Stot = »_; 8; as the unbroken generator and the
rotation angle ¢. We have Uf|¥,) = ¢ |¥,) with
phases ¢,. Since s; is a vector operator, we have
Uf;smUR = Zﬁ Ropsig, where R = R(yp) is the stan-
dard real 3 x 3 matrix representation of SO(2) rota-
tions around e,. Hence, the first matrix element in
Eq. (4) can be written as <\IIO\URU1];SMURU1];|\I'"> =
PP Rap(p)et® (Ug|s;5|W,)e~ . The phase factors can-
cel with those from the second matrix element, and we
thus find: Xii aar (W) = Zﬁg/ Rap(@)Xii g (W)Rg/a/(w),
Le, [x,, (W), R(p)] = 0 for all i,i" and ¢. It is easily ver-

ified directly that this implies

Xiitwx (W) Xiit oy (W) 0
X, (@) = | —Xiit,ay (W) Xiit,wa (W) 0 . (9)
0 0 Xii’,zz(w>

i.e., there are only 3 independent entries for each pair
1,4 (note that R is reducible, and furthermore Schur’s
lemma does not apply to representations over R).

(

Section B: Spatial symmetries. With Eq. (8), we im-
mediately see that the spin-Berry curvature is related to
the spin susceptibility via

.5 0
Qmm’,aa/ = _'LJZ%Ximim/,aa’ (w) i (10)
up to correction terms of order J3, see Eq. (5). Therefore,
the same reasoning as above can be applied to the spin-
Berry curvature tensor and yields the same result for its
structure:

Qmm’ ,TT Qmm’ ,TY 0
Qmm/ = _Qmm’,zy Qmm’,xw 0 . (11)
0 0 Qmm’,zz

In addition, for a given pair of sites i,, and i,,,, we may
consider a combined transformation 7T o I, composed of
the space inversion R; — R;, — R; with respect to iy,
followed by the translation R; — R;+(R;,, —R; ,) with
the translation vector R;,  —R; ,. Tol is a discrete sym-
metry of the hypercubic lattice and interchanges i, with
ims. This implies that the Hamiltonian commutes with
the standard unitary (and also Hermitian) representation
Uriof Tol.

For i, and 4,, in the same sublattice, the symmetry-
broken ground state is an eigenstate of Ury as well. Anal-
ogously to the SO(2) spin-rotation symmetry discussed
above, we can thus immediately see from the analy-
sis of the matrix elements in Eq. (4) that Qum/ aa =
Qp/m,aa- For the spin-Berry curvature we have the ad-
ditional antisymmetry, Qmm/ .a0r = —m/m,a’a, Which
follows from Eq. (3). With this we get Qmm/aer =
—Qm’ o’a, 1.€., for each pair m, m/, the spin-Berry cur-
vature tensor is antisymmetric in the indices «a, o’ sep-
arately. Hence, with Eq. (11), we see that only the el-
ements Qpm/ 2y = —mm’ ye can be nonzero. Analo-
gously, for the spin susceptibility, the T o I symmetry of
the Hamiltonian implies X/ ao/ (W) = Xiri,aa (w). With
the additional symmetry, Xii'.aa’(0) = Xi'i,a’a(0), which
follows from Eq. (8), this implies that the susceptibility
matrix Eq. (9) is diagonal for w = 0.

For i,, and i,/ in different sublattices, we concatenate
the transformation T oI with a flip F' of the z-component
of all spins. This is unitarily represented by U, which is



defined via Uf;chF =¢;, and U;CNUF = ci+. We have
[Ur,Ur1] = 0 and [Up, Hy] = 0. The symmetry-broken
ground state and the corresponding excited states are
eigenstates of U = UriUr. Hence, we find for the a = o’
matrix elements

<\I/0|5ima|\pn> <\Ijn|5i,m/a|l110>
(Wo|UT 84, oUW ) (T, |UTs; o U[W0)

= <\I/O|Sim/oz‘\Pn><\1/n|5ima|\1]0>; (12)
and thus Qm’ aa = Qmim,ae. With the antisymmetry
of the full tensor, Qpmm’.aa’ = —Qm'm,a’a, We thus find
Qpm’ . aa = 0. On the other hand,

(Wol8i,,2[Vn)(Wnlsi, y|¥o)

= (Uo|UTs;, U0, ) (U, |UTs; ,, U|Wo)

= *<\IIO|Si,,,L/z|\Ijn><\Iln|51'my|\110>7 (13)
since UlismUF = s;, but U]:LsiyUF = —s;y. This implies
Qi 2y = —Qm/m,zy, and with the antisymmetry of the

full tensor we find Qs 2y = Qs ye- Together with
Eq. (11), we see that Qp,m/ 2y = 0, and hence the matrix
Q. =0in Eq. (11).

Summing up, for arbitrary sites i,, and i,,» we have

0 Q0
Qe =1-200]|, (14)
0 00

and hence the spin-Berry curvature is fixed by a single
real number @ = Qs oy = Qnm,ay- Furthermore, 2 =
0 if 4., 7y belong to different sublattices.

Section C: Random phase approzimation. The ran-
dom phase approximation (RPA) represents a standard
weak-coupling approach to the magnetic susceptibility,
see, e.g., Refs. 41, 42. Tt can be motivated in various
ways, for example, via a partial diagrammatic summa-
tion. In general, the RPA Luttinger-Ward functional
®[G] [43, 44] is given as the sum of the two closed and
self-consistently renormalized first-order diagrams, i.e.,
by the Hartree and the Fock diagram. For the Hubbard
model the Fock diagram vanishes such that we are left
with

1
(I)[G] =U Z @ Z Gii’T(iwn)Giw(iwn/) . (15)

Here, i runs over the sites of the hypercubic lattice,
o =1,] refers to the spin projection relative to the z
axis, n labels the fermionic Matsubara frequencies iwy,
and S is the inverse temperature. Computations are
done in the zero-temperature limit 1/8 — 0, which is
taken at the end. Furthermore, G;; , denotes the local
one-particle Green’s function at site ¢ in the symmetry-
broken AF state, as obtained within the self-consistent

Hartree-Fock approximation. The Hartree-Fock self-
energy is generated by the Luttinger-Ward functional:
Sii o (iwn) = BO®/6G 0 (iwyn,) = UB™EY G —o (iwy,) =
U(c}_aci_c,).

On the two-particle level, the RPA yields a local and
frequency-independent irreducible vertex

R
. . ) _
(leH tn ) N ﬁ 6Gii,—a(iwn)(SGii,o(iwn’) U .
(16)

This means that there is no feedback of two-particle cor-
relations on the single-particle Green’s function. The
structureless vertex allows us to easily get the transver-
sal magnetic susceptibility X,s+— (k,w) = ((s] ;5. ))w
as the solution of a strongly simplified Bethe—Salpéther
equation in the particle-hole channel:

F(loc)

o,—0

X+7(k,iz/n) = Xf),(k’ W) +X(+O)7(k,i1/n)UX+7(k,i1/n) .
(17)

Here, X, is a 2 X 2 matrix in the sublattice degrees of

freedom, and X(Ol the bare susceptibility matrix, which
is computed with the Hartree-Fock one-particle propa-
gators. The equation is diagonal in the wave vectors k
of the first magnetic Brillouin zone and in the bosonic
Matsubara frequencies iv,. The transversal susceptibil-
ity x4— is related to the susceptibility tensor xqos in-
troduced in Egs. (7) and (8), via x4— = 2(Xzz — iXay)-
From the renormalized zeroth-order diagram, we get the
Hartree-Fock susceptibility in Eq. (17) as

. -11 .
Xf’g)pkf (k? ZVTL) = T E Z Gsr7T(q, an')
q,n’

X Grs, (q+k,ivy, +iwy ). (18)

After performing the summation over the fermionic fre-
quencies iw, analytically, we can replace iv,, — v + in
to find the retarded susceptibility on the real-frequency
axis. The frequency derivative in Eq. (10) is done nu-
merically. In the thermodynamical limit, the g sum over
the magnetic Brillouin zone in Eq. (18) can be converted
into a g-space integration. The latter is computed in
two or three dimensions via a standard adaptive g-space
integration technique for arbitrary v € R and for each
allowed wave vector k in the magnetic Brillouin zone of
a finite lattice with L sites and periodic boundary condi-
tions. Practical computations are performed at a finite
Lorentzian broadening parameter > 0 replacing the
infinitesimal 77, and convergence with respect to L is con-
trolled by runs for different system sizes L. The main
numerical error is due to extrapolation of the data for
n — 0.

Section D: Magnon spectrum of an antiferromagnet.
In the strong-U limit of the Hubbard model, the low-



energy physics is captured by the s = 1/2 antiferromag-
netic Heisenberg model

1
H:JHZ(2( S+ sy sh) + Asts ) (19)
(ig)
with Jg = 4t?/U and A = 1. An anisotropy parameter
A > 1 can be used to discuss the effect of opening a gap
in the dispersion. The sum runs over all nearest-neighbor
pairs (ij).

We apply the standard Holstein-Primakoff transfoma-
tion for the model on the bipartite hypercubic lattice
with dimension D. For sites ¢ in sublattice A, the spin
operators are expressed in terms of bosonic annihilators
and creators, i.e.,

w

5] = aal,
s = V2sy/1—

- = V2sa 1—— 20
S’L 25 ( )
while for sites j € B
§% = —s+bib;
J 773

+ toly M
s; = V2sb; 1—%,

57 = V2s —%bj. (21)

The transformed Hamiltonian reads
L
H = JHSZ a;b; —l—aTbJr + A(a) al—l—bTb )]—5;7;JHAS2

(22)
where z = 2D is the coordination number, and L is
the number of lattice sites. Quartic and higher-order
magnon interaction terms resulting for the expansion of
the square root have been disregarded.

We drop the additive energy constant and block-
diagonalize H via Fourier transformation:
—ikR

ikR; bk

a; = ‘ag, by =

1 1

(23)

Here, R; are the translation vectors of the magnetic A
sublattice (the same for R; and the B sublattice), con-
sisting of L/2 unit cells, and k is an allowed wave vec-
tor of the first magnetic Brillouin zone (mBz). Defining
k = »_scos(kd) with nearest-neighbor vectors d, the
Fourier-transformed model reads as

H= JHSZ Vi (arbr + bkak) + zA(akak + b KOr)] (24)

and can be diagonalized by Bogoliubov transformation
ak = upok + vRBL, bk = ugfr + vkal, (25)
with real coefficients ug and vg. We require

up —vi =1, (26)

to ensure that ag and [ satisfy bosonic commutation
relations, as well as

22 Augvy + (Ui + Vi) 20 , (27)

as usual, to get the Hamiltonian to the form
H = Jgs Z w
k

where we again dropped an unimportant constant energy
term. The magnon spectrum consists of two degenerate
branches with dispersion Jysw(k) given by

k)(afax + BL6k) (28)

k) = \/(zA) =% =

2
22A? — (Z cos(k6)>
5

(29)
Close to k = 0 and in the isotropic case A = 1, the
dispersion Jysw(k) is linear,

w(k) = 2V Dk + O(k?), (30)

while for A > 1 the spectrum is gapped, and w(k) =
25VA? — 1+ O(k?).

From the conditions Eq. (26) and Eq. (27), we can
deduce the well-known results

2 1 zA +1 1 ( zA N 1)
§ 2 (zA)% — 2 2 \w(k) ’

2 _ 1 A \_1(#8 _
kT3 ( R 1) =3 (aw 1) 0
and
_ Tk _
UV = 5 (zA)Q — 7,3 — 20.)(’(1) ’ (32)

see Refs. 47, 48.

Section E: Computing the spin-Berry curvature from
the magnon Hamiltonian. The contribution of the
magnon excitations to the spin-Berry curvature is ob-
tained from

(0ls7,

k,n)(k,nls2",|0)
(Eo — Ei)? ’
(33)

Tm

Qmm’,aa’ = —2J2IH1 Z

k,n=1,2



where |k, 1) = a,UO) and |k,2) = B,UO} are the single-
magnon states. Following Eq. (14), it is sufficient to
compute Qs = Qnm’ ay = —Qmm’ yz- Furthermore,
Qunme # 0 only for 4, and i, in the same sublattice, as
also argued in section B. Expressing the spin components
in terms of the Bogoliubov operators,

s:r = \/7 Z e ZkR’ (upag + vkﬁ;i)
57 = P Z e* B (upal + vk B)
s;r = \/7 Z e kR ukﬁ;g + V)

5, = Z R (ug, By, + vgal),  (34)

F

we find
(Ol ke, 1) (ke 1]s[0) = iFue*OR—R),
S
(0]s%|k, 2) (K, 2|s%]0) = sz,Zelk(R ~Ro) o (35)
for 7, ¢ in sublattice A, and
(0]% |k, 1) (k, 1]5%]0) = i%vze—wRJ—Rm
(0]% |k, 2) (k, 2]5%|0) = zzuiem(R “R;) (36)

for j, 7/ in sublattice B. This implies

Im >~ (0]s? |k, 1) (k. nls4[0) = = cos(k(R; — Ryr))

L
n=1,2
. s
Imz (O[5 ke, ) (K, m|s5,]0) = —Zcos(k(Rj R;))
n=1,2
(37)

and finally we get

1 J? 2 2B cos( lm - Ri )
>

Qmm’
s J2

;o (38)

where the upper sign refers to 4,,, i,,» in sublattice A and
the lower for 4,,,i,, in sublattice B. Recall that $2,,,,,,, =
0 if %, 2y belong to different sublattices.
Eq. (38) can be evaluated numerically. For D = 3, for
example, we find
2
—0.084J—2 (39)
Jh

Qloc ~

for the local element of the SBC with 4,, = 7,, in sub-
lattice A.

Section F: Different dimensions and distance depen-
dence. In the thermodynamic limit L — oo (and in the
isotropic case A = 1), the convergence of the resulting
integral in Eq. (38) over the magnetic Brillouin zone de-
cisively depends on the lattice dimension D. We consider
the critical contribution of the long-wave-length magnons
by integrating over a D-dimensional ball around k = 0
with small cutoff radius k., such that we can make use of
Eq. (30), i.e., of the linearity and isotropy of the magnon
dispersion for k£ — O:

ke ke
© 1
. D—1 . D—1
Qe Il% : dk k (k) o ;PL% i dk k R
(40)

This yields

kP=2 for D >3
for D =2 . (41)
1/k for D=1

Qmm/ ~ Ink

For k — 0, the spin-Berry curvature diverges for D = 1
and D = 2. We conclude that a meaningful theory is
obtained in dimensions D > 3 only.

The magnitude of the spin-Berry curvature decreases
with increasing distance R = R;,, — R; ,. For D > 3
its dependence in the large-R limit is governed by long-
wave-length magnon excitations, and we have:

kC
o /0 dk kP! / dﬁicos(kffose)7 (42)

where [ d) denotes the surface integral over the (D —1)-
dimensional unit sphere, and 6 the angle between k and
R. Furthermore, we made use of Eq. (30) for k smaller
than the cutoff k.. We note that the distance dependence
at large R is isotropic. Substituting kR — k in the one-
dimensional k integral immediately yields

1
RD-2 '

For D = 3, we have Q(R) « 1/R. In the infinite-D limit,
we expect a local spin-Berry curvature

To compute the local element m = m’ of the spin-
Berry curvature Eq. (38) in this limit, we start from the
representation

Q(R) o (43)

1J? 1

2 d -
SJ}21 [m xPD(x)ZgAQ_ T

Qloc: D PR

(44)

where, for dimension D, we have defined the density func-
tion

mBz

2N s —w/VD),  (49)

k

pp(x) =

and where we have used Eq. (29). We have z = 2D for the
D-dimensional hypercubic lattice and, in the Heisenberg



limit of the Hubbard model, Jg = 4t/U = 4t*2/DU,
when using the scaling t = t*/\/ﬁ with t* = const. In the
limit D — oo, this scaling of the hopping ensures that the
kinetic energy of the Hubbard model remains nontrivial
and balances the interaction term [59]. Moreover, the
density function converges to a Gaussian [59]:

po(e) = o) = e (<) . 6)

In the Heisenberg limit and with the scaled hopping, we
thus have

Qloc(D) -

1J2U? /:’o ; dxpp(x) (47)

s 1664 A2 —g2/D’
which for D — oo, and assuming s = 1/2 and A = 1

converges to

1
32t*4

Qpoe(00) = U2 (48)
This represents the mean-field value of the (lcoal) spin-

Berry curvature in the antiferromagnetic state at large
U.

Section G: Spin dynamics.

To compare with the result obtained for D = 3, we
must use the same scaling of the hopping. This yields
J2U?
16t*4

Moc(3) = —0.084 D? ~ 1.51-Q(c0).  (49)

D=3

For lattice dimensions D > 3 we find: Qoc(4) =~
1.220(00), Qoc(5) = 1.162(00), Doc(6) ~ 1.120Q(c0).
Hence, given the standard scaling of the hopping with
D, the absolute value of Qo.(D) increases with decreas-
ing D and finally, for D = 2 diverges.

Finally, when addressing the dimensional crossover
[61-63], we consider the Heisenberg model given by
Eq. (19) again, but with spatially anisotropic nearest-
neighbor exchange couplings Jg = Jux = Juy > Ju,z-
Proceeding analogously to Sec. C, one ends up with a
modified magnon dispersion only:

wik) = \/(zerd)2 =7 (50)
Here, we have defined an effective coordination number
Zef = 2(Jux + Juy + Ju.)/Jux. Furthermore, v, :=
2(Ju,x cos kg + Ju,y cosky + Ju,cos ks )/ Ju x.

The equations of motion Eq. (1) for the classical spins comprise the conventional
(Hamiltonian) and the geometrical spin torque, see Eq. (2).

In the weak-J limit, the former results from the local

direct exchange J as well as from the indirect RKKY-type exchange. We have:

Sm = J<8im>(0) X Sm + Jzzxi i l(O)Sm’ X Sm + Z Z Qm’m,,a’a(s)sm’a’ea X Sm ) (51)

where (...

a m'a’

)(0) denotes the expectation value at J = 0. For the non-vanishing components of the spin susceptibility
and of the spin-Berry curvature on sublattice A we have

2A 2 X cos kE(R,— R;)

Xiit = Xiit za(0) = Xiir 4y (0) = "L a w(k)? (52)
and
2 o mBz R
s%wzammw=4mwwz_i%z%fmwfayEWX (53)
Specializing Eq. (51) for M = 1, i.e., for a single classical spin, we get
S1 =T x S + Quile. x 81) x S, (54)
where
T = J(5:,)© + Ixii (€2 x Si) X € (55)
With
o T T
CE i U __ji§1> (56)
- T o



6

the cross product can be written as a matrix-vector product, TgH) xS = IgH)S 1, and the equation of motion reads:
. 1

S =——71Wg, (57)

The classical spin undergoes a purely precessional dynamics around the z axis, but with a renormalized precession
frequency. The renormalization is due to the local spin-Berry curvature ), = €11 and is the strongest for 2, = O(1).
Right at Qo = 1/S51,, the precession frequency diverges. This implies that the spin dynamics is no longer adiabatic
and the theory breaks down.

In case of two classical spins, M = 2, the equations of motion (51) can be cast into the form

S, = TgH) x S +T§ge°) x 81,
Sy = T x S+ TE) x 8, (58)
where
T = J(s:)© + J2xi0, (€2 x 1) x e + T2 xiip (€2 x S2) x e,
TéH) = J(5,) 0 + J%xi,0, (€2 X S3) X €, + J*xiyi, (e2 X 81) x e . (59)
and

ngeo) = Qll(ez X Sl) X Sl + QlQ(ez X S2) X Sl
TE) = Qyy(e. x §) X S+ Qe x §1) x Sy . (60)

Here, we have assumed that the two spins couple to sites in the same sublattice, as otherwise the spin-Berry curvature
vanishes. The local spin-Berry curvature term can be treated in the same way as in the M = 1 case, while the nonlocal
term can be written as a matrix-vector product:

(1—9Q41512)81 TSH) x 81— Q12A§Z)Sz ,

(1 — QQQSQZ)SQ = TéH) X SQ — ngAgZ)Sl s (61)
with
—Smz 0 0
A9 = 0 -S,.0]. (62)
Sma Smy 0

This allows us to cast the equations of motion into an explicit system of ordinary differential equations:

Sl -1 T(H) X Sl
. =M ! . 63
(52) <T§H> x Sy (63)
Here, the 6 x 6 matrix

o (]. — Qllslz)l QlQA(1Z) > (64)

B ( Q12Aéz) (1 —Q9255,)1

is given in terms of the components of the spin-Berry curvature tensor. Eq. (63) demonstrates that the effect of the
geometrical spin torque is not simply additive and hence does not directly compete with the conventional spin torque,
but enters the spin dynamics as a multiplicative (matrix) factor.

The determinant of M can be computed analytically:

det M = (]. — QHSlZ)(l — QHSQZ) [(1 — 911512)(1 — QQQSQZ) — 9%2512522}2 . (65)

The theory breaks down if det M = 0. We consider det M as a function of the local elements ), = 211 = (35 and
assume that the nonlocal elements are small, Q,onloc = |Q12] € Qioe. We immediately see that the zeros of det M are
of the order of unity. This implies that anomalous spin dynamics, which is substantially affected by the geometrical

spin torque, is expected if Q1o = O(1) and thus close to, but yet different from the zeros of M.
[
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