Variational principles for strongly correlated Fermi systems

Michael Potthoff

I. Institute for Theoretical Physics, University of Hamburg, Germany

→ electron correlations, Hubbard model, exact diagonalization

→ electron correlations, Hubbard model, exact diagonalization

Variational Principles and Approximation Strategies:

→ static mean-field theory, approximation strategies, Hartree-Fock and DFT

→ electron correlations, Hubbard model, exact diagonalization

Variational Principles and Approximation Strategies:

→ static mean-field theory, approximation strategies, Hartree-Fock and DFT

Green's Functions and Perturbation Theory:

- spectroscopy and Green's functions, properties of Green's functions
- \rightarrow S matrix, diagrams

→ electron correlations, Hubbard model, exact diagonalization

Variational Principles and Approximation Strategies:

static mean-field theory, approximation strategies, Hartree-Fock and DFT

Green's Functions and Perturbation Theory:

- spectroscopy and Green's functions, properties of Green's functions
- \rightarrow S matrix, diagrams

Dynamical Variational Principle:

- → Luttinger-Ward functional, self-energy functional
- → reference systems and evaluation of the self-energy functional
- → bath sites and dynamical mean-field theory, cluster extensions

electron correlations, Hubbard model, exact diagonalization

Variational Principles and Approximation Strategies:

static mean-field theory, approximation strategies, Hartree-Fock and DFT

Green's Functions and Perturbation Theory:

- spectroscopy and Green's functions, properties of Green's functions
- \rightarrow S matrix, diagrams

Dynamical Variational Principle:

- → Luttinger-Ward functional, self-energy functional
- → reference systems and evaluation of the self-energy functional
- bath sites and dynamical mean-field theory, cluster extensions

Dynamical Theory of the Mott Transition:

- → Mott transition in infinite dimensions
- → Mott transition in one and two dimensions

acknowledgements

thanks to:

M. Aichhorn, F.F. Assaad, E. Arrigoni, M. Balzer, R. Bulla, C. Dahnken, R. Eder, W. Hanke, A. Hewson, M. Jarrell, M. Kollar, G. Kotliar, A.I. Lichtenstein, A.J. Millis, W. Nolting, D. Senechal, A.-M.S. Tremblay, D. Vollhardt

for cooperations and many helpful discussions.

finanical support: Deutsche Forschungsgemeinschaft

SFB 668 (project A14) SFB 668 (project B3) FOR 1346 (project P1) SFB 925 (project B5)

Electron Correlations

the "standard model"

standard model of the electronic structure of a solid:

- \diamond N electrons
- \diamond kinetic energy
- ♦ external potential (ion cores)
- ♦ Coulomb interaction

 $H = H_0 + H_1$

with

$$H_0 = \sum_{j=1}^N \left(\frac{\mathbf{p}_j^2}{2m} + V(\mathbf{r}_j) \right) = \sum_{j=1}^N H_0^{(j)}$$

$$H_1 = \frac{1}{2} \sum_{j,k}^{j \neq k} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_k|}$$

Hamiltonian: known solution: unknown

independent particles

Hamiltonian of (effectively) independent electrons:

$$H_{\text{eff}} = \sum_{j=1}^{N} \left(\frac{\mathbf{p}_{j}^{2}}{2m} + V_{\text{eff}}(\mathbf{r}_{j}) \right) = \sum_{j=1}^{N} H_{0,\text{eff}}^{(j)}$$

Schrödinger's equation $H_{\mathrm{eff}} |\Psi
angle = E |\Psi
angle$

is solved by

$$|\Psi\rangle = |\varphi_{\alpha_1}^{(1)}\rangle|\varphi_{\alpha_2}^{(2)}\rangle \cdots |\varphi_{\alpha_N}^{(N)}\rangle$$
 where $H_{0,\text{eff}}^{(j)}|\varphi_{\alpha_j}^{(j)}\rangle = \varepsilon_j|\varphi_{\alpha_j}^{(j)}\rangle$

Fermions!

$$|\Psi\rangle = \frac{1}{N!} \sum_{\mathcal{P}} (-1)^{|\mathcal{P}|} |\varphi_{\alpha_1}^{\mathcal{P}(1)}\rangle |\varphi_{\alpha_2}^{\mathcal{P}(2)}\rangle \cdots |\varphi_{\alpha_N}^{\mathcal{P}(N)}\rangle \qquad E = \sum_{j=1}^N \varepsilon_j$$

independent particles

- ◇ problem reduces to single-particle Schrödinger equation
- ♦ no "correlations"

correlated band structure

one-particle energies for a solid with lattice-periodic effective potential:

 $\varepsilon_{\alpha}\mapsto\varepsilon_m(\mathbf{k})$

(Bloch's theorem)

wave vector \mathbf{k} , band index m

single-band tight-binding model of independent electrons:

correlated band structure

one-particle energies for a solid with lattice-periodic effective potential:

 $\varepsilon_{\alpha}\mapsto\varepsilon_m(\mathbf{k})$

(Bloch's theorem)

wave vector ${\bf k},$ band index \boldsymbol{m}

with interaction:

 \rightarrow correlation effects: there is no $V_{\rm eff}(\mathbf{r})$ producing this band structure!

thermodynamics of independent particles

(grand canonical) partition function:

 $Z = \operatorname{tr} e^{-\beta H} \qquad \beta = 1/T$

independent (distinguishable) particles: $H_{\text{eff}} = \sum_{j=1}^{N} H_{0,\text{eff}}^{(j)}$

 $Z = Z_1^N$

- ♦ no singularities
- ♦ no phase transitions
- ♦ no collective phenomena

independent **fermions** : ✔ independent **bosons** : BEC

→ correlations due to statistics of particles vs. correlations due to interactions
 → phase diagrams of Fermi systems: interaction effect

thermodynamics: correlation effects

- ♦ collective magnetism
- ♦ charge and orbital order
- ♦ superconductivity
- ♦ Mott transitions
- ♦ Kondo screening
- ♦ non-Fermi liquid behavior
- ♦ Luttinger liquid
- $\diamond \cdots$

effect of lattice dimension

W: width of the relevant valence band

measure of the kinetic energy proportional to coordination number / dimension

U: strongly screened Coulomb interaction

local quantity

independent of dimension

D=3: interaction / correlations comparatively weak

effect of lattice dimension

W: width of the relevant valence band

measure of the kinetic energy proportional to coordination number / dimension

U: strongly screened Coulomb interaction

local quantity

independent of dimension

D=2: interaction / correlations more important

effect of lattice dimension

W: width of the relevant valence band

measure of the kinetic energy proportional to coordination number / dimension

U: strongly screened Coulomb interaction

local quantity

independent of dimension

D=1: correlations dominate motion blocked by Pauli principle

Hubbard Model

TT + TT

single band - local interaction

$$H = H_0 + H_1$$

$$H_0 = \sum_{j=1}^N \left(\frac{\mathbf{p}_j^2}{2m} + V(\mathbf{r}_j)\right) = \sum_{j=1}^N H_0^{(j)} \qquad H_1 = \frac{1}{2} \sum_{j,k}^{j \neq k} \frac{e^2}{|\mathbf{r}_j - \mathbf{r}_k|}$$

 $H = H_0 + H_1$

$$H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} n_{i-\sigma}$$

- \diamond i, j: lattice sites, i = 1, ..., L
- \diamond spin projection $\sigma = \uparrow, \downarrow$
- \diamond hopping $t_{ij} \rightarrow$ tight-binding band
- ♦ Hubbard- $U \rightarrow$ (screened) local Coulomb interaction
- \diamond occupation number operator $n_{i\sigma} = c^{\dagger}_{i\sigma}c_{i\sigma}$
- $\diamond c_{i\sigma}, c_{i\sigma}^{\dagger}$: annihilator, creator

Hubbard model

$$H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} n_{i-\sigma}$$

- ☆ "kinetic" energy vs. Coulomb inteaction
- ♦ Fermi statistics
- \diamond Hilbert-space dimension: 4^L
- ♦ standard model of electronic structure in a nutshell
- ♦ collective magnetism, superconductivity, Mott transitions, Kondo effect, ...

Exact Diagonalization

exact diagonalization

simply solve the Hubbard model?

→ set up Hamilton matrix:

$$|m\rangle \equiv |n_1, n_2, ..., n_{2L}\rangle$$

$$m = 1, ..., M \qquad M = \dim \mathcal{H}$$

$$H_{mm'} = \langle m | H | m' \rangle$$

→ diagonalize Hamilton matrix numerically:

 $\mathbf{H}=\mathbf{U}\mathbf{D}\mathbf{U}^{\dagger}$

→ get eigenvector of lowest energy and ground state:

$$u_m \rightarrow |E_0\rangle = \sum_m u_m |m\rangle$$

 \rightarrow compute expectation value of observable A:

$$\langle E_0|A|E_0\rangle = \sum_{mm'} u_m^* u_{m'} \langle m|A|m' \rangle$$

$$H = \sum_{ij\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} n_{i-\sigma}$$

exact diagonalization

problem :

 $M \times M$ Hamilton matrix with $M = 2^{2L} = 4^L = \dim \mathcal{H}$

L = 6 sites $\rightarrow M = 4096$

use symmetries :

e.g. conservation of total number of σ electrons:

$$[N_{\sigma}, H]_{-} = 0$$
 with $N_{\sigma} = \sum_{i=1}^{L} n_{i\sigma}$

dimension of invariant subspace:

$$M_{N_{\uparrow},N_{\downarrow}} = \left(\begin{array}{c} L \\ N_{\uparrow} \end{array}\right) \left(\begin{array}{c} L \\ N_{\downarrow} \end{array}\right)$$

L = 6 sites, $N_{\uparrow} = N_{\downarrow} = 3$ electrons ("half-filling") $\rightarrow M_{N_{\uparrow},N_{\downarrow}} = 400$ L = 10 sites, $N_{\uparrow} = N_{\downarrow} = 5$ electrons ("half-filling") $\rightarrow M_{N_{\uparrow},N_{\downarrow}} = 63504$

 $63504 \times 63504 \times 4$ Bytes ≈ 16 GBytes but $N = 10 \ll 10^{23}$!

Static Mean-Field Theory

formulation of the generalized Ritz principle

Hamiltonian:

 ${\bf t}$ and ${\bf U}$ dependencies are made explicit

$$H_{\mathbf{t},\mathbf{U}} = \sum_{\alpha\beta} t_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta} + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}$$

grandcanonical density matrix:

$$\rho_{\mathbf{t},\mathbf{U}} = \frac{\exp(-\beta(H_{\mathbf{t},\mathbf{U}}-\mu N))}{\operatorname{tr}\,\exp(-\beta(H_{\mathbf{t},\mathbf{U}}-\mu N))}$$

grandcanonical potential:

$$\Omega_{\mathbf{t},\mathbf{U}} = -T \ln Z_{\mathbf{t},\mathbf{U}} = -T \ln \operatorname{tr} \exp(-\beta (H_{\mathbf{t},\mathbf{U}} - \mu N))$$

define density-matrix functional:

$$\Omega_{\mathbf{t},\mathbf{U}}[\rho] = \operatorname{tr}\left(\rho(H_{\mathbf{t},\mathbf{U}} - \mu N + T\ln\rho)\right)$$

 \diamond T, μ fixed

- $\Omega_{t,U}[\rho]$ real-valued functional of the operator variable ρ
- \diamond parametric dependence on t and U

extremal principle:

 $\Omega_{\mathbf{t},\mathbf{U}}[\rho] = \mathsf{min.} \text{ for } \rho = \rho_{\mathbf{t},\mathbf{U}} \text{ and } \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t},\mathbf{U}}] = \Omega_{\mathbf{t},\mathbf{U}}$

we have:

$$\begin{aligned} \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t},\mathbf{U}}] &= \operatorname{tr}\left(\rho_{\mathbf{t},\mathbf{U}}(H_{\mathbf{t},\mathbf{U}}-\mu N+T\ln\rho_{\mathbf{t},\mathbf{U}})\right) \\ &= \operatorname{tr}\left(\rho_{\mathbf{t},\mathbf{U}}[H_{\mathbf{t},\mathbf{U}}-\mu N+T(-\beta)(H_{\mathbf{t},\mathbf{U}}-\mu N)-T\ln Z_{\mathbf{t},\mathbf{U}}]\right) \\ &= \operatorname{tr}\rho_{\mathbf{t},\mathbf{U}}(-T)\ln Z_{\mathbf{t},\mathbf{U}} \\ &= \Omega_{\mathbf{t},\mathbf{U}} \end{aligned}$$

still to be shown: $\Omega_{t,U}[\rho] \ge \Omega_{t,U}$ for arbitrary ρ

domain of the density-matrix functional:

$$\{\rho \mid \operatorname{tr} \rho = 1, \quad \rho \ge 0, \quad \rho = \rho^{\dagger}\}$$

general (!) ansatz:

$$\rho = \rho_{\mathbf{t}',\mathbf{U}'} = \frac{\exp(-\beta(H_{\mathbf{t}',\mathbf{U}'} - \mu N))}{\operatorname{tr}\,\exp(-\beta(H_{\mathbf{t}',\mathbf{U}'} - \mu N))} = \frac{\exp(-\beta(H_{\mathbf{t}',\mathbf{U}'} - \mu N))}{Z_{\mathbf{t}',\mathbf{U}'}}$$

therewith:

$$\begin{aligned} \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}',\mathbf{U}'}] &= \operatorname{tr}\left(\rho_{\mathbf{t}',\mathbf{U}'}(H_{\mathbf{t},\mathbf{U}}-\mu N+T\ln\rho_{\mathbf{t}',\mathbf{U}'})\right) \\ &= \operatorname{tr}\left(\rho_{\mathbf{t}',\mathbf{U}'}(H_{\mathbf{t},\mathbf{U}}-\mu N+T(-\beta)(H_{\mathbf{t}',\mathbf{U}'}-\mu N)-T\ln Z_{\mathbf{t}',\mathbf{U}'})\right) \\ &= \operatorname{tr}\left(\rho_{\mathbf{t}',\mathbf{U}'}(H_{\mathbf{t},\mathbf{U}}-H_{\mathbf{t}',\mathbf{U}'})\right) + \Omega_{\mathbf{t}',\mathbf{U}'} \end{aligned}$$

proof, continued

consider the following partiation:

$$H(\lambda) = H_{\mathbf{t}',\mathbf{U}'} + \lambda(H_{\mathbf{t},\mathbf{U}} - H_{\mathbf{t}',\mathbf{U}'})$$

obviously, $H(0)=H_{\mathbf{t}',\mathbf{U}'}$ and $H(1)=H_{\mathbf{t},\mathbf{U}}$ for

$$\Omega(\lambda) \equiv -T \ln \operatorname{tr} \exp(-\beta(H(\lambda) - \mu N))$$

we have:

$$\Omega(0)=\Omega_{{\bf t}',{\bf U}'} \text{ and } \Omega(1)=\Omega_{{\bf t},{\bf U}}$$
 hence:

$$\Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}',\mathbf{U}'}] = \Omega(0) + \frac{\partial \Omega(\lambda)}{\partial \lambda}$$

on the other hand: $\Omega(\lambda)$ is concave \rightarrow

$$\Omega(0) + \frac{\partial \Omega(\lambda)}{\partial \lambda} \bigg|_{\lambda=0} \cdot \lambda \ge \Omega(\lambda)$$

A concave function of λ is smaller (for any λ , e.g. $\lambda = 1$) than its linear approximation in a fixed point (e.g. $\lambda = 0$).

for $\lambda = 1$ it follows:

$$\Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}',\mathbf{U}'}] = \Omega(0) + \left. \frac{\partial \Omega(\lambda)}{\partial \lambda} \right|_{\lambda=0} \ge \Omega(1) = \Omega_{\mathbf{t},\mathbf{U}} \qquad \qquad \text{q.e.d}$$

 $\lambda = 0$

variational construction of mean-field theory

general scheme to contruct variational approximations:

- \diamond variational principle $\delta \Omega_{\mathbf{t},\mathbf{U}}[\rho] = 0$
- \diamond most general ansatz: $\rho = \rho_{t',U'}$ with t' and U' arbitrary
 - → exact solution $\rho = \rho_{t,U}$

♦ (restricted) ansatz
$$\rho = \rho_{\lambda}$$
 with parameters λ :
$$\frac{\partial}{\partial \lambda} \Omega_{t, U}[\rho_{\lambda}] = 0 \text{ für } \lambda = \lambda_{0}$$

yields optimal ρ_{λ_0} with

$$\Omega_{\mathbf{t},\mathbf{U}}[\rho_{\lambda_0}] \geq \Omega_{\mathbf{t},\mathbf{U}}$$

 \diamond in practice:

choose a reference system $H' = H'_{\lambda}$ $\rho_{\lambda} = \exp(-\beta(H'_{\lambda} - \mu N))/Z_{\lambda}$

general Hamiltonian:

$$H = \sum_{\alpha\beta} t_{\alpha\beta} c_{\alpha}^{\dagger} c_{\beta} + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} c_{\alpha}^{\dagger} c_{\beta}^{\dagger} c_{\gamma} c_{\delta}$$

static mean-field theory (Hartree-Fock) :

$$H' = H_{\mathbf{t}',0} = \sum_{lphaeta} t'_{lphaeta} c^{\dagger}_{lpha} c_{eta} \quad \mathbf{t}' \;\; \mathrm{arbitrary}$$

 $\langle \cdots \rangle' = \operatorname{tr} \left(\rho' \cdots \right)$

variational determination of \mathbf{t}'

trial density matrix: $\rho' = \frac{1}{Z'} e^{-\beta(H' - \mu N)}$

conditional equation for
$$t'$$
:

$$\begin{split} 0 &= \frac{\partial}{\partial t'_{\mu\nu}} \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}'}] \\ &= \frac{\partial}{\partial t'_{\mu\nu}} \operatorname{tr} \left(\rho_{\mathbf{t}'}(H_{\mathbf{t},\mathbf{U}} - \mu N + T \ln \rho_{\mathbf{t}'}) \right) \\ &= \frac{\partial}{\partial t'_{\mu\nu}} \left(\langle H_{\mathbf{t},\mathbf{U}} - \mu N \rangle' + \operatorname{tr} \left[\rho_{\mathbf{t}'}T(-\beta)(H' - \mu N) - \ln Z' \right] \right) \\ &= \frac{\partial}{\partial t'_{\mu\nu}} \left(\langle H_{\mathbf{t},\mathbf{U}} - \mu N \rangle' - \langle H' - \mu N \rangle' + \Omega_{\mathbf{t}',0} \right) \\ &= \frac{\partial}{\partial t'_{\mu\nu}} \left\langle \sum_{\alpha\beta} t_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} + \frac{1}{2} \sum_{\alpha\beta\delta\gamma} U_{\alpha\beta\delta\gamma} c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\gamma} c_{\delta} - \sum_{\alpha\beta} t'_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} \right\rangle' + \langle c^{\dagger}_{\mu} c_{\nu} \rangle' \end{split}$$

since $\partial\Omega_{{f t}',0}/\partial t'_{\mu
u}=\langle c^{\dagger}_{\mu}c_{
u}\rangle'$

define:

$$K'_{\alpha\nu\mu\beta} = \frac{\partial \langle c^{\dagger}_{\alpha}c_{\beta} \rangle'}{\partial t'_{\mu\nu}} = \frac{1}{T} \langle c^{\dagger}_{\alpha}c_{\beta} \rangle' \langle c^{\dagger}_{\mu}c_{\nu} \rangle' - \int_{0}^{\beta} d\tau \langle c^{\dagger}_{\alpha}(\tau)c_{\beta}(\tau)c^{\dagger}_{\mu}c_{\nu} \rangle'$$

then:

$$0 = \sum_{\alpha\beta} t_{\alpha\beta} K'_{\alpha\nu\mu\beta} + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} \frac{\partial}{\partial t'_{\mu\nu}} \langle c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\gamma} c_{\delta} \rangle' - \sum_{\alpha\beta} t'_{\alpha\beta} K'_{\alpha\nu\mu\beta}$$

variational determination of \mathbf{t}'

H' bilinear ("free") \rightarrow Wick's theorem applies:

$$\langle c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\gamma} c_{\delta} \rangle' = \langle c^{\dagger}_{\alpha} c_{\delta} \rangle' \langle c^{\dagger}_{\beta} c_{\gamma} \rangle' - \langle c^{\dagger}_{\alpha} c_{\gamma} \rangle' \langle c^{\dagger}_{\beta} c_{\delta} \rangle'$$

hence:

$$\begin{aligned} \frac{\partial}{\partial t'_{\mu\nu}} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} \langle c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\gamma} c_{\delta} \rangle' \\ &= \frac{\partial}{\partial t'_{\mu\nu}} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} \left(\langle c^{\dagger}_{\alpha} c_{\delta} \rangle' \langle c^{\dagger}_{\beta} c_{\gamma} \rangle' - \langle c^{\dagger}_{\alpha} c_{\gamma} \rangle' \langle c^{\dagger}_{\beta} c_{\delta} \rangle' \right) \\ &= \frac{\partial}{\partial t'_{\mu\nu}} \sum_{\alpha\beta\gamma\delta} \left(U_{\alpha\beta\delta\gamma} - U_{\alpha\beta\gamma\delta} \right) \langle c^{\dagger}_{\alpha} c_{\delta} \rangle' \langle c^{\dagger}_{\beta} c_{\gamma} \rangle' \\ &= \sum_{\alpha\beta\gamma\delta} \left(U_{\alpha\beta\delta\gamma} - U_{\alpha\beta\gamma\delta} \right) \left(\langle c^{\dagger}_{\alpha} c_{\delta} \rangle' K'_{\beta\nu\mu\gamma} + K'_{\alpha\nu\mu\delta} \langle c^{\dagger}_{\beta} c_{\gamma} \rangle' \right) \\ &= \sum_{\alpha\beta\gamma\delta} \left(U_{\gamma\alpha\delta\beta} - U_{\gamma\alpha\beta\delta} \right) \langle c^{\dagger}_{\gamma} c_{\delta} \rangle' K'_{\alpha\nu\mu\beta} + \sum_{\alpha\beta\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\alpha\gamma\delta\beta} \right) K'_{\alpha\nu\mu\beta} \langle c^{\dagger}_{\gamma} c_{\delta} \rangle' \\ &\quad \text{with } (\alpha\beta\gamma) \to (\gamma\alpha\beta) \text{ (1st term) and } (\beta\gamma\delta) \to (\gamma\delta\beta) \text{ (2nd term)} \\ &= \sum_{\alpha\beta\gamma\delta} \left((U_{\gamma\alpha\delta\beta} + U_{\alpha\gamma\beta\delta}) - (U_{\gamma\alpha\beta\delta} + U_{\alpha\gamma\delta\beta}) \right) \langle c^{\dagger}_{\gamma} c_{\delta} \rangle' K'_{\alpha\nu\mu\beta} \end{aligned}$$

$$= 2 \sum_{\alpha\beta\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\gamma\alpha\beta\delta} \right) \langle c_{\gamma}^{\dagger} c_{\delta} \rangle' K'_{\alpha\nu\mu\beta}$$

with $U_{\alpha\beta\delta\gamma} = U_{\beta\alpha\gamma\delta}$

11

variational determination of \mathbf{t}'

altogether:

$$0 = \sum_{\alpha\beta} t_{\alpha\beta} K'_{\alpha\nu\mu\beta} - \sum_{\alpha\beta} t'_{\alpha\beta} K'_{\alpha\nu\mu\beta} + \sum_{\alpha\beta\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\gamma\alpha\beta\delta} \right) \langle c^{\dagger}_{\gamma} c_{\delta} \rangle' K'_{\alpha\nu\mu\beta}$$
$$0 = \sum_{\alpha\beta} \left(t_{\alpha\beta} - t'_{\alpha\beta} + \sum_{\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\gamma\alpha\beta\delta} \right) \langle c^{\dagger}_{\gamma} c_{\delta} \rangle' \right) K'_{\alpha\nu\mu\beta}$$

assuming K be invertible:

$$t'_{\alpha\beta} = t_{\alpha\beta} + \sum_{\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\gamma\alpha\beta\delta} \right) \langle c^{\dagger}_{\gamma} c_{\delta} \rangle'$$

optimal one-particle mean-field Hamiltonian:

$$H' = \sum_{\alpha\beta} \left(t_{\alpha\beta} + \Sigma_{\alpha\beta}^{(\mathrm{HF})} \right) c_{\alpha}^{\dagger} c_{\beta}$$

with

$$\Sigma_{\alpha\beta}^{(\mathrm{MF})} = \sum_{\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\gamma\alpha\beta\delta} \right) \langle c_{\gamma}^{\dagger} c_{\delta} \rangle' \quad \text{Hartree}$$

Hartree-Fock self-energy

self-consistent scheme required:

 $\Sigma^{(\mathrm{HF})} \rightarrow H' \rightarrow \langle c_{\alpha}^{\dagger} c_{\beta} \rangle' \rightarrow \Sigma^{(\mathrm{HF})}$

Approximation Strategies

variational approach

macroscopic state: T, V, μ Hamiltonian: $H_{t,U} = H_{free}(t) + H_{int}(U)$

thermodynamical potential: $\Omega_{t,U} = -T \ln tr \exp(-(H_{t,U} - \mu N)/T)$ physical quantity: $A_{t,U}$

approximation strategies

Hamiltonian: $H_{t,U} = H_{free}(t) + H_{int}(U)$ grand potential: $\Omega_{t,U} = -T \ln \operatorname{tr} \exp(-\beta(H_{t,U} - \mu N))$ physical quantity: $A_{t,U}$

functional: $\Omega_{t,U}[\mathbf{A}]$ on domain \mathcal{D} variational principle: $\delta \Omega_{t,U}[\mathbf{A}] = 0$ für $\mathbf{A} = \mathbf{A}_{t,U}$

Euler equation:
$$\mathbf{f}_{\mathbf{t},\mathbf{U}}[\mathbf{A}] = \frac{\delta \Omega_{\mathbf{t},\mathbf{U}}[\mathbf{A}]}{\delta \mathbf{A}} \stackrel{!}{=} 0$$

I.	simplify Euler equation $\mathbf{f_{t,U}[A]} \to \widetilde{\mathbf{f}_{t,U}}[\mathbf{A}]$	general
н	simplify functional $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{A}] \rightarrow \widetilde{\Omega}_{\mathbf{t},\mathbf{U}}[\mathbf{A}]$	thermodynamically consistent
ш	restict domain $\mathcal{D} \to \widetilde{\mathcal{D}}$	thermodynamically consistent, systematic, clear concept

example: Hartree-Fock theory

Rayleigh-Ritz variational principle:

 $\Omega_{\mathbf{t},\mathbf{U}}[\rho] = \operatorname{tr}(\rho(H_{\mathbf{t},\mathbf{U}} - \mu N + T\ln\rho))$

domain: $\rho \in \mathcal{D} = \{\rho | \text{Hermitian, positive definite, normalized} \}$ type-III: $\rho \in \widetilde{\mathcal{D}} = \{\rho | \text{Hermitian, positive definite, normalized, non-interacting} \} \subset \mathcal{D}$
example: Hartree-Fock theory

Rayleigh-Ritz variational principle:

 $\Omega_{\mathbf{t},\mathbf{U}}[\rho] = \operatorname{tr}(\rho(H_{\mathbf{t},\mathbf{U}} - \mu N + T\ln\rho))$

domain: $\rho \in \mathcal{D} = \{\rho | \text{Hermitian, positive definite, normalized} \}$

type-III: $\rho \in \widetilde{D} = \{\rho \mid \text{Hermitian, positive definite, normalized, non-interacting}\} \subset D$

Hartree-Fock: $\widetilde{\mathcal{D}} = \{ \rho_{\mathbf{t}',\mathbf{U}'} \mid \mathbf{t}' \text{arbitrary}, \mathbf{U}' = \mathbf{0} \}$

example: Hartree-Fock theory

Rayleigh-Ritz variational principle:

 $\Omega_{\mathbf{t},\mathbf{U}}[\rho] = \operatorname{tr}(\rho(H_{\mathbf{t},\mathbf{U}} - \mu N + T\ln\rho))$

domain: $\rho \in \mathcal{D} = \{\rho | \text{Hermitian, positive definite, normalized} \}$

type-III: $\rho \in \widetilde{\mathcal{D}} = \{\rho \mid \text{Hermitian, positive definite, normalized, non-interacting}\} \subset \mathcal{D}$

Hartree-Fock:

$$\widetilde{\mathcal{D}} = \{ \rho_{\mathbf{t}',\mathbf{U}'} \mid \mathbf{t}' \text{arbitrary}, \mathbf{U'} = \mathbf{0} \}$$

$$\begin{split} \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}',0}] &= \Omega_{\mathbf{t}',0} + \operatorname{tr}(\rho_{\mathbf{t}',0}(H_0(\mathbf{t}) + H_1(\mathbf{U}) - H_0(\mathbf{t}')) & \text{(use Wick's theorem)} \\ \\ \frac{\partial \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}',0}]}{\partial \mathbf{t}'} &= 0 \iff \mathsf{HF} \text{ equations !} \end{split}$$

→ concept of reference system helpful for type-III approximations

example: density-functional theory

example: density-functional theory

type-III approximation ?

 $H_{t,U}$: inhomogeneous electron "gas" (original) $H_{t^{i},U}$: homogeneous electron "gas" (reference)

 $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{n}] = \mathsf{tr}(\mathbf{t}\,\mathbf{n}) + F_{\mathbf{U}}[\mathbf{n}]$ $\Omega_{\mathbf{t}^{i},\mathbf{U}}[\mathbf{n}] = \mathsf{tr}(\mathbf{t}^{i}\,\mathbf{n}) + F_{\mathbf{U}}[\mathbf{n}]$

 $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{n}] = \Omega_{\mathbf{t}^{i},\mathbf{U}}[\mathbf{n}] + \operatorname{tr}((\mathbf{t} - \mathbf{t}^{i})\mathbf{n})$

nice concept, but poor results !

example: density-functional theory

Spectroscopies and Green's Functions

$$I(\mathbf{k}, E) \propto \sum_{m} \left| \langle N - 1, m | c_{\mathbf{k}} | N, 0 \rangle \right|^{2} \delta \left(E - (E_{m}(N - 1) - E_{0}(N)) \right) = A(\mathbf{k}, E)$$

spectral density

Green's function: $G(\mathbf{k}, E) = \int dE' \frac{A(\mathbf{k}, E')}{E - E'}$ $A(\mathbf{k}, E) = -\text{Im } G(\mathbf{k}, E + i0^+)/\pi$ self-energy: $G(\mathbf{k}, E) = G_0(\mathbf{k}, E) + G_0(\mathbf{k}, E)\Sigma(\mathbf{k}, E)G(\mathbf{k}, E)$ (Dyson's equation)

different spectroscopies

spectroscopies:

(weak) perturbation \rightarrow system's response excitation process $R \rightarrow$ cross section, intensity I

photoemission = removal of an electron

 $R = c_{\alpha}$

angle- and spin-resolved: $\alpha = (\mathbf{k}, \sigma)$

inverse photoemission:

$$R = c^{\dagger}_{\alpha}$$

complementary spectroscopy

Auger process:

$$R = c_{\alpha} c_{\beta}$$

appearance-potential spectroscopy:

$$R = c^{\dagger}_{\alpha} c^{\dagger}_{\beta}$$

transport, Raman, neutron scattering, etc.:

 $R = c_{\alpha}^{\dagger} c_{\beta}$

elementary excitation processes

one-electron excitations: $c_{\alpha}^{\dagger}, c_{\alpha}$ two-electron excitations: $c_{\alpha}c_{\beta}, c_{\alpha}^{\dagger}c_{\beta}^{\dagger}, c_{\alpha}^{\dagger}c_{\beta}$

"detailled" theory

(grandcanonical) Hamiltonian of the system:

 $\mathcal{H} = H - \mu N = \mathcal{H}_0 + H_1$

eigenenergies, eigenstates:

 $\mathcal{H}|m
angle = E_m|m
angle$ ONB: $\{|m
angle\}$

example: photoemission

♦ electronic transition induced by coupling to radiation field:

$$\mathbf{p} \rightarrow \mathbf{p} - q\mathbf{A}$$

 \diamond neglect A^2 term, choose Coulomb gauge, adopt dipole approximation:

$$\mathcal{H} \to \mathcal{H} + V , \qquad V = \mathbf{A}_0 \mathbf{p}$$

♦ second quantization:

$$V = \sum_{\beta\gamma} \langle \beta | \mathbf{A}_0 \mathbf{p} | \gamma \rangle a_{\beta}^{\dagger} c_{\gamma} + \mathsf{h.c.} = \sum_{\beta\gamma} M_{\beta\gamma} a_{\beta}^{\dagger} c_{\gamma} + \mathsf{h.c.}$$

where: $a \sim$ high-energy scattering states, $c \sim$ valence states

 final state within the "sudden approximation" (no interaction between photoelectron and rest of the system):

$$|f\rangle \approx a_{\alpha}^{\dagger}|m\rangle \qquad E_f = E_m + \varepsilon_{\alpha}$$

"detailled" theory

 \diamond initial state:

$$|i\rangle = |n\rangle \qquad E_i = E_n + h\nu$$
$$a_\alpha |n\rangle \approx 0$$

 \diamond hence:

with

$$\langle f|V|i\rangle = \langle m|a_{\alpha}\sum_{\beta\gamma}(M_{\beta\gamma}a_{\beta}^{\dagger}c_{\gamma} + \text{h.c.})|n\rangle = \langle m|\sum_{\gamma}M_{\alpha\gamma}c_{\gamma}|n\rangle$$

 \diamond disregard the matrix elements:

$$\langle f|V|i\rangle = \langle m|c_{\gamma}|n\rangle$$

i.e.

$$R = c_{\gamma}$$

elementary transition operator for photoemission

one-particle Green's function and spectral density

one-particle spectral density: (cross section, intensity, experiment)

$$A_{\alpha\beta}(\omega) = \sum_{mn} \frac{e^{-\beta E_m} + e^{-\beta E_n}}{Z} \langle m | c_\alpha | n \rangle \langle n | c_\beta^{\dagger} | m \rangle \delta(\omega - (E_n - E_m))$$

$$A_{\alpha\beta}(t) = \frac{1}{2\pi} \langle [c_{\alpha}(t), c_{\beta}^{\dagger}(0)]_{+} \rangle$$

$$A_{\alpha\beta}(\omega) = -\frac{1}{\pi} \operatorname{Im} G_{\alpha\beta}^{(\text{ret})}(\omega)$$

one-particle Green function:

$$G_{\alpha\beta}(\omega) = \int_{-\infty}^{\infty} dz \, \frac{A_{\alpha\beta}(z)}{\omega - z}$$

 $\omega \in \mathbb{C}$

retarded one-particle Green function:

one-particle Matsubara function:

$$G_{\alpha\beta}(i\omega_n) = \int_{-\infty}^{\infty} dz \; \frac{A_{\alpha\beta}(z)}{i\omega_n - z}$$

$$G_{\alpha\beta}(\tau) = -\langle \mathcal{T}c_{\alpha}(\tau)c_{\beta}^{\dagger}(0)\rangle$$

$$i\omega_n = i(2n+1)\pi/\beta$$

S matrix

S matrix – motivation

problem: the time dependence in

 $G_{\alpha\beta}(\tau) = -\langle \mathcal{T}c_{\alpha}(\tau)c_{\beta}^{\dagger}(0) \rangle$

is due to the full Hamiltonian:

$$H = H_0 + H_1 = H_0 + V \qquad \mathcal{H} = \mathcal{H}_0 + V$$

goal: transform all τ dependencies into free τ dependencies!

interaction picture:

$$A_I(t) = e^{i\mathcal{H}_0 t} A e^{-i\mathcal{H}_0 t}$$

modified interaction picture:

 $A_I(\tau) = e^{\mathcal{H}_0 \tau} A e^{-\mathcal{H}_0 \tau}$

transformation from the Heisenberg to the interaction picture: mediated by S "matrix"

S matrix – definition

define:

$$S(\tau,\tau') = e^{\mathcal{H}_0 \tau} e^{-\mathcal{H}(\tau-\tau')} e^{-\mathcal{H}_0 \tau'}$$

properties:

- $\ \ \, \diamond \ \ \, S(\tau,\tau^{\prime\prime})=S(\tau,\tau^{\prime})S(\tau^{\prime},\tau^{\prime\prime})$
- $\ \ \, \diamond \ \ \, S(\tau,\tau)=1$
- $\diamond S(\tau, \tau')$ is not unitary
- ♦ $S(\tau, \tau')$ is the (imaginary) time evolution operator $e^{-\mathcal{H}(\tau \tau')}$ in the (modified) interaction (Dirac) picture

we have:

$$-\frac{\partial}{\partial \tau}S(\tau,\tau') = -\frac{\partial}{\partial \tau}\left(e^{\mathcal{H}_0\tau}e^{-\mathcal{H}(\tau-\tau')}e^{-\mathcal{H}_0\tau'}\right) = e^{\mathcal{H}_0\tau}(\mathcal{H}-\mathcal{H}_0)e^{-\mathcal{H}(\tau-\tau')}e^{-\mathcal{H}_0\tau'}$$
$$= e^{\mathcal{H}_0\tau}Ve^{-\mathcal{H}_0\tau}e^{\mathcal{H}_0\tau}e^{-\mathcal{H}(\tau-\tau')}e^{-\mathcal{H}_0\tau'} = V_I(\tau)S(\tau,\tau')$$

equation of motion:

$$-\frac{\partial}{\partial \tau}S(\tau,\tau') = V_I(\tau)S(\tau,\tau')$$

initial condition: $S(\tau, \tau) = 1$

S matrix

solution of the equation of motion

if $V_I(\tau)$ was not operator-valued, we could solve the differential equation by:

$$S(\tau, \tau') = \exp\left(-\int_{\tau'}^{\tau} d\tau'' V_I(\tau'')\right)$$

the problem $[V_I(\tau), V_I(\tau')]_{-} \neq 0$ can be circumvented using the time-ordering operator:

$$S(\tau, \tau') = \mathcal{T} \exp\left(-\int_{\tau'}^{\tau} d\tau'' V_I(\tau'')\right)$$

explicit representation of the S matrix

 \diamond note: under \mathcal{T} , we have: $[V_I(\tau), V_I(\tau')]_- = 0$ (there is no sign), since

$$V_{I}(\tau) = \frac{1}{2} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} c^{\dagger}_{\alpha,I}(\tau) c^{\dagger}_{\beta,I}(\tau) c_{\gamma,I}(\tau) c_{\delta,I}(\tau)$$

is quartic

 \diamond note: T operates after expanding the exponential:

$$S(\tau,\tau') = \mathcal{T}\sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_{\tau'}^{\tau} d\tau_1 \cdots \int_{\tau'}^{\tau} d\tau_k V_I(\tau_1) \cdots V_I(\tau_k)$$

preparation of the Matsubara function

from the definition, $S(\tau, \tau') = e^{\mathcal{H}_0 \tau} e^{-\mathcal{H}(\tau - \tau')} e^{-\mathcal{H}_0 \tau'}$, we immediately get

$$A(\tau) = S(0,\tau)A_I(\tau)S(\tau,0)$$

$$e^{-\beta \mathcal{H}} = e^{-\beta \mathcal{H}_0} S(\beta, 0)$$

Matsubara function for $\tau > 0$:

$$\begin{split} G_{\alpha\beta}(\tau) &= -\langle \mathcal{T}c_{\alpha}(\tau)c_{\beta}^{\dagger}(0)\rangle \\ &= -\frac{1}{Z} \mathrm{tr} \left(e^{-\beta\mathcal{H}}c_{\alpha}(\tau)c_{\beta}^{\dagger}(0) \right) \\ &= -\frac{1}{Z} \mathrm{tr} \left(e^{-\beta\mathcal{H}_{0}}S(\beta,0)S(0,\tau)c_{\alpha,I}(\tau)S(\tau,0)c_{\beta,I}^{\dagger}(0) \right) \\ &= -\frac{1}{Z} \mathrm{tr} \left(e^{-\beta\mathcal{H}_{0}}\mathcal{T}S(\beta,\tau)c_{\alpha,I}(\tau)S(\tau,0)c_{\beta,I}^{\dagger}(0) \right) \\ &= -\frac{Z_{0}}{Z}\frac{1}{Z_{0}} \mathrm{tr} \left(e^{-\beta\mathcal{H}_{0}}\mathcal{T}S(\beta,0)c_{\alpha,I}(\tau)c_{\beta,I}^{\dagger}(0) \right) \\ &= -\frac{\langle \mathcal{T}S(\beta,0)c_{\alpha,I}(\tau)c_{\beta,I}^{\dagger}(0)\rangle^{(0)}}{\mathrm{tr} \left(e^{-\beta\mathcal{H}_{0}}S(\beta,0) \right)/Z_{0}} \\ \end{split}$$

... ready to apply Wick's theorem

suppress the index "I" (all τ dependencies are meant as free τ dependencies)

$$G_{\alpha\beta}(\tau) = -\frac{\left\langle \mathcal{T}\exp\left(-\int_0^\beta d\tau V(\tau)\right)c_\alpha(\tau)c_\beta^\dagger(0)\right\rangle^{(0)}}{\left\langle \mathcal{T}\exp\left(-\int_0^\beta d\tau V(\tau)\right)\right\rangle^{(0)}}$$

free expectation values! free (imaginary) time dependence!

Wick's theorem can be applied.

Diagrammatic Perturbation Theory

partition function

first, consider the **denomiator** in

$$G_{\alpha\beta}(\tau) = -\frac{\left\langle \mathcal{T}\exp\left(-\int_0^\beta d\tau V(\tau)\right)c_\alpha(\tau)c_\beta^{\dagger}(0)\right\rangle^{(0)}}{\left\langle \mathcal{T}\exp\left(-\int_0^\beta d\tau V(\tau)\right)\right\rangle^{(0)}}$$

partition function:

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-1)^k}{k!} \int_0^\beta d\tau_1 \cdots \int_0^\beta d\tau_k \left\langle \mathcal{T}(V(\tau_1) \cdots V(\tau_k)) \right\rangle^{(0)}$$

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k k!} \int_0^{\beta} d\tau_1 \cdots \int_0^{\beta} d\tau_k \sum_{\alpha_1 \beta_1 \gamma_1 \delta_1} \cdots \sum_{\alpha_k \beta_k \gamma_k \delta_k} U_{\alpha_1 \beta_1 \delta_1 \gamma_1} \cdots U_{\alpha_k \beta_k \delta_k \gamma_k} \times \langle \mathcal{T}(c_{\alpha_1}^{\dagger}(\tau_1) c_{\beta_1}^{\dagger}(\tau_1) c_{\gamma_1}(\tau_1) c_{\delta_1}(\tau_1) \cdots c_{\alpha_k}^{\dagger}(\tau_k) c_{\beta_k}^{\dagger}(\tau_k) c_{\gamma_k}(\tau_k) c_{\delta_k}(\tau_k)) \rangle^{(0)}$$

matrix element:

$$\langle \mathcal{T}(\cdots) \rangle^{(0)} = \{ \text{sum over all fully contracted terms} \}$$
 (Wick's theorem)

remember: contraction

$$\underline{c_{\alpha_i}(\tau_i)c_{\alpha_j}^{\dagger}(\tau_j)} = \langle \mathcal{T}(c_{\alpha_i}(\tau_i)c_{\alpha_j}^{\dagger}(\tau_j)) \rangle^{(0)} = -G_{\alpha_i\alpha_j}^{(0)}(\tau_i - \tau_j)$$

diagram elements

to compute the denominator, i.e. Z/Z_0

- \diamond consider the *k*-th term in the sum ("*k*-th order")
- \diamond evaluate the free expectation value using Wick's theorem for given orbital indices α_i, β_i, \dots and given τ_i ($i = 1, \dots, k$)
- ◇ organize the sum over all possible ways for full contractions by diagrams
- \diamond sum / integrate over all internal orbital indices and times

the building blocks of diagrams:

building diagrams

propagators connect two links at (the same or) different vertices:

full contractions

free expectation value (at *k*-th order):

 $\langle \mathcal{T}(c_{\alpha_1}^{\dagger}(\tau_1)c_{\beta_1}^{\dagger}(\tau_1)c_{\gamma_1}(\tau_1)c_{\delta_1}(\tau_1)\cdots c_{\alpha_k}^{\dagger}(\tau_k)c_{\beta_k}^{\dagger}(\tau_k)c_{\gamma_k}(\tau_k)c_{\delta_k}(\tau_k))\rangle^{(0)}$

via Wick's theorem,

 $= \{$ sum over all fully contracted terms $\}$

represented by sum over all possible diagrams at k-th order

at the *k*-th order, there are (2k)! different ways to connect the open links at the *k* vertices (2k)! different possibilies for full contractions:

all second-order diagrams

diagram rules

to compute the k-th order contribution to the denominator, i.e. to Z/Z_0 ,

- ♦ draw all (2k)! different **diagrams**, **label** them with orbitals α_i and times τ_i vertices are fixed, propagators can be deformed
- \diamond for each **vertex** , write $U_{\alpha_i\beta_i\delta_i\gamma_i}$
- \Rightarrow for each **propagator**, write $-G^{(0)}_{\alpha_i \alpha_j}(\tau_i \tau_j)$
- ♦ for propagators starting and ending at the same vertex, i.e. equal times : $\tau_{creator} = \tau_{annihilator} + 0^+$

L=3

- \diamond **sum** over all orbital indices α_i , β_i , ...
- \diamond integrate over all τ_i (i = 1, ..., k) from 0 to β
- \diamond multiply with the factor $\frac{(-1)^k}{2^k k!}$
- \diamond multiply with $(-1)^L$ with L = number of fermion **loops**

diagrams for the Green's function

Green's function:

$$-G_{\alpha\beta}(\tau) = \frac{\left\langle \mathcal{T} \exp\left(-\int_0^\beta d\tau V(\tau)\right) c_\alpha(\tau) c_\beta^\dagger(0)\right\rangle^{(0)}}{\left\langle \mathcal{T} \exp\left(-\int_0^\beta d\tau V(\tau)\right)\right\rangle^{(0)}}$$

nominator:

additional fixed **external links** representing $c_{\alpha}(\tau)$ and $c_{\beta}^{\dagger}(0)$

we have 2k + 1 propagators and thus

(2k+1)! diagrams at the k-th order

note: no summation / integration over external variables , i.e. α, β and τ

connected diagrams

typical diagram contributing to the nominator:

- → there is one part of the diagram connected to the external links
- → there may be different disconnected parts

theorem:

the sum over the disconnected parts exactly cancels the denominator

- \diamond for any diagram part connected to the external links, one can add an arbitrary diagram representing Z/Z_0 (the denominator)
- ♦ its numerical value comes as a factor
- ♦ take care of combinatorics

topologically equal diagrams

consider:

the diagrams in each line are different but yield the same numerical value, since

A flipping the vertex

$$U_{\alpha\beta\delta\gamma}c^{\dagger}_{\alpha}c^{\dagger}_{\beta}c_{\gamma}c_{\delta} = U_{\beta\alpha\gamma\delta}c^{\dagger}_{\beta}c^{\dagger}_{\alpha}c_{\delta}c_{\gamma}$$

B interchanging two vertices

change of integration / summation variables $\tau_i \leftrightarrow \tau_j$ and $\alpha_i, \beta_i, \dots \leftrightarrow \alpha_j, \beta_j, \dots$

has no effect

$$\frac{Z}{Z_0} = \sum_{k=0}^{\infty} \frac{(-1)^k}{2^k k!} \int_0^{\beta} d\tau_1 \cdots \int_0^{\beta} d\tau_k \sum_{\alpha_1 \beta_1 \gamma_1 \delta_1} \cdots \sum_{\alpha_k \beta_k \gamma_k \delta_k} U_{\alpha_1 \beta_1 \delta_1 \gamma_1} \cdots U_{\alpha_k \beta_k \delta_k \gamma_k} \times \langle \mathcal{T}(c_{\alpha_1}^{\dagger}(\tau_1) c_{\beta_1}^{\dagger}(\tau_1) c_{\gamma_1}(\tau_1) c_{\delta_1}(\tau_1) \cdots c_{\alpha_k}^{\dagger}(\tau_k) c_{\beta_k}^{\dagger}(\tau_k) c_{\gamma_k}(\tau_k) c_{\delta_k}(\tau_k)) \rangle^{(0)}$$

topologically equal diagrams

diagrams transforming into each other under A or B are topologically equal

- \rightarrow operation A generates 2^k different diagrams with the same value
- \rightarrow operation B generates k! different diagrams with the same value

change the diagram rules in the following way:

- summation over topologically different diagrams only
- no additional factor $\frac{1}{2^k k!}$

all topologically different and connected diagrams at order k = 0, 1, 2:

diagram rules

to compute the k-th order contribution to $-G_{\alpha\beta}(\tau)$,

- ♦ draw all topologically different diagrams
 label them with orbitals α_i and times τ_i
- diagrams must be connected to external links vertices and propagators can be deformed
- \diamond for each **vertex**, write $-U_{\alpha_i\beta_i\delta_i\gamma_i}$
- \Leftrightarrow for each **propagator**, write $-G^{(0)}_{\alpha_i \alpha_j}(\tau_i \tau_j)$
- ♦ for propagators starting and ending at the same vertex, i.e. equal times : $\tau_{creator} = \tau_{annihilator} + 0^+$
- \diamond **sum** over all orbital indices α_i , β_i , ...
- \diamond integrate over all τ_i (i = 1, ..., k) from 0 to β
- ♦ multiply with $(-1)^L$ with L = number of fermion **loops**

frequency-dependent propagator

$$\begin{array}{c} \alpha_{j} \\ \hline \tau_{j} \end{array} = -G^{(0)}_{\alpha_{i}\alpha_{j}}(\tau_{i} - \tau_{j})$$

$$-G^{(0)}_{\alpha_i\alpha_j}(\tau_i-\tau_j) = \frac{1}{\beta} \sum_{n=-\infty}^{\infty} e^{-i\omega_n(\tau_i-\tau_j)} \left(-G_{\alpha_i\alpha_j}(i\omega_n)\right)$$

 α_{i}

- → a propagator is labelled by a single frequency
- → sum over (internal) frequencies attach $\frac{1}{\sqrt{\beta}}e^{-i\omega_n\tau_i}$ to vertex at which propagator ends attach $\frac{1}{\sqrt{\beta}}e^{i\omega_n\tau_j}$ to vertex at which propagator starts collecting factors, at each vertex we have:

$$\int_0^\beta d\tau \frac{1}{\sqrt{\beta^4}} e^{-i(\omega_1 + \omega_2 - \omega_3 - \omega_4)\tau} = \frac{1}{\beta} \delta_{\omega_1 + \omega_2, \omega_3 + \omega_4}$$

energy conservation

"the sum of incoming frequencies equals the sum of outgoing frequencies"

frequency-dependent propagator:

$$\begin{array}{c|c} \alpha_{i} & \alpha_{j} \\ \hline \omega_{n} \end{array} = -G^{(0)}_{\alpha_{i}\alpha_{j}}(i\omega_{n})$$

diagram rules for frequency-dependent Green's function

to compute the k-th order contribution to $-G_{\alpha\beta}(i\omega_n)$,

- ♦ draw all topologically different diagrams
 label them with orbitals α_i and frequencies ω_m
- diagrams must be connected to external links
 vertices and propagators can be deformed

$$\diamond$$
 for each vertex, write $-\frac{1}{\beta}\delta_{\omega_{\alpha}+\omega_{\beta},\omega_{\gamma}+\omega_{\delta}}U_{\alpha\beta\delta\gamma}$

$$\diamond$$
 for each propagator , write $-G^{(0)}_{lphaeta}(i\omega_m)$

- ♦ for propagators starting and ending at the same vertex, equal times : factor $e^{-i\omega_m(\tau_{\text{annihilator}}-\tau_{\text{creator}})} = e^{i\omega_m 0^+}$
- \diamond **sum** over all internal orbital indices α , ...
- \diamond **sum** over all internal ω_m from $-\infty$ to ∞
- \Leftrightarrow multiply with $(-1)^L$ with L = number of fermion loops

Self-Energy
improper self-energy: diagrammatic definition

define self-energy insertion :

part of a diagram for the Green's function with two external links:

define improper self-energy :

sum of all self-energy insertions:

note: $-\widetilde{\Sigma}$ depends on external orbital indices and the external frequency:

$$\widetilde{\Sigma}_{lphaeta}(i\omega_n)$$

self-energy: definition

define irreducible self-energy insertion:

self-energy insertion that does not separate into two pieces when cutting a propagator:

define irreducible self-energy / proper self-energy / self-energy:

sum of all irreducible self-energy insertions:

we also define the full propagator / interacting propagator / Green's function:

Dyson's equation, diagrammatic

consider an arbitrary diagram contributing to $-G_{\alpha\beta}(i\omega_n)$ with k > 1:

it necessarily starts (left) with a free propagator, followed by an irreducible self-energy insertion, and ends with a diagram contrubuting to $-G_{\alpha\beta}(i\omega_n)$

summing over all diagrams yields:

translation:
$$-G_{\alpha\beta}(i\omega_n) = -G_{\alpha\beta}^{(0)}(i\omega_n) + \sum_{\gamma\delta} (-G_{\alpha\gamma}^{(0)}(i\omega_n))(-\Sigma_{\gamma\delta}(i\omega_n))(-G_{\delta\beta}(i\omega_n))$$

i.e.:

$$G_{\alpha\beta}(i\omega_n) = G^{(0)}_{\alpha\beta}(i\omega_n) + \sum_{\gamma\delta} G^{(0)}_{\alpha\gamma}(i\omega_n) \Sigma_{\gamma\delta}(i\omega_n) G_{\delta\beta}(i\omega_n)$$

Dyson's equation

$$\mathbf{G} = \mathbf{G}_0 + \mathbf{G}_0 \boldsymbol{\Sigma} \mathbf{G}$$
 (in matrix notation)

skeleton diagrams

a **skeleton diagram** is defined as a diagram without any self-energy insertions:

defined a **dressed skeleton** as a skeleton with free propagators replaced by full ones:

we have:

self-energy = sum over all dressed skeleton self-energy diagrams

skeleton-diagram expansion

skeleton-diagrams: first effective order

summing only the first-order diagrams:

yields the Hartree-Fock self-energy:

$$\Sigma_{\alpha\beta}^{(\mathrm{MF})} = \sum_{\gamma\delta} \left(U_{\alpha\gamma\beta\delta} - U_{\gamma\alpha\beta\delta} \right) \langle c_{\gamma}^{\dagger} c_{\delta} \rangle'$$

Hartree-Fock self-energy

- ♦ the HF self-energy contains the full (HF) propagator
- ♦ self-consistency cycle: $\mathbf{G} \rightarrow \Sigma \rightarrow \mathbf{G}$
- \Rightarrow HF = self-consistent first-order perturbation theory

skeleton-diagrams: second effective order

summing the diagrams up to second (explicit) order:

infinitesimal retarded self-energy $\Sigma_{ij\sigma}(\omega + i0^+)$ for the Hubbard model at half-filling and T = 0k labels the different shells, $\Sigma_{ij\sigma} = \Sigma_{i-j\sigma}$ D = 2 square lattice

discussion

summary and questions

systematic perturbation theory, leads to Green's functions

applicable to weak-coupling regime only

can we sum ALL diagrams ?

how to formulate a variational principle in terms of Green's functions ?

how to make use of such a variational principle ?

Luttinger-Ward Functional

expansion of the partition function

grand potential:

$$\Omega = -T\ln Z$$

partition function:

$$Z = \operatorname{tr} e^{-\beta \mathcal{H}} = \operatorname{tr} (e^{-\beta \mathcal{H}_0} S(\beta, 0)) = Z_0 \langle S(\beta, 0) \rangle^{(0)} \quad , S(\beta, 0) = e^{\beta \mathcal{H}_0} e^{-\beta \mathcal$$

from the solution of the equation of motion of the *S*-matrix, we have:

$$\frac{Z}{Z_0} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_0^\beta d\tau_1 \cdots \int_0^\beta d\tau_n \, \langle \mathcal{T}(V(\tau_1) \cdots V(\tau_n)) \rangle^{(0)}$$

with Wick's theorem, representation via diagrams:

$$Z/Z_0 = 1 + \bigcirc + \bigcirc + \bigcirc + \cdots$$

linked-cluster theorem: it is sufficient to consider connected diagrams only:

$$Z/Z_0 = \exp\left(\langle S(\beta,0) \rangle_{\text{conn.}}^{(0)} - 1\right)$$

$$\Omega - \Omega_0 = -T\left(\langle S(\beta, 0) \rangle_{\text{conn.}}^{(0)} - 1\right)$$

renormalization?

partial summation of diagrams by renormalization of skeletons ?

impossible because of double counting:

 \Rightarrow sum of connected renormalized closed skeleton diagrams $\neq \ln Z$

Luttinger-Ward functional

define (with an additional factor (-T)):

Luttinger, Ward (1960)

note: $\Phi \neq -T \ln Z$

what is Φ good for ?

 $\Sigma = \frac{1}{T} \frac{\delta \Phi}{\delta \mathbf{G}}$ IMPORTANT !!!

 Φ is like a potential for the self-energy !

proof:

note: $\Phi = \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]$

- $-\Phi$ is a functional of the Green's function
- the functional dependence is fixed by ${\bf U}$ (and independent of ${\bf t})$
- $-\widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]$ is a universal functional

functional derivative $\delta/\delta \mathbf{G}$: removal of a propagator line

more precisely, we have to prove:
$$\Sigma$$

$$\Sigma_{\alpha\beta}(i\omega_n) = \frac{1}{T} \frac{\delta \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]}{\delta G_{\beta\alpha}(i\omega_n)}$$

roughly:

q.e.d.

subtleties:

- the skeleton-diagram expansion yields $-\Sigma$ (not Σ)
- additional factor (-T) in the definition of Φ
- removal of a fermion line \rightarrow factor (-1)
- $-\delta/\delta \mathbf{G}$, but propagator is $-\mathbf{G} \rightarrow \text{factor}(-1)$
- product rule: *n* terms in *n*-th order perturbation theory (treat all diagrams as different)
- $-\alpha, \beta \rightarrow \beta, \alpha$: see rule for functional derivatives

we have:

$$\Sigma_{\alpha\beta}(i\omega_n) = \frac{1}{T} \frac{\delta \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]}{\delta G_{\beta\alpha}(i\omega_n)}$$

therewith, we can show that

 $\Omega = -T \ln Z = \Phi + \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}(\Sigma \mathbf{G}) \quad \text{IMPORTANT !!!}$

- here: Tr
$$\mathbf{X} = T \sum_{n} e^{i\omega_n 0^+} \sum_{\alpha} X_{\alpha\alpha}(i\omega_n)$$

– relation between static, thermodynamical quantity (Ω) and dynamic quantities (Σ , G)

- basic equation for dynamical variational principle (see below)

– double-counting correction: Tr $\ln G - \text{Tr}(\Sigma G)$

proof:

consider the derivative w.r.t. μ :

$$\frac{\partial}{\partial \mu} \left[\Phi + \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}(\boldsymbol{\Sigma}\mathbf{G}) \right] = (1) + (2) + (3)$$

first term:

$$\frac{\partial}{\partial \mu}(1) = \frac{\partial}{\partial \mu} \Phi = \frac{\partial}{\partial \mu} \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}] = \sum_{\alpha\beta} \sum_{n} \frac{\delta \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]}{\delta G_{\alpha\beta}(i\omega_{n})} \frac{\partial G_{\alpha\beta}(i\omega_{n})}{\partial \mu}$$
$$= \sum_{\alpha\beta} T \sum_{n} \sum_{n} \sum_{\alpha\beta\alpha} (i\omega_{n}) \frac{\partial G_{\alpha\beta}(i\omega_{n})}{\partial \mu} = \operatorname{Tr}\left(\mathbf{\Sigma}\frac{\partial \mathbf{G}}{\partial \mu}\right)$$

second term:

$$\frac{\partial}{\partial \mu}(2) = \frac{\partial}{\partial \mu} \operatorname{Tr} \ln \mathbf{G} = \operatorname{Tr} \left(\mathbf{G}^{-1} \frac{\partial \mathbf{G}}{\partial \mu} \right)$$

third term:

$$\frac{\partial}{\partial \mu}(3) = \frac{\partial}{\partial \mu} \operatorname{Tr}(\boldsymbol{\Sigma}\mathbf{G}) = \operatorname{Tr}\left(\frac{\partial \boldsymbol{\Sigma}}{\partial \mu}\mathbf{G}\right) + \operatorname{Tr}\left(\boldsymbol{\Sigma}\frac{\partial \mathbf{G}}{\partial \mu}\right)$$

hence:

$$\begin{aligned} \frac{\partial}{\partial \mu} \left[\Phi + \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}(\Sigma \mathbf{G}) \right] &= \operatorname{Tr} \left(\mathbf{G}^{-1} \frac{\partial \mathbf{G}}{\partial \mu} \right) - \operatorname{Tr} \left(\frac{\partial \Sigma}{\partial \mu} \mathbf{G} \right) \\ &= \operatorname{Tr} \left[\left(\mathbf{G}^{-1} \frac{\partial \mathbf{G}}{\partial \mu} \mathbf{G}^{-1} - \frac{\partial \Sigma}{\partial \mu} \right) \mathbf{G} \right] \\ &= \operatorname{Tr} \left[\frac{\partial (-\mathbf{G}^{-1} - \Sigma)}{\partial \mu} \mathbf{G} \right] \\ &= -\operatorname{Tr} \left[\frac{\partial \mathbf{G}_0^{-1}}{\partial \mu} \mathbf{G} \right] \quad \text{with Dyson's equation } \mathbf{G} = 1/(\mathbf{G}_0^{-1} - \Sigma) \\ &= -\operatorname{Tr} \left[\frac{\partial (i\omega_n + \mu - \mathbf{t})}{\partial \mu} \mathbf{G} \right] \end{aligned}$$

 $= -\text{Tr} \mathbf{G}$ $= -\sum_{\alpha} T \sum_{n} e^{i\omega_n 0^+} G_{\alpha\alpha}(i\omega_n)$ $=\sum \frac{1}{2\pi i} \oint_C d\omega \, e^{\omega 0^+} f(\omega) \, G_{\alpha\alpha}(\omega)$ $=\sum_{\alpha}\frac{1}{2\pi i}\int_{-\infty}^{\infty}d\omega\,e^{\omega 0^{+}}f(\omega)\,G_{\alpha\alpha}(\omega+i0^{+})$ $+\sum_{\alpha}\frac{1}{2\pi i}\int_{\infty}^{-\infty}d\omega\,e^{\omega 0^{+}}f(\omega)\,G_{\alpha\alpha}(\omega-i0^{+})$ $=\sum \frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{\infty} d\omega \, e^{\omega 0^{+}} f(\omega) \, G_{\alpha \alpha}(\omega + i0^{+})$ $= -\sum_{\alpha} \int_{-\infty}^{\infty} d\omega f(\omega) A_{\alpha\alpha}(\omega)$ $= -\langle N \rangle$ $\mathbf{I} = \frac{\partial \widehat{\Omega}}{\partial \mu} \mathbf{I}$

SO:

$$\frac{\partial}{\partial \mu} \left[\Phi + \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}(\boldsymbol{\Sigma} \mathbf{G}) \right] = \frac{\partial \Omega}{\partial \mu}$$

 $\mu \to -\infty$ \rightarrow no particles in the system \rightarrow setting $\mathbf{U} = 0$ is exact $\rightarrow \Phi, \mathbf{\Sigma} = 0$

for $\mu \to -\infty$:

(exact representation of the non-interacting grand

potential)

integrating over μ then yields:

 $\Phi + \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}(\boldsymbol{\Sigma}\mathbf{G}) = \Omega$

q.e.d.

Luttinger-Ward functional

definition:

$$\Phi = \bigcirc + \bigcirc + \bigcirc + \bigcirc + \cdots$$

properties of the Luttinger-Ward functional:

- Φ is a functional: $\widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]$
- $\diamond~$ domain of the functional: space of all Green's functions $\{{\bf G}_{t',{\bf U}}\}$
- \diamond at the physical Green's function $\mathbf{G}_{t,\mathbf{U}}$ we have: $\widehat{\Phi}_{\mathbf{U}}[\mathbf{G}_{t,\mathbf{U}}] = \Phi_{t,\mathbf{U}}$
- $\label{eq:generalized} \begin{array}{l} \Leftrightarrow \quad \text{this quantity is related to the physical grand potential of the system via} \\ \Omega_{\mathbf{t},\mathbf{U}} = \Phi_{\mathbf{t},\mathbf{U}} + \text{Tr} \ln \mathbf{G}_{\mathbf{t},\mathbf{U}} \text{Tr}(\boldsymbol{\Sigma}_{\mathbf{t},\mathbf{U}}\mathbf{G}_{\mathbf{t},\mathbf{U}}) = \Omega \end{array} \end{array}$
- $\Rightarrow \text{ functional derivative: } \frac{1}{T} \frac{\delta \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]}{\delta \mathbf{G}} = \widehat{\Sigma}_{\mathbf{U}}[\mathbf{G}]$
- \diamond with a functional $\Sigma_{\mathbf{U}}[\mathbf{G}]$ with the property $\widehat{\Sigma}_{\mathbf{U}}[\mathbf{G}_{\mathbf{t},\mathbf{U}}] = \Sigma_{\mathbf{t},\mathbf{U}}$
- \diamond the functionals $\widehat{\Phi}_{\mathbf{U}}[\mathbf{G}]$ and $\widehat{\Sigma}_{\mathbf{U}}[\mathbf{G}]$ are universal
- $\ \ \, \widehat{\Phi}_{\mathbf{U}}[\mathbf{G}] \equiv 0 \text{ and } \widehat{\boldsymbol{\Sigma}}_{\mathbf{U}}[\mathbf{G}] \equiv 0 \text{ for } \mathbf{U} = 0$

conserving approximations

Luttinger-Ward functional

$$\Phi = \bigcirc + \bigcirc + \bigcirc + \cdots$$

- ♦ defined via infinite summation of skeleton diagrams
- ♦ functional dependence unknown

conserving approximations

Baym, Kadanoff (1961)

→ approximate
$$\widehat{\Phi}_{\mathbf{U}}[\mathbf{G}] \approx \widehat{\Phi}_{\mathbf{U}}^{(approx.)}[\mathbf{G}]$$
 by known functional $\widehat{\Phi}_{\mathbf{U}}^{(approx.)}[\mathbf{G}]$
→ compute $\widehat{\Sigma}_{\mathbf{U}}^{(approx.)}[\mathbf{G}] = \frac{1}{T} \frac{\delta \widehat{\Phi}_{\mathbf{U}}^{(approx.)}[\mathbf{G}]}{\delta \mathbf{G}}$
→ solve $\mathbf{G} = \frac{1}{\mathbf{G}_{0}^{-1} - \widehat{\Sigma}_{\mathbf{U}}^{(approx.)}[\mathbf{G}]}$ for \mathbf{G} (self-consistently)
→ evaluate $\widehat{\Omega}[\mathbf{G}] = \widehat{\Phi}[\mathbf{G}] + \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}((\mathbf{G}_{0}^{-1} - \mathbf{G}^{-1})\mathbf{G})$

conserving approximations

advantages:

- thermodynamically consistent
- "conserving": the approximation respects macrocopic conservation laws
- e.g. Luttinger's theorem is respected (see below)

problem:

- the approximation is type-II
- approximation of a functional?
- only possibility: summation of certain clausses of diagrams

example:

self-consistently weak-coupling perturbation theory

HF, RPA, FLEX, ...

Self-Energy Functional

approximation strategies

Hamiltonian: $H_{t,U} = H_{free}(t) + H_{int}(U)$ grand potential: $\Omega_{t,U} = -T \ln \operatorname{tr} \exp(-\beta(H_{t,U} - \mu N))$ physical quantity: $A_{t,U}$

functional: $\Omega_{t,U}[\mathbf{A}]$ on domain \mathcal{D} variational principle: $\delta \Omega_{t,U}[\mathbf{A}] = 0$ für $\mathbf{A} = \mathbf{A}_{t,U}$

Euler equation:
$$\mathbf{f}_{\mathbf{t},\mathbf{U}}[\mathbf{A}] = \frac{\delta \Omega_{\mathbf{t},\mathbf{U}}[\mathbf{A}]}{\delta \mathbf{A}} \stackrel{!}{=} 0$$

I.	simplify Euler equation $\mathbf{f_{t,U}[A]} \to \widetilde{\mathbf{f}_{t,U}}[\mathbf{A}]$	general
н	simplify functional $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{A}] \rightarrow \widetilde{\Omega}_{\mathbf{t},\mathbf{U}}[\mathbf{A}]$	thermodynamically consistent
ш	restict domain $\mathcal{D} \to \widetilde{\mathcal{D}}$	thermodynamically consistent, systematic, clear concept

the self-energy functional

define:

$$\Omega_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}] = \Phi_{\mathbf{U}}[\mathbf{G}_{\mathbf{U}}[\boldsymbol{\Sigma}]] + \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}} - \operatorname{Tr}(\boldsymbol{\Sigma}\mathbf{G}_{\mathbf{U}}[\boldsymbol{\Sigma}])$$
Potthoff (2003)

we have:

$$\frac{\delta}{\delta\Sigma_{\alpha\beta}(i\omega_n)}\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}] = \mathsf{Tr}\left(\frac{\delta\Phi_{\mathbf{U}}[\mathbf{G}_{\mathbf{U}}[\mathbf{\Sigma}]]}{\delta\mathbf{G}}\frac{\delta\mathbf{G}}{\delta\Sigma_{\alpha\beta}(i\omega_n)}\right) - \left(\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{\Sigma}}\right)_{\beta\alpha}(i\omega_n) - \mathbf{G}_{\mathbf{U}}[\mathbf{\Sigma}]_{\beta\alpha}(i\omega_n) - \mathsf{Tr}\left(\mathbf{\Sigma}\frac{\delta\mathbf{G}}{\delta\Sigma_{\alpha\beta}(i\omega_n)}\right)$$

hence:

$$\delta\Omega_{\mathbf{t},\mathbf{U}} = 0 \Leftrightarrow \mathbf{G}_{\mathbf{U}}[\mathbf{\Sigma}] = \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{\Sigma}}$$

exact conditional equation for self-energy

- ♦ solution equivalent with summation of all diagrams !
- ♦ I.h.s.: U-dependent functional of Σ , functional dependence unknown r.h.s.: t-dependent functional of Σ , functional dependence trivial

Legendre transform

self-energy functional:

$$\Omega_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}] = \Phi_{\mathbf{U}}[\mathbf{G}_{\mathbf{U}}[\boldsymbol{\Sigma}]] + \mathsf{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}} - \mathsf{Tr}(\boldsymbol{\Sigma}\mathbf{G}_{\mathbf{U}}[\boldsymbol{\Sigma}])$$

Legendre transformation, general:

given
$$f(x)$$
 with $y = \frac{df(x)}{dx} = y(x)$
define Legendre transform $g(y) = f(x(y)) - yx(y)$
we have: $\frac{dg(y)}{dy} = \frac{df(x(y))}{dx} \frac{dx(y)}{dy} - x(y) - y \frac{dx(y)}{dy} = -x(y)$

Legendre transformation of the Luttinger-Ward functional: given $\Phi_{\mathbf{U}}[\mathbf{G}]$ with $\frac{1}{T} \frac{\delta \Phi_{\mathbf{U}}[\mathbf{G}]}{\delta \mathbf{G}} = \Sigma_{\mathbf{U}}[\mathbf{G}]$ Legendre transform: $F_{\mathbf{U}}[\Sigma] = \Phi_{\mathbf{U}}[\mathbf{G}[\Sigma]] - \text{Tr}(\Sigma \mathbf{G}_{\mathbf{U}}[\Sigma])$ we have: $\frac{1}{T} \frac{\delta F_{\mathbf{U}}[\Sigma]}{\delta \Sigma} = -\mathbf{G}_{\mathbf{U}}[\Sigma]$

$$\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}] = \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{\Sigma}} + F_{\mathbf{U}}[\mathbf{\Sigma}]$$

first term: t-dependent, trivial functional dependence second term: U-dependent, unknown functional dependence ("universal")

$\delta \Omega[\mathbf{\Sigma}] = 0$	self-energy	SFT	

$\delta \Omega[\mathbf{\Sigma}] = 0$	self-energy	SFT	dynamic
$\delta\Omega[\mathbf{G}] = 0$	Green's function	Luttinger Ward	dynamic

$\delta \Omega[\mathbf{\Sigma}] = 0$	self-energy	SFT	dynamic
$\delta \Omega[{f G}]=0$	Green's function	Luttinger Ward	dynamic
$\delta\Omega[\mathbf{n}] = 0$	electron density	DFT	static
$\delta\Omega[\rho]=0$	density matrix	Rayleigh Ritz	static

$\delta \Omega[{old \Sigma}]=0$	self-energy	SFT		dynamic
$\delta \Omega[\mathbf{G}] = 0$	Green's function	Luttinger Ward	perturbation theory	dynamic
$\delta\Omega[\mathbf{n}] = 0$	electron density	DFT	LDA	static
$\delta\Omega[\rho]=0$	density matrix	Rayleigh Ritz	Hartree-Fock, Gutzwiller, VMC,	static

$\delta\Omega[\mathbf{\Sigma}] = 0$	self-energy	SFT	new approximations?	dynamic
$\delta\Omega[\mathbf{G}] = 0$	Green's function	Luttinger Ward	perturbation theory	dynamic
$\delta\Omega[\mathbf{n}] = 0$	electron density	DFT	LDA	static
$\delta\Omega[ho]=0$	density matrix	Rayleigh Ritz	Hartree-Fock, Gutzwiller, VMC,	static

$H = \sum_{j} (-\nabla_{j}^{2}/2 + v(\mathbf{r}_{j})) + \frac{1}{2} \sum_{jk}' \frac{1}{ \mathbf{r}_{j} - \mathbf{r}_{k} }$	$H = \sum_{\alpha\beta} t_{\alpha\beta} c^{\dagger}_{\alpha} c_{\beta} + \frac{1}{2} \sum_{\alpha\beta\gamma\delta} U_{\alpha\beta\delta\gamma} c^{\dagger}_{\alpha} c^{\dagger}_{\beta} c_{\gamma} c_{\delta}$
density-functional theory (DFT)	self-energy-functional theory (SFT)
external potential $v(\mathbf{r})$ density $n(\mathbf{r})$ ground-state densities $n = n[v]$ ground-state energy $E = E[n]$ $E[n] = \int v(\mathbf{r})n(\mathbf{r}) + F[n]$ $\int v n$: explicit F[n]: unknown, universal (v-independent) variational principle: $\delta E[n] = 0$	hopping t self-energy $\Sigma_{\alpha\beta}(i\omega)$ <i>t</i> -representable self-energies $\Sigma = \Sigma[t]$ grandcanonical potential $\Omega = \Omega[\Sigma]$ $\Omega[\Sigma] = \operatorname{Tr} \ln(\mathbf{G}_0^{-1} - \Sigma)^{-1} + F[\Sigma]$ $\operatorname{Tr} \ln(\mathbf{G}_0^{-1} - \Sigma)^{-1}$: explicit $F[\Sigma]$: unknown, universal (t-independent) variational principle: $\delta\Omega[\Sigma] = 0$
local-density approximation (LDA)	different approximations
reference system: homogeneous electron gas approximate functional F	different reference systems functional F on restricted domain

Reference System and Evaluation of the SFT

reference system

Ritz variational principle

 $E_{\mathbf{t},\mathbf{U}}[|\Psi\rangle] = \langle \Psi | H_{\mathbf{t},\mathbf{U}} | \Psi \rangle$

$$\frac{\partial E_{\mathbf{t},\mathbf{U}}[|\Psi_{\mathbf{t}',\mathbf{U}'=0}\rangle]}{\partial \mathbf{t}'} \stackrel{!}{=} 0$$

→ Hartree-Fock approximation

reference system

Ritz variational principle

$$E_{\mathbf{t},\mathbf{U}}[|\Psi\rangle] = \langle \Psi | H_{\mathbf{t},\mathbf{U}} | \Psi \rangle$$

 $\frac{\partial E_{\mathbf{t},\mathbf{U}}[|\Psi_{\mathbf{t}',\mathbf{U}'=0}\rangle]}{\partial \mathbf{t}'} \stackrel{!}{=} 0$

 $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}] = ?$

$$\frac{\partial \Omega_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}'}]}{\partial \mathbf{t}'} \stackrel{!}{=} 0$$

→ Hartree-Fock approximation → n

type of approximation \Leftrightarrow choice of reference system

evaluation of the self-energy functional

 $F_U[\mathbf{\Sigma}]$ unknown but **universal**!

original system:

$$\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}] = \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{0,\mathbf{t}}^{-1} - \mathbf{\Sigma}} + F_U[\mathbf{\Sigma}]$$

reference system:

$$\Omega_{\mathbf{t}',\mathbf{U}}[\mathbf{\Sigma}] = \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{0,\mathbf{t}'}^{-1} - \mathbf{\Sigma}} + F_U[\mathbf{\Sigma}]$$

combination:

$$\boxed{\Omega_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}] = \Omega_{\mathbf{t}',\mathbf{U}}[\boldsymbol{\Sigma}] + \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{0,\mathbf{t}}^{-1} - \boldsymbol{\Sigma}} - \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{0,\mathbf{t}'}^{-1} - \boldsymbol{\Sigma}}}$$

→ non-perturbative, thermodynamically consistent, systematic approximations Potthoff (2003)

cluster approximations

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

n.n. hopping: tlocal interaction: Uelectron density : n = N/L

cluster approximations

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

n.n. hopping: tlocal interaction: Uelectron density : n = N/L reference system, $H_{t',U}$:

system of decoupled clusters

- → diagonalization
- ightarrow trial self-energy: $\Sigma = \Sigma(\mathbf{t}')$

→ self-energy functional: $\Omega_{\mathbf{t}}[\mathbf{\Sigma}(\mathbf{t}')]$ stationary point: $\frac{\partial}{\partial \mathbf{t}'} \Omega_{\mathbf{t}}[\mathbf{\Sigma}(\mathbf{t}')] = 0$
original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters cluster size: L_c $L_c \le 2$: analytic

- $L_C \leq 2$. analytic $L_c \leq C$; exect diagonal
- $L_c \leq 6$: exact diagonalization
- $L_c \leq 12$: Lanczos method
- $L_c \leq 100$: stochastic techniques

example: D = 1 Hubbard model

T = 0, half-filling, U = 8, nearest-neighbor hopping t = 1

variational parameter: nearest-neighbor hopping t' within the chain

→ $\Omega(t') \equiv \Omega[\Sigma(t')]$ stationary at $t'_{\min} \neq t$ → t' = 0: cluster size irrelevant → $t'_{\min} \approx t$

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

variational parameters: intra-cluster hopping partial compensation of finite-size effects

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

variational parameters: hopping between cluster boundaries boundary conditions

boundary conditions

exact: Lieb, Wu (1968)

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

variational parameters: on-site energies thermodynamic consistency

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

variational parameters: ficticious symmetry-breaking fields spontaneous symmetry breaking

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters

variational parameters: ficticious symmetry-breaking fields different order parameters

antiferromagnetism

D=2 Hubbard model, half-filling

antiferromagnetism

Dahnken, Aichhorn, Hanke, Arrigoni, Potthoff (2004)

ground-state energy

Dahnken, Aichhorn, Hanke, Arrigoni, Potthoff (2004)

→ quantitative agreement with VMC, QMC

D = 2 Hubbard model half-filling, T = 0antiferromagnetic phase

 $N_c = 10$, no bath sites

symmetry-breaking fields

additional ficticious field / Weiss field :

reference system

$$H'_{\text{fict.}} = B' \sum_{i\sigma} z_i (n_{i\uparrow} - n_{i\downarrow}) ,$$

AF order: staggered magnetic field $\rightarrow z_i = \pm 1$ for sites on sublattice 1/2

additional physical field:

$$H_{\text{phys.}} = B \sum_{i\sigma} z_i (n_{i\uparrow} - n_{i\downarrow})$$

original system

in the paramagnetic state, B = 0:

 $B_{\rm opt}' = 0$

no AF order

in the paramagnetic state, B > 0:

 $B_{\rm opt}' > 0$

induced AF order

in the antiferromagnetic state, B = 0:

spontaneous AF order

(suppress other parameters)

symmetry-breaking fields

SFT grand potential: $\Omega(B', B) = \Omega_B[\Sigma_{B'}]$ **stationarity condition:** $\partial \Omega(B', B) / \partial B' = 0$ yields:

$$B'_{\rm opt} = B'(B)$$

for the SFT grand potential at the optimal Weiss field, $\Omega(B'(B), B)$, we have

$$\frac{\partial \Omega(B'(B), B)}{\partial B'} = 0 \qquad \forall B$$

therewith:
$$\frac{\frac{d}{dB}}{\frac{\partial \Omega(B'(B), B)}{\partial B'}} = 0$$

and thus:
$$\frac{\frac{\partial^2 \Omega(B'(B), B)}{\partial B'^2} \frac{dB'(B)}{dB} + \frac{\partial^2 \Omega(B'(B), B)}{\partial B \partial B'} = 0$$

solving for $\frac{dB'}{dB} = -\left[\frac{\partial^2 \Omega}{\partial B'^2}\right]^{-1} \frac{\partial^2 \Omega}{\partial B \partial B'}$

- \rightarrow B' is not a physical quantity (Weiss field)
- → $B' \gg B$ for small curvature $\partial^2 \Omega / \partial {B'}^2$ (flat SFT functional)

order parameter and susceptibitlity

staggered magnetization / order parameter:

$$m = \sum_{i\sigma} z_i \langle (n_{i\uparrow} - n_{i\downarrow}) \rangle = \frac{d}{dB} \Omega(B'(B), B) = \frac{\partial \Omega(B'(B), B)}{\partial B}$$

 \diamond no contribution due to the *B* dependence of the stationary point !

susceptibility:

$\gamma = 0$	dm _	$\partial^2 \Omega(B'(B),B)$	dB'(B)	$\partial^2 \Omega(B'(B), B)$
$\chi - \frac{1}{\alpha}$	dB –	$\partial B' \partial B$	dB	∂B^2

we find:

$$\chi = \frac{\partial^2 \Omega}{\partial B^2} - \left(\frac{\partial^2 \Omega}{\partial B'^2}\right)^{-1} \left(\frac{\partial^2 \Omega}{\partial B' \partial B}\right)^2$$

- \diamond contribution to the explicit *B* dependence
- ♦ additional contribution to the implicit *B* dependence !
 i.e. the *B* dependence of the stationary point

order parameter and susceptibitlity

(anti-)ferromagnetic order:

- \diamond spontaneous breaking of the **SU(2)** symmetry of *H* (e.g. Hubbard model)
- $\diamond~$ conserved quantity: $\mathbf{S}_{\mathrm{tot}},$ total spin

$$\Rightarrow \text{ Weiss field: } H'_{\text{fict.}} = B' \sum_{i\sigma} z_i (n_{i\uparrow} - n_{i\downarrow}) ,$$
$$\Rightarrow \text{ order parameter: } m = \sum_{i\sigma} z_i \langle (n_{i\uparrow} - n_{i\downarrow}) \rangle$$

superconductivity:

- \diamond spontaneous breaking of the **U(1)** symmetry of *H*
- \diamond conserved quantity: *N*, total particle number

♦ Weiss field:
$$H'_{\text{fict.}} = h' \sum_{ij} \frac{\eta_{ij}}{2} (c_{i\uparrow} c_{j\downarrow} + \text{H.c.}) \qquad (d \text{ wave})$$
with $\eta_{ij} = \pm 1$ for n.n. along x/y direction (2D square lattice)
♦ order parameter:
$$\Delta = \langle c_{i\uparrow} c_{j\downarrow} \rangle$$
 complex and non-local !
(→ cluster approximation)

high-temperature superconductivity

Senechal, Lavertu, Marois, Tremblay (2005)

Bath Sites and Dynamical Mean-Field Theory

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters cluster size: $L_c = 4$ variation of on-site energies

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{\mathbf{t}',\mathbf{U}}$:

system of decoupled clusters cluster size: $L_c = 1$ Hubbard-I-type approximation

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 1, L_b = 2$ improved description of temporal correlations

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 1, L_b = 5$ improved mean-field theory

– p. 100

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 1, L_b = \infty$ optimum mean-field theory, DMFT *Metzner, Vollhardt (1989) Georges, Kotliar, Jarrell (1992)*

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 4, L_b = \infty$ cellular DMFT *Kotliar et al (2001) Lichtenstein, Katsnelson (2000)*

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 4, L_b = 5$ variational cluster approach (VCA)

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 4, L_b = 2$ variational cluster approach (VCA)

original system, $H_{t,U}$:

lattice model (D = 2) in the thermodynamic limit

reference system, $H_{t',U}$:

system of decoupled clusters with additional bath sites $L_c = 4$ variational cluster approach (VCA)

consistent approximations within SFT

- → DMFT
- → C-DMFT
- → DIA
- → VCA

Metzner, Vollhardt 1989, Georges, Kotliar 1992, Jarrell 1992 Kotliar et al 2001, Lichtenstein, Katsnelson 2000 Potthoff 2003 Potthoff, Aichhorn, Dahnken 2003

self-energy functional:

$$\widehat{\Omega}_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}] = \widehat{\Omega}_{\mathbf{t}',\mathbf{U}}[\mathbf{\Sigma}] + \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{\Sigma}} - \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t}',0}^{-1} - \mathbf{\Sigma}}$$

self-energy $\Sigma_{\mathbf{t}',\mathbf{U}}$ taken from the reference system inserted as a trial:

$$\widehat{\Omega}_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}] = \Omega_{\mathbf{t}',\mathbf{U}} + \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}} - \operatorname{Tr} \ln \mathbf{G}_{\mathbf{t}',\mathbf{U}}$$

stationarity condition:

$$\frac{\partial}{\partial \mathbf{t}'}\widehat{\Omega}_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}] = 0$$

first term:

$$\frac{\partial}{\partial t'_{\alpha\beta}}\Omega_{\mathbf{t}',\mathbf{U}} = \langle c^{\dagger}_{\beta}c_{\alpha}\rangle'$$

second term:

$$\frac{\partial}{\partial \mathbf{t}'} \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}} = T \sum_{n} \sum_{\alpha\beta} \left(\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1}(i\omega_n) - \boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}(i\omega_n)} \right)_{\beta\alpha} \frac{\partial \Sigma_{\mathbf{t}',\mathbf{U},\alpha\beta}(i\omega_n)}{\partial \mathbf{t}'}$$

third term:

$$\frac{\partial}{\partial \mathbf{t}'} \operatorname{Tr} \ln \mathbf{G}_{\mathbf{t}',\mathbf{U}} = \frac{\partial}{\partial \mathbf{t}'} \operatorname{Tr} \ln \frac{1}{i\omega_n + \mu - \mathbf{t}' - \boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}}$$
$$= T \sum_n e^{i\omega_n 0^+} \mathbf{G}_{\mathbf{t}',\mathbf{U}}(i\omega_n) + T \sum_n \sum_{\alpha\beta} \left(\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1}(i\omega_n) - \boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}(i\omega_n)} \right)_{\beta\alpha} \frac{\partial \boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U},\alpha\beta}(i\omega_n)}{\partial \mathbf{t}'}$$

with $T \sum_{n} e^{i\omega_n 0^+} G_{\mathbf{t}', \mathbf{U}, \alpha\beta}(i\omega_n) = \langle c_{\beta}^{\dagger} c_{\alpha} \rangle'$ we find the general SFT Euler equation :

$$T\sum_{n}\sum_{\alpha\beta}\left(\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1}(i\omega_{n})-\boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}(i\omega_{n})}-\mathbf{G}_{\mathbf{t}',\mathbf{U}}(i\omega_{n})\right)_{\beta\alpha}\frac{\partial\Sigma_{\mathbf{t}',\mathbf{U},\alpha\beta}(i\omega_{n})}{\partial\mathbf{t}'}=0$$

- \diamond unknowns: elements of t', number of equations = number of unknowns
- \diamond highly non-linear system of equations, exact solution: $\Sigma_{t,U}$
- ♦ geometrical interpretation (for those who like this): Euler equation is obtained from the exact conditional equation for the "vector" Σ in the self-energy space S_U through *projection* onto the hypersurface of t' representable trial self-energies Σ_{t',U} by taking the scalor product with vectors $\partial \Sigma_{t',U,\alpha\beta}(i\omega_n)/\partial t'$ tangential to the hypersurface

test self-energy is taken from a single-impurity Anderson model (SIAM):

$$H_{\rm SIAM} = \sum_{\sigma} \varepsilon_{\rm imp} c_{\sigma}^{\dagger} c_{\sigma} + U n_{\uparrow} n_{\downarrow} + \sum_{k\sigma} \varepsilon_{k} a_{k\sigma}^{\dagger} a_{k\sigma} + \sum_{k\sigma} V_{k} (c_{\sigma}^{\dagger} a_{k\sigma} + \mathsf{H.c.})$$

- \rightarrow actually: continuum of bath sites, $L_b \rightarrow \infty$
- → non-zero SIAM self-energy at the impurity site only: $\Sigma_{imp}(\omega)$
- → one SIAM attached to each site of original lattice (identical replicas)

 $\Sigma_{\alpha\beta}(i\omega_n) = \Sigma_{ik,jl}(i\omega_n) = \delta_{ij}\Sigma_{i0,i0}(i\omega_n)$

Euler equation

$$T\sum_{n}\sum_{\alpha\beta}\left(\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1}(i\omega_{n})-\boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}(i\omega_{n})}-\mathbf{G}_{\mathbf{t}',\mathbf{U}}(i\omega_{n})\right)_{\beta\alpha}\frac{\partial\Sigma_{\mathbf{t}',\mathbf{U},\alpha\beta}(i\omega_{n})}{\partial\mathbf{t}'}=0$$

reduces to

$$T\sum_{n}\sum_{i\sigma}\left(\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1}(i\omega_{n})-\boldsymbol{\Sigma}_{\mathbf{t}',\mathbf{U}}(i\omega_{n})}-\mathbf{G}_{\mathbf{t}',\mathbf{U}}(i\omega_{n})\right)_{ii\sigma}\frac{\partial\Sigma_{ii\sigma}(i\omega_{n})}{\partial\mathbf{t}'}=0$$

sufficient for a solution the Euler equation:

$$\left(\frac{1}{\mathbf{G}_0^{-1}(\omega) - \boldsymbol{\Sigma}(\omega)}\right)_{ii\sigma} = \mathbf{G}'_{ii\sigma}(\omega)$$

or:

$$G_{\rm loc}(\omega) \stackrel{!}{=} \mathcal{G}(\omega)$$
 DMFT self-consistency equation

DMFT self-consistency

dynamical mean-field theory and $D = \infty$

Weiß molecular-field theory

magnetic phase transition lattice spin model

$$H = -\frac{J}{2} \sum_{\langle ij \rangle} S_i S_j$$

dynamical mean-field theory

Mott transition lattice fermion model

$$H = -t \sum_{\langle ij \rangle \sigma} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{i\sigma} n_{i\sigma} n_{i-\sigma}$$

$$H_{\rm imp} = -J\left(\sum_{\langle i\rangle} \langle S_i\rangle\right)S$$

 $H_{\rm imp} = \sum_{\sigma} t_0 n_{\sigma} + \frac{U}{2} \sum_{\sigma} n_{\sigma} n_{-\sigma}$ $+ \sum_{k\sigma} \varepsilon_k n_{k\sigma}^{(a)} + \sum_{k\sigma} V_k c_{\sigma}^{\dagger} a_{k\sigma} + \text{h.c.}$

 $J \propto 1/D$ $t \propto 1/\sqrt{D}$

Metzner, Vollhardt (1989), Georges, Kotliar (1992), Jarrell (1992)
classification of dynamical approximations

dynamical mean-field theoryMetzner, Vollhardt (1989), Georges, Kotliar, Jarrell (1992)cellular DMFTKotliar, Savrasov, Palsson (2001)dynamical impurity approach (DIA)Potthoff (2003)variational cluster approachPotthoff, Aichhorn, Dahnken (2004)

cellular DMFT (C-DMFT)

Kotliar, Savrasov, Palsson, Biroli (2001)

dynamical cluster approximation (DCA)

Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, Krishnamurthy (1998)

periodized C-DMFT (P-C-DMFT)

Biroli, Parcollet, Kotliar (2003)

fictive impurity models

Okamoto, Millis, Monien, Fuhrmann (2003)

cellular DMFT (C-DMFT) *Kotliar, Savrasov, Palsson, Biroli* (2001)

dynamical cluster approximation (DCA) *Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, Krishnamurthy (1998)*

periodized C-DMFT (P-C-DMFT) *Biroli, Parcollet, Kotliar (2003)*

fictive impurity models *Okamoto, Millis, Monien, Fuhrmann* (2003) original system, $H_{t,U}$:

reference system, $H_{\mathbf{t}',\mathbf{U}}$:

cellular DMFT (C-DMFT) *Kotliar, Savrasov, Palsson, Biroli* (2001)

dynamical cluster approximation (DCA)

Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, Krishnamurthy (1998)

periodized C-DMFT (P-C-DMFT) *Biroli, Parcollet, Kotliar (2003)*

fictive impurity models *Okamoto, Millis, Monien, Fuhrmann* (2003) original system, $H_{t,U}$:

reference system, $H_{t',U}$:

$$\frac{\partial}{\partial \mathbf{t}'} \Omega_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}(\mathbf{t}')] = 0$$

→ open boundary conditions (see above)

there is no reference system which generates the DCA !

cellular DMFT (C-DMFT) *Kotliar, Savrasov, Palsson, Biroli* (2001)

dynamical cluster approximation (DCA)

Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, Krishnamurthy (1998)

periodized C-DMFT (P-C-DMFT) *Biroli, Parcollet, Kotliar (2003)*

fictive impurity models *Okamoto, Millis, Monien, Fuhrmann* (2003) original system, $H_{t,U}$:

reference system, $H_{t',U}$:

$$\frac{\partial}{\partial \mathbf{t}'} \Omega_{\overline{\mathbf{t}}, \mathbf{U}}[\mathbf{\Sigma}(\mathbf{t}')] = 0 \qquad (\mathbf{t} \mapsto \overline{\mathbf{t}})$$

DCA self-consistency condition

- t: invariant under superlattice translations and periodic on each cluster
- → systematic
- → restores translational symmetry
- → no implications on quality of DCA !

cellular DMFT (C-DMFT) *Kotliar, Savrasov, Palsson, Biroli* (2001)

dynamical cluster approximation (DCA) Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, Krishnamurthy (1998)

periodized C-DMFT (P-C-DMFT) Biroli, Parcollet, Kotliar (2003)

fictive impurity models *Okamoto, Millis, Monien, Fuhrmann* (2003) original system, $H_{t,U}$:

reference system, $H_{t',U}$:

$$\frac{\partial}{\partial \mathbf{t}'}\overline{\Omega}_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}(\mathbf{t}')] = 0 \qquad (\Omega[\cdots] \mapsto \overline{\Omega}[\cdots]$$

P-C-DMFT self-consistency condition

→ systematic

→ restores translational symmetry

cellular DMFT (C-DMFT) *Kotliar, Savrasov, Palsson, Biroli* (2001)

dynamical cluster approximation (DCA) *Hettler, Tahvildar-Zadeh, Jarrell, Pruschke, Krishnamurthy (1998)*

periodized C-DMFT (P-C-DMFT) *Biroli, Parcollet, Kotliar (2003)*

fictive impurity models Okamoto, Millis, Monien, Fuhrmann (2003) original system, $H_{t,U}$:

reference system, $H_{t',U}$: without any relation to the original system !

more bath sites vs. larger clusters

D = 1: bath sites ?

- → larger cluster vs. more bath sites
- → enhanced convergence

exact: Lieb, Wu (1968)

DMFT as Type-I,II,III Approximation

dynamical mean-field theory

information on excitations (PES,IPE) \rightarrow one-particle Green's function $G_{\alpha\beta}(\omega)$

dynamical mean-field theory

information on excitations (PES,IPE) \rightarrow one-particle Green's function $G_{\alpha\beta}(\omega)$

$$\begin{split} & \text{DMFT as type-l approximation:} \\ & \mathbf{G} = \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}_{\mathbf{U}}[\mathbf{G}]} \to \mathbf{G} = \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \widetilde{\boldsymbol{\Sigma}}_{\mathbf{U}}[\mathbf{G}]} \\ & \text{with } \widetilde{\boldsymbol{\Sigma}}_{\mathbf{U}}[\mathbf{G}]\text{: functional of an impurity model} \\ & \text{(vertices restricted to a single-site)} \end{split}$$

DMFT self-consistency cycle:

Metzner, Vollhardt (1989) Georges, Kotliar, Jarrell (1992)

$$(\mathbf{G}_{\mathbf{t}^{i},0})_{ii} = \frac{1}{(\mathbf{G}_{ii})^{-1} - (\mathbf{\Sigma})_{ii}}$$

$$H_{\mathbf{t}^{i},\mathbf{U}} \longrightarrow \mathbf{\Sigma} \longrightarrow \mathbf{G} = \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{\Sigma}}$$

Luttinger-Ward functional:
$$\Phi = \bigoplus^{+} + \bigoplus^{+} + \bigoplus^{+} + \bigoplus^{+} + \bigoplus^{-} + \bigoplus^{-}$$

type-III approximation ?choose reference system with $\mathbf{U} = \mathbf{U}^i$ $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{G}] = \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}((\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{G}^{-1})\mathbf{G}) + \Phi_{\mathbf{U}}[\mathbf{G}]$ $\Omega_{\mathbf{t}^i,\mathbf{U}}[\mathbf{G}] = \operatorname{Tr} \ln \mathbf{G} - \operatorname{Tr}((\mathbf{G}_{\mathbf{t}^i,0}^{-1} - \mathbf{G}^{-1})\mathbf{G}) + \Phi_{\mathbf{U}}[\mathbf{G}]$

$$\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{G}] = \Omega_{\mathbf{t}^{i},\mathbf{U}}[\mathbf{G}] - \mathsf{Tr}(\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{G}_{\mathbf{t}^{i},0}^{-1})\mathbf{G} = \Omega_{\mathbf{t},\mathbf{U}}[\rho_{\mathbf{t}^{i},\mathbf{U}}]$$

reduces to Rayleigh-Ritz principle !

problem:

type-III & impurity model as reference system → local Green's function

problem:

type-III & impurity model as reference system → local Green's function

alternative functional:

$$\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{G}] = \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}_{\mathbf{U}}[\mathbf{G}]} - \operatorname{Tr}(\boldsymbol{\Sigma}_{\mathbf{U}}[\mathbf{G}]\mathbf{G}) + \Phi_{\mathbf{U}}[\mathbf{G}]$$

Chitra, Kotliar (2001)

Euler equation \Leftrightarrow Dyson's equation

 $\begin{array}{l} \text{DMFT as type-II approximation:} \\ \Phi_U[\mathbf{G}] \to \widetilde{\Phi}_U[\mathbf{G}] \\ \boldsymbol{\Sigma}_U[\mathbf{G}] \to \widetilde{\boldsymbol{\Sigma}}_U[\mathbf{G}] \\ \textbf{\rightarrow} \text{ DMFT self-consistency equation} \end{array}$

type-III approximation ? reference system: impurity model with $U = U^i$ $\rightarrow G_{t^i,U}$ is local !

problem:

type-III & impurity model as reference system → local Green's function

alternative functional:

$$\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{G}] = \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \boldsymbol{\Sigma}_{\mathbf{U}}[\mathbf{G}]} - \operatorname{Tr}(\boldsymbol{\Sigma}_{\mathbf{U}}[\mathbf{G}]\mathbf{G}) + \Phi_{\mathbf{U}}[\mathbf{G}]$$

Chitra, Kotliar (2001)

Euler equation \Leftrightarrow Dyson's equation

 $\begin{array}{l} \text{DMFT as type-II approximation:} \\ \Phi_U[\mathbf{G}] \to \widetilde{\Phi}_U[\mathbf{G}] \\ \boldsymbol{\Sigma}_U[\mathbf{G}] \to \widetilde{\boldsymbol{\Sigma}}_U[\mathbf{G}] \\ \textbf{\rightarrow} \text{ DMFT self-consistency equation} \end{array}$

functional of the local Green's function:

 $\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{G}^{(\mathrm{loc})}]$

Chitra, Kotliar (2000)

type-III approximation ? reference system: impurity model with $U = U^i$ $\rightarrow G_{t^i, U}$ is local !

DMFT as type-II approximation

Georges (2004)

Potthoff (2003)

self-energy-functional approach

self-energy as the basic variable

original system

reference system

 $\rightarrow \Sigma$ is local

 $ightarrow \Sigma$ is non-zero on the correlated sites only

Potthoff (2003)

reference system

self-energy-functional approach

self-energy as the basic variable

original system

- $\rightarrow \Sigma$ is local
- $ightarrow \Sigma$ is non-zero on the correlated sites only

$$\Omega_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}] = \operatorname{Tr} \ln \frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} - \mathbf{\Sigma}} + F_{\mathbf{U}}[\mathbf{\Sigma}]$$

 $F_{\mathbf{U}}[\mathbf{\Sigma}] = \text{Legendre transform of } \Phi_{\mathbf{U}}[\mathbf{G}]$

- $\Rightarrow \Omega_{\mathbf{t},\mathbf{U}}[\boldsymbol{\Sigma}_{\mathbf{t},\mathbf{U}}] = \Omega_{\mathbf{t},\mathbf{U}} \quad \checkmark$
- → Euler equation: $\frac{1}{\mathbf{G}_{\mathbf{t},0}^{-1} \boldsymbol{\Sigma}} \mathbf{G}_{\mathbf{U}}[\boldsymbol{\Sigma}] = 0 \iff \text{Dyson's equation} \quad \checkmark$
- → Euler equation on $\widetilde{\mathcal{A}}$: $\frac{\partial}{\partial \mathbf{t}^{i}} \Omega_{\mathbf{t},\mathbf{U}}[\mathbf{\Sigma}_{\mathbf{t}^{i},\mathbf{U}}] = 0 \Leftrightarrow \text{DMFT}$ self-consistency equation \checkmark

→ DMFT as type-III approximation

DMFT of the Mott Transition

Mott transition

generic model

Hubbard model generic for the Mott transition

$$H = -t \sum_{ij\sigma}^{n.n.} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{U}{2} \sum_{\sigma} n_{i\sigma} n_{i-\sigma}$$

parameters:

- lattice structure, dimension
- n.n. hopping: t
- local interaction: U
- electron density : n = N/L
- temperature T

DMFT phase diagram

T = 0: continuous phase transition T > 0: discontinuous transition $T > T_C$: crossover

Georges, Krauth, Kotliar, Rozenberg (1996)

DMFT phase diagram

T = 0: continuous phase transition T > 0: discontinuous transition $T > T_C$: crossover

Georges, Krauth, Kotliar, Rozenberg (1996)

effective Heisenberg model

at low energies / temperatures:

$$H = \sum_{ij} J_{ij} \mathbf{S}_i \mathbf{S}_j$$
 with $J_{ij} \propto -\frac{t^2}{U}$

antiferromagnetic Heisenberg model

magnetic correlations and entropy

Heisenberg insulator for $U \gg t$:

- → at low energies: Heisenberg model with $J \sim -\frac{t^2}{II}$
- → long-range AF order (also for $D = \infty$, within DMFT)

Mott insulator for $U \gg t$:

- \rightarrow metastable paramagnetic state with well-formed local moment S = 1/2
- → strong nearest-neighbor (AF) magnetic correlations

Mott insulator within DMFT:

ightarrow no feedback of nonlocal magnetic correlations on Σ

$$\Omega_{\rm DMFT} = L\Omega_{\rm imp} + \operatorname{Tr} \ln \frac{1}{\mathbf{G}_0^{-1} - \boldsymbol{\Sigma}} - L\operatorname{Tr} \ln G_{\rm imp}$$

→ free energy F, entropy $S = -\frac{\partial F}{\partial T} \sim$ system of decoupled local moments

$$S(T=0) = L \log 2$$

(Mott insulator, DMFT)

entropy problem

metal: S(0)/L = 0insulator: $S(0)/L = \log 2$ (mean-field artifact)

at finite T: $F_{\text{met}} = E_{\text{met}} - TS_{\text{met}} > E_{\text{ins}} - TS_{\text{ins}} = F_{\text{ins}}$

the insulator wins at higher temperatures

- **Q: mean-field artifact ?**
- **Q:** phase-diagram topology for D = 2 ?

singlet formation $\rightarrow S(T=0) = 0$

Park, Haule Kotliar (2008)

Mott Transition within the DIA

dynamical impurity approximation (DIA)

qualitative agreement with full DMFT (QMC, NRG) Georges et al 1996, Joo, Oudovenko 2000, Bulla et al 2001

DIA - convergence to the DMFT

quantitative agreement with full DMFT (QMC, NRG)

Georges et al 1996, Joo, Oudovenko 2000, Bulla et al 2001

 \rightarrow rapid convergence with increasing n_s

entropy problem

Hubbard model half-filling semi-elliptical DOS W = 4

DIA with $n_s = 2$

→ Mott insulator: macroscopic ground-state degeneracy

→ Fermi liquid: linear $S(T) = \gamma T + \cdots$
DIA - phase transitions

- → metastable states
- → order of phase transitions

Mott Transition in D = 1

SFT grand potential

- D = 1 Hubbard model
- L = 1000 2000 sites
- energy scale: nearest-neighbor hopping t = 1
- $\mu = U/2$ (half-filling)
- single variational parameter:

- \rightarrow enhanced t' compensates for missing inter-cluster hopping
- \rightarrow for more itinerant system ($U \rightarrow 0$) stronger compensation necessary

VCA: optimal intra-cluster hopping

-
$$t = 1, \mu = U/2$$

$$\Omega(t') \equiv \Omega[\mathbf{\Sigma}(t')]$$

 \rightarrow weak coupling: strong renormalization of t' vs. small self-energy

finite-size scaling

- $t = 1, \mu = U/2$
- VCA vs. "direct" cluster method (isolated cluster with L_c sites)

→ VCA: faster convergence

no upper bounds for true ground-state energy within SFT

VCA: recipe for practical calculations

- → set up cluster reference system (here: choose L_c , U) and fix the variational parameters (here: t')
- → use Lanczos to get poles and weights of Green's function

$$G'_{\alpha\beta}(\omega) = \sum_{m} Q_{\alpha m} \frac{1}{\omega - \omega'_{m}} Q^{\dagger}_{m\beta}$$

- → and the cluster grand potential $\Omega' = E'_0 \mu \langle N \rangle$
- → set up $\mathbf{M} = \mathbf{\Lambda} + \mathbf{Q}^{\dagger} \mathbf{V} \mathbf{Q}$ with $\Lambda_{mn} = \omega'_m \delta_{mn}$ and $\mathbf{V} = \mathbf{t} \mathbf{t}'$
- \rightarrow get ω_m as eigenvalues of M (poles of the approximate lattice Green's function)

→ compute SFT grand potential for
$$T = 0$$
:
 $\Omega(t') \equiv \Omega[\Sigma(t')] = \Omega' + \sum_{m} \omega_m \Theta(-\omega_m) - \sum_{m} \omega'_m \Theta(-\omega'_m)$.

redo these steps for different cluster parameters

more variational parameters

- $t = 1, \mu = U/2$
- U = 4
- several hopping paramters optimized simultaneously

- \rightarrow variation of optimal t'_i less that 10%
- significant effects at chain edges
- third hopping parameter bulk-like
- Friedel oscillations
- \rightarrow almost no effect on E_0 and Δ

more variational parameters

additional hopping linking chain edges (boundary conditions)

second-neareast-neighbor hopping (magnetic frustration)

third-neareast-neighbor hopping

- hopping parameters not present in original system: almost vanishing
- \rightarrow optimal $t_{\rm pbc} = 0$, no periodic (but open) boundary conditions
- \rightarrow optimal hopping = 0, if incompatible with particle-hole symmetry

- → I vs. H: optimization of bath sites more effective than hopping
- → J vs. H, I: bath sites at chain center ineffective
- \rightarrow different L_c : larger clusters more effective than optimization

local Matsubara Green's function

→ VCA comparable to C-DMFT

DMRG, C-DMFT, cluster DF: Hafermann et al. 2007

Mott Transition in D = 2

parameter optimization

reference system for plaquette VCA

Seminar FOR 1162

- on-site energies at correlated sites: $\epsilon_c = 0$
- on-site energies at bath sites: $\varepsilon_b = U/2 = \mu$
- t'': optimal value small, $|t''_{opt}| < t/25$
- t': optimal value $t'_{
 m opt} = t + \Delta t'_{
 m opt}$ with $\Delta t'_{
 m opt} < t/10$ $(t' = t \text{ for } L_b \to \infty)$
- setting t' = t and $t'' = 0 \Rightarrow$ change of $V_{opt} < 1\%$, Ω essentially unchanged

→ one-dimensional optimization of V sufficient

• critical interaction:

 $U_c = 5.79$ with V, t', t'' optimized simultaneously (downhill simplex) $U_c = 5.79$ with V optimized only

• DIA ($n_s = 2$): $U_c = 11.3$ DMFT: $U_c = 11$ Zhang, Imada 2007, $U_c = 12$ Gull et al. 2008

(particle-hole symmetry)

(particle-hole symmetry)

($t^{\prime\prime}$ irrelevant for $L_b
ightarrow \infty$)

SFT functional

D = 2, n = 1, T = 0VCA, $L_c = 4, L_b = 4$

physical states: $\Omega(V) = \min, \max$ small V_{opt} : insulator large V_{opt} : metal coexistence: $4.6 \approx U_{c1} < U_{c2} \approx 6.35$ first-order transition at $U_c = 5.79 \ (T = 0)$ hidden critical point

$G_{\rm loc}(i\omega)$ and $\Sigma_K(i\omega)$ at U = 5.8

→ third, metastable solution is metallic

physical quantities in the coexistence range

hidden critical point scenario

