
Sheet 8 Summer Semester 2019

Condensed-Matter Theory - Special Topics

Problem 14 — Charge compressibility
The charge compressibility is defined as
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What can be said about  for a Mott insulator?

Show that for the metallic phase of the Hubbard model at temperature T = 0 one has
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(Hint: Luttinger’s theorem holds). Use
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to derive the Fermi-liquid relation
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Here, Ak�(!) is the spectral function, zk� is the quasi-particle weight, n = hNi/L, and
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is a Fermi-liquid parameter.

Problem 15 — Real-space DMFT
Consider the Hubbard model on a lattice of sites i = 1, ..., L with a hopping matrix tij, which is not
assumed as invariant under translations, i.e., all sites i are generically inequivalent. Assume that the
coordination number of each site qi = 1.

Give at least 6 examples of possible geometries!

One example is a D = 1 hypercubic lattice where one site is missing. How must the nearest-
neighbor hopping scale with D?

Argue that the self-energy is local but site-dependent:

⌃ij(!) = �ij⌃i(!) !



Argue that the skeleton-diagram expansion reads

⌃i(!) = ⌃[Gii(!)]

i.e., the self-energy at i is a functional of the local Green’s function Gii(!) at the same site only!

Define the hybridization function of a single-impurity Anderson model at site i as
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How would you set up the real-space DMFT self-consistency cycle?


