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Section A: SO(2) symmetry analysis. The retarded
spin susceptibility is defined as

�ii0,↵↵0(t) = �i⇥(t)h[si↵(t), si0↵0(0)]i , (7)

where ⇥ is the step function, si↵(t) = e
iHeltsi↵e

�iHelt,
and h· · · i is the ground-state expectation value. Fourier
transformation to frequency space yields the Lehmann
representation in terms of an energy eigenbasis {| ni}:

�ii0,↵↵0(!) =
X

n

 
h 0|si↵| nih n|si0↵0 | 0i

! + i⌘ � (En � E0)

�
h 0|si0↵0 | nih n|si↵| 0i

! + i⌘ � (E0 � En)

!
. (8)

We have the relation �ii0,↵↵0(!)⇤ = �ii0,↵↵0(�!). The
spectral density �(1/⇡)Im�ii0,↵↵0(!) = �ii0,↵↵0(!) �

�ii0,↵↵0(�!)/2i is an antisymmetric function of !.
In the AF phase with order parameter m = mez,

there is a remaining SO(2) symmetry of the nonde-
generate energy eigenstates under spin rotations around
ez, which is unitarily represented by UR = e

�istot,z'

on the Fock space with the z-component of the total
spin stot =

P
i
si as the unbroken generator and the

rotation angle '. We have U
†
R
| ni = e

i�n | ni with
phases �n. Since si is a vector operator, we have
U

†
R
si↵UR =

P
�
R↵�si� , where R = R(') is the stan-

dard real 3 ⇥ 3 matrix representation of SO(2) rota-
tions around ez. Hence, the first matrix element in
Eq. (4) can be written as h 0|URU

†
R
si↵URU

†
R
| ni =P

�
R↵�(')ei�0h 0|si� | nie

�i�n . The phase factors can-
cel with those from the second matrix element, and we
thus find: �ii0,↵↵0(!) =

P
��0 R↵�(')�ii0,��0(!)RT

�0↵0('),
i.e., [�

ii0
(!), R(')] = 0 for all i, i0 and '. It is easily ver-

ified directly that this implies

�
ii0
(!) =

0

@
�ii0,xx(!) �ii0,xy(!) 0
��ii0,xy(!) �ii0,xx(!) 0

0 0 �ii0,zz(!)

1

A , (9)

i.e., there are only 3 independent entries for each pair
i, i

0 (note that R is reducible, and furthermore Schur’s
lemma does not apply to representations over R).

Section B: Spatial symmetries. With Eq. (8), we im-
mediately see that the spin-Berry curvature is related to
the spin susceptibility via

⌦mm0,↵↵0 = �iJ
2
@

@!
�imim0 ,↵↵0(!)

���
!=0

(10)

up to correction terms of order J3, see Eq. (5). Therefore,
the same reasoning as above can be applied to the spin-
Berry curvature tensor and yields the same result for its
structure:

⌦
mm0 =

0

@
⌦mm0,xx ⌦mm0,xy 0
�⌦mm0,xy ⌦mm0,xx 0

0 0 ⌦mm0,zz

1

A . (11)

In addition, for a given pair of sites im and im0 , we may
consider a combined transformation T � I, composed of
the space inversion Ri 7! Rim � Ri with respect to im

followed by the translation Ri 7! Ri+(Rim�Rim0 ) with
the translation vector Rim�Rim0 . T �I is a discrete sym-
metry of the hypercubic lattice and interchanges im with
im0 . This implies that the Hamiltonian commutes with
the standard unitary (and also Hermitian) representation
UTI of T � I.
For im and im0 in the same sublattice, the symmetry-

broken ground state is an eigenstate of UTI as well. Anal-
ogously to the SO(2) spin-rotation symmetry discussed
above, we can thus immediately see from the analy-
sis of the matrix elements in Eq. (4) that ⌦mm0,↵↵0 =
⌦m0m,↵↵0 . For the spin-Berry curvature we have the ad-
ditional antisymmetry, ⌦mm0,↵↵0 = �⌦m0m,↵0↵, which
follows from Eq. (3). With this we get ⌦mm0,↵↵0 =
�⌦mm0,↵0↵, i.e., for each pair m,m

0, the spin-Berry cur-
vature tensor is antisymmetric in the indices ↵,↵

0 sep-
arately. Hence, with Eq. (11), we see that only the el-
ements ⌦mm0,xy = �⌦mm0,yx can be nonzero. Analo-
gously, for the spin susceptibility, the T � I symmetry of
the Hamiltonian implies �ii0,↵↵0(!) = �i0i,↵↵0(!). With
the additional symmetry, �ii0,↵↵0(0) = �i0i,↵0↵(0), which
follows from Eq. (8), this implies that the susceptibility
matrix Eq. (9) is diagonal for ! = 0.
For im and im0 in di↵erent sublattices, we concatenate

the transformation T �I with a flip F of the z-component
of all spins. This is unitarily represented by UF, which is
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defined via U
†
F
ci"UF = ci# and U

†
F
ci#UF = ci". We have

[UF, UTI] = 0 and [UF, Hel] = 0. The symmetry-broken
ground state and the corresponding excited states are
eigenstates of U ⌘ UTIUF. Hence, we find for the ↵ = ↵

0

matrix elements

h 0|sim↵| nih n|sim0↵| 0i

= h 0|U
†
sim↵U | nih n|U

†
sim0↵U | 0i

= h 0|sim0↵| nih n|sim↵| 0i , (12)

and thus ⌦mm0,↵↵ = ⌦m0m,↵↵. With the antisymmetry
of the full tensor, ⌦mm0,↵↵0 = �⌦m0m,↵0↵, we thus find
⌦mm0,↵↵ = 0. On the other hand,

h 0|simx| nih n|sim0y| 0i

= h 0|U
†
simxU | nih n|U

†
sim0yU | 0i

= �h 0|sim0x| nih n|simy| 0i , (13)

since U
†
F
sixUF = six but U

†
F
siyUF = �siy. This implies

⌦mm0,xy = �⌦m0m,xy, and with the antisymmetry of the
full tensor we find ⌦mm0,xy = ⌦mm0,yx. Together with
Eq. (11), we see that ⌦mm0,xy = 0, and hence the matrix
⌦

mm0 = 0 in Eq. (11).
Summing up, for arbitrary sites im and im0 we have

⌦
mm0 =

0

@
0 ⌦ 0
�⌦ 0 0
0 0 0

1

A , (14)

and hence the spin-Berry curvature is fixed by a single
real number ⌦ ⌘ ⌦mm0,xy = ⌦m0m,xy. Furthermore, ⌦ =
0 if im, im0 belong to di↵erent sublattices.

Section C: Random phase approximation. The ran-
dom phase approximation (RPA) represents a standard
weak-coupling approach to the magnetic susceptibility,
see, e.g., Refs. 41, 42. It can be motivated in various
ways, for example, via a partial diagrammatic summa-
tion. In general, the RPA Luttinger-Ward functional
�[G] [43, 44] is given as the sum of the two closed and
self-consistently renormalized first-order diagrams, i.e.,
by the Hartree and the Fock diagram. For the Hubbard
model the Fock diagram vanishes such that we are left
with

�[G] = U

X

i

1

�2

X

n,n0

Gii,"(i!n)Gii,#(i!n0) . (15)

Here, i runs over the sites of the hypercubic lattice,
� =", # refers to the spin projection relative to the z

axis, n labels the fermionic Matsubara frequencies i!n,
and � is the inverse temperature. Computations are
done in the zero-temperature limit 1/� ! 0, which is
taken at the end. Furthermore, Gii,� denotes the local
one-particle Green’s function at site i in the symmetry-
broken AF state, as obtained within the self-consistent

Hartree-Fock approximation. The Hartree-Fock self-
energy is generated by the Luttinger-Ward functional:
⌃ii,�(i!n) = ���/�Gii�(i!n) = U�

�1
P

n
Gii,��(i!n) =

Uhc
†
i��

ci��i.
On the two-particle level, the RPA yields a local and

frequency-independent irreducible vertex

�(loc)
�,��

(i!n, i!n0) = �
2

�
2�

�Gii,��(i!n)�Gii,�(i!n0)
= U .

(16)
This means that there is no feedback of two-particle cor-
relations on the single-particle Green’s function. The
structureless vertex allows us to easily get the transver-
sal magnetic susceptibility �rs,+�(k,!) = hhs

+

r,k; s
�
s,kii!

as the solution of a strongly simplified Bethe-Salpether
equation in the particle-hole channel:

�
+�(k, i⌫n) = �

(0)

+�(k, i⌫n) + �
(0)

+�(k, i⌫n)U�
+�(k, i⌫n) .

(17)
Here, �

+� is a 2 ⇥ 2 matrix in the sublattice degrees of

freedom, and �
(0)

+� the bare susceptibility matrix, which
is computed with the Hartree-Fock one-particle propa-
gators. The equation is diagonal in the wave vectors k
of the first magnetic Brillouin zone and in the bosonic
Matsubara frequencies i⌫n. The transversal susceptibil-
ity �+� is related to the susceptibility tensor �↵↵0 in-
troduced in Eqs. (7) and (8), via �+� = 2(�xx � i�xy).
From the renormalized zeroth-order diagram, we get the
Hartree-Fock susceptibility in Eq. (17) as

�
(0)

rs,+�(k, i⌫n) =
�1

L

1

�

X

q,n0

Gsr,"(q, i!n0)

⇥ Grs,#(q + k, i⌫n + i!n0) . (18)

After performing the summation over the fermionic fre-
quencies i!n analytically, we can replace i⌫n 7! ⌫ + i⌘

to find the retarded susceptibility on the real-frequency
axis. The frequency derivative in Eq. (10) is done nu-
merically. In the thermodynamical limit, the q sum over
the magnetic Brillouin zone in Eq. (18) can be converted
into a q-space integration. The latter is computed in
two or three dimensions via a standard adaptive q-space
integration technique for arbitrary ⌫ 2 R and for each
allowed wave vector k in the magnetic Brillouin zone of
a finite lattice with L sites and periodic boundary condi-
tions. Practical computations are performed at a finite
Lorentzian broadening parameter ⌘ > 0 replacing the
infinitesimal ⌘, and convergence with respect to L is con-
trolled by runs for di↵erent system sizes L. The main
numerical error is due to extrapolation of the data for
⌘ ! 0.

Section D: Magnon spectrum of an antiferromagnet.
In the strong-U limit of the Hubbard model, the low-
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energy physics is captured by the s = 1/2 antiferromag-
netic Heisenberg model

H = JH

X

hiji

✓
1

2
(s+

i
s
�
j
+ s

�
i
s
+

j
) +�s

z

i
s
z

j

◆
(19)

with JH = 4t2/U and � = 1. An anisotropy parameter
� > 1 can be used to discuss the e↵ect of opening a gap
in the dispersion. The sum runs over all nearest-neighbor
pairs hiji.

We apply the standard Holstein-Primako↵ transfoma-
tion for the model on the bipartite hypercubic lattice
with dimension D. For sites i in sublattice A, the spin
operators are expressed in terms of bosonic annihilators
and creators, i.e.,

s
z

i
= s� a

†
i
ai ,

s
+

i
=

p
2s

r
1�

n̂i

2s
ai ,

s
�
i

=
p
2sa†

i

r
1�

n̂i

2s
, (20)

while for sites j 2 B

s
z

j
= �s+ b

†
j
bj ,

s
+

j
=

p
2sb†

j

r
1�

n̂j

2s
,

s
�
j

=
p
2s

r
1�

n̂j

2s
bj . (21)

The transformed Hamiltonian reads

H = JHs

X

hiji

[(aibj +a
†
i
b
†
j
)+�(a†

i
ai+ b

†
j
bj)]�

L

2
zJH�s

2
,

(22)
where z = 2D is the coordination number, and L is
the number of lattice sites. Quartic and higher-order
magnon interaction terms resulting for the expansion of
the square root have been disregarded.

We drop the additive energy constant and block-
diagonalize H via Fourier transformation:

ai =
1p
L/2

X

k

e
�ikRiak , bj =

1p
L/2

X

k

e
ikRj bk .

(23)

Here, Ri are the translation vectors of the magnetic A
sublattice (the same for Rj and the B sublattice), con-
sisting of L/2 unit cells, and k is an allowed wave vec-
tor of the first magnetic Brillouin zone (mBz). Defining
�k ⌘

P
� cos(k�) with nearest-neighbor vectors �, the

Fourier-transformed model reads as

H = JHs

X

k

[�k(akbk + b
†
ka

†
k) + z�(aka

†
k + b

†
kbk)] (24)

and can be diagonalized by Bogoliubov transformation

ak = uk↵k + vk�
†
k , bk = uk�k + vk↵

†
k (25)

with real coe�cients uk and vk. We require

u
2

k � v
2

k = 1 , (26)

to ensure that ↵k and �k satisfy bosonic commutation
relations, as well as

2z�ukvk + �k(u
2

k + v
2

k)
!
= 0 , (27)

as usual, to get the Hamiltonian to the form

H = JHs

X

k

!(k)(↵†
k↵k + �

†
k�k) , (28)

where we again dropped an unimportant constant energy
term. The magnon spectrum consists of two degenerate
branches with dispersion JHs!(k) given by

!(k) =
q
(z�)2 � �

2

k =

vuut
z2�2 �

 
X

�

cos(k�)

!2

.

(29)
Close to k = 0 and in the isotropic case � = 1, the
dispersion JHs!(k) is linear,

!(k) = 2
p

Dk +O(k3) , (30)

while for � > 1 the spectrum is gapped, and !(k) =
2S

p
�2 � 1 +O(k2).

From the conditions Eq. (26) and Eq. (27), we can
deduce the well-known results

u
2

k =
1

2

 
z�p

(z�)2 � �
2

k

+ 1

!
=

1

2

✓
z�

!(k)
+ 1

◆
,

v
2

k =
1

2

 
z�p

(z�)2 � �
2

k

� 1

!
=

1

2

✓
z�

!(k)
� 1

◆
(31)

and

ukvk = �
�k

2
p

(z�)2 � �
2

k

= �
�k

2!(k)
, (32)

see Refs. 47, 48.

Section E: Computing the spin-Berry curvature from
the magnon Hamiltonian. The contribution of the
magnon excitations to the spin-Berry curvature is ob-
tained from

⌦mm0,↵↵0 = �2J2Im
X

k,⌘=1,2

h0|s↵
im
|k, ⌘ihk, ⌘|s↵

0

im0 |0i

(E0 � Ek)2
,

(33)
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where |k, 1i ⌘ ↵
†
k|0i and |k, 2i ⌘ �

†
k|0i are the single-

magnon states. Following Eq. (14), it is su�cient to
compute ⌦mm0 = ⌦mm0,xy = �⌦mm0,yx. Furthermore,
⌦mm0 6= 0 only for im and im0 in the same sublattice, as
also argued in section B. Expressing the spin components
in terms of the Bogoliubov operators,

s
+

i
=

p
2s

1p
L/2

X

k

e
�ikRi(uk↵k + vk�

†
k)

s
�
i

=
p
2s

1p
L/2

X

k

e
ikRi(uk↵

†
k + vk�k)

s
+

j
=

p
2s

1p
L/2

X

k

e
�ikRj (uk�

†
k + vk↵k)

s
�
j

=
p
2s

1p
L/2

X

k

e
ikRj (uk�k + vk↵

†
k) , (34)

we find

h0|sx
i
|k, 1ihk, 1|sy

i0 |0i = i
s

L
u
2

ke
�ik(Ri�Ri0 ) ,

h0|sx
i
|k, 2ihk, 2|sy

i0 |0i = �i
s

L
v
2

ke
ik(Ri�Ri0 ) (35)

for i, i0 in sublattice A, and

h0|sx
j
|k, 1ihk, 1|sy

j0 |0i = i
s

L
v
2

ke
�ik(Rj�Rj0 ) ,

h0|sx
j
|k, 2ihk, 2|sy

j0 |0i = �i
s

L
u
2

ke
ik(Rj�Rj0 ) (36)

for j, j0 in sublattice B. This implies

Im
X

⌘=1,2

h0|sx
i
|k, ⌘ihk, ⌘|sy

i0 |0i =
s

L
cos(k(Ri �Ri0))

Im
X

⌘=1,2

h0|sx
j
|k, ⌘ihk, ⌘|sy

j0 |0i = �
s

L
cos(k(Rj �Rj0)) ,

(37)

and finally we get

⌦mm0 = ⌥
1

s

J
2

J
2

H

2

L

mBzX

k

cos(k(Rim �Rim0 ))

!(k)2
, (38)

where the upper sign refers to im, im0 in sublattice A and
the lower for im, im0 in sublattice B. Recall that ⌦mm0 =
0 if im, im0 belong to di↵erent sublattices.

Eq. (38) can be evaluated numerically. For D = 3, for
example, we find

⌦loc ⇡ �0.084
J
2

J
2

H

(39)

for the local element of the SBC with im = im0 in sub-
lattice A.

Section F: Di↵erent dimensions and distance depen-
dence. In the thermodynamic limit L ! 1 (and in the
isotropic case � = 1), the convergence of the resulting
integral in Eq. (38) over the magnetic Brillouin zone de-
cisively depends on the lattice dimension D. We consider
the critical contribution of the long-wave-length magnons
by integrating over a D-dimensional ball around k = 0
with small cuto↵ radius kc, such that we can make use of
Eq. (30), i.e., of the linearity and isotropy of the magnon
dispersion for k ! 0:

⌦mm0 ⇠ lim
!0

Z
kc



dk k
D�1

1

!(k)2
/ lim

!0

Z
kc



dk k
D�1

1

k2
.

(40)
This yields

⌦mm0 ⇠

8
><

>:


D�2 for D � 3

ln for D = 2

1/ for D = 1

. (41)

For  ! 0, the spin-Berry curvature diverges for D = 1
and D = 2. We conclude that a meaningful theory is
obtained in dimensions D � 3 only.
The magnitude of the spin-Berry curvature decreases

with increasing distance R ⌘ Rim � Rim0 . For D � 3
its dependence in the large-R limit is governed by long-
wave-length magnon excitations, and we have:

⌦(R) /

Z
kc

0

dk k
D�1

Z
d⌦

cos(kR cos ✓)

k2
, (42)

where
R
d⌦ denotes the surface integral over the (D�1)-

dimensional unit sphere, and ✓ the angle between k and
R. Furthermore, we made use of Eq. (30) for k smaller
than the cuto↵ kc. We note that the distance dependence
at large R is isotropic. Substituting kR ! k in the one-
dimensional k integral immediately yields

⌦(R) /
1

RD�2
. (43)

For D = 3, we have ⌦(R) / 1/R. In the infinite-D limit,
we expect a local spin-Berry curvature
To compute the local element m = m

0 of the spin-
Berry curvature Eq. (38) in this limit, we start from the
representation

⌦loc = �
1

s

J
2

J
2

H

Z 1

�1
dx ⇢D(x)

1

z2�2 �Dx2
, (44)

where, for dimensionD, we have defined the density func-
tion

⇢D(x) =
2

L

mBzX

k

�(x� �k/
p

D) , (45)

and where we have used Eq. (29). We have z = 2D for the
D-dimensional hypercubic lattice and, in the Heisenberg
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limit of the Hubbard model, JH = 4t2/U = 4t⇤2/DU ,
when using the scaling t = t

⇤
/
p
D with t

⇤ = const. In the
limitD ! 1, this scaling of the hopping ensures that the
kinetic energy of the Hubbard model remains nontrivial
and balances the interaction term [59]. Moreover, the
density function converges to a Gaussian [59]:

⇢D(x) ! ⇢1(x) =
1

2
p
⇡
exp

✓
�
x
2

4

◆
. (46)

In the Heisenberg limit and with the scaled hopping, we
thus have

⌦loc(D) = �
1

s

J
2
U

2

16t⇤4

Z 1

�1

dx⇢D(x)

4�2 � x2/D
, (47)

which for D ! 1, and assuming s = 1/2 and � = 1
converges to

⌦loc(1) = �
1

32t⇤4
J
2
U

2
. (48)

This represents the mean-field value of the (lcoal) spin-
Berry curvature in the antiferromagnetic state at large
U .

To compare with the result obtained for D = 3, we
must use the same scaling of the hopping. This yields

⌦loc(3) ⇡ �0.084
J
2
U

2

16t⇤4
D

2

�����
D=3

⇡ 1.51 · ⌦(1). (49)

For lattice dimensions D > 3 we find: ⌦loc(4) ⇡

1.22⌦(1), ⌦loc(5) ⇡ 1.16⌦(1), ⌦loc(6) ⇡ 1.12⌦(1).
Hence, given the standard scaling of the hopping with
D, the absolute value of ⌦loc(D) increases with decreas-
ing D and finally, for D = 2 diverges.
Finally, when addressing the dimensional crossover

[61–63], we consider the Heisenberg model given by
Eq. (19) again, but with spatially anisotropic nearest-
neighbor exchange couplings JH ⌘ JH,x = JH,y � JH,z.
Proceeding analogously to Sec. C, one ends up with a
modified magnon dispersion only:

!(k) =
q

(ze↵�)2 � �
02
k . (50)

Here, we have defined an e↵ective coordination number
ze↵ = 2(JH,x + JH,y + JH,z)/JH,x. Furthermore, �0

k :=
2(JH,x cos kx + JH,y cos ky + JH,z cos kz)/JH,x.

Section G: Spin dynamics. The equations of motion Eq. (1) for the classical spins comprise the conventional
(Hamiltonian) and the geometrical spin torque, see Eq. (2). In the weak-J limit, the former results from the local
direct exchange J as well as from the indirect RKKY-type exchange. We have:

Ṡm = Jhsimi
(0)

⇥ Sm + J
2
X

m0

�
imim0

(0)Sm0 ⇥ Sm +
X

↵

X

m0↵0

⌦m0m,↵0↵(S)Ṡm0↵0e↵ ⇥ Sm , (51)

where h. . . i
(0) denotes the expectation value at J = 0. For the non-vanishing components of the spin susceptibility

and of the spin-Berry curvature on sublattice A we have

�ii0 ⌘ �ii0,xx(0) = �ii0,yy(0) = �
z�

JH

2

L

mBzX

k

cosk(Ri �Ri0)

!(k)2
(52)

and

⌦mm0 ⌘ ⌦mm0,xy = �⌦mm0,yx = �
1

s

J
2

J
2

H

2

L

mBzX

k

cos(k(Rim �Rim0 )

!(k)2
. (53)

Specializing Eq. (51) for M = 1, i.e., for a single classical spin, we get

Ṡ1 = T (H)

1
⇥ S1 + ⌦11(ez ⇥ Ṡ1)⇥ S1 , (54)

where

T (H)

1
= Jhsi1i

(0) + J
2
�i1i1(ez ⇥ Sm)⇥ ez . (55)

With

T
(H)

1
=

0

B@
0 �T

(H)

1,z
T

(H)

1,y

T
(H)

1,z
0 �T

(H)

1,x

�T
(H)

1,y
T

(H)

1,x
0

1

CA (56)
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the cross product can be written as a matrix-vector product, T (H)

1
⇥S1 = T

(H)

1
S1, and the equation of motion reads:

Ṡ1 =
1

1� ⌦11S1z

T
(H)

1
S1 . (57)

The classical spin undergoes a purely precessional dynamics around the z axis, but with a renormalized precession
frequency. The renormalization is due to the local spin-Berry curvature ⌦loc = ⌦11 and is the strongest for ⌦loc = O(1).
Right at ⌦loc = 1/S1z, the precession frequency diverges. This implies that the spin dynamics is no longer adiabatic
and the theory breaks down.

In case of two classical spins, M = 2, the equations of motion (51) can be cast into the form

Ṡ1 = T (H)

1
⇥ S1 + T (geo)

1
⇥ S1 ,

Ṡ2 = T (H)

2
⇥ S2 + T (geo)

2
⇥ S2 , (58)

where

T (H)

1
= Jhsi1i

(0) + J
2
�i1i1(ez ⇥ S1)⇥ ez + J

2
�i1i2(ez ⇥ S2)⇥ ez ,

T (H)

2
= Jhsi2i

(0) + J
2
�i2i2(ez ⇥ S2)⇥ ez + J

2
�i2i1(ez ⇥ S1)⇥ ez . (59)

and

T (geo)

1
= ⌦11(ez ⇥ Ṡ1)⇥ S1 + ⌦12(ez ⇥ Ṡ2)⇥ S1

T (geo)

2
= ⌦22(ez ⇥ Ṡ2)⇥ S2 + ⌦12(ez ⇥ Ṡ1)⇥ S2 . (60)

Here, we have assumed that the two spins couple to sites in the same sublattice, as otherwise the spin-Berry curvature
vanishes. The local spin-Berry curvature term can be treated in the same way as in the M = 1 case, while the nonlocal
term can be written as a matrix-vector product:

(1� ⌦11S1z)Ṡ1 = T (H)

1
⇥ S1 � ⌦12A

(z)

1
Ṡ2 ,

(1� ⌦22S2z)Ṡ2 = T (H)

2
⇥ S2 � ⌦12A

(z)

2
Ṡ1 , (61)

with

A
(z)

m
=

0

@
�Smz 0 0

0 �Smz 0
Smx Smy 0

1

A . (62)

This allows us to cast the equations of motion into an explicit system of ordinary di↵erential equations:

✓
Ṡ1

Ṡ2

◆
= M

�1

 
T (H)

1
⇥ S1

T (H)

2
⇥ S2

!
. (63)

Here, the 6⇥ 6 matrix

M =

 
(1� ⌦11S1z)1 ⌦12A

(z)

1

⌦12A
(z)

2
(1� ⌦22S2z)1

!
(64)

is given in terms of the components of the spin-Berry curvature tensor. Eq. (63) demonstrates that the e↵ect of the
geometrical spin torque is not simply additive and hence does not directly compete with the conventional spin torque,
but enters the spin dynamics as a multiplicative (matrix) factor.

The determinant of M can be computed analytically:

detM = (1� ⌦11S1z)(1� ⌦11S2z)
⇥
(1� ⌦11S1z)(1� ⌦22S2z)� ⌦

2

12
S1zS2z

⇤2
. (65)

The theory breaks down if detM = 0. We consider detM as a function of the local elements ⌦loc = ⌦11 = ⌦22 and
assume that the nonlocal elements are small, ⌦nonloc = |⌦12| ⌧ ⌦loc. We immediately see that the zeros of detM are
of the order of unity. This implies that anomalous spin dynamics, which is substantially a↵ected by the geometrical
spin torque, is expected if ⌦loc = O(1) and thus close to, but yet di↵erent from the zeros of M.
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