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Crossover from conventional to inverse indirect magnetic exchange in the depleted Anderson lattice
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We investigate the finite-temperature properties of an Anderson lattice with regularly depleted impurities.
The physics of this model is ruled by two different magnetic exchange mechanisms: conventional
Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction at weak hybridization strength V and an inverse indirect
magnetic exchange (IIME) at strong V , both favoring a ferromagnetic ground state. The stability of ferromagnetic
order against thermal fluctuations is systematically studied by static mean-field theory for an effective low-energy
spin-only model emerging perturbatively in the strong-coupling limit as well as by dynamical mean-field theory
for the full model. The Curie temperature is found at a maximum for a half-filled conduction band and at
intermediate hybridization strengths in the crossover regime between RKKY and IIME.
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I. INTRODUCTION

As has been pointed out by Nozières [1–3], the presence of a
correlated impurity in an a priori uncorrelated metal introduces
effective interactions among the conduction electrons. The
range of these interactions decisively depends on the strength
of the impurity-host coupling. Consider the case of an
Anderson impurity [4]

H = −t
∑
〈i,j〉

∑
σ=↑,↓

c
†
iσ cjσ + V

∑
σ=↑,↓

(
c
†
i0σ

fσ + H.c.
)

+U (f †
↑f↑ − 1/2)(f †

↓f↓ − 1/2), (1)

with annihilators ciσ ,fσ referring to local conduction-electron
and impurity orbitals, respectively. For the case of a Hubbard
interaction U and a local hybridization V much stronger
than the nearest-neighbor conduction-electron hopping t , an
effective Hamiltonian with an almost local interaction char-
acterizing the low-energy physics of the conduction-electron
system can be derived explicitly [5]. This is achieved by means
of degenerate fourth-order perturbation theory in the hopping
terms which connect the neighboring conduction-electron sites
to the site i0 where the impurity is coupled to. To leading order,
the effective model is given by

Heff = −t

i,j �=i0∑
〈i,j〉

∑
σ=↑,↓

c
†
iσ cjσ − z2α

3
S2

bond, (2)

where z is the coordination number of the lattice, where

α = t4 U 3 + 48UV 2

24V 6
(3)

is the effective interaction strength, and where Sbond is the
spin-operator referring to the “bonding” symmetric linear
superposition of the z orbitals neighboring i0 (see Ref. [5]
for details).

There are three different energy scales to be considered: (i)
Local singlet formation at i0 takes place on the high-energy
scale ∼U,V . While this singlet may be called a local Kondo
singlet, its binding energy scales linearly with V for strong

V . This is opposed to the weak-coupling limit V → 0 (with
U 	 t fixed) where it is exponentially small and where the
low-energy physics is dictated by a single Kondo scale [6,7].
(ii) On an energy scale ∼t , conduction electrons scatter at
the local Kondo singlet. This scattering effect is already
included at zeroth order in the perturbative expansion and is
formally described by excluding the site i0 from the summation
in the first term of the effective Hamiltonian in Eq. (2).
(iii) The first nontrivial effect takes place at fourth order. An
effective interaction among the conduction electrons in the
immediate vicinity of the impurity emerges which is mediated
by virtual excitations of the local Kondo singlet. This happens
on the lowest-energy scale given by the effective coupling
constant α in the second term of Eq. (2).

A fundamentally interesting question is whether the emer-
gent effective interaction among the a priori uncorrelated
conduction electrons can give rise to collective phenomena.
This may be expected for a lattice variant of the model, i.e.,
for a system with a thermodynamically relevant concentration
of impurities. The extreme case is a periodic Anderson model
with a depleted system of “impurities” placed at every second
site, i.e., on the B sites of a bipartite lattice consisting of
sublattices A and B. Figure 1 displays an example for the
D = 3-dimensional simple-cubic lattice. We consider a model
with L sites (L → ∞ in the thermodynamical limit) and
R = L/2 impurities. The total number of electrons N satisfies
2R � N � 4R such that there are well-formed local Kondo
singlets in the low-energy sector.

At fourth order, perturbation theory is essentially un-
changed as compared to the impurity model (1) since any
local Kondo singlet, consisting of the correlated impurity
coupled to a B-sublattice site, is surrounded by uncorrelated
A-sublattice sites, and thus the same virtual processes lead
to the same effective interaction. Therefore, the resulting
effective Hamiltonian only involves A-sublattice sites and
excess conduction electrons that are not absorbed in a local
Kondo singlet. The hopping term becomes ineffective since
the excess conduction electrons are confined between the local
Kondo singlets surrounding each A site. Hence, we are left with
a lattice model of A sites, made up by nonlocal spins Si,bond
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FIG. 1. (Color online) Depleted periodic Anderson model with
R = L/2 impurities on a D = 3-dimensional simple-cubic lattice
with L sites (L → ∞). Correlated impurity sites (red) with onsite
Hubbard interaction U are coupled via a hybridization of strength V

to the B sites (blue) of the bipartite lattice. For strong U,V 	 t , local
Kondo singlets are formed on the half-filled “dimers” consisting of
impurity and B sites (if the total electron number N satisfies 2R �
N � 4R) and strongly confine the motion of the excess conduction
electrons on the A-sublattice sites (green). Virtual excitations of the
local Kondo singlets induce an effective interaction of the conduction
electrons on A sites.

referring to the bonding orbital around each B site:

Heff = −z2α

3

∑
i∈B

S2
i,bond, (4)

with Si,bond = (1/2)
∑

σσ ′ b
†
iσσ σσ ′biσ ′ , where σ is the vector of

Pauli matrices and where the creation operator of the bonding
orbital around i ∈ B is given by b

†
iσ = ∑n.n.(i)

j∈A c
†
jσ /

√
z, i.e., the

bonding one-particle orbital is the symmetric superposition of
neighboring A-sublattice orbitals:

|bond i,σ 〉 =
n.n.(i)∑
j∈A

|j,σ 〉/√z (i ∈ B). (5)

The effective spin-only model [Eq. (4)] is nontrivial as different
nonlocal spins refer to overlapping orbitals and therefore do
not commute.

There is not much known about this model: At half-
filling, N = L + R = 3R, one can rigorously show that a
ferromagnetic [8] state with fully polarized magnetic moments
of the conduction electrons on the A sites is among the
ground states [5]. Exact diagonalization of small systems
suggests [5] that the model has a ferromagnetically ordered
ground state in the filling range 2R < N < 4R (for lower
or higher fillings, local Kondo singlets are broken up). An
inverse indirect magnetic exchange (IIME) where the magnetic
moments of A-site electrons are coupled ferromagnetically
via virtual excitations of the local Kondo singlets has been

identified as the main physical mechanism [9,10]. For a
one-dimensional depleted Anderson lattice, density-matrix
renormalization-group calculations have shown [9] that the
IIME mechanism gradually crosses over to a conventional
Ruderman-Kittel-Kasuya-Yosida (RKKY) [11–13] indirect
magnetic exchange, also favoring ferromagnetism, when
varying V from strong to weak hybridization at fixed U 	 t .
This crossover and the mutual interplay between RKKY and
IIME mechanisms for the magnetic ground-state properties
has recently been discussed in Ref. [14] in the context of
SU(N) models of ultracold Fermi atoms trapped in optical
lattices.

The purpose of this paper is to study the finite-temperature
properties of the depleted Anderson lattice, particularly the
stability of the ferromagnetic order against thermal fluctua-
tions. From the RKKY theory, one can expect TC ∝ J 2 ∝ V 4

for the Curie temperature at weak V and in a parameter regime
where the Schrieffer-Wolf transformation [15,16] applies such
that J = 8V 2/U . On the other hand, for strong V , the effective
model (4) suggests that TC ∝ α ∝ V −4. We therefore expect
a pronounced maximum of TC at an intermediate V . This
optimal V but also the absolute value of TC are interesting from
a fundamental theoretical perspective. Not only the strong V

dependencies, but also the fact that the noninteracting (U = 0)
depleted Anderson lattice exhibits a flat band at the Fermi
energy [10] promise a comparatively high value for the critical
temperature. Furthermore, the finite-temperature properties
are important for the question as to whether magnetic correla-
tions and magnetic long-range order induced by the IIME can
be verified experimentally. Candidate systems are magnetic
nanostructures on nonmagnetic surfaces as their geometrical
and magnetic properties can be measured, controlled, and
manipulated to a high degree on an atomic scale [17–21].
Likewise, ultracold-atom systems come into question, due to
the rapidly improving experimental techniques in this field and
particularly due to the recent advances to employ fermionic
alkaline-earth atoms to efficiently simulate systems with spin
and orbital degrees of freedom [22–28].

Our study is based on two different types of mean-field
methods: To address the strong-V limit, we apply static mean-
field theory to the effective spin model (4). Since Si,bond is not a
rigid spin with S = 1

2 , a fermion mean-field approach must be
employed. Using this approximation, a rough estimate of the
dependence of the Curie temperature on lattice dimension or
coordination number and electron density is obtained. Second,
we apply dynamical mean-field theory (DMFT) [29,30] to the
depleted Anderson lattice. For a model with a depleted system
of correlated sites, the DMFT can be expected to yield reliable
results since the electron self-energy is much more local as
compared to the dense model. This has been checked for the
D = 1-dimensional model where essentially exact results
are available via the density-matrix renormalization-group
technique [9]. For ground-state properties of local observables
as obtained by DMFT, even quantitative agreement has been
found.

The paper is organized as follows: The static and dynamical
mean-field methods are introduced along with a discussion of
the corresponding results in Secs. II and III, respectively. The
conclusions are summarized in Sec. IV.
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A B

FIG. 2. (Color online) Geometry of the one-dimensional diluted
Anderson lattice. Red: “impurities” with finite Hubbard interaction.
Green and blue: sites of the A and of the B sublattice, respectively.

II. STATIC MEAN-FIELD THEORY

A. Depleted Anderson lattice

The Hamiltonian of the depleted Anderson lattice is given
by

H = −t
∑

〈i,j〉,σ
c
†
iσ cjσ + V

∑
i∈B,σ

(c†iσ fiσ + H.c.)

+U
∑
i∈B

n
(f )
i↑ n

(f )
i↓ − μ

∑
i,σ

n
(c)
iσ + (ε − μ)

∑
i∈B,σ

n
(f )
iσ . (6)

It describes a system of electrons hopping over the sites of
a bipartite D-dimensional lattice consisting of L sites with
periodic boundary conditions. The two sublattices are denoted
by A and B. We consider a D = 3 simple-cubic lattice (see
Fig. 1) but also the corresponding one- and two-dimensional
cases (Figs. 2 and 3). c

†
iσ creates a conduction electron in a

one-particle orbital with spin projection σ = ↑,↓ at the site i =
1, . . . ,L. The nearest-neighbor hopping t = 1 sets the energy
scale.

One-particle orbitals at the B sites of the lattice hybridize
with orbitals at R = L/2 additional “impurity” sites with
hybridization strength V . f †

iσ creates an electron at the impurity
site attached to site i ∈ B of the sublattice B. Furthermore,
n

(c)
iσ = c

†
iσ ciσ and n

(f )
iσ = f

†
iσ fiσ denote the occupation-number

operators for A, B and for impurity sites, respectively. The f

orbitals should be considered as magnetic orbitals: There is a
finite repulsive Hubbard interaction U and the one-particle
energy is set to ε = −U/2 such that, for strong U , the
formation of local magnetic moments at the impurity sites
is favored.

The Hamiltonian (6) contains an overall chemical potential
μ, i.e., we work with the grand canonical ensemble where μ

is used to fix the average number of particles 〈N〉. We will
consider the range 2R � 〈N〉 � 4R for our calculations.

Switching off the hopping, i.e., t = 0, defines an atomic
limit of the model (6). The ground state in the atomic
limit is highly degenerate. For the considered range of the
total electron number, each ground state is characterized by
completely local Kondo singlets formed on the B and the

BA

FIG. 3. (Color online) The same as in Figs. 2 and 1 for the two-
dimensional case.

attached impurity sites binding two electrons per singlet. The
ground-state degeneracy is due to the various configurations
of remaining electrons on the A sites. Their density nA =∑

i∈A,σ 〈niσ 〉/LA, where LA = L/2 is the number of A sites,
can vary within the range 0 � nA � 2.

The depleted Anderson lattice (6) exhibits the conventional
U(1) and SU(2) symmetries corresponding to conservation of
the total particle number and the total spin. For μ = 0, the
system is half-filled, i.e., 〈N〉 = 3R or nA = 1, and there is
an additional SU(2) isospin symmetry Â [31]. Due to particle-
hole symmetry, we can restrict our considerations to the range
at and below half-filling.

B. Strong-coupling limit

For strong V 	 t , an effective Hamiltonian Heff can be
derived by means of fourth-order perturbation theory in t

around the degenerate atomic limit [5]. In this limit, the ground
state is characterized by local Kondo singlets at the B sites and
a residual low-energy dynamics of the A-site electrons which is
mediated by virtual high-energy excitations of the local Kondo
singlets. Hence, Heff contains A-site degrees of freedom only.
There is a very compact and highly symmetric representation
of Heff given by Eq. (4) with the coupling constant α specified
by Eq. (3). Details of the perturbation theory can be found in
Ref. [5].

Here, we rewrite the effective Hamiltonian such that a static
mean-field decoupling can be applied in a straightforward way.
To this end, we use the definitions given below Eq. (4) to
express the nonlocal spin operators in terms of creators and
annihilators for electrons on A sites. Furthermore, we switch
to a representation in reciprocal space by means of Fourier
transformation in the form

ciσ = 1√
LA

∑
k∈BZA

eikRi ckσ (i ∈ A), (7)

where LA = L/2 and where k is a wave vector in the Brillouin
zone BZA of the reciprocal A sublattice. Note that the A
sublattice is a square lattice for D = 2 but a bcc lattice for
the D = 3 case with a unit cell spanned by the basis vectors
a1,a2,a3 displayed in Fig. 1. With this we get

Heff =
∑
kσ

[E(k) − μ]c†kσ ckσ

+ 1

LA

∑
p,q,k

Upqkc
†
p↑cp−k↑c

†
q↓cq+k↓. (8)

The effective one-particle dispersion is given by

E(k) = −Dα

2
γ 2(k), (9)

where ε0(k) = −γ (k)t is the tight-binding dispersion of the
D-dimensional lattice. This also determines the k dependence
of the interaction parameters of the effective Hamiltonian via

Up,q,k = α

2
γ (p)γ (q)γ (p − k)γ (k + q). (10)

Apparently, the effective Hamiltonian describes itinerant elec-
trons on the A sublattice with an interaction, the k dependence
of which corresponds to the nonlocality of the quartic parts of
the Hamiltonian in real-space representation (4).
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C. Mean-field approximation

Note that in the strong-coupling limit, both the one-particle
part as well as the interaction scale with α. Therefore, the
standard mean-field decoupling of the interaction term

c
†
p↑cp−k↑c

†
q↓ck+q↓ → 〈c†p↑cp−k↑〉c†q↓ck+q↓

+ c
†
p↑cp−k↑〈c†q↓ck+q↓〉

− 〈c†p↑cp−k↑〉〈c†q↓ck+q↓〉 (11)

cannot be controlled by a small parameter but must rather
be seen as a Hartree-Fock approach neglecting correlation
effects in the low-energy sector and assuming a collinear
and homogeneous structure of the magnetic moments. The
formal advantage is that one obtains a mean-field Hamiltonian
which allows for a straightforward study of the temperature
dependence of the A-site magnetic moment and therewith
gives access to the critical (Curie) temperature TC. However,
typical mean-field artifacts must be expected and tolerated.

Using the decoupling (11) in Eq. (8), we obtain a mean-field
Hamiltonian

Heff =
∑
k,σ

[ησ (k) − μ]c†kσ ckσ − α
LA

2
Q↑Q↓, (12)

which is bilinear in c†,c. The mean-field dispersion

ησ (k) = −α

2
(D − Q−σ ) γ 2(k) (13)

as well as the constant in Eq. (12) depend on the possibly
spin-dependent mean field Qσ which must be determined self-
consistently from the following mean-field equation:

Qσ = 1

LA

∑
k

γ 2(k)
1

eβ[ησ (k)−μ] + 1
. (14)

Here, β = 1/T and we have chosen units such that kB = 1.
The spin-dependent average A-site occupation number
nAσ = ∑

i∈A〈niσ 〉/LA is obtained as

nAσ = 1

LA

∑
k

1

eβ[ησ (k)−μ] + 1
. (15)

With this, the order parameter, i.e., the A-sublattice magneti-
zation, is given by mA = nA↑ − nA↓.

Numerical calculations are performed by starting with a
guess for the chemical potential and solving the coupled
system of Eqs. (13) and (14) self-consistently for each spin
projection. From the self-consistent mean field Qσ , we obtain
nAσ via Eq. (15). In an outer self-consistency loop we then
adjust the chemical potential until the total filling nA↑ + nA↓
equals the given filling nA. In the case of half-filling nA = 1,
calculations are facilitated by particle-hole symmetry which
fixes the chemical potential to μ = 0.

D. Results

Calculations have been performed for lattices with different
dimensions D = 1,2,3 (see Figs. 2, 3, and 1, respectively)
as well as for different fillings nA at and below half-filling.
Figure 4 shows the resulting self-consistent mean field Qσ

as functions of the temperature. For any D and nA, there
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FIG. 4. (Color online) Spin-dependent mean field [see Eq. (14)]
as a function of the reduced temperature T/TC for different dimen-
sions D (top, middle, and bottom panels) and different fillings nA

as indicated (see top panel) at and below half-filling (nA = 1). Solid
lines: σ = ↑. Dashed lines: σ = ↓.

is a nonzero critical temperature TC below which we find a
spontaneous spin splitting of the mean field. This supports
the above-mentioned exact-diagonalization results of Ref. [5]
where a fully polarized magnetic ground state has been
found for small one-dimensional systems in the filling range
considered.

As can be seen in Fig. 4, there is only a weak dependence
of the mean field on the dimension D, after rescaling Qσ with
D or with the coordination number z. For T = 0, we have
Q↓ = 0 and thus the σ = ↑ mean-field dispersion simplifies
to η↑ = −αDγ 2(k)/2 resulting in Q↑ = max. and, at half-
filling, Q↑ = z since particle-hole symmetry enforces Q↑ −
D = D − Q↓. For T higher than the Curie temperature TC, we
have Q↑ = Q↓. The spin-independent mean field is slightly
decreasing with increasing T , except for half-filling where
Q↑ = Q↓ = z/2 = const above TC.

Figure 5 shows the temperature-dependent magnetization
for the different fillings and dimensions. At zero temperature,
the system is always fully polarized, i.e., nA↓ = 0 and
nA↑ = nA. Similar to the discussion of the mean fields,
after rescaling the temperature with the respective Curie
temperature TC, there is a weak dependence of mA on the
dimension D at finite T . The phase transition from the
ferromagnetic to the paramagnetic state at TC is of second order
for any nA. Close to the Curie point, we find a critical behavior
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FIG. 5. (Color online) Order parameter mA = nA↑ − nA↓ [see
Eq. (15)] as a function of T/TC for different dimensions D and
fillings nA.

of mA characterized by the (mean-field) critical exponent for
the magnetization β = 0.5, as expected.

The only unexpected result consists in the unconventional T
dependence of mA at half-filling. While at low temperatures the
missing feedback of long-wavelength spin excitations explains
the absence of a power-law T dependence, one would expect,
as a typical mean-field behavior, an exponential convergence
of mA(T ) for T → 0 with a negative curvature and a vanishing
slope limT →0 dmA/dT = 0. However, for nA = 1, Fig. 5
shows an inflection point of mA(T ) at a finite temperature,
which is increasing with increasing D, and an unusual upturn
of mA for T → 0. Closer inspection of the data shows that the
slope is diverging:

dmA

dT
∼ − 1√

αDT
→ −∞ (D = 1,D = 3) (16)

and

dmA

dT
∼ ln(T/α)√

αDT
→ −∞ (D = 2). (17)

The reason of this behavior is a van Hove singularity of the
spin-dependent mean-field local density of states at the Fermi
edge and is discussed in the Appendix.

From the temperature dependence of the order parameter
we can read off the Curie temperature. This is plotted
in Fig. 6 for different D as functions of the filling nA.
Since TC(nA) = TC(2 − nA) due to particle-hole symmetry,
we restrict ourselves to the range nA � 1. Clearly, the Curie
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FIG. 6. (Color online) Filling dependence of the Curie tempera-
ture for lattices with different dimensions as obtained from the static
mean-field theory. Note that TC is rescaled by D3 and given in units
of the coupling constant α.

temperature must be proportional to the coupling constant α as
there is a single energy scale in the effective Hamiltonian (4).

Its geometry dependence is more interesting: Namely, TC

is by no means proportional to the coordination number as it
is typical for many mean-field approaches but is much more
rapidly increasing with increasing z (note that the numerical
results are scaled by a factor D3 in Fig. 6). This finding is not
related to singularities in the density of states as it holds for
any filling. We attribute the unconventionally high TC to the
nonlocality of the interaction in the effective Hamiltonian and
to the resulting k-dependent contribution of the mean field to
the mean-field dispersion in Eq. (13).

III. DYNAMICAL MEAN-FIELD THEORY

A. General theory

Dynamical mean-field theory (DMFT) [29,30] neglects the
feedback of nonlocal, e.g., magnetic correlations, on the local
self-energy and the local one-particle Green’s function but
correctly accounts for all local correlations. This represents
a decisive step beyond the static mean-field approach. Par-
ticularly, the DMFT is able to describe the formation of
local magnetic moments already in the paramagnetic phase
of a lattice model of itinerant electrons, such that the phase
transition between the paramagnetic and the ferromagnetic
phase at TC can be understood as a transition between
well-formed but disordered moments and long-range order.
This is opposed to the static theory where the local moments
essentially vanish above the Curie point.

It is important to note that the feedback of nonlocal
correlations neglected within single-site DMFT is much
weaker for the depleted Anderson lattice considered here as
compared to a lattice fermion model with a dense system of
correlated sites. This can be understood in the following way:
Formally, the only approximation to be tolerated within DMFT
is the locality of the self-energy. For a dense lattice model, such
as the Hubbard model, for example, the DMFT becomes exact
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in the limit of infinite spatial dimensions D → ∞ since the
nearest-neighbor elements of the self-energy scale as 1/D3/2 as
can be inferred from its diagram expansion [32]. This is related
to the scaling 1/D‖i−j‖/2 of the bare propagator, where d ≡
‖i − j‖ is the Manhattan distance between the orbitals at sites
i and j of a hypercubic lattice of dimension D. For a depleted
Anderson lattice on a high-dimensional bipartite lattice with
a Manhattan distance d between the correlated sites, this
also implies that the nonlocal elements of the self-energy
exponentially diminish with increasing d. A completely local
self-energy is realized in the single-impurity limit d → ∞. For
the Hubbard model (d = 1) and the periodic Anderson model
(d = 3) and for low dimensions, quantitative studies have been
performed within second-order perturbation theory [33–35].
The case studied here corresponds to d = 4 but there are two,
possibly largely different, hopping parameters t and V . For
the ground state of the depleted Anderson lattice (with d = 4)
in D = 1 dimension, a direct comparison between DMFT
and essentially exact results obtained by the density-matrix
renormalization-group (DMRG) method has been performed
in Ref. [9], and excellent agreement has been found for static
local observables in the entire V/t regime. Comparing with
DMRG, a quantitative discussion of the artifacts of the DMFT
has been given in Ref. [36] for a D = 1 tight-binding model
with two Anderson impurities. Concluding, we therefore
expect that the DMFT yields reliable results.

DMFT is easily adapted to the model (6): For any dimension
D, there are three sites in a primitive unit cell of the lattice (see
Figs. 1–3). Hence, the single-particle Green’s function Gk(ω)
is a 3 × 3 matrix for any wave vector k in the first Brillouin
zone of the A sublattice and for any one-particle excitation
energy ω. Summation over k provides us with the local Green’s
function with, say, the (3,3) element referring to the impurity
Green’s function 〈〈fiσ ; f †

iσ 〉〉ω. Using Dyson’s equation, this
can be obtained from the local self-energy 	(ω) as

G
(αβ)
loc (ω) = 2

L

∑
k∈BZA

[
1

ω + μ − ε(k) − �(ω)

]
αβ

. (18)

Here, α,β = 1,2,3 label the different sites in a unit
cell. Furthermore, �(ω) is a 3 × 3 diagonal matrix with
	33(ω) = 	(ω) and 	11(ω) = 	22(ω) = 0, and

ε(k) =

⎛
⎜⎝

0 ε0(k) 0

ε0(k) 0 V

0 V ε

⎞
⎟⎠ (19)

is the lattice Fourier transform of the hopping parameters with
ε0(k) = −γ (k)t .

The DMFT self-energy 	(ω) is obtained as the impurity
self-energy of an effective Anderson impurity model specified
by the Hubbard-U and a hybridization function that is fixed
by the self-consistency equation of DMFT as


(ω) = ω + μ − ε − 	(ω) − 1

G
(33)
loc (ω)

. (20)

Here, the impurity one-particle energy is given by ε, and 	(ω)
must be determined self-consistently with Eq. (18).

To compute the self-energy of the effective impurity prob-
lem at finite temperature T , we employ the continuous-time

quantum Monte Carlo method [37,38] and the hybridization
expansion of the action of the effective impurity model [39].
Configurations are sampled by means of the Metropolis-
Hastings algorithm [40,41]. As the Hubbard interaction is of
density-density type, we can use the highly efficient segment-
picture variant of the approach and, following Ref. [42],
directly measure the impurity self-energy 	σ (iωn) on the
fermionic Matsubara frequencies iωn.

B. Results

From the results of static mean-field theory for the effective
low-energy model (4) in the strong-V limit (see Fig. 6) we infer
that the Curie temperature is at a maximum for half-filling.
More generally, we expect that at half-filling the stability of a
ferromagnetically ordered state against thermal fluctuations is
the highest not only for strong V , but also for weak V , where
the period of the RKKY interaction is commensurate with the
positions of the correlated sites on the lattice. Furthermore,
at half-filing and for the considered lattice geometries, the
RKKY interaction is ferromagnetic. We will therefore restrict
ourselves to the particle-hole symmetric case with the chemical
potential fixed at μ = 0 and with the one-particle energy of
the impurities set to ε = −U/2 [see Eq. 6)]. We also fix the
Hubbard interaction at an intermediate value U = 8 for the
rest of the paper. To discuss the crossover from the RKKY
limit to the regime of the inverse indirect magnetic exchange,
we consider different hybridization strengths V .

By carrying out a sum over Matsubara frequencies, one may
easily compute the average spin-dependent occupation num-
bers on the A and B sites nAσ = 〈c†Aσ cAσ 〉 and nBσ = 〈c†Bσ cBσ 〉
from the local Green’s function (18), once self-consistency
has been achieved. The average occupation numbers of the
impurity site nimp,σ = 〈f †

σ fσ 〉 can be obtained in the same
way or, equivalently, can be measured within CT-QMC
directly.

We explicitly allow for symmetry-broken states with finite-
ordered magnetic moments mA, mB, and mimp, where we
have defined mA = nA↑ − nA↓ and mB, mimp analogously. It
is found that magnetic solutions of the DMFT equations are
easily stabilized in the entire range of hybridization strengths
V considered (but for sufficiently low temperatures) by starting
the self-consistency cycle with a slightly spin-asymmetric ini-
tial self-energy. In addition, we also compute the homogeneous
static impurity spin susceptibility of the paramagnetic state
χ = ∂mimp/∂B|B=0. Here, B is the strength of a homogeneous
magnetic field coupling to the z component of the total
impurity spin as H �→ H − B

∑
i∈B(f †

i↑fi↑ − f
†
i↓fi↓) where

H is given by Eq. (6).
Figure 7 shows the results of a DMFT calculation at

V = 2 for the D = 3-dimensional lattice with L = 523 sites,
with additional R = L/2 impurites and periodic boundary
conditions (see Fig. 1). This is fully sufficient to ensure that
the results do not significantly depend on L. Statistical errors
of the quantities shown in this and in the following figures are
smaller than the size of the symbols. A typical Monte Carlo run
consists of more than 107 sweeps, and each sweep of more than
k Monte Carlo steps with k being the average expansion order.
Less than 50 DMFT iterations are sufficient for convergence
of the results within the statistical error.
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FIG. 7. (Color online) Ordered magnetic moments mA, mB, mimp

(circles) on the A sites, the B sites, and the impurity sites, respectively,
and the inverse homogeneous static impurity magnetic susceptibility
χ−1 (diamonds) as functions of temperature T as obtained by DMFT
for the D = 3-dimensional depleted Anderson lattice (see Fig. 1).
Hubbard interaction: U = 8, hybridization strength: V = 2. The
line indicates a linear fit to the trend of χ−1(T ). The temperature
and energy scales are fixed by the nearest-neighbor hopping t = 1
[see Eq. (6)].

For high temperatures, the system is in a paramagnetic
state. The inverse susceptibility χ−1 shows a linear Curie-
Weiss trend from which one can safely estimate the value
for the Curie temperature TC ≈ 0.064. χ is calculated from
the magnetic moments induced by an explicitly applied
homogeneous field for sufficiently weak field strengths in the
linear-response regime (typically B < 0.01).

The transition to the ferromagnetic state at low temperatures
appears to be of second order, and the data for the ordered
magnetic moments are consistent with a linear temperature
trend of m2 close to TC, i.e., m2 ∝ (TC − T ). This implies a
critical exponent β = 0.5 as it must be expected for a DMFT
calculation. Note, however, that due to critical slowing down,
it becomes progressively more difficult to stabilize symmetry-
broken DMFT solutions for temperatures close to TC. The
double occupancy at the impurity site dimp = 〈nimp,↑nimp,↓〉,
and thus the local magnetic moment S2

imp = 3(1 − 2dimp)/4
turns out to be almost constant in the entire temperature range
considered: dimp ≈ 0.077. In particular, the moment does not
change significantly across the phase transition. The transition
to the symmetry-broken state must therefore be characterized
as long-range ordering of local magnetic moments that are
preformed at higher temperatures. This is a typical effect of
strong correlations and opposed to simple Hartree-Fock–type
(or Stoner-type) phase transitions where the local magnetic
moment forms right at TC.

The low-temperature state of the system actually displays
ferrimagnetic order since the magnetic moment at the B sites
is antiferromagnetically aligned (mB < 0) to the moments at
the impurities and the A sites (mimp,mA > 0). This alignment
is reminiscent of the antiferromagnetic coupling in the Kondo
limit of the model, i.e., for V → 0, where an antiferromagnetic
effective exchange interaction (Kondo coupling) of strength

FIG. 8. (Color online) The same as in Fig. 7 but for V = 3.

J = 8V 2/U emerges between B sites and impurities in the
low-energy sector [15,16]. In the weak-coupling limit V → 0,
one furthermore expects that well-formed local magnetic
moments appear at the impurity sites since charge fluctuations
are strongly suppressed. Ferromagnetic coupling of these
moments via the RKKY exchange then implies |mimp| → 1,
while mA,mB → 0. For V = 2, we are still in the RKKY
regime since the A-site moment is clearly smaller than the
moment on an impurity site.

As Fig. 8 demonstrates, however, this changes with increas-
ing V . For V = 3, we find mA > mimp at low temperatures
indicating the crossover from the RKKY regime to the
strong-V limit. In the strong-coupling limit V 	 t , almost
localized “Anderson singlets” are formed by the magnetic
moments at B and impurity sites, and thus mB,mimp → 0.
The presence of local singlets at the B sites implies that
electrons on the remaining A sites are very efficiently localized
such that well-formed local moments emerge. Those moments
couple ferromagnetically via the inverse indirect magnetic
exchange [5,9,10], i.e., by virtual excitations of the Anderson
singlets, and thus mA → 1. This picture well explains that
mA > mimp in Fig. 8.

It is instructive to compare the results for the D = 3 lattice
with those obtained for D = 1 (see Fig. 2). Figures 9 and 10
show results for the ordered magnetic moments and the impu-
rity magnetic susceptibility for a chain geometry with L = 50
sites with periodic boundary conditions. The overall trends
seen in the figures are similar to those found for D = 3 but
the crossover from the RKKY to the IIME regime appears at
lower hybridization strength V as can be inferred from the fact
that mA is considerably higher than mimp already for V = 3.

Furthermore, the Curie temperature is seen to decrease with
increasing V in this regime; TC drops by about a factor 2 when
increasing the hybridization strength from V = 2 to 3. This
can consistently be explained by referring to the strong-V
limit where the effective model (4) applies and where the only
energy scale is given by the coupling α [see Eq. (3)] which
decreases with increasing V .

This also means that the crossover regime shifts to stronger
hybridizations strengths with increasing lattice dimension
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FIG. 9. (Color online) mA, mB, mimp (circles) and χ−1 (dia-
monds) as functions of T , as in Fig. 7 but for the D = 1-dimensional
depleted Anderson lattice (see Fig. 2). Hubbard interaction: U = 8,
hybridization strength: V = 2. DMRG data for T = 0 (squares) from
Ref. [9] are included for comparison.

or coordination number. This must be kept in mind when
comparing TC obtained for different dimensions D at constant
V . At V = 2, the Curie temperature does not depend very
much on D: We find TC = 0.040 for D = 1, TC = 0.059 for
D = 2, and TC = 0.064 for D = 3. This is easily explained
as a balance between two counteracting effects, namely, an
increase of TC with increasing D characteristic for a mean-field
theory on the one hand and the mentioned shift of the crossover
regime resulting in a lower TC on the other hand.

Obviously, the D = 1 and 2 results are not consistent with
the Mermin-Wagner theorem [43] which excludes spontaneous
breaking of the SU(2) spin rotation symmetry for D � 2 at
finite temperatures. As a matter of course, it cannot be satisfied
within a static or within dynamical mean-field theory since
long-wavelength magnetic excitations do not feed back to the
single-particle self-energy. We nevertheless expect that the
finite TC predicted by DMFT is physically significant even for
D = 1 (and D = 2) and indicates the onset of ferromagnetic

FIG. 10. (Color online) The same as in Fig. 9 but for V = 3.

FIG. 11. (Color online) Curie temperature TC for the D = 3-
dimensional depleted Anderson lattice at U = 8 and half-filling
as a function of the hybridization strength V . Points are obtained
via χ−1(TC) = 0 by extrapolating the linear temperature trend of
the inverse susceptibility χ−1(T ). Solid lines: a dependence of
TC(V ) ∝ V 4/tU 2 is expected for V → 0. For strong V , the data
are consistent with TC(V ) ∝ α(V ). Dashed line: TC(V ) ∝ 2t4U/V 4

represents a good approximation to α(V ) at U = 8.

ordering of the magnetic moments on intermediate length
scales [44]. This corresponds to a thermodynamically stable
ferromagnet only if the SU(2) symmetry is broken explicitly,
e.g., due to the presence of additional anisotropic terms in the
Hamiltonian.

For D = 1 and in the low-temperature limit the DMFT
agrees well with essentially exact data obtained by means of the
density-matrix renormalization-group (DMRG) method [9] at
zero temperature. The extrapolation of the DMFT results for
the ordered magnetic moments mimp and mB to T = 0 perfectly
matches with the DMRG data (see black squares in Figs. 9
and 10). As concerns the magnetic moment on the A sites,
we expect the same unconventional T dependence that has
been discussed in the context of static mean-field theory in
Sec. II D, i.e., an upturn of mA for T → 0, consistent with
the T = 0 DMRG data, which is induced by the van Hove
singularity of the spin-dependent local density of states at the
Fermi edge.

For the D = 3 lattice, we have systematically computed TC

as a function of V at fixed U = 8. Results as obtained from by
linear fits to the temperature trend of the χ−1(T ) are shown in
Fig. 11.

In the weak-coupling limit V → 0, the Curie temperature is
expected to be solely determined by the strength of the RKKY
interaction and thus to scale as TC ∝ JRKKY ∝ J 2 ∝ V 4 with
V . For the strong-coupling or IIME limit, the only energy
scale of the effective low-energy theory is given by α and
thus TC ∝ α (see solid lines in Fig. 11). For U = 8, a good
approximation is TC ∝ V −4 [see Eq. (3) and the dashed line in
Fig. 11].

The Curie temperature is at its maximum TC,opt ≈ 0.07 for
a hybridization strength of about Vopt ≈ 2.5. TC,opt is almost an
order of magnitude smaller than the maximum Néel tempera-
ture of the D = 3 Hubbard model at half-filling [45] and also
an order magnitude smaller than typical Curie temperatures of
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the Hubbard model with asymmetric free density of states, as
obtained for lower fillings by DMFT [46]. The same holds if
compared with DMFT estimates for the Curie temperature of
the standard periodic Anderson model [47].

IV. SUMMARY

This study has demonstrated that the Anderson lattice
model with a regularly depleted system of localized orbitals
at every second site supports ferromagnetic long-range order
which exhibits, depending on the hybridization strength V , a
high stability against thermal fluctuations. The temperature-
dependent magnetism has been investigated systematically for
different coupling strengths and electron densities.

The depleted Anderson lattice model has been considered
beforehand to study fundamental questions of magnetic cou-
pling mechanisms [9,10] and to describe artificial Kondo sys-
tems realized as ultracold atoms trapped in optical lattices [14].
It is related to two-dimensional superlattices consisting of peri-
odic arrangements of f -electron and noninteracting layers [48]
and may be used to describe systems of magnetic atoms on
nonmagnetic metallic surfaces where a manipulation of the
adatom geometry and a precise mapping of magnetic couplings
is accessible to scanning-tunneling techniques on an atomic
scale [17–21].

We have employed two different types of mean-field
approaches: (i) static mean-field theory of the effective low-
energy model that emerges at strong couplings V within
fourth-order perturbation theory, and (ii) dynamical mean-field
theory of the full model using continuous-time quantum Monte
Carlo as impurity solver. The Curie temperature is obtained
by computing the temperature dependence of the magnetic
moments as well as by the divergence of the homogeneous
static magnetic susceptibility. The maximal TC is found at
half-filling and for intermediate hybridization strengths.

For weak V , magnetic order is induced by the standard
effective RKKY interaction between the local magnetic
moments formed at the correlated impurity sites. For the
geometry considered and at half-filling, the RKKY interaction
is ferromagnetic. The Curie temperature scales with V 4 in
this limit. For strong V , on the other hand, the recently
proposed inverse indirect magnetic exchange also leads to
ferromagnetic order. In this limit, the impurity magnetic
moments are Kondo screened and form almost local Kondo
singlets on a high-energy scale V which localize the fraction
of conduction electrons not taking part in the screening. Those
conduction electrons develop local magnetic moments which
are ferromagnetically coupled by virtual excitations of the
local Kondo singlets on an energy scale α [see Eq. (3)].
Therefore, TC scales with α ∼ V −4 for fixed U in this limit.

While the numerical data obtained for different V appear
to be consistent with the expected trends, it turned out to be
very difficult to reach the extreme limits V → 0 and V → ∞
characterized by pure RKKY or IIME coupling, respectively,
as the energy scale given by TC becomes too small. As concerns
the strong-coupling limit, we conclude that a perfect linear
scaling of TC with α can only be expected for still stronger
hybridization strengths V that are not accessible to DMFT
with the presently used impurity solver. This also implies that
a direct comparison of the DMFT results for TC with those

obtained by static mean-field theory applied to the effective
low-energy model is not meaningful. From Fig. 6 we can infer
that the latter would predict a Curie temperature which is by
two orders of magnitude higher than the DMFT result for
V = 7 in Fig. 11. This could indicate that the strong-coupling
limit is not yet reached but could also be ascribed to strong
local fluctuations reducing TC which are accounted for within
the dynamical but not in the static mean-field theory [49].

On the other hand, the maximum TC,opt ≈ 0.07 found for
intermediate V is well accessible to DMFT and surprisingly
high, in view of the fact that the magnetic coupling is mediated
indirectly only. Compared to DMFT estimates [45–47] of
critical (Néel or Curie) temperatures in the Hubbard or
periodic Anderson model with a dense system of correlated
impurities, it is about an order of magnitude lower. The
optimal intermediate hybridization strength where TC is at
its maximum is given by Vopt ≈ 2.5, i.e., clearly stronger than
the nearest-neighbor hopping t = 1.

One should note that DMFT applied to the depleted
Anderson lattice can be expected to be much more reliable than
for the dense case. In fact, perfect agreement with numerically
exact DMRG data is observed in the low-temperature limit. We
are therefore convinced that this study provides quantitative
insight into the physics and contributes to the fundamental
understanding of magnetic order of correlated orbitals coupled
indirectly by conduction electrons.
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APPENDIX: LOW-TEMPERATURE BEHAVIOR
OF THE MAGNETIZATION AT HALF-FILLING

Here, we derive the low-temperature behavior of dmA/dT

at half-filling, i.e., Eqs. (16) and (17). Due to particle-hole
symmetry at half-filling (μ = 0), we have

Q↑ + Q↓ = 2D (A1)

and

η↑(k) = −η↓(k) = −α

2
(D − Q↓)γ 2(k). (A2)

Using Eq. (15), we immediately have

mA = 1

LA

∑
k∈BZA

tanh
α[D − Q↓(T )]γ 2(k)

4T
. (A3)

In the thermodynamical limit L �→ ∞, the k sum can be
replaced by one-dimensional integration

mA =
∫ 2D

−2D

dωρ(D)(ω) tanh
α[D − Q↓(T )]ω2

4T
, (A4)
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with the weight function

ρ(D)(ω) = 1

LA

∑
k∈BZA

δ[ω − γ (k)]. (A5)

We note that ρ(1)(ω) and ρ(3)(ω) are finite at the Fermi edge
(at ω = 0), while ρ(2)(ω) ∼ ln |ω| diverges. Since ρ(D)(−ω) =
ρ(D)(ω) and since Q↓(T ) � 0 for low temperatures, Eq. (A4)
implies

dmA

dT
= − αD

2T 2

∫ 2D

0
dω ρ(D)(ω)

ω2

cosh2 αDω2

4T

. (A6)

After changing the integration variable, we obtain

dmA

dT
� − 1√

αDT

∫ ∞

0
dx ρ(D)

(
2

√
T x

αD

) √
x

cosh2 x
(A7)

for low T . Since ρ(D)(ω) is regular at ω = 0 for D = 1 and
D = 3, we have

dmA

dT

∣∣∣∣
T =0

T →0∼ − 1√
αDT

(D = 1,D = 3) (A8)

and thus Eq. (16). Furthermore, with ρ(2)(
√

2T/α) ∼
ln(2T/α) we get

dmA

dT

T →0∼ ln(T/α)√
αDT

(D = 2), (A9)

i.e., Eq. (17). The low-temperature behavior of mA is thus
governed by the weight function ρ(D)(ω) at low ω. Anal-
ogously, one may also relate the low-temperature behavior
of mA to the van Hove singularity of the spin-dependent
tight-binding density of states corresponding to the mean-field
dispersion (13).
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