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Electron Correlations
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the "standard model”

standard model of the electronic structure of a solid:

[]

[]
[]
[]

N electrons
kinetic energy
external potential (ion cores)

Coulomb interaction

H = Ho + Hy

Hamiltonian: known
solution: unknown
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Independent particles H

Hamiltonian of (effectively) independent electrons:

— ( Pj ()
Hegt = Z (ﬁ + Veff(rj)> — ZHOfeff
j=1

J=1

Schrodinger’s equation
Heff|\Ij> — E|\Ij>

IS solved by
T = [oh Mohd) - oS where H) o)) = e5108))
Fermions!
N
1 P P P(N
) = — S (=D)PHZ ML) - 10E) B=3
P j=1

independent particles
[1 problem reduces to single-particle Schrédinger equation

[1 no “correlations”
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correlated band structure H

one-particle energies for a solid with lattice-periodic effective potential:

Ea — em(Kk) (Bloch'’s theorem)

wave vector k, band index m

single-band tight-binding model of independent electrons:
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correlated band structure

one-particle energies for a solid with lattice-periodic effective potential:

o — Em (k)

(Bloch’s theorem)

wave vector k, band index m

with interaction:

[1 correlation effects: there is no

Ve (r) producing this band structure!

|
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thermodynamics of independent particles H

(grand canonical) partition function:
7 = tre PH B=1/T

N
independent (distinguishable) particles: Hog = Z Héjgﬂc

j=1

Z =2z

[1 no singularities
[1 no phase transitions

[J no collective phenomena

independent fermions : [
independent bosons : BEC

[1 correlations due to statistics of particles vs. correlatio ns due to interactions
[1 phase diagrams of Fermi systems: interaction effect
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O O O 0o 0O 0o 0o O

collective magnetism
charge and orbital order
superconductivity

Mott transitions

Kondo screening
non-Fermi liquid behavior

Luttinger liquid

thermodynamics: correlation effects

|
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effect of lattice dimension H

W . width of the relevant valence band

measure of the kinetic energy

proportional to coordination number / dimension
U : strongly screened Coulomb interaction

local quantity

independent of dimension

W U

D=3:
interaction / correlations
comparatively weak
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effect of lattice dimension H

W . width of the relevant valence band

measure of the kinetic energy

proportional to coordination number / dimension
U : strongly screened Coulomb interaction

local quantity

independent of dimension

® ® ® ®
® ® ® ®
® ® ® ® W U

D=2:
Interaction / correlations
more important
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effect of lattice dimension H

W . width of the relevant valence band

measure of the kinetic energy

proportional to coordination number / dimension
U : strongly screened Coulomb interaction

local quantity

independent of dimension

W U

D=1:
correlations dominate
motion blocked by Pauli principle



Example: Collective Magnetism
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sketch: collective magnetism H

magnetic material
example: magnetite (Fe 203), Fe, Gd

[J permanent magnetization

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions



XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

sketch: collective magnetism H

microscopic cause?
necessary:
elementary magnetic moments

[1 permanent moments

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

directions distributed randomly
total moment: > . m; =0
vanishing magnetization

[1 paramagnetism

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

non-vanishing
magnetization requires:

[1 collective ordering of moments

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

thermal fluctuations destroy
magnetic order

[1 stability of order?

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

external magnetic field
H—H-5% mB

I induced magnetic order

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

collective, non-induced order
Zimi Z£0fiur T >0
> ,m; =0fir T'— oo

[0 spontaneous order

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

direction of magnetization?

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

direction of magnetization?

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
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sketch: collective magnetism H

H': magnetically isotropic
|W): lower symmetry

[1 spontaneous symmetry breaking

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

spontaneous collective order
requires:

[1 Iinteraction

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

[ cause of magnetic moments?

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

angular momentum [0 magnetic
moment

orbital momentum [ orbital moment
spin [ spin moment

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

[J spin moments

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

collective spontaneous order

"
: \ \ \ [J interaction ?
L Y
. W

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

energy of a magnetic

moment at r; in the dipole field
/ of all other moments:
r2m;m; — 3(m;m;)(m;r;;)
Ko Z ij ety ety Jtg
f;\] A —~ ro.
JFt "3
( estimate: ~10=%eV,1T,1K

[J dipole interaction too weak

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

strong coupling via Coulomb-
interaction U

U~W
‘ U W: kinetic energy (band width)

[1 strong Coulomb interaction

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions



XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

sketch: collective magnetism H

Coulomb interaction as
cause of collective magnetism

Bohr-van Leeuwen theorem
“magnetism cannot be explained

within classical statistics”

[J quantum statistics

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

guanten mechanical system of
strongly interacting Fermions
~ 1023 coupled degrees of freedom

[1 central problem of
theoretical physics

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

guantum mechanics:
Fermions are indistinguishable !

[1 observable: spin density

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

solid: translational symmetry
magnetic moment at
a lattice site

[I local magnetic moment

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

collective magnetism:
spontaneous order of local moments

=l
LV
LV 1

[] ferromagnetism

7
7

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions
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sketch: collective magnetism H

[1 antiferromagnetism

task:

development and application of quantum-statistical methods for an understanding of the
collective order of magnetic moments within a non-perturbative, thermodynamically
consistent picture of the electronic structure of Coulomb-interacting many-electron
systems in low dimensions



Hubbard Model
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H = Ho + Hy
— ( P] Sy
4= j=1
atom solid
é (L atoms)

energy

valence band

7_(Atom

dimension: 4 4L

_ oL (%)
H = ®i=1HAtom

single band - local interaction H

Hubbard model

17
8

/-/—

l@/

H = Ho + Hi

|4t
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Hubbard model |

U
H = th‘jCl-LJCja + By Zniani—a
10

1j0

1, 7. lattice sites, i =1, ..., L

spin projection o =T, |

hopping ¢;; [ tight-binding band

Hubbard-U [0 (screened) local Coulomb interaction

occupation number operator n;, = c,:.racw

O O OO o o O

Cio s el annihilator, creator

10
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Hubbard model |

U
H = th‘jCl-LJCja + 2 Zniani—a

1j0 10

“kinetic” energy vs. Coulomb inteaction
Fermi statistics
Hilbert-space dimension: 4%

standard model of electronic structure in a nutshell

O O 0O O o

collective magnetism, superconductivity, Mott transitions, Kondo effect, ...
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language of second quantization H

one-particle orbitals:

@) = [i,0)
orthonormal basis on one-particle Hilbert space H;:
<O‘|B> — 5ozﬁ
electron vacuum: one electron
0)
using creator:
o) = ¢l 10)

two-electron basis state:
const. (]a(1)>\5(2)> _ |a(2)>‘5(1)>)

occupation-number respresentation:

Iny =0,n2 =0,...,nq = 1, ong =1, o)

using creators:

c&cg|0> = —c};c&|0> two electrons

if = (-

(03)2 0) =0




XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

language of second quantization H

anti-commutation relation:

[C(];u C%]—f— =0

annihilator: anticommutator relations

.i.
co = (ch)

anti-commutation relations:

[carcals =0 [car ]t = dap

N -electron basis state:

const. > _(=1)Pa7 ) a3 ™) - [T
P

occupation-number representation:

In1,n2,Mn3, ...y Ny --.) N electrons

orthornormal basis of N-electron Hilbert space H :

(oo My eyl ) = - O, !

(0%
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language of second quantization H

creator, annihilator:

a—1
oo s o) = (= 1)2B=1 | o+ 1,...)

a—1

Colors ey o) = (—1)28=1 ..., ng — 1, ...)

note:

neg = 0,1
second-quantized form of N-electron states:

nq no N
n1,n2, ooy Nayy oon) = (CD (cg) (CL) .-+ 0)

one-particle operator:

N
A = Z AW)
j=1
one-particle operator on H;:
A=) "Ja)(alAM|B) (8| one-particle operators
af

one-particle operator on H

A=Y (oAW|B)clies
B
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occupation-number operator and total particle number operator:
Ng = c&ca N = Z Moy

language of second quantization H

non-interacting Hamiltonian:

Hy = Z taBCLCﬁ
e%¢;

examples

two-parti

two-parti

cle operator:

Z#J

ZA(W)

cle operator on Hy:

A= (aplA2y8)c],

afBvé

cl 3CvCs

two-particle operators

double occupancy (a = (i, 0)):

Hubbard

di = NiocNi—g

interaction:

Zd

10

.I_

zacz o Ci—oCio

examples
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language of second quantization H

anticommutation relations: SUMMARY
[cascaly = [el, chly =0 o, ]t = dap

basis states:
n1i no (%6
N1, M2, ey Nayy oen) = (CJ{) (CE) (cg) .-+ 10)

general Hamiltonian:

1
H = Hog+ H = ZtagcléCB + 2 Z Uag(;fycgc};cvc(g
al afBvyo

tag, Uapgs~: hopping and Coulomb matrix elements

Hubbard model

U
H = E tq;jC;-rJng—F 5 E NicNi—0o
10

1jo




Exact Diagonalization
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exact diagonalization H

. U
simply solve the Hubbard model? H=> "t ¢l cio + o > nigni—o

1j0

[J set up Hamilton matrix:

\m> = |n1,n2,...,n21)
=1,....M M = dimH

Hmm’ — <m|H‘m/>

[1 diagonalize Hamilton matrix numerically:
H = UDU'

[1 get eigenvector of lowest energy and ground state:

wm ] O [1Bo) = 3 tmlm)

[J compute expectation value of observable A:

(Eo|A|Eg) = Zu Wy (M| Al
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exact diagonalization H

problem :
M x M Hamilton matrix with

M = 22L — 4L — dimH

L =6sites O M = 4096

use symmetries
e.g. conservation of total number of o electrons:

L
[No, H]— =0 | with No = > " n4o

i=1
dimension of invariant subspace:
L L
My, Ny =
Ny N,

L = 6 sites, Ny = N, = 3 electrons (“half-filling”) [ Mn,, N, =400
L = 10 sites, Ny = N| = 5 electrons (“half-filling”) [ My, N, = 63504

63504 x 63504 x 4Bytes ~ 16GBytes but N = 10 <& 1023 |
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Lanczos method H

) . . . T U
don't store full Hamilton-matrix! H=> tycl cjo+ 3 ;nwni_a

1j0

[1 consider (arbitrary) start vector ug
n-th Krylov space of ug (with dimension n):

KCrn, = Span {LI(), Hu, ..., Hn_lLIQ}

[J construct orthogonal (not normalized) basis of /C,, :

{uo, ur, ooy U1}
Start:

interative construction for: = 0, ...,n — 1: needs MVM's only!
u;.rHui
ul-L u;
.l_

117; u;

a; =

2
b; = :
25 Bg=1l

u;+1 = Hu; —a;u; — b?ui_l store 3 vectors at the same time only!

we have u; € K, and ul u; o d;;
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Lanczos method H

[1 normalization:
u;

.l.
i Wi

orthonormal basis of n-th Krylov space of ug:

V; =
u

[V0, Vis oy Vi1 )

define
Tij:V;rHVj
then
(w0 b \
b1 a1 b
T = bo  aso - n X nm matrix only
e e b1
\ bn—1 an-1 )

V = (Vo,Vl, S Vn—l)
T=VIHV
T is the Hamilton matrix in the subspace K,,!
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Lanczos method H

0 solve small n x n eigenvalue problem T = QDQT

since T is the Hamilton matrix in the subspace /C,, this would be exact if:
HIC, C Kn (I, Is an invariant subspace)

excellent approximation for n = O(100):

let uo) = cm|Em)
m
then H" Mug) = emER Em) € Kn
™m
but H"|ug) — |Ep) forn — oo

Lanczos method limited by need to store u;
N = L = 10 sites easily accessible

N = L = 20 using symmetries and supercomputers

0 O 0O 0O

... but not much more!
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Lanczos for the L = 10 Hubbard chain, pbc,

Lanczos method H
N =8, U =4t

e e 11
+T||||||||||_ 1 H
20+ ++ _|_+++++++|-H'=‘Z:------::: = .
_|_ ++ +_|_+ —1 —=1" _F____--i: . ___;_:-- Emmme =
+++ ++++++H+i¢+H-tt45|3 T S Eenamm==sacccc=scocc
R e e T =S m N AR NN SN R S A= s
+ +—I— +_|_+ +-|-+ FH +++ _; i '£‘ S N N A A A S
e . e e e e
N H 4+ °+ —|—+ ++ -|-++ ++++++++++i+++i+-|—¢+:||:ﬁ: ERFEES = ;Ei;: EESeEs ;;%
g 15+ + 4 ++ i +++—|— e _|_+—|—+_|_++_|_-|—+-|-++ - --4$ - RESgREsAESRAC SHESuA AN
s b A e e e DR e e T
= A A e e ==
L T +-|- + +++ ++ ++—|-++++ ++-|-++++++++++_|_ + g _|_$ -|-$ ::: =5
3 Lot o+ T +++++ ++++++++++++I++i+i i+++iii+ﬂﬂ$it2: =
5 10F + Ty T e e BECeSm===s =
o + +—|— ++ ++—|— ++-|— ++_|_+ T e I e ] ] o e
o + +—|—_|_ ++_|_ ++—|—_|_ A ++_|_+++—F:::::___“--—— =l SESEESED
c ++ o B NN aEmESEENEcSENSNSESSSSECeSEESEEES
+ L B ST s e i e M A S5 S5
o L e S R s e am g S L eN mumam A RER RS
IR P s SRR e SR
T | bbb R
5H +t -|-++++ _|_—|—++++ ++_|_+++—|—+-EE: -
+ T L A S
+ 4t T ++++++++_|_+-|— RERaREEEEGS
T S T S R i RERERGS
Sl N S S e o e GEazEgE
+  + Tt _|_+_|__|_+_|__|_++ RECRRCE
+ ot R T T
+ + T+ e e e Reigs
oL T+ + +++++++++++++++++++ HE
R i nta =l =l = +
4+ + Tt ++ iy e =
N
R +++ ++++++++++i+
+ T ++++++++++
-5 _|_+ =+ -|:|_++ ++++ +-|-_|__‘= j—-
y +++++ii++++i+++;.}:i:::_ T
e T

10 20 30 40

60 70 80 90 100
Krylov—space dimension n
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Lanczos method

Lanczos can easily keep any supercomputer busy

16.447 TFlops and 159-Billion-dimensional
Exact-diagonalization for Trapped Fermion-Hubbard Model
on the Earth Simulator

*
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imamura @ im.uec.ac.jp

ABSTRACT

In order to study a possibility of superfluidity in trapped
atomic Fermi gases loaded on optical lattices, we imple-
ment an exact diagonalization code for the trapped Hubbard
model on the Earth Simulator. Comparing two diagonaliza-
tion algorithms, we find that the performance of the pre-
conditioned conjuzate zgradient (PCG) method is 1.5 times
superior to the conventional Lanczos one since the PCG
method can conceal the communication overhead much more
efficiently. Consequently, the PCG method shows 16.447
TFlops (50.2% of the peak) on 512 nodes. On the other
hand. we succeed in solving a 159-billion-dimensional matrix
by using the conventional Lanczos method. To our knowl-
edge, this dimension is a world-record. Numerical results
reveal that an unconventional type of superfluidity specific
to the confined system develops under repulsive interaction.

wave created due to two laser interference [8] in the atomic
Fermi zas

The Hubbard model is one of the most intensively-studied
models by computers because it owns very rich physics al-
though the model expression is quite simple [7]. The Hamil-
tonian of the Hubbard model with a trap potential [6, 9] is
ziven as

H=—t) (a},a:;,+HC)

.0

y 2 s |\1J

31 . !
+[Zn,]m|+ T IZ?amlr—Tl . (1)

4

where ¢, U, and V are the hopping parameter from i-th
to j-th sites (normally 7 is the nearest neighbor site of ),
the repulsive energy for on-site double occupation of two



Salerno, October 2010

Lanczos method H
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... Invented in 1950

Journal of Research of the National Burecu of Standards Vol, 45, No. 4, Octeber 1950 Regearch Paper 2133

An Tteration Method for the Solution of the Eigenvalue
Problem of Linear Differential and Integral Operators'

By Cornelius Lanczos

The present investigation designs a systematic method for finding the latent roots and
the principal axes of a matrix, without reducing the order of the matrix. I is characterized
by & wide field of applicahilifty and great accuracy, since the accumulation of rounding errors
is avoided, through the pracess of “minimized iteratiens”. Moreover, the method leads to
a well convergent successive approximation precedure by which the solution of integral
equations of the Fredholm type and the solution of the eigenvalue problem of linear differ-

ential and integral operators may be accomplished.

I. Introduction

The eigenvalue problem of linear operators is of
central importance for all vibration preblems of
physics and engineering. The vibrations of elastic
structures, the Autter problems of aerodynamics,
the stability problem of electric networks, the
atomic and molecular vibrations of particle phys-
iecs, are all diverse aspects of the same fundamental
problem, viz., the principal axis problem of quad-
ratie forms.

In view of the central importance of the ecigen-

The present investigation, although starting
out along classical lines, proceeds nevertheless in
a different direction. The advantages of the
method here developed * can be summarized as
follows: .

1. The iterations are used in the most economi-
cal fashion, obtaining an arbitrary number of
eigenvalues and eigensolutions by one single set
of iterations, without reducing the order of the
matrix.

2. The rapid accumulation of fatal rounding
errors. common to all iteration nrocesses if apolied
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Lanczos method H

... by Cornelius Lanczos




Il Vanational Wave Functions



Variational Principle
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minimal energy H

“Any system always tries to minimize its total energy”- why?
1) thermodynamics: total (internal) energy is a thermodynamical potential
E = E(S,V,N) =min. for fixed S, V, N (gas)
2) quantum mechanics: Ritz principle

E = E[|V)] =min.

The energy functional must be specified!
(trivial) example:

1
E=E(x) = §ax2+bx (@ > 0)
E(x) is at a minimum for
dE
0= (o) —axg+0b
. dx
the “physical” x is:
b
ro = ——
- a .
the physical energy is:
Eo = E(z0) S a2 4+ b Ly _ 1,
= ro) = —ax rog=——— = —0x
0 V)T 0TI T Ty T

consider now: .
E = E(z) = 51):13

~

we have Eg = E(zo) but E(z) is not a minimum at
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Ritz functional H

(Y| H|P)

B = B0)] = S

E[|W)] is minimal at the ground state |Wg):

(U|H|W) = > (U|H|m)(m|¥) = ZEm\ (m|W)|? > EOZ\ (m|U)|? = Eo(U|¥)

m

domain of the functional:  entire Hilbert space
D ={lV)||¥) € H}

choose ONB {|m)}, we have [¥) =) " cm|m)
(VIH|Y) > m! CmCm {m[H|m')
(v|w) 2_m CimCm

[J find minimum of a function of a function with M = dim H variables!
[J minimization of quadratic form < Hc = Eyc (full eigenvalue problem)




XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

variational approximations H

construct approximations by restricting the domain
E[|¥)] = min. on subspace D' C D =H

a domain can be specified by variational parameters
D' = {[¥(A1, . An)) | As €R} C D

the Ritz functional becomes a function: A= (A1, .0y An)
EA) = E[[¥(N))]

find minimum:
OE (M)
O\;

= 0 for A = Ao | n (non-linear) equations for n unknowns \g

get approximate ground state and ground-state energy:
[Wo) = [¥(Xo))  Eo= E(Xo)

upper bound property
EO Z EO,exact




Hartree-Fock Approximation
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Hartree-Fock: main idea H

Hubbard model:

U
H = Ztijcjacja + 5 anm—a
10

1)0

restricted domain:
D’ = { independent-electron wave functions }

maybe justfified for weakly interacting systems, i.e. U — 0

independent electrons: Slater determinants
Jr 7nq T no T N
0) = 1,2, ma, ) = (el) T (ef)™ - (eh)"™ o)

no = 0,1 electrons in (one-particle) state |«)

variational freedom: one-particle states
o) = |o') =224 Unar o)

variational parameters:
Uy

elegant evaluation:
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Hartree-Fock: main idea H

Hubbard model:

U
H = Ztijcjacja + 5 Zniani—a
10

1)0

restricted domain:
D’ = { independent-electron wave functions }

maybe justfified for weakly interacting systems, i.e. U — 0

independent electrons: Slater determinants
Jr 7nq T no T N
0) = 1,2, ma, ) = (el) T (ef)™ - (eh)"™ o)

no = 0,1 electrons in (one-particle) state |«)

variational freedom: one-particle states
o) = |o') =224 Unar o)

variational parameters:
Uy

elegant evaluation: below



Gutzwiller Wave Function
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suppressing double occupancies H

Hubbard model:

U
H = Ztijcjacja + 5 Zniani—a
10

1)0

non-interacting case:
Ho=> el @

1)0

diagonalization:
Ho = e(k)el, cko (t = UeUT)

ko

ground state:
e(k)<ep
Fs)= T <o)
k
U
t }7 t
1% 1919 | 7|9

what happens for large U ? sites

[1 suppression of double occupancies
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variational wave function H

Gutzwiller wave function:

W) =[]t = (@ — g)niyng ] |[FS) = g>i "1™l |FS)

7

variational parameter: g
g=1: |¥) =|FS) OU=0
g = 0: |¥) = |doubly occupied sites projected out) 0 U =0

note: [1 — (1 — g)njin 1> =1 — (1 — g)nirnyy

todo:
calculate (¥ |W)
calculate (V|H|W)
minimize E[|V(g))] w.r.t. g
e(k)<ep e(p)<er
(o) = ] Ol ][It =@ =gnipns] [[1 - A —g)njrn;] ]  <bl0)
Kk i j P

cannot be done analytically
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variational Monte Carlo H

way out: do the high-dimensional sums using Monte-Carlo summation:
V(g)|H|¥Y(g
E(g):< (9)| H|¥(g))
(¥(9)|¥(9))
using the occupation-number basis |n) = |n1,n2,...), we can write:

_ (YHY) o ) HY) o (Yn)(n|P) (n|H|T)
(¥]@) 2 (¥]@) 2 (@) (n|¥)

E:Zp(n)w

- (n|¥)
with probability:
(¥]n) (n|¥)
P(n) = P(n)=1
(¥[®) ;
Monte-Carlo walk in the configurations space: ny [ no O --- (e.g. Metropolis)
M
1 | H W)
= il 1Y) e
221 (n;|w)
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E(g)

variational Monte Carlo H

Eopt.(U)

E/t
-0.5 -
— VMC ( Ng=30)

~—HF
~~GA
—- Exact

-1.0 4

u=0 1D
iR - 4 lar
WVMC (Ne=30)

Yokoyama, Shiba (1986)

approximate evaluation of the Ritz principle (Gutzwiller approximation)

numerically exact evaluation of the Ritz principle (VMC)
with high computational effort

approximate test wave function !



VMPS
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matrix-product states “

one-dimensional Hubbard model:
L—1 U

H=—t Z Z C;'raci—Fla + H.c. + 5 anm—a
i=1 o io

Hilbert space:
H=H1®...Q Hr,

local Hilbert space at site gq:
Hy, = span{|ng)} ng=1,...dq dg = dim H,

local basis for Hubbard model: [0),| T),| 1),| T1) (dg = 4)

representation of general state:
Uy =) a™"L|ng)...|ng) (high dimensional: d& terms for d, = d)

mny,...,my,

product ansatz:

T)= Y a™...a"|ni)...|nL)

mny,...,my,
matrix-product state:
W) = Z tr (A" ... A"L)|ny)...|np)

niy,...,ny,
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graphical representation H

MPS:

W)= > tr (A" .. A"L)|ny)...|ng)

mny,...,my,

an A matrix:

&

Amq
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MPS:

graphical representation H

7) =

2

ni,..

SNy,

tr (A™ ... A"L) |ng)...|ng)

an A matrix:
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graphical representation H

MPS:
|T) = Z tr (A" ... A"L)|ny)...|np)
mny,...,my,
an A matrix:
g local basis states
lg—1 ¥ iq
A
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MPS:

graphical representation H

W)= > tr (A" .. A"L)|ng)

mny,...,my,

an A matrix:

Mg local basis states

tg—1 ¥ iq

g

iq—1tq — Matrix indices
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graphical representation H

MPS:

W)= > tr (A" .. A"L)|ny)...|ng)

mny,...,my,

an A matrix:

Mg local basis states

tq—1 ¥ iq

g

iq—1tq — Matrix indices

an MPS for six sites:

ofefolofoen

A"t A2 A" A4 A5 A"6

open boundary conditions
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local orthogonalization “

Uig local basis states

iq—l L iq |\If> = Z A™ AnL|n1>|nL>
ny,...,ny,

Ry

ig—17q4 — Matrix indices

useful:

locally orthogonal MPS ~ (A™¢ = L™s or A" = R"9)
> LmefL™ =1, > R™RM™T =1
Ng Ng

graphical:




XIV Training Course in the Physics of Strongly Correlated Systems

Salerno, October 2010

g-th step of left orthogonalization:

ST LML LM AT A ) )

W) =

ni,...

VL,

block up matrix A™a:

SVD:

g

A =UDV'

~

block down matrix U:

L

tq—1,tq

lg—1,%q — A(iq—lnq)’iq

SVD |

with D diagonal, UUT = UTU =1, VVIi =ViVv =1

— U(iq—lnq)viq

At = pDVT A+t

new representation of the MPS (ready for ¢ + 1-st step):

W) =

S L L AT A

ny,...

VL,

InL)

right orthogonalization

. analogous

standard representation of an MPS:

¥)

> L™ .. L"-1C™R™+ .. R"|n1)...|nLy)

mnq,...,MJ,
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

‘i

calculate norm:
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:

(W] 0) =
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:

(W] 0) =
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:

(] 9) =
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:

(] 9) =



XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:

(] 9) =
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:
(U|w) =) "Tr(CmfCns)

nq
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normalization H

(Y| H|P)

reminder: | £ = E[|V)] = U0

MPS with 6 sites:
)= > LML"™L"C™R™R"|n;)...|ne)

ni,...,Ng

calculate norm:
(U|w) =) "Tr(CmfCns)

nq

compare with:

|\If> — Z anl"“’nL|n1>...|nL>

ny,...,nyg,

norm.

(OO = > a™eting|o(ng] Y a™tLing). . nk)

ni,...,ML, n’l,...,nlL

(U|T) = > [a™~"L|? (cannot be computed!)

mny,...,p,
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matrix-product operators “

operator X: X|W)? (V| X|W)? e.g.: (V|H|V)

MPO X= Y 3 xmm. X |f) .. 0] ) (ng
N1, L nf,..nl
example: Ising model H = —J ", S7S7 (local basis: m € {1,1})
1 0 0
XMymg _ St mg | Mg 0 0 exact representation!

0 —Jmg 1

graphical:
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expectation values H

(U|X|W) O recursion formula

-/
Jg—1
Z/ q .
q
O
Qg — 1 Fat = N i
E9[—— = Ee—1[] [
. jq—l
% O

1 Fat1t

expectation value (V| X |¥) =
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expectation values H

(U|X|W) O recursion formula

./
Jg—1
Z/ q .
q
O
%a —{1Fat = [ [] pat1t
Ed[F—— = Ea—1[] B
. jq—l
lq O
O

expectation value (V| X |¥) =
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(U|X|W) O recursion formula

expectation values H

1 Fat1t

-/
Jg—1
il 9 PS
q
®
Qg—1
q —{ ] paft | [
Ei¢lH—— 7= E?![] O
. jq—l
®
expectation value (V| X |¥) =
o o o o o o
L] O O O O O O L
o O o o o ¢
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expectation values H

(U|X|W) O recursion formula

./
Jg—1
Z/ q .
q
O
%a —{1Fat = [ [] pat1t
Ed[F—— = Ea—1[] B
. jq—l
lq O
O

expectation value (V| X |¥) =
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(U|X|W) O recursion formula

q
O

Oq
E4[F—— = Ee—1[] ki

lq

expectation value (V| X |¥) =

[ ]
L

expectation values H

]
[ ]

1 Fat1t
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expectation values H

(U|X|W) O recursion formula

./
Jg—1
Z/ q .
q
O
%a —{1Fat = [ [] pat1t
Ed[F—— = Ea—1[] B
. jq—l
lq O

expectation value (V| X |¥) =
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expectation values “

need E and FT of two adjacent sites only for global expectation value
_ qg paqtl1t
(w|x|w) = > T (B FiF)

Qg
where
= 3 3 X, ATYIRE T AT
npn’ ap_—1
n/ 1
P = Y S AT AT
npn;j ap
or.

WX =t [ > M Xaq ", Al JES ! AnaFLH

nqnq &g,xg—1
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local optimization “

insert trial MPS

w)= > L™ .. . L"-1C"™R"+! . R"|n;)...|ng)

into Ritz energy functional:

_ (Y[H|T)
Bli¥] = =
we have:
(U|w) = > Tr(C"afCma)

and

n’ 1 n 1
(CHT) =t [ > > Haq 7, CMa «TEI-! CraFgH

/
Nngnyg Xg,Xg—1

minimization with respectto  C™«¢ only equivalent with:
KC = E SC | generalized eigenvalue problem [1 Lanczos

where

_ n qMa q-+1x% . . .
K,L/j/nq,mnq = g an it q—lO‘qFaq;j’j effective Hamiltonian
g,

_ Eq 15 FC]‘l‘l*

Sirror = .
173" ng,1ing 505 Y qMa’ j'j
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sweep algorithm H

P S -

local optimization




XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

sweep algorithm H

I -

local optimization
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sweep algorithm H

ISP W -

local optimization
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sweep algorithm H

L4l

4

local optimization
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sweep algorithm H

L4l

2

local optimization

AN
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sweep algorithm H

L4l

C one sweep ’ >

Vi
N

local optimization
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sweep algorithm H

iliill

C one sweep

local optimization

AN

0,exact

=
o
N

TT T T T
|

ground state energy -E /E
O
[N
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local optimization

¢ o o s

sweep algorithm H

C one sweep

g

-0.996

0,exact

-0.999

o
o
]
Y\‘\\\

ground state energy -E /E
O
|_\
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sweep algorithm H

Ceaan

local optimization

one sweep

AN

-0.996

0,exact

-0.999

=
o
N

" s 1

& I :
L] -1= | .-
- 1
g) . ‘
5 .01 099979 i
I -0.9998/ -
E | 1]
S i 2 3
O i
(@)] _1C | | |

5 1 2
step (sweeps)
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local optimization

sweep algorithm H

¢ o o s

g

2

C one sweep
7 08f ]
S
9-LO6T _
v
g 04 .
s |
S 02F .
01 > 3
Sweep |
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A matrix dimensions “

h
|
w
=
-
I
=
~
I
|
O
—_

exact

— dim=10 |

'-o.oz* — dim=1
— dim=100|

ground state energy -E/E,
O
|_\

S

step (sweeps)
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MPS:
Ngq
Mg
Aiq—liq

ng = 1,...,d, d:local Hilbert space dimension
iq = 1,...,m, m: A matrix dimension

largest array: MPS [

storage: L-d-m

most time-consuming: KC within Lanczos [
CPU time: L -dm? - dm?

KC: “sparse” (use K = EHFT) O
CPU time: L-d* -m?

performance “
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system size “

0.00 . . .

-0.02

-0.04

-0.06

-0.08

ground-state energy E /L

-0.10

-0.12

_014 1 | 1 | 1
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MPS:

VMPS and DMRG |

)= > L™ .. . L"-1CreR"at!
niy,...,ny,

.R"Lny)...|n)

define:
Jp—1) = D B;7_ . |np)lin) p>qnp=1,.,dp jp=1,.,my
Npip
ip) = L;” i lip—1)Inp) p<qnp=1,..,dpip=1,..,my
ip—1Mp
blocking ‘ add one site ‘ lip—1) O |ip—1)|np)

decimation ‘ reduce Hilbert space ‘ lip—1)|np) O |ip)
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variational wave functions “

conclusion:

[1 application of the Ritz principle for correlated trial wave functions:
can be as complicated as the full many-body problem

Is simple for simple (uncorrelated) trial wave functions only

can be done almost exactly in one dimension:
VMPS (DMRG), NRG



Grand Potential and Derivatives
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grandcanonical ensemble H

Hamiltonian:

1
H = Ztagc&% + 5 Z Uagfy(;c&c%ccgcfy
al afByé
grandcanonical partition function and grandcanonical potential:

Z = tre-PH-uN) (8 =1/T)
Q=-TInZ=QT,V,u{tas}, {Uassrs})

expectation value of observable A:

1
(A) = — tr Ae=P™
Z

can be obtained from grand potential:

consider partition: H = Hgp+ M\A physical H at A = 1
we have:

o)

A

o — A

motivation: thermodynamical consistency

derive all (approximate!) quantities from explicit (approximate) thermodynamical potential
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grandcanonical expectation value H

a0
i
25 (A)
proof:
982 — _Ti In7 — _Ti tr ie—ﬁ(HO‘l‘}\A_HN)
O B Z O\
and:
tr & o= BHo A A=) _ Z—( 5)k3(H0+/\A puN)*
3N
k=0
— 1 = T—
:trzg(—ﬁ)kgl?(’“ AR (H = Ho + XA — uN = H — uN)
ele) 1 B
= tr Z E(—ﬁ)kkH’“ LA
Z TR ~H(=B84)
— —mr Ae L
hence:: - .
o _ BH _
=T ( Btr Ae~ ) L it Ae- (A)
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second derivative H

92Q

— =7
ON2

problem:
cyclic invariace of the trace does not help in expressions like H--- HAH --- HAH ---H

we have:
2
o _ @ L (Ae—ﬁ(Ho+AA—uN>)
N2 OX\Z
— _%8_2 tr Ae—BH z trAie—ﬁ(Ho-H\A—MN)
Z= O\ Z oA

and with

i = 1 tr Ae= P

O\
we get

0%Q 1 o _ _

e = B(A)? + S TA-~e B(Ho+AA—uN)

use Trotter decomposition

o (L 2) =om (L4 o (15) 20 (1)
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second derivative H

it follows: ; ;
B B m
trA—e P — trA— lim (e_mAAe_W(HO_“N))
a)\ m— o0
carry out partial derivative:
o) e 0X
tr A—e PH" = lim trAZXm_T—XT_l
oA mM— 00 — oA

consider:

X 8 (6_%AA€_%(HO_MN>> :a%(e_%m) 6—%<HO—HN>:_%AX

O O\
therewith:

trAie_ﬁH — lim trAZXm—T (—EA> xxr—1
O\ m— o0 —~ m

— 0
= —1tr lim E —AX™MTTAXT
MRS~ D

continuum limit m — oo

T:TEE[O,ﬁ] dT:ﬁ
m m

XT e TEH _ —HT XM — o—BH XM= — o—BH HT
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In the limit: 5
5]
trA—e PH = _yr / drAe PHHT pe—HT
O 0

B
— —/ drire PHHT pAe=HT 4
0

B
_ 7 /O dr(A(r)A(0))

here we have defined
modified Heisenberg representation

A(T) = e Ae™ T (H=H — uN)

[1 note the missing ¢

[1 imaginary time T

collecting the results:

0%Q p
5 =W = [Caramao) = S5

second derivative H
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second derivative H

more general:

let H=Ho+XpaA+ B | 0 Q=Q(\a,AB)
then: - -
—— =) —— =(B)
O A OB
and:
92 0(A) 0(B) 92

B
AN _ aiByay - /0 dr(B(r)A(0)) =

ONEOAA  ONp ONA  OAaON

(0(A)/O0Ap)dAp: change of expectation value of A due to small perturbation
A — Ap +d)\p

[J classical mechanics: response quantities are correlation functions
[1 quantum mechanics: time-depdendent correlation functions



Generalized Ritz Prinziple
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grand potential is concave H

if [A, H]— = 0then A(7) = A(0) = A and

02

—5 = B(A)? — B(A%) = —B((A—(4))*) <0

ON2

this is also true in general (if [A, H]— # 0):

920
ON2 —

< 0| O Qis aconcave function \!

proof: write AA = A — (A), then (with A = AT):

0%

B
o _ /O dr((A — (A))(T)(A — (4))(0))

1
dr 1 (e—ﬂHAA(T)AA(O))
1
dTE tr (e_ﬁHeHTAAe_HTAA)
1
dTE tr (e_ﬂHeHTmAAe HT/26_HT/2AA6HT/2)
L (o—BH i
dr 1 (e AA(T/2)AA(T/2) )
L S~ 68 i
dTE e (m|AA(T/2)|n)(n|AA(T/2)"|m)
1 _B€ 2
dTZ e Pem(m|AA(T/2)In)]* <0 where H|m) = Em|m)
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formulation of the generalized Ritz principle H

Hamiltonian: t and U dependencies are made explicit
1
Hyu = Ztoﬁcgcﬁ + 5 Z Uaﬁ5702620705
al afBvo
grandcanonical density matrix:
exp(—B(Hg,u — uNN))
tr exp(—B(He,u — pN))
grandcanonical potential:
Qvu=-TInZiuy=—-TIntr exp(—B(H¢,u — uN))

Pt, U —

define density-matrix functional:

Quuls] = tr (p(Hiw — uN + Tlnp) )

0 T, ufixed
0 Q¢ ulp] real-valued functional of the operator variable p

[1 parametric dependence on t and U

extremal principle:

Q¢ ulp] = min. for p = py v and Q¢ ulpt,ul = U
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we have:
Qe ulpe,ul = tr (pt,U(Ht,U — uN +T1In pt,U))

= tr (Pt,U[Ht,U —uN +T(=B)(Hy,u — puN) —TIn Zt,U])
= {r Pt,U<—T) In Zt,U

=y U
still to be shown: Q¢ [p] > Q¢ v for arbitrary p

domain of the density-matrix functional:
{pltrp=1, p>0, p=p'}

general (!) ansatz:
exp(—B(Hy w — uN))  exp(—B(Hy 1w/ — uN))

P = Pt U’ = =
tr eXp(—/B(Ht/7ul — /JN)) Zt/,U/

therewith:
Q¢ ulpy,ur] = tr (pt’,U’(Ht,U —pN +TIn Pt’,U’))

= tr (pt’,U’ (Ht,U — IU,N + T(_ﬁ)(Ht’,U’ — ,uN) —Tln Zt’,U’))

=1 (Pt/,U/(Ht,U - Ht’,U’)) + Q¢ ur

proof H
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proof, continued H

consider the following partiation:
H()\) = Ht’,U’ = )\(Ht,U — Ht’,U’)

obviously, H(0) = Hy/ vy and H(1) = Hy u
for

QAN) = —T1In tr exp(—B(H(A) — uN))
we have:

Q(O) = Qt’,U’ and Q(l) = Qt,U
hence:
00(A)

O

on the other hand: €2()\) is concave [

AN
X

Q¢ ulpe,ur] = 2(0) +
A=0

2(0) +

‘A > Q(N)

A=0
A concave function of A is smaller (for any A, e.g.
A = 1) than its linear approximation in a fixed
point (e.g. A =0).

for A = 1 it follows:

0N

O

> Q1) = QU g.e.d

A=0

Qe ulpy,ur] = Q(0) +



Wick’s Theorem
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free one-particle correlation functions H

[1 important for static mean-field theory

[1 essential for diagrammatic perturbation theory

one-particle (“free”) Hamiltonian:

Hy = Z taBCLCB
e%¢;

diagonalize hopping matrix:
t = UeUT

yields:
Hp = Ze(k)c;;ck
k

diagonal correlation function:

0) _ 1
BEF—1) 1 1

(czck>

back-transformation:

1
T (0) — E o

1
<CBCOL> Ek:UB’kl—l—e_B(s(k)_“) Uk,a

free Fermi gas

Fermi function

(using [ca, e+

:505)
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free time dependence H

(modified) Heisenberg free (imaginary) time dependence:
o7 cq e o7 Ho = Ho — plN = Zaﬁ(tozﬁ — ,LL5a5)CLCﬁ

ca(T) =€

using Baker-Campbell-Hausdorff formula / Hadamard-Lemma:

Ca (T) — G_TEHO Ca

with
Lryca = [ca,Hol- = Z<t@5 — puéag)Cs
B
hence: . .
ca(T) = Z E(—T)kdfioca = Z E(—T)I\€ Z(t — Ml)fiﬁcﬁ
k k B
and:

B

simple, exponential time dependence
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free time-dependent one-particle correlation function H

collecting:

T\(0) _ 1 *
(eveg) = %: Uk g + e—B(e(k)—p) Uk,

Ca(T) — eHOTcae_HOT _ Z (e—(t—,ul)T) cy

o
’y Y

free time-dependent one-particle correlation function:

(ca(T)eh(0)@ =" (63—(t—u1)7)wy (eyech)©
g
thus: 1
T (0) — —(t—pl)T «
el = Zk (e )m Urk + e—B(e(k)—p) Uk,
s
and:
—(t—pl)T
T (0) — €
\ca (T)CB (0)) N (1 + e~ B(t—ul) > 5

(and analogous expressions for (ca(O)cE (1)) O, (ch()es(0))(@, )

more”?
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free time-dependent NN-particle correlation functions H

definie time ordering for creators/annihilators d = c' /c:
T(di(11)d2(m2)) = O(11 — 12)d1(71)d2(T2) — O(12 — T1)d2(72)d1(T1)

remember:
earlier operators operate earlier

equal times: creator is “later”, i.e.

Tcreator — Tannihilator + O+

define contraction

da(1a)dg(t5) = (T (da(Ta)ds(73)))"
= O(7a — 78){da(1a)ds(75)) Y — (75 — 7a)(dp(75)da (1a))

free one-particle Green function

—ca(7)eh(7') = ~(T(ca(r)ch (1) © = Gag(r,7') = Gap(r — )

note: free expectation value and free time dependence
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free time-dependent NN-particle correlation functions H

Wick’s theorem:

(T (devy (11) - - - dar, (7)) (®) = {sum over all fully contracted terms}

note: free expectation value and free time dependence

[J reduces free N-particle correlation functions to free one-particle correlation functions
[J essential for diagrammatic perturbations theory
[1 apply to construct static mean-field theory

example:

(nang>(0) = (clc c;cm(m = (63(5045 —c%c )05>(0) =9 5<c£cﬁ>(0) — <CLCT cacm(o)
= Japlches) ¥ — (T (chcheacs))®
= 5a5<c&cm(0) — (—cl cq CECB + CLCB cgca)
= Saplchea)© + (T(chea)) (T (chep))© — (T(chea)) T (chea))©
= Sag(ches)® + (chea) @ (ches) @ — (cles) O (chca)®

proof of Wick’s theorem
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free time-dependent NN-particle correlation functions H

Wick’s theorem:

(T (devy (11) - - - dar, (7)) (®) = {sum over all fully contracted terms}

note: free expectation value and free time dependence

[J reduces free N-particle correlation functions to free one-particle correlation functions
[J essential for diagrammatic perturbations theory
[1 apply to construct static mean-field theory

example:

(nang>(0) = (clc c;cm(m = (63(5045 —c%c )05>(0) =9 5<c£cﬁ>(0) — <CLCT cacm(o)
= Japlches) ¥ — (T (chcheacs))®
= 5a5<c&cm(0) — (—cl cq CECB + CLCB cgca)
= Saplchea)© + (T(chea)) (T (chep))© — (T(chea)) T (chea))©
= Sag(ches)® + (chea) @ (ches) @ — (cles) O (chca)®

proof of Wick’s theorem ... see problems!



11 Variational Principles and
Approximation Strategies



Static Mean-Field Theory
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variational construction of mean-field theory H

general scheme to contruct variational approximations:
0 variational principle 62 vy [p] =0

0 most general ansatz: p = py/ v With t’ and U’ arbitrary
[1 exact solution p = p¢ U

[1 (restricted) ansatz p = p, with parameters \:
0

anU[pA] =0fur A = Ao
yields optimal p,, with
Qs ulerg] 2 QU
[1 in practice:
choose a reference system H' = H ’A

px = exp(—=B(H) — uN))/Z)

general Hamiltonian:
1
H = Ztozﬁcjxcﬁ + 5 Z Uaggycgcgcvc(g
af afBvyo
static mean-field theory (Hartree-Fock)

H'=Hy o= t,gchcg t' arbitrary
af
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variational determination of t’ H

: : : 1 /
trial density matrix: | o’ = — e S(H —#N) (Y =tr(p )

conditional equation for t’:

0
0= Qt,upe]
ot),.,
0
== tr | po/ (Heu — N +T'Inpyr)
é,l,l/
— oo ({0 — Y + o TB)(E = u) ~ 10 27))
uv
a / / /
= 5 <<Ht,U — uN)" — (H" — uN) +Qt/,0>
[737%
0
— 5 <Ztaﬁc 05—|— Z Uagcgycacﬁcvc(; Ztaﬁc 05> <CLCV>/
re % ap aﬁM
since 92 o/0t),, = <chy>’
define: ,
I ches) 1 P
o = g2 = L(ches) (ehen)’ = [ dr(eh(Mea(richeny
uv
then:

%
0= Zt 3K s +5 3 Uapir e, (heoeres) = 2 tasKawup
2 apns af
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variational determination of t’ H

H' bilinear (“free”) O Wick’s theorem applies:

leheleyes) = {eles) (eher) — (ehey) eles)
hence:
) ‘o ,
BYY Z Ua657<cacgcvcd>
[l aﬁvé
= % BZ(S Uapsy ((ches)(chex) — (chiey) (ches))
124 a By
)
= — > (Uagsy — Uapys) {ches) (chey)
HY aByé
= > (Uapsy = Uagns) ((ches) Koy + Kiyusicher))
afvo
= Y (Uyasp — Uyaps) (hes) Kopus + D (Uarps — Uarsp) Ko usiches)
a6 B8

with (af8v) — (yapB) (1stterm) and (Bvd) — (vd5) (2nd term)

Z ((U’Ya55 + UOé’Yﬁ(S) - ((]’)’C)éﬁ(S + UO"Y5B)) < > Kau/,bﬂ
afBvyé

= 2 EE: ayﬁé 7@B5)<0265y &uuﬁ
afBvyé

with U, g5+ = Ugans
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variational determination of t’ H

altogether:
0= ZtaﬁKéxuuB Zta,BKéxVuB + Z 04755 'yozﬁcS) <CJLYC(S> KOCVMﬁ
al aBvyé
0= Z aﬁ + Z oryﬁé 7@55) <C:/C5>/ gw,uﬁ
af

assuming K as invertible:

tos = tas + Z Uarps — Uyaps) (cles)’

optimal one-particle mean-field Hamiltonian:

H =3 (tag + 3057 ches

af

with

E%F) = Z (Uangs — Uyagps) <cffyc(;>’ Hartree-Fock self-energy

vé

self-consistent scheme  required:
TP 0 H O (cheg) O =EF)




Approximation Strategies
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variational approach “

macroscopic state: T, V, u
Hamiltonian: Hy v = Hiree(t) + Hint(U)

thermodynamical potential: Q¢ v = —7'In tr exp(—(H¢,u — uN)/T)
physical quantity: At u

Qq u[A]

functional ¢ y[A]:

— 5Qt,U[A] =0 for A = At,U
- Qg ulAtul =2 U | .
— A € D = {A |conditions}, domain 5 > A

Euler equation: fiulAl

o) A s
fi U[A] =0 with fy y[A] = 08 u(A]

SA i
0 =
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Hamiltonian: Hi vy = Hfree(t) + Hint (U)
grand potential : Q¢ vy = =T Intrexp(—8(H¢,u — uN)
physical quantity : A u

functional: Q¢ y[A] on domain D

variational principle:

Euler equation: f; y[A] =

JA

5Qt,U[A] =0 firA = At,U
6Q¢ U[A]

!
=0

approximation strategies

simplify Euler equation
ft,U [A] — ft,U [A]

general

simplify functional
Qt,ulA] = Q¢,ulA]

thermodynamically consistent

restict domain
D — D

thermodynamically consistent,
systematic, clear concept

|
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example: Hartree-Fock theory H

Rayleigh-Ritz variational principle:
Q¢,ulp] = tr(p(He,u — uN + T'Inp))

domain: p € D = {p| Hermitian, positive definite, normalized}
type-lll: p € D = {p|Hermitian, positive definite, normalized, non-interacting } C D
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example: Hartree-Fock theory H

Rayleigh-Ritz variational principle:
Q¢,ulp] = tr(p(He,u — uN + T'Inp))

domain: p € D = {p| Hermitian, positive definite, normalized}
type-lll: p € D = {p|Hermitian, positive definite, normalized, non-interacting } C D

original system reference system
[ H t’U ] [ H t’,U’ ]
Hartree-Fock:
l D = {pe v | tarbitrary, U’ = 0}
E %] Yeu
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example: Hartree-Fock theory H

Rayleigh-Ritz variational principle:
Q¢,ulp] = tr(p(He,u — uN + T'Inp))

domain: p € D = {p| Hermitian, positive definite, normalized}
type-lll: p € D = {p|Hermitian, positive definite, normalized, non-interacting } C D

original system reference system
[ H t’U ] [ H t’,U’ ]
Hartree-Fock:
l D = {pe v | tarbitrary, U’ = 0}
E %y ] You
Q¢ ulper 0] = Qo0 + tr(pe o(Ho(t) + H1(U) — Ho(t")) (use Wick’s theorem)

3Qt,U[Pt’,0]
ot/

= 0 < HF equations !

[] concept of reference system helpful for type-Ill approximations



Density-Functional Theory
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example: density-functional theory H

electron density n(r) = tr (pn(r))
Q¢ uyn] =tr(tn) + Fy(n] Hohenberg, Kohn (1964), Kohn, Sham (1965)

t

potential energy ~ Fy[n] = F&0[n] + F Y ] + FC9m],  FS9m] =27
existence: HK theorem
universal (t independent)
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example: density-functional theory H

electron density n(r) = tr (pn(r))

t

Q¢ uyn] =tr(tn) + Fy(n] Hohenberg, Kohn (1964), Kohn, Sham (1965)

potential energy  Fy[n] = FKin)[n] + F[(JH)[n] 4 F[(ch) n], F[(JXC) n] =77

existence: HK theorem
universal (t independent)

type-lll approximation ?
H . inhomogeneous electron “gas” (original)
Hy. y: homogeneous electron “gas” (reference)
Q¢ uyn] =tr(tn) + Fyn]
Q¢ yn] =tr(t" n) + Fy(n]

Q¢ un] = Q¢ un] + tr((t — t*)n)

nice concept,
but poor results !
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example: density-functional theory H

electron density n(r) = tr (pn(r))

t

Q¢ uyn] =tr(tn) + Fy(n] Hohenberg, Kohn (1964), Kohn, Sham (1965)

potential energy  Fy[n] = FKin)[n] + F[(JH)[n] 4 F[(ch) n], F[(JXC) n] =77

existence: HK theorem
universal (t independent)

type-lll approximation ?
H . inhomogeneous electron “gas” (original)
Hy. y: homogeneous electron “gas” (reference)
Q¢ uyn] =tr(tn) + Fyn]
Q¢ yn] =tr(t" n) + Fy(n]

Q¢ un] = Q¢ un] + tr((t — t*)n)

local density approximation: FI(JXC) [n] — ﬁI(JXC) [n]

nice concept,
but poor results !

very successful, but type-II



IV Green’s Functions and
Perturbation Theory



Motivation: Spectroscopies
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Green’s function, spectral density and self-energy H
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Green’s function, spectral density and self-energy H

A perturb. [ * . < °|response
|t Ww>=2 ot
. * N~10% > \, . * N~10% /‘
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Green’s function, spectral density and self-energy H

. * N~10%

perturb. [ . v ] response

N

_/

energy E

valence band

|

+—— |(k,E)
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Green’s function, spectral density and self-energy H

S . e perturb. | * . ¢ °|response
[ ] ° LIJ :? [ ] °
. * N~10% > \, . * N~10% /‘
energy E

valence band +—— I(kE)

2
I(k,E) o<y )<N —1,m| e | N,o>} §5(E — (Em(N — 1) — Eo(N))) = A(k, E)

spectral density
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Green’s function, spectral density and self-energy H

S . e perturb. | * . ¢ °|response
[ ] ° LIJ :? [ ] °
. * N~10% > \, . * N~10% /‘
energy E

valence band +—— I(kE)

2
I(k,E) o<y )<N —1,m| e | N,o>} §5(E — (Em(N — 1) — Eo(N))) = A(k, E)

spectral density
Ak, E')
E — FE'
self-energy: G(k,E) = Go(k, F) + Go(k, E)X(k, E)G(k, E) (Dyson’s equation)

Green's function: G(k, FE) = /dE’ AKk,E)=—-ImG(k,E +i0")/n
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spectroscopies H

spectroscopies:
(weak) perturbation [l system’s response
excitation process R [] cross section, intensity

photoemission = removal of an electron
R = c,
angle- and spin-resolved: a = (k, o)
inverse photoemission:
R = c};
complementary spectroscopy
Auger process:

R = cqcp

appearance-potential spectroscopy:
R = CLC,E’

transport, Raman, neutron scattering, etc.:
R = CLC@

elementary excitation processes
one-electron excitations: ¢, cq
two-electron excitations: cqcg, cf,cl;, ¢l cs
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“detailled” theory |

(grandcanonical) Hamiltonian of the system:
H=H— uN =Ho+ H;
eigenenergies, eigenstates:
H|m) = Ep|m) ONB: {|m)}

example: photoemission
[1 electronic transition induced by coupling to radiation field:
P—PpP—qgA

0 neglect A2 term, choose Coulomb gauge, adopt dipole approximation:
H—H+V, V =Aop

[1 second quantization:

V=3 (BlAop|y)ale, +he. =D Mgyale, +he.
By B

where: a ~ high-energy scattering states, ¢ ~ valence states

[1 final state within the “sudden approximation”
(no interaction between photoelectron and rest of the system):

fy=allm)  Ef=Emn+ea
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“detailled” theory |

(1 initial state:

with

an|n) =~ 0

[1 hence:

(FIV]i) = (mlaa D _(Mgyakey +hc)n) = (m| > Ma~ycy|n)
By v

[1 disregard the matrix elements:
(fIVI]) = (mlcy|n)

R =cy
elementary transition operator for photoemission
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calculation of the intensity / cross section H

zero temperature, T = 0:
system is in its ground state |0)
probability for transition |0) — |m)

|(m|R|0)|? | (first-order perturbation theory in R)

excitation energy:
intensity ~ spectral density of transitions with excitation energies between w and w + dw:

Ir(w) = )  |(m|R|0)|*6(w — (Em — En))

(includingw =0, £y, = E,,/)

finite temperature, T > O:
with probability

1
—_— _BEn
Pn Ze
the system is in the state |n) initially O
1 _
[r(w) =~ > e B[ im|RIn)[*6(w — (Em — En))
mn

(w < 0 possible)
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analogously for R

1

complementary spectroscopy

Ipt (@) = — 3 e~ 5 (mI BT [n)|?8(w — (Bm — En))

mn

= 3 e En |l Rlm) 26(w — (B — En)

1

=~ e PEm |(m|RIn)|26(w — (En — Em)) (m < n)

mmn

1

= e~ 3" e PPr (m|RIn)|*8(~w — (Em — Bn)

mn

we have: | It (w) = e’ Ig(—w)

and:

IR(w) = €7 It (~w)

discussion for R = ¢, (photoemission), RT = cL (inverse PE)

[
[
[]

It (w) for w > 0: “normal” IPE spectrum

I i (—w) for w > 0 exponentially suppressed but can be measured

multiplication with exponential yields “normal” PE spectrum

IR(w) = P Int (~w)

but: error bars are also enhanced exponentially

|
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spectral density H

(Lehmann representation of the) spectral density:

e BEm _geBEn
S(w)=>_ - (m|R|n)(n|RIm)é(w — (En — Em))

€ = +1: commutator spectral density
€ = —1: anticommutator spectral density

choose (for fermions): | € = (—1)* | with k: number of creators/annihilators in R

we have:
S(w) = Int (W) —Ee P Ini (W) = (1 —Ee )5 (w)
and:
ePw
Ipt (@) = 5 ——S(w)
1
Ir(—w) = 5o —S(w)
e — &
and:
S(w) =Ipt(w) —€Ip(—w) comprises spectroscopy and its inverse
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one-particle spectral density H

(inverse) photoemission: R = cq

_ﬁEm _|_ _BEn
Aap(w) = Y- ——————(mlealn)(nlclm)3(w — (En — Em))
Spektraldichte
$ ETiR-w) @)
PE  \ IPE
: & ()
0

Fourier transformation:

X(w) = /exp(iwt)X(t)dt X(t) = % /exp(—iwt)X(w)dw

we have: 5B 5B
e m e n) 1 2 (w— —
Aap(@) = 3 25 mfcaln) (nlchlm) 5 [ et EnBnigy
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one-particle spectral density H

[ time-dependent correlation function
1 e_BEm + e_/BEn

Aas®)= 5. . (mlcaln) (nlch|m)e™ FntelEmt
1 ﬁEm 5 n . .
= 5p ol e m)nlch m)
= =3 (PP tmlea(Dln) (nlchlm) + e~ PP (mlca(t)ln) (nlchim)
21 4 . B . B
1
= — ((ca(®)eh(0) + (h(O)cal®))
Aap(®) = o (lea(t), 0]+ )
al o »“3
with: A(t) = exp(iHt) A exp(—iHt) (grandcanonical Heisenberg representation)
example: Fermi-Gas H = Z(sa — peleq
twt twt 1 —i(eq—p)t
Aag(w) :5a@ dt e Aag(t) :5046 dt e 2—6 o™ H :5a55(w—(8a — 1)
7T

interaction effects: damping, satellites, weight transfer, ...
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correlated band structure H

one-particle energies for a solid with lattice-periodic effective potential:

Ea — em(Kk) (Bloch'’s theorem)

wave vector k, band index m

single-band tight-binding model of independent electrons:
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correlated band structure

one-particle energies for a solid with lattice-periodic effective potential:

o — Em (k)

(Bloch’s theorem)

wave vector k, band index m

with interaction:

[1 correlation effects: there is no

Ve (r) producing this band structure!

|



Green’s Function
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spectral respresentation H

define:

Gaﬁ(w):/wdzAaﬁ(z) z€ER, wégR!

special cases:
retarded Green'’s function

GUE) (W) = Gaglw + i0T) (w real)

advanced Green'’s function
G (w) = Gaplw —i07) (w real)

thermal Green’s function, Matsubara function

G5 (wn) = Gagiwn)

with

wnp = 2n + 1)7T n ez (fermions)

(for bosons: wy, = 2n)7T n € 7)
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properties of the Green’s function H

inserting the Lehmann representation for the spectral density:
1 _ _
Aop(w) = — D (e PPm + e 0Fn) (mlca|n) (nlchm)6(w — (En — Em))
mn

we find:

1
— (Bn — Em)

1 _ _
Gap(w) = D (e7PFm 4 e PFn)(mlcaln) (n|cfm) —

Gap(w) is analytical in C \ R

G p(w) has first-order poles at the excitation energies w = E, — By, € R

[ residues (for a = (): é
1 _BE _BE 5 Im w
anm = — (777" +e 70 )|(mlea|n)[” 2 0

poles of G

yV

———————— 90000000000 — &
Re w

[1 complex analysis
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retarded Green’s function

with Dirac’s identity

1 1
=P— —aimd
x + 10t T imo(z)
we have: Ao s(2)
1 1 z
—ZImG, 0t :——Im/d of
T plw+i07) s Zw+i0+—z
hence:
1 -
—;h’ﬂGaB(w—l-ZO ) = Aap(w)
A $
Im w Im w

poles of G@)

yV

® © 00 60|00 oD O
. .

\;\ Re w Re w

poles of G (€Y

|
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Kramers-Kronig relations H

G(ret)( )
G(ret)(w) analytical for Imw >0 0 0 = 7{ dw —28

/
w’ real
C w—w—i0+( )

(poles of Gg;t) (w) below real axis, another pole at w = w’ — i0™)

© 1 !
with G’éﬁt)(w) — — for w — oo: Imoo
W
oW C
=a G(ret) (w) ’..‘
_ o k
O_/_oodww’—w—i0+ '
with Dirac identity: : ~ -
G(ret) o O 00 00 00 OB O Rew
. (ret) ,
O—P/dw L —|—Z7TGQB (w") \j\
hence: poles of G Y
: (ret)
G (w) =P / dw' —P " (w reell)
T w—w

and:

Im G(ret)( /) Re G(ret)( /)

re 1 re 1
Re Ggﬁt)(w) = ——73/ dw’ Im Géﬁt)(w) = —73/ dw’ -
T w—w' T W —w
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time-dependent retarded Green’s function H

Fourier transformation: .
G(w) = / dt "t G(t) G(t) = - / dw e "' G(w)
7T

wisreal! O Fourier transformation for G(ret/av)( ) only
using the identiy:

1 : 1
_ d —wwt — —1O(t —w't
om | W oo - ele
we find: .
G(ret)( ) T /dw e—’LthG(ret)( )

_ —wt / AC\!B( )

B _/dwe /d w + 0T — o

— / A (@) (—1)O(H)e= ™"t

= (—1)O(t)2m Aap(t) = —1O(t)([call), CE(O)]H

the time dependence is homogeneous:

Gt — ) = —iO(t — t'){[ea(t), ch(t)]4+)
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free Green'’s function H

example: non-interacting system

H = Z(sa — ,uJ)c:rxca

free spectral density: Affg (W) = 0080 (w — (Ea — 1)
using the definition of the Green’s function:
oo nors 1
G\ (w) = / dz aﬁ( ) = 008
ap oo w—z w— (Ea — W)

more general:
H= Z af — Moag)chcs

non-interactlng Green s function (matrix notation)
1 1
a(® ( ) GO0 (L) —
aﬁ( w) = (wH+p)l—t/ 3 () w+pu—t
remember:
0 wéR!

0 w=2z+1i0" O retarded Green'’s function (z real)
0 w=2z—1i0" O advanced Green'’s function
[]

=i(2n + 1)xT 0O Matsubara Green’s function (n integer)
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self-energy H

non-interacting Green’s function: G(©) (w)

interacting Green'’s function: G (w)

define self-energy: S(w) =GO W) - G (w)
again:
0 w¢R!

0 w=2z-4+10" 0O retarded self-energy (z real)

0 w=z—140" O advanced self-energy
0 w=1i(2n+ 1)xT O Matsubara self-energy (n integer)

we have:

G(w) = G9Ww) + GO(W)B(w)G(w) Dyson’s equation

and

Gw) = GOw) + GO (W)B(W)G? (W) + GO (W) B(W)GD (W) S(W) GO (W) + - --

1 1
GO - =) and Glw) =

G(w)




Matsubara Green’s function
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plan H

Green’s functions

1

Matsubara functions

1

perturbation theory

1

formal summation, functionals

l

dynamical variational principle
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homogeneity H

assume Hamiltonian to be time independent , H # H(t) (Schrddinger picture)

thermodynamical expectation value of an observable A:

(A) = %tr(e_BHA) (H = H — uN)

time evolution of A in (grandcanonical) Heisenberg picture:

A(t) _ ethAe—?lHt

time-dependent correlation function:

1 . . . / . /
<A(t)B(t/)> _ Etr(e—ﬁHethAe—z'Hte’LHt Be—’LHt )
_ itr(e—ﬁﬂem(t—t’)Ae—m(t—t’)B)
correlation functions are homogeneous in time:
(A@t)B(t)) = (A(t —t')B(0))
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Wick rotation H

consider imaginary time ¢t = —iT withT € R

unified description of time evolution and thermal averages

—1Ht

& — ¢ PH

for t =Tt and T=0

(time evolution operator = statistical operator)

imaginary time evolution: modified Heisenberg picture

A(t) = ettt Ae™ Mt — oHT ge= 7T define: | A(7) = et T Ae 7

$ Imt=-1

R»e t
. ‘/ Wick
t=—IT

rotation
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modified Heisenberg picture H

imaginary time evolution: A(7) = e”t™ Ae™ 7

annihilator: cq (7) = e’ cqe” 1T
creator: ¢l (1) = el e M7 note: e (1) # ()1
equation of motion?
d d
—A(T) = — (" Ae™TTT) = T (HA — AH)e™ T = HA(T) — A(T)H
dt dr
d :
[ —d—A(T) = [A(T), H] - Bloch equation
T

free system: Ho = Ho — puN = » (e(k) — p)cjcx:
k

we have: [ci, Ho]— = (e(k) — p)cg and [cx (7), Hol— = (e(k) — p)ck (1)

en(r) = e~ ER)=mT ¢l () = e =Tt

free imaginary time dependence
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Matsubara function — motivation H

motivation;

H=Hyg+XaA+ B [ QZQ()\A,)\B)

then 6 -
— =(4) — = (B)
O A O\p
and:
0%2Q O(A) p o(B) 0%2Q
- = 2V — 3(BY(A) — dr(B(1)A(0)) = —
ONpOAA  ONp B{BNHA) /0 T(B(r)A(0)) XA ONaONB
with

A(T) = eTtm Ae 17

linear response <« imaginary time-dependent correlation functions
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Matsubara function — definition H

define:

Gap(T) = —<Tca(7-)cg(0)> one-particle Matsubara function

homogeneous in time

[ T E [_67 ﬁ]
7. (imaginary) time-ordering operator
(prepare for application of Wick’s theorem)

[1 sign: convention

two-particle Matsubara function

Gapys(T) = (Tealta)ea(g)ch (t4)ch (15))

N-particle Matsubara function

analogous
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free Matsubara function H

non-interacting Hamiltonian: | Ho = Z(s(k) — u)c};ck
k

free one-particle Matsubara function:

G (7) = —(Tex(r)ef ()
= —O(7)(ck(7)e}, () + O(=7)(c].(0)ex (1))
— _@(T)e—(S(k)—u)T<Ckc;i>(0) + O(—1)e~ (e(k)— u)T<C ¢ ) (@
= —e=CW=07 (0(r)(1 - (efer)®) — O(~7)(cfer) )

and with

1
<Ckck

BE(R—p) 1 1

) (0) — (Fermi function)

(0)(y — _ —(=(k)—p)7 1 _o(— 1
Gy (r) = —e <@(T)1+e—@<s<k>—u>) o T)eme(k)—mH)
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Matsubara function — properties H

Matsubara function

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
tau
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Matsubara function — properties H

(), \ _ —(e(k)=p)r 1 _o(— !
G (1) = —e <@(T)1—|—e_5(€(k)—ﬂ)) O T)eﬁ<€<k>—ﬂ>+1>

jump of G\ () at7 =0 G{V0) = G2 (07) = —(crcl )@ — (clep)@ = —1

general:

Ga3(0+) — GQB(O_) = —0ap jumpat 7 =0

Matsubara function at = < O:

e~ (e(k)=p)T e—(e(k)—p)(7+0)

(0) _ _ _ _~(0)
G () = eBle(k)—p) £ 1 14 e Blek)—p) Gy (r+ )

general:

Gap(T) = —Gop(t+8) [forT <0 negative imaginary time

G](CO) (1) diverges for - — +oo if e(k) — u < 0 and diverges for 7 — —oco if e(k) — pu > 0!

T € [0, 0] (original) domain

Gap(T £28) = Gap(T) periodic continuationto 7 € R
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Matsubara function — periodicity H

1— . . . —
G(1) B=2
0.5+ e-p=l_
O_ —
-0.5- N

_1 I | I | I | I | I | I
-6 -4 -2 0 2 4 6

T
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Matsubara function — periodicity H

1— — 1 T T T '
G(T) i i B:Z |
0.5- ’ L -
O_ —
-0.5- N

_1 I | I | I | I | I | I
-6 -4 -2 0 2 4 6

T
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Matsubara function — periodicity

1 T
G(1) BZZEO
0.5 emu=-d -
| | : )
05 -
50 40 20 20 40

|



XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

Matsubara function — discrete Fourier transform H

orthonormal basis of periodic functions with period T' = 23:

—imm T/

e m=..—1,0,1,...

3~
@

we have:

Gapl(r) = > aly e

m=—0oo

my 1 [P : 1 (B 1 /0
where a((xﬁ) = 5/ dr Gop(T) ST T — 5/ dr (---) + 5/ dr ()
—B 0 —B

using Go3(7) = —Gap(T + B) for 7 < 0 and e!™7 7/8 = imm (T+0)/Be=im™ e find:

5 | 0 . 8 .
o) = 2/0 dT(---)—eméf_ﬁ dr(--) = %(1—6—%“”)/0 dr Gop(r) ™™ 7/5

non-zero Fourier coefficients G, g (iwn ) = agZ) for odd m = 2n + 1 withn € Z only

O | Gapgliwn) | frequency-dependent Matsubara function
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hence:

and

Matsubara function — Matsubara frequencies

1

Gap(T) == Y Gapliwn)e ™7 | with

s

nN=—oo

iwn =1(2n+ 1)w/p3

® W,

[
2m/ BI )l (fermionic)
Matsubara

frequencies

* Re w

|
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free Matsubara function H

0 | 0y (k) —p)r 1 _o(— 1
with | G (7) = —e <@(T) Tt epet—m) ~ @) Gem=n 1 1)
we find:
B : B 1 .
(0) /. _ wnT _ _ —(e(k)—p)T tWonT
G, (iwn,) /0 dr Gi(1)e /0 dT e 1+ e—B(k)—pw) €
1 8
_ [iwn —(e(k)—p)]T
| + e BE®) —n) /0 dre
€]
_ 1 - eliwn —(e(k)—p))T
1+ e BEek)—1) juw, — (e(k) — p)
0
1 1 ' '
— iBwn ,—B(e(k)—p) _ iBwn — _
T P tom — () — ) (e e 1) e 1
0),. 1 1 (0)
G (an) = - = =G (w)
k iwn — (e(k) —p)  w—(e(k) =p)| * .

Matsubara function = Green function evaluated at the Matsubara frequencies
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summary H
one-particle spectral density: (cross section, intensity, experiment)
e_BEm _|_ e_/BE?’L
Aapw) = ~ (mlca|n)(n]chIm)d(w — (En — Em))
Ags(t) = — t),ck (0 A — _Limgten
ap(t) = 5—(lcalt), c5(0)l+) ap(w) = —— o (W)
one-particle Green function:
o0 Aa
Gaop(w) = / gz o) w e C
o w—z
retarded one-particle Green function:
(ret) . e Aaﬁ(z) (ret) . +
Gl w) = [ ae BB G000 = 00 (fea(t).chO)L4)

one-particle Matsubara function:

Gaﬁ(iwn) _ /OO dz A.Aozﬁ(z)

o Wn — 2

Gop(T) = —(Tca(r)ch(0))

iwn =1(2n + V)w/pB



S matrix
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S matrix — motivation H

problem: the time dependence in

Gop(r) = —(Tca(r)ch(0))

IS due to the full Hamiltonian:

H:HO—|—H1:HO—|—V H:HO+V

goal: transform all = dependencies into free + dependencies!

interaction picture:

Aj(t) — ei'HotAe—i'Hot

modified interaction picture:

Ar(T) = e™0T Ae~ o7

transformation from the Heisenberg to the interaction picture: mediated by S “matrix”
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S matrix — definition |

define:
S(r, ") = eMome=H(T=7") g=HoT’ S matrix
properties:
O S(r,7")=S(r,7)S(', ")

O S(r,7)=1
0 S(r,7") is not unitary
[]

S(r,7") is the (imaginary) time evolution operator e~ "= in the (modified)
interaction (Dirac) picture

we have:
—ES(T, 7_/) — _3 (87‘(()7'6—7‘((7'—7'/)6—7‘[07'/) — GHOT(H _ HO)G_H(T_T/)G_HOT,
ot ot

— GHOTVG_HOTGHOTG_H(T_T/)€_HOT/ — V[(’T)S(’T, 7_/)

equation of motion:

—825(7, ) =Vi(r)S(r, ") initial condition: S(7,7) =1
-
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solution of the equation of motion H

if V7 (7) was not operator-valued, we could solve the differential equation by:

S(r,7') = exp (— /TT dT"VI(T”)>

/

the problem [V;(7), V7 (7/)]= # 0 can be circumvented using the time-ordering operator:

S(t,7") =T exp <—/ dT”VI(T”)>

explicit representation of the .S matrix

[0 note: under 7, we have: [V;(7), Vi(7')]— = 0 (there is no sign), since
1
Vi(r) = 5 > Uagsycl 1(T)eh 1(T)ey 1(r)es 1(7)
afByé
IS quartic

[J note: 7 operates after expanding the exponential:

) OO (_1)k T T
S(r, 7)) =T dry - - - drVi(r1) - V()
k;Z:o o /T 1 /T kVI(T1 1(Tk

/ /
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preparation of the Matsubara function H

from the definition, S(7, 7/) = e"0Te~H(T=T)e=HoT" we immediately get

A(T) = S(0,7)A;(1)S(T,0) e PH = ¢=PHog(3,0)

Matsubara function for = > 0:

Gop(T) = —(Tca(r)ch(0))

tr (e_ﬁHca (T)Cg (O))

tr (e—ﬁHo S(3,0)S(0,7)ca.1(T)S(T, O)c:g’I(O))

NI~ N[~ N[+

_ (e—BHOTS(ﬁ,ﬂca,I(T)S(ﬂ 0>c2,1<0>)

Zo 1

i Z—Otr (e‘BHO TS0, O)Ca,I(T)Cg,I(O))

(TS(B,0)ca,1(r)ch ;(0))©
tr (e=8H0S5(8,0))/Zo

(TS(B,0)ca,1(r)ch ;(0))©)
(S(8,0))©

Gaﬁ (T> -

S(6,0) = T exp (_ /OB dTvI(T))
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... ready to apply Wick’s theorem H

suppress the index “I” (all 7 dependencies are meant as free 7 dependencies)

<Texp (— fO’B dTV(T)) Co (T)C};(O)>(O)

Gonlr) == <Texp (_ foﬁ dTV(T))>(O)

free expectation values!
free (imaginary) time dependence!

Wick’s theorem can be applied.



Diagrammatic Perturbation
Theory



XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

partition function H

first, consider the denomiator In

<’Texp (— foﬁ dTV(T)) Ca(T)cTB(O)>(O)
Gop(T) = = (0)
<’Texp (— foﬁ dTV(T)>>

partition function:

© (_1)k B 8
Z( 2 /O dTl"'/O dry, (T(V(11) - V (7))

Z —_—
o |
20 — k!

Z = (=1)k P B
Z_OZZ 2kk! /o dry - - 0 dty Z Z Ua1ﬁ15171"'U06k5k5k7k

k=0 a1617161 ke Br YKok

(T (ch,, (r)ely, (11)eys (T1)es, (1) - - b, (TR)eh (7k)er, (Ti)es, (7)) O

matrix element:

(T(--))(® = {sum over all fully contracted terms} | (Wick’s theorem)

remember: contraction

i (1)l (73) = (T (ca; (7i)el,, (1))@ = —GLa, (ri = 75)
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diagram elements H

to compute the denominator, i.e. Z/Zg
[1 consider the k-th term in the sum (“k-th order”)

[1 evaluate the free expectation value using Wick’s theorem for given orbital indices
a;, Bi,...and givenr; (z: =1, ..., k)

organize the sum over all possible ways for full contractions by diagrams

[1 sum / integrate over all internal orbital indices and times

the building blocks of diagrams:

B\/v

vertex atr stands for U, 3, s

174

propagator

stands for a contraction, i.e. —G&Oi)aj (15 — 75)
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building diagrams H

Coulomb interaction is instanteneous [ place vertex on a time axis:

B\E/v

O(/E\B

propagators connect two links at (the same or) different vertices:
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full contractions H

free expectation value (at k-th order):
(T (cl, (r1)ely, (11) ey, (T1)es, (1) -+ el (Tk)c};k (Th) s, (T ) es,, (7)) (O

via Wick’s theorem,
= {sum over all fully contracted terms}

represented by sum over all possible diagrams at k-th order

YYY YY Y

AN A AN A

T

at the k-th order, there are (2k)! different ways to connect the open links at the & vertices
(2k)! different possibilies for full contractions:

(2k)! diagrams




OOOOOOOOOOOOOOOOOOO

all second-order diagrams

00 O O _

QQQ)@Q@@Q%%

QO O 0O =

= w0 W00 0Y 0Y
O O e

o of &Y G E S
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diagram rules H

to compute the k-th order contribution to the denominator, i.e. to Z/Zy,

[]

I I B

draw all (2k)! different diagrams , label them with orbitals a;; and times 7;

vertices are fixed, propagators can be deformed
for each vertex , write Uy, 3.5, ~,

for each propagator , write —G&Oi)aj (75 — 75)

for propagators starting and ending at the same vertex, i.e. equal times :

Tcreator — Tannihilator T O+

sum over all orbital indices o, 5;, ...

integrate overall ; (: =1, ..., k) from O to 3

(—1)"
2k k!

multiply with (—1)% with L = number of fermion loops

multiply with the factor
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diagrams for the Green’s function H

Green'’s function: ©
B <’Texp (— S8 dTV(T)) ca(T)c};(O)>

—Gap(T)
’ <’Texp (— foﬁ dTV(T))>(O)
nominator:
VW
«© P
AN
B
N T 1, T, 0

additional fixed external links representing c,(7) and cE(O)

we have 2k + 1 propagators and thus

(2k + 1)! diagrams | at the k-th order

note: no summation / integration over external variables ,l.e.a,Band t
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connected diagrams H

typical diagram contributing to the nominator:

[ there is one part of the diagram connected to the external links
[1 there may be different disconnected parts

theorem:

the sum over the disconnected parts exactly cancels the denominator

[1 for any diagram part connected to the external links, one can add an arbitrary
diagram representing Z/Zg (the denominator)

] its numerical value comes as a factor

take care of combinatorics
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topologically equal diagrams

consider:

PO Q0

- S S

the diagrams in each line are different but yield the same numerical value, since
A flipping the vertex
Uaﬁgvc:&cgcvc(g = Uﬁav(chcLC(gcv
B interchanging two vertices
change of integration / summation variables 7; < 7; and oy, 3;,

has no effect

Z = (=1)k P B
Z_0: Qkk!/odTl.“/o drs, Z Z Uay 816141 U

arBrorLYE
k=0 a16817161 arBr YKok

X <T(Cl;1 (7‘1)021 (11)cyy (T1)es, (T1) - - - C;rxk (Tk)CEk (Tk)Cvyy, (Tr) s, (Tk))>(0)

.. Ozj,ﬁj,...

|
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topologically equal diagrams H

XIV Training Course in the Physics of Strongly Correlated Systems

diagrams transforming into each other under A or B are topologically equal

O operation A generates 2" different diagrams with the same value
[1 operation B generates k! different diagrams with the same value

change the diagram rules in the following way:

— summation over topologically different diagrams only

.. 1
— no additional factor ——
2k L

all topologically different and connected diagrams at orde rk=0,1,2:
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diagram rules H

to compute the k-th order contribution to —G3(7),

[1 draw all topologically different diagrams
label them with orbitals «; and times 7;

[1 diagrams must be connected to external links
vertices and propagators can be deformed

[ for each vertex , write —U,.3,5;~;
for each propagator , write —G(Og)aj (1: — 75)

for propagators starting and ending at the same vertex, i.e. equal times :

Tcreator — Tannihilator T O+

sum over all orbital indices «;, 3;, ...
[ integrate overallr; (:=1,...,k)fromO0to (3

multiply with (—1)% with L = number of fermion loops
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frequency-dependent propagator H

a, a
time-dependent propagator: Ti U |= —G(aoi)aj (75 — 75)
0 1 - — W (T; —T5 .
_G&i)aj (r; — 1) = 5 Z e~ iwn (1, —75) (—Gaya, (iwn))

[ a propagator is labelled by a single frequency
[0 sum over (internal) frequencies

1 - :
attach —e™*“ 74 to vertex at which propagator ends

v’
attach ﬁewnﬁ' to vertex at which propagator starts
collecting factors, at each vertex we have:
s 1 : 1 .
/ dr — e HW1Tw2—ws—w)T — —§ | 0 wstws | ENEIGY cOnservation
0 VB B

“the sum of incoming frequencies equals the sum of outgoing frequencies”

frequency-dependent propagator: W, — —G&Oi)aj (iwn,)




XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

diagram rules for frequency-dependent Green’s function H

to compute the k-th order contribution to —G g (iwn ),

[1 draw all topologically different diagrams
label them with orbitals «; and frequencies w,

[1 diagrams must be connected to external links
vertices and propagators can be deformed

_ 1
[0 for each vertex , write _E5wa+wﬁ’w7+w5 Uags~

[0 for each propagator , write —Gaoﬁ)(iwm)

for propagators starting and ending at the same vertex, equal times :

factor e_iwm(Tannihilator_Tcreator) — eiwm0+

sum over all internal orbital indices ¢, ...
[0 sum over all internal w,,, from —oo to co

multiply with (—1)% with L = number of fermion loops



Self-Energy
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Improper self-energy: diagrammatic definition H

define self-energy insertion

part of a diagram for the Green’s function with two external links:

S RN
\

H H ' ' ' ! s \ . .

define improper self-energy
sum of all self-energy insertions:
Q O O =
RN o+ e

_Z: §+//’

> S G

note: —% depends on external orbital indices and the external frequency:

~
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self-energy: definition H

define irreducible self-energy insertion:

self-energy insertion that does not separate into two pieces when cutting a propagator:

reducible: irreducible:
OO T

define irreducible self-energy / proper self-energy / self-energ y:

sum of all irreducible self-energy insertions:

ey )

we also define the full propagator / interacting propagator / Green’s functio n:

G = —
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Dyson’s equation, diagrammatic H

consider an arbitrary diagram contributing to —G, g (twr ) With k& > 1:

it necessarily starts (left) with a free propagator, followed by an irreducible self-energy

insertion, and ends with a diagram contrubuting to —G, g (iwn )

summing over all diagrams yields:

I W

translation: —G g (iwn) = —G( )(zwn) + Z

le.:

Gapliwn) = GO (iwn) + > GYY (iwn ) Sas (iwn) Gg (iwn)

G = Go + GpXG | (in matrix notation)

2 (iwn)) (=S5 (iwn)) (G (iwn))

Dyson’s equation
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skeleton diagrams H

a skeleton diagram is defined as a diagram without any self-energy insertions:

includes self-energy
insertions skeleton

defined a dressed skeleton as a skeleton with free propagators replaced by full ones:

dressed
skeleton skeleton
N\
N _____ | renormalization of diagrams
we have: self-energy = sum over all dressed skeleton self-energy diagrams

skeleton-diagram expansion

+ ...

+
+

=e
0

-y =
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skeleton-diagrams: first effective order H

summing only the first-order diagrams:

Hartree—Fock:

O,

yields the Hartree-Fock self-energy:

Z%F) - Z (Uarss — Uyaps) (cles)’ | Hartree-Fock self-energy
~vé

[1 the HF self-energy contains the full (HF) propagator
[1 self-consistency cycle: G 00 X 0O G

[1 HF = self-consistent first-order perturbation theory
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skeleton-diagrams: second effective order

summing the diagrams up to second (explicit) order: "l;['(')"””' """" '””"r'];"l”
(sc) second—order perturbation theory
O / O \ = |k=1/\_
| _ T e x5
S k=2 N N/
> V7V
2
o |KSBAALAN_
o V V3
3 x25
5 | k=4 /\ N/
é x25
> | k=5 /\ NN /\ /
P . £ \ V
infinitesimal retarded self-energy ;5 (w + ¢0™) S
- ©
for the Hubbard model at half-filling and 7" = 0 [ £ k=6 A\ L AN
k labels the different shells, ;0 = Z;_jo VV I V\SO
. X
D = 2 square lattice k=7 Apn | AN
SATASRAYAYS
discussion b, Ll by
-15-10-5 0 5 10 15
frequency
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skeleton-diagrams: second effective order H

density of states at U = 8t:
n=1
s=0
s=1

-10 -5 0 5 10
frequency

density of states p (arb. un.)
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summary and a question H

systematic perturbation theory
applicable to weak-coupling regime only

can we sum ALL diagrams ?



V Dynamical Variational
Principle



Luttinger-Ward Functional
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expansion of the partition function H

grand potential:
Q=-TInZ

partition function:
Z =tre P = tr(e=PM0.5(8,0)) = Zo(S(B,0))? |, 8(3,0) = efHoe—FH

from the solution of the equation of motion of the S-matrix, we have:

AR S G L Rt (0)
Z_yt& /Odn /Odmmvm) V(7))

n=0

with Wick’s theorem, representation via diagrams:

Q O
Z/20:l+6+®+ec>e+---

n-th order: closed diagrams with n vertices and 2n propagators

—vertex [ Tognergy conservationUes+6

o 0 "
— propagator [I —G3(iwn) (Start and end at same vertex: e'“n 0" additionally)
— sums / integrals over o, 3, ... and wn,, ...

(="

Tl (—=1)%, for S fermion loops
n!

— factor
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linked-cluster theorem H

it is sufficient to consider connected diagrams only:

2/ 2o = exp ((S(8,0)) . — 1) Q— Qo = =T ((5(8,0)5hn. — 1)
proof:
consider k replicas of the system:
A=1 A=k
[system] [system] [system]
partition function: Z partition function: Z K

1
we have: ZF =" 2 — 1 4 kInZ + §k2(an)2 4

d
hence: In Z = lim —kZ’“

k—0

compute Z* by perturbation theory applied to the k-fold replicated system

extract the term proportionalto & [ In Z
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linked-cluster theorem, proof H

compute Z* by perturbation theory applied to the k-fold replicated system

[0 same diagrams, but:
: A A

— propagators carry index A \/

—summationof A =1, ..., k A A :

— propagators and vertices diagonal w.r.t A

A7 N

connected part of a diagram carries single index A:

e
)\O O)\’ St=k, > =k 0 k2

[0 summation yields k" if the diagram consists of » connected parts
[1 diagrams o« k consist of one connected part only
[0 summation of connected diagrams yields In Z

g.e.d.
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renormalization? H

partial summation of diagrams by renormalization of skeletons ?

Q Q
O-(DO-CDECD-O
O

Impossible because of double counting:

s C
O,

[1 sum of connected renormalized closed skeleton diagrams # In Z
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Luttinger-Ward functional H

define (with an additional factor (—1)):

Q
CD:©++

note: & £ —T'InZ

0

Luttinger, Ward (1960)

what is ¢ good for ?

1 0d
2= 0 IMPORTANT !!!

T TG

® is like a potential for the self-energy !

proof:

note: | ® = dy|[G]

— & is a functional of the Green'’s function
— the functional dependence is fixed by U (and independent of t)
— &y [G] is a universal functional
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proof, continued H

functional derivative § /6 G: removal of a propagator line

1 §Py[G]

more precisely, we have to prove: | ¥,g(twn) = T 5CG (iwn )
/8(1 'LCUfn,

roughly:
b= + @ + @ + ... @
@ _ 06/6G O -5 = + /7 + - .
g.e.d.
subtleties:

— the skeleton-diagram expansion yields —32 (not X2)

— additional factor (—7") in the definition of ®

— removal of a fermion line [ factor (—1)

— 6/6G, but propagator is —G 0O factor (—1)

— product rule: n terms in n-th order perturbation theory (treat all diagrams as different)
— «, 3 — 3, o see rule for functional derivatives
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|

we have: N
1 6®y[G]

Zaﬁ (an) p—

therewith, we can show that
Q=—TZ=d+TrInG —Tr(XG) | IMPORTANT !

—here: TX =T eiwn0" Y Xaa(iwn)

n (0
— relation between static, thermodynamical quantity (€2) and dynamic quantities (X, G)
— basic equation for dynamical variational principle (see below)
— double-counting correction: Trin G — Tr(XG)

proof:
consider the derivative w.r.t. pu:

9 [P+ TrinG —Tr(EG)] = (1) + (2) + (3)

o

first term:
%) 0 5 0G o8 (twn
ou oL Z Z 0G o3 (zwn) ou

8Ga mn
=ZTZEaa<iwn slisn) (28—(;)
= ~ ou ou
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proof, continued H

second term:;

3(2) _ Y mG =T (G—la—G)
op

o o
third term:
i(g) — iTr(EG) =Tr (8—2(}) + Tr (28—(;)
o o o o
hence:

9 [®+TrInG —T(ZG)] =Tr <G1 a—G> —Tr (8—2G>

O o o
=T (Gla—GGl - 8—2> G}
i op Op
o el
= o(—G 3) G}
o
_8G51 : : — 1l
— _Tr 5 G with Dyson’s equation G = 1/(G, ™ — X)
7]

= —Tr
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proof, continued H

—TrG
— Z T Z etwn0t G . (iwn,)
1 woT
2T J o
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proof, continued H

SO.

9 [P+ TrinG — Tr(XG)] = it
oL oL

u — —oo [ no particles in the system [ setting U =0isexact [1 ¢,3 =0

for u — —oo:

TrinG = 2 (exact representation of the non-interacting grand

potential)

integrating over u then yields:

O+ TrinG —Tr(EG) =

g.e.d.
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summary H

Luttinger-Ward functional

definition: P = g + + g + ...

properties of the Luttinger-Ward functional:

0 @ is a functional: ®y[G]

[ domain of the functional: space of all Green’s functions {G¢/ v }

[ at the physical Green’s function G¢ yy we have: @U[Gt,u] =®; U
N

this quantity is related to the physical grand potential of the system via
Qt,U = (I)t,U + Triln G’t,U — Tr(2t7UGt,U) =Q
1 6Py[G] =

[0 functional derivative: — —— = 3y |[G]
T 0G

[0 with a functional X [G] with the property fJU[Gt,U] =3¢t U
the functionals ®;[G] and £y [G] are universal

dy[G]=0and Sy[G]=0for U =0
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conserving approximations H

Luttinger-Ward functional

O -
(D:©++©+...

[1 defined via infinite summation of skeleton diagrams

[ functional dependence unknown

conserving approximations Baym, Kadanoff (1961)
0 approximate &y [G] & fﬁ%‘pprox') [G] by known functional @gpprox') [G]
S 1 5(’13(approx.) G
0 compute PP (G = — —U ]
h T 0G

] solve G = T S (appron) for G (self-consistently)
G, — X 1G]

O evaluate Q[G] = ®[G] + TrIn G — Tr((GO_1 -G Ha)
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advantages:
— thermodynamically consistent

conserving approximations

— “conserving”: the approximation respects macrocopic conservation laws
— e.g. Luttinger’'s theorem is respected (see below)

problem:
— the approximation is type-Il
— approximation of a functional?

— only possibility: summation of certain clausses of diagrams

example:

Q "
¢:©++g+...

[

self-consistently weak-coupling perturbation theory

HF, RPA, FLEX, ...



Self-Energy Functional
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Hamiltonian: Hi vy = Hfree(t) + Hint (U)
grand potential : Q¢ vy = =T Intrexp(—8(H¢,u — uN)
physical quantity : A u

functional: Q¢ y[A] on domain D

variational principle:

Euler equation: f; y[A] =

JA

5Qt,U[A] =0 firA = At,U
6Q¢ U[A]

!
=0

approximation strategies

simplify Euler equation
ft,U [A] — ft,U [A]

general

simplify functional
Qt,ulA] = Q¢,ulA]

thermodynamically consistent

restict domain
D — D

thermodynamically consistent,
systematic, clear concept

|
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functionals of dynamic quantities H

Y by
wanted: Q¢ U X] with 1;5—;[] =0 X =3u
: 1
elements: dy[G], X, Gu[X] (inverse of Zy[G]), —
Gip— X
structure: Q=>+TrinG —Tr(EG)

candidates :

(1) | 2,ulX] = PulGulE]] + TTIn Gu[XE] — TI(EGu[X])

1 1
2) | €2 Y| = Or7 |Gy | 2| + Trin —Tr | X
(2) | Q¢ ulX] ulGu[X]] G;é—E ( Gt_,é—2>

(4) | Q¢,u[X] = Pu[Gu[Z]] + Trin a-
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functionals of dynamic quantities H

(5) | 2, u[Z] = PulGy o — I + Trin Gu[Z] — TMEGyY[Z))

Y

1 1
6) | % 2] = ;G — 1+ Trin —Tr (=
(6) | Q¢ ,ulX] ulGy o ] G-I _ > < G_1—2>

(7) | Qe ulX] = CIDU[Gt_,Cl) — 3|4+ TrinGyu[X] —Tr (2 L >

@) | Q. ulZ] = Pu[G; ) — 2]+ Trin
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functionals of dynamic quantities H

(5) | 2, u[Z] = PulGy o — I + Trin Gu[Z] — TMEGyY[Z))

Y

1 1
6) | % 2] = ;G — 1+ Trin —Tr (=
(6) | Q¢ ,ulX] ulGy o ] G-I _ > < G_1—2>

(7) | Qe ulX] = CIDU[Gt_,Cl) — 3|4+ TrinGyu[X] —Tr (2 L >

@) | Q. ulZ] = Pu[G; ) — 2]+ Trin

(4) works and includes unknown but universal functionals !
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THE self-energy functional H

define:

Qt,U[E] = CI)U[GU[Z]] + Trin

CT(EGy[E) Potthoff (2003)  :-)

we have:

) Qw[z]:ﬂ(&bu[(}u[ﬁ]] oG )_< L > (iwn)
Ba

6806 (iwn) §G 6306 (twn) G g—X
0G
—GulZE]galivn) —Tr [ X
oElantion) = (25205 )
hence:
U u=0&Gul[X] = !
t,U — U — G;é _

exact conditional equation for self-energy
solution equivalent with summation of all diagrams !

|.h.s.: U-dependent functional of 32, functional dependence unknown
r.h.s.: t-dependent functional of 32, functional dependence trivial
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Legendre transform H

self-energy functional:

Qt,U[E] = (I)U[GU[E]] + Trin

Legendre transformation, general:

df (x)
d

given f(x) with y = = y(x)

i
define Legendre transform g(y) = f(x(y)) — yx(y)

d d d d
we have: 29W) _ df(z(y)) dz(y) () —y z(y) _ 2 (y)
dy dx dy dy
Legendre transformation of the Luttinger-Ward functional
1 6Py |G]

iven &7 |G| with — = YulG
g ulG] T 3G ulG]

Legendre transform: Fy[X] = oy [G[X]] — TI(EGyu[X])

1 6Fy |2
we have: — ul] = —Gyul[X]
T 00X

1
Q) | =Trin + Fy |2
e ulZ) G5 ol

first term: t-dependent, trivial functional dependence
second term: U-dependent, unknown functional dependence (“universal”)
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variational approaches H

SQZ] = 0

self-energy

SFT
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variational approaches H

0[] =0 | self-energy SFT dynamic
50IG] — 0 Green’s Luttinger dvnamic
Gl = function Ward y
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variational approaches H

0[] =0 | self-energy SFT dynamic
50IG] — 0 Green’s Luttinger dvnamic
Gl = function Ward y
electron _
0Qn] =0 : DFT static
density
density Rayleigh _
o8p] =0 matrix Ritz static
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variational approaches H

0[] =0 | self-energy SFT dynamic
NG| =0 Green's Luttinger erturbation theor dynamic
G] = function Ward P y y
electron _
0Qn] =0 : DFT LDA static
density
500l — 0 density Rayleigh Hartree-Fock, .
o] = matrix Ritz Gutzwiller, VMC, ...
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variational approaches H

0[] =0 | self-energy SFT new approximations? dynamic
NG| =0 creen's Luttinger erturbation theor dynamic
Gl = function Ward P y y
electron
0Qn] =0 : DFT LDA static
density
500l — 0 density Rayleigh Hartree-Fock, .
o] = matrix Ritz Gutzwiller, VMC, ...




H = Z( V3/24v(r;)) + = Z

|J_rk|

H = Zt 3 cr aCg + = Z Uags~ CECECWC(S
al 045’)’5

density-functional theory (DFT)

self-energy-functional theory (SFT)

external potential v(r)

density n(r)

ground-state densities n = n|v]
ground-state energy E = E[n]

Eln] = [o(r)n(r) + Fln]

[ vn: explicit

F'[n]: unknown, universal (v-independent)
variational principle: dE[n]| =0

exact but not explicit

hopping t

self-energy >, 3 (iw)

t-representable self-energies 3 = X[t]
grandcanonical potential 2 = Q[3]

QE] =Trin(G; ' — )~ + F[Z]
Trin(Gg ' — )~ explicit

F[X]: unknown, universal (t-independent)
variational principle: 6Q2[3] =0

exact but not explicit

local-density approximation (LDA)

different approximations

reference system: homogeneous electron gas
approximate functional F’

different reference systems
functional F' on restricted domain




Reference System and
Evaluation of the SFT
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Ritz variational principle

original system reference system

ST L
'

Yo u

E %!

Ey ul|0)] = (Y|He,u|V)

OF¢ UV ur=0)]
ot’

|
=0

[1 Hartree-Fock approximation

reference system H
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Ritz variational principle

original system reference system

ST L
'

Yo u

E %!

Ey ul|0)] = (Y|He,u|V)

OF¢ UV ur=0)]
ot’

|
=0

[1 Hartree-Fock approximation

reference system H

SFT

original system reference system

P ) [
'

t',U’

Q |2

wlZep ] =—— Z

Qe ulX] =7

8Qt,U[2t/,U’] 1 0
ot/

[J new approximations ?

type of approximation < choice of reference system
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SFT |

5Q, [Xt) EO
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evaluation of the self-energy functional “

Fy[3] unknown but universal !

00y [X)FO

original system:

1
Q 3] =Trln + Fy X2
LUlE] =T op— + Fy [
Q=04 [>] i reference system:
_sp E 2 space 1
2 =2 Qpr u[Z] = Trin — + Fy[X]
G, — X
combination:
Qe ulX] =0 (3] + Trl . Trl
— / n — n
[1 non-perturbative, thermodynamically consistent, system atic approximations

Potthoff (2003)
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cluster approximations H

original system, Hy y:

lattice model (D = 2) in
the thermodynamic limit

n.n. hopping: ¢
local interaction: U
electron density : n = N/L
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cluster approximations H

original system, Hy y: reference system, Hy/ y:

IGO0
ISSON e
IGO0

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit

[1 diagonalization
n.n. hopping: ¢ O trial self-energy: ¥ = X(t')

local interaction: U 0 self-energy functional: Q¢[X(t)]

TR _ : 0
electron density : n = N/L stationary point: %Qt 32(+")] = 0
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original system, Hy y:

lattice model (D = 2) in
the thermodynamic limit

cluster approximations H

reference system, Hy/ y:

O O—0O

Trogst

system of decoupled clusters
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cluster approximations H

original system, Hy y: reference system, Hy/ y:
lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit cluster size: L.

L. < 2: analytic

L. < 6. exact diagonalization
L. < 12: Lanczos method

L. < 100: stochastic techniques
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example: D = 1 Hubbard model H

T = 0, half-filling, U = 8, nearest-neighbor hopping t = 1

variational parameter: nearest-neighbor hopping ¢’ within the chain

36 e i 19
Q I t' —0.0008
0.0006
3.8 L =2 0.0004
I 0.0002
4.0 0
4.21-
_ | | | L =10 |
4.4 1 0 1 2
tl

O Q(t') = Q[X(¢')] stationary at ¢/ . #1
[0 t’ = 0: cluster size irrelevant
0t

Y
minNt
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cluster approximations H

original system, Hy y: reference system, Hy/ y:
lattice model (D = 2) in system of decoupled clusters

the thermodynamic limit
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cluster approximations H

original system, Hy y: reference system, Hy/ y:
lattice model (D = 2) in system of decoupled clusters

the thermodynamic limit

variational parameters:
intra-cluster hopping
partial compensation of
finite-size effects
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cluster approximations H

original system, Hy y: reference system, Hy/ y:

|5

GO0y OO0
loReme Yo e me!
GO0y OO0
oo me Yo meme!

17| Oy
© ©
1|0
17| Oy
)

lattice model (D = 2) in system of decoupled clusters

the thermodynamic limit
variational parameters:
hopping between cluster boundaries
boundary conditions
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boundary conditions H

-4.20
Q

-4.22

-4.24

-4.26

-4.28 D = 1 Hubbard model

T = 0, half-filling, U = 8
-4.30 t=1
-4.32
PP PP |le—exact

'4-34_1 I—O|.5I Cl) | 0[5 | _11_ open or periodic b.c. ?
i open boundary conditions !
'

exact: Lieb, Wu (1968)
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cluster approximations H

original system, Hy y: reference system, Hy/ y:

IGO0
ISSON e
IGO0

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit
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original system, Hy y:

lattice model (D = 2) in
the thermodynamic limit

cluster approximations H

reference system, Hy/ y:

SO0
SO S:
IOSOS 8!

system of decoupled clusters

variational parameters:
on-site energies
thermodynamic consistency
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original system, Hy y:

lattice model (D = 2) in
the thermodynamic limit

cluster approximations H

reference system, Hy/ y:

OSOPS:
OPOSS:
OSOPS:

system of decoupled clusters

variational parameters:
ficticious symmetry-breaking fields
spontaneous symmetry breaking
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cluster approximations H

original system, Hy y: reference system, Hy/ y:

SO S:
SO S:
SO S:

lattice model (D = 2) in system of decoupled clusters

the thermodynamic limit
variational parameters:
ficticious symmetry-breaking fields
different order parameters
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-4.45
-4.46
-4.47
-4.48
-4.49

-4.50

D=2

U=8 -

-03 02 01 O 01 02 0.3
B1

Hubbard model, half-filling

antiferromagnetism “
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antiferromagnetism H

_4.45|||||||||||||||||||||||||||||||

VCA

QMC

QMC / MaxEnt: 8 = 10, 8 x 8 cluster

Dahnken, Aichhorn, Hanke, Arrigoni, Potthoff (2004)
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ground-state energy II

D = 2 Hubbard model
half-filling, 7" = 0
antiferromagnetic phase

N, = 10, no bath sites

_?
. I . I . I . I ‘:i:‘_

Dahnken, Aichhorn, Hanke, Arrigoni, Potthoff (2004)

[ quantitative agreement with VMC, QMC
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symmetry-breaking fields H

additional ficticious field / Weiss field :

10

Hpeo. = B' D zi(nip —nqp)

reference system

AF order: staggered magnetic field [0 z; = %1 for sites on sublattice 1/2

additional physical field:

10

thys. =B Z ) (niT o nzl)

original system

in the paramagnetic state, B = O:

B/

opt =0

no AF order

in the paramagnetic state, B > O:

B(/)pt > 0

induced AF order

in the antiferromagnetic state, B = 0:

Bl >0

spontaneous AF order
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symmetry-breaking fields H

SFT grand potential: Q(B’, B) = Qg[X 5] (suppress other parameters)
stationarity condition:  9Q(B’, B)/0B’ =0
yields:

B(/)pt — B/(B)
for the SFT grand potential at the optimal Weiss field, 2(B’(B), B), we have
oQ(B'(B),B)

OB’ B

0 VB

therewith:

d_0Q(B'(B), B) _

0
dB 0B’

and thus:

0?Q(B'(B),B) dB'(B) = 9%Q(B’(B), B)
o0B’? dB OBOB’

solving for dB’ /dB:

dB' [829}_1 52Q

dB | 9B'? OBOB’

=0

O B’ is not a physical quantity (Weiss field)
O B’ > B for small curvature 82Q/8B’? (flat SFT functional)
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order parameter and susceptibitlity H

staggered magnetization / order parameter:

m= 3" zil(nir ) = =08 (), B) = PUELELD)

dB 0B

[1 no contribution due to the B dependence of the stationary point !

susceptibility:

dm  9°Q(B’(B),B) dB'(B) N 02Q(B’'(B), B)
dB 0B'0B dB 0B2

9% (32Q>1 ( 520 )2
X~ op2 ~ \9B? OB'0B

[J contribution to the explicit B dependence

X:

we find:

[1 additional contribution to the implicit B dependence !
l.e. the B dependence of the stationary point
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order parameter and susceptibitlity H

(anti-)ferromagnetic order:

[]
[]

[]

[]

spontaneous breaking of the SU(2) symmetry of H (e.g. Hubbard model)

conserved quantity: S¢ot, total spin

Weiss field: | Hg., = B’ >  zi(nit —ny)) |

10

order parameter: |m =Y  z((n;; — n;|))
10

superconductivity:

[]

spontaneous breaking of the U(1) symmetry of H

conserved quantity: IV, total particle number

Weiss field: | Hy ., =h'» %(CiTle +H.c.)
g

(d wave)

with n;; = £1 for n.n. along = /y direction (2D square lattice)

order parameter: | A = (c;1c;) | complex and non-local

( O cluster approximation)
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hole doping

high-temperature superconductivity

electron doping

0.07
0.06
0.05
0.04
0.03
0.02
0.01

.

T D
M, (L=6) —o—
Mo (L=8) —®—

M, (L=10) ---® -

'

O

AAAAAA

Senechal, Lavertu, Marois, Tremblay (2005)

d-wave-
superconductivity

antiferromagnetism

t-t’-t"" Hubbard model
D=2
T =0,U = &t

L. =6,8,10



Bath Sites and Dynamical
Mean-Field Theory
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approximations using bath sites H

original system, H reference system, Hy/ !

SO 8:
OSOS S
SO 8:

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit cluster size: L. = 4

variation of on-site energies
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original system, H

lattice model (D = 2) in
the thermodynamic limit

approximations using bath sites

reference system, Hy/ y:

O

O O O O
O O O O
O O O O

O

O

O

O

O

O O O O O
O O O O O O
O O O O O O

O

system of decoupled clusters

cluster size: L. =1

Hubbard-I-type approximation

|
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approximations using bath sites H

original system, H¢ reference system, H;s yy:
t, U t’, U

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit with additional bath sites
Lc — 1, Lb — 2

improved description of temporal
correlations
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approximations using bath sites H

original system, H reference system, Hy/ !

el e a
oLl e a
oL 8l
L8l
[ORepe P ool
SLLLed

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit with additional bath sites
Le=1,Ly =5

improved mean-field theory
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approximations using bath sites H

original system, Hy y: reference system, Hy/ !

000000
000000
000000
000000
000000
000000

lattice model (D = 2) in system of decoupled clusters

the thermodynamic limit with additional bath sites
Lc = 1, Lb = O
optimum mean-field theory, DMFT
Metzner, Vollhardt (1989)
Georges, Kotliar, Jarrell (1992)
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approximations using bath sites H

original system, H; y: reference system, Hy/ 5
: t/, U

006000
606000
600000

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit with additional bath sites
Lo=4,L, =0
cellular DMFT

Kotliar et al (2001)
Lichtenstein, Katsnelson (2000)
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approximations using bath sites H

original system, H¢ reference system, H;s yy:
t, U t’, U

i
i
b

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit with additional bath sites
Le=4,Ly =5

variational cluster approach (VCA)
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approximations using bath sites H

original system, H¢ reference system, H;s yy:
t, U t/ U

b5 4854
$5 4454
$54434

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit with additional bath sites
Le=4,L, =2

variational cluster approach (VCA)
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approximations using bath sites H

original system, H¢ reference system, H;s yy:
t, U t/ U

IENQRENGR C
QR ENGR £
IENQRENGR C

lattice model (D = 2) in system of decoupled clusters
the thermodynamic limit with additional bath sites
L.=4

variational cluster approach (VCA)
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consistent approximations within SFT

[}
5
S P©-eDMFT
N e
N cellular DMFT
[ € —
@) L e
8 DIA—— cellular DIA
o | | %
8 ~///

] | _— T .

c:; //; ; : variational CA o c_:,'\le
S 2 1;/ c Ao
O 1

\2

Hubbard-I

O DMFT
[ C-DMFT
O DIA

0 VCA

|

Metzner, Vollhardt 1989, Georges, Kotliar 1992, Jarrell 1992

Kotliar et al 2001, Lichtenstein, Katsnelson 2000
Potthoff 2003

Potthoff, Aichhorn, Dahnken 2003
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derivation of dynamical mean-field theory “

self-energy functional:

~ ~ 1
Qe ul2 = Q% |2+ Trin — Trln
self-energy 3/ s taken from the reference system inserted as a trial:
QU ul = v+ Trin —— ~TrinGy y
G’t70 - Et/,U
stationarity condition:
O ~
@Qt,u[zt/,u] =0
first term:
0

/

ot

second term:;

1 1 O4s o Wn,
O i =Tzz( __ | ) v.Usag(ion)
ot Gt,O — Et/ U Gt O(an) — Zt/’U(Zujn) Ba ot
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derivation of dynamical mean-field theory “

third term:
0 0 1
— TrinGy vy = = Trin
ot/ ot/ iwn +p—t — Xy
. + 1 azt’ U aﬁ(iwn)
=T e“rV Gy ylivn) +T ( : > —
; ; QZB (zwn) — Xy u(iwn) Ba ot/

with T eiwn0™" Gy U apliwn) = (cgcay we find the general SFT Euler equation

T — = Gth(z‘wn)) — =0
; azﬁ < t O(zwn) Et/7U(’LWn) Bo ot’

O unknowns: elements of t’, number of equations = number of unknowns
[0 highly non-linear system of equations, exact solution: X3¢

[1 geometrical interpretation  (for those who like this):
Euler equation is obtained from the exact conditional equation for the “vector” X
in the self-energy space Sy through projection onto the hypersurface of t’
representable trial self-energies 3;, ¢y by taking the scalor product with vectors
0% U,ap(iwn)/0t" tangential to the hypersurface
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derivation of dynamical mean-field theory “

test self-energy is taken from a single-impurity Anderson model (SIAM):

HsiaM = ¥ €impChco + Uning + Y epal_awe + »  Vil(chags + H.c.)
o

ko ko
@®
[1 actually: continuum of bath sites, L, — oo f
[0 non-zero SIAM self-energy at the impurity site only: X, (w) ® ®
[ one SIAM attached to each site of original lattice (identical replicas) |

000000

0000
0000
0000

0000
0000
0000

000000

Yap(iwn) = Xk, ji1 (twn) = ;520,40 (iwn )
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derivation of dynamical mean-field theory “

Euler equation

1 ) 82t’,U,o¢6 (an)
'3 (g - Guption) e
) ’ BO&

n o
reduces to
1 . 0%ii0 (twn)
T — G / w — O
; Z (c;;g(m) — S uliwn) vl ”)> e OV

sufficient for a solution the Euler equation:

1

or.

Gloc(w) E G(w) | DMFT self-consistency equation




lattice structure U
bare dispersion &(k) 2(w) - Himp = Z o T 5 Z Noll—o

+ Z eka}laaka + Z chz.aka + h.c.
ko ko

\

Gloc(w) = G(w)

“self-consistency condition”
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dynamical mean-field theory and D = “

Weil3 molecular-field theory dynamical mean-field theory
magnetic phase transition Mott transition
lattice spin model lattice fermion model
J U
H=-23"5:S; H=~t) cl,cjot— D Niohi—o
(i7) (ig)o io

Himp — Ztona + % Znan—a

(1) + Zsknéa(;) - Z ch:r,aka + h.c.
ko ko
Jox1/D t o< 1/v/D

Metzner, Vollhardt (1989), Georges, Kotliar (1992), Jarrell (1992)



Cluster Extensions of DMFT
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classification of dynamical approximations H

I\
5
E 0 - DMFT
Ny
D T
= e cellular DMFT
S L4
3 DIA———— g cellular DIA
(D)} [ I—
o || »
re) | —1 | — e variational CA e
s L ex S
S ] 1;/ : S
o 1
1\2
Hubbard-I

dynamical mean-field theory = Metzner, Vollhardt (1989), Georges, Kotliar, Jarrell (1992)
cellular DMFT Kotliar, Savrasov, Palsson (2001)
dynamical impurity approach (DIA) Potthoff (2003)
variational cluster approach Potthoff, Aichhorn, Dahnken (2004)
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cellular DMFT (C-DMFT)
Kotliar, Savrasov, Palsson, Biroli
(2001)

dynamical cluster approximation
(DCA)

Hettler, Tahvildar-Zadeh, Jarrell,
Pruschke, Krishnamurthy (1998)

periodized C-DMFT (P-C-DMFT)
Biroli, Parcollet, Kotliar (2003)

fictive impurity models
Okamoto, Millis, Monien, Fuhrmann
(2003)

cluster extensions of DMFT H
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cluster extensions of DMFT H

cellular DMFT (C-DMFT) original system, Hg y:
Kotliar, Savrasov, Palsson, Biroli

O—0O—10O0O—0O00C00C0O00
(2001)

reference system, Hy/ !

000000000

[
5
E: 0 - DMFT
Q [
— cellular DMFT
e)
n Nsepa—_| | T
O cellular DIA
o T | 00
(@) [ -
) T+ | —
E //; = : variational CA o g;\’Le
T 2 :I; ] c C\\)s\
o 1 5
1
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dynamical cluster approximation
(DCA)

Hettler, Tahvildar-Zadeh, Jarrell,
Pruschke, Krishnamurthy (1998)

cluster extensions of DMFT H

original system, Hg y:
O—0O—10O0O—0O00C00C0O00

reference system, Hy/ !

000000000

3]
@Qt,U[E(t,)] =0

[J open boundary conditions (see above)

there is no reference system
which generates the DCA !
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dynamical cluster approximation
(DCA)

Hettler, Tahvildar-Zadeh, Jarrell,
Pruschke, Krishnamurthy (1998)

cluster extensions of DMFT H

original system, Hg y:

O—0O0—~CQ O—0O0Q OO0

reference system, Hy/ !

000000000

0
5o ulE(t)] =0

(t —t)

DCA self-consistency condition
t: invariant under superlattice translations
and periodic on each cluster

[ systematic
[] restores translational symmetry
[ no implications on quality of DCA !
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periodized C-DMFT (P-C-DMFT)
Biroli, Parcollet, Kotliar (2003)

cluster extensions of DMFT H

original system, Hg y:
O—0O—10O0O—0O00C00C0O00

reference system, Hy/ !

000000000

T 0[S =0 [ @]~ O )

P-C-DMFT self-consistency condition

[ systematic
[] restores translational symmetry
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cluster extensions of DMFT H

original system, Hg y:
O—0O—10O0O—0O00C00C0O00

reference system, Hy/ !
without any relation to the original system !

fictive impurity models
Okamoto, Millis, Monien, Fuhrmann
(2003)
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more bath sites vs. larger clusters

local degrees of freedom

O - DMFT

&
:
O
i

2
1

_

—

—

VL

I

I

Hubbard-I|

e cellular DMET

———eo-cellular DIA

— 00

—

_— e variational CA e

/ch ie’ s\t
W\

|
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D = 1: bath sites ? H

-4.20 ' | I | I |
-4.22
Q i
T ' — T T T 1 "]
'424 _024 :_ //,0 _:
I E - direct .-~ .
0 : v
-4.26 -0.26F -
498 028 : e -
| 0.30[ - SFT 0 ]
‘430 - P ’ % i
4.30f 032p St # bath sites
L 0.34 - exact ]
_ R S R R R B R B
4.34 O 0.1 0.2 0.3 04 05
tb 1/L
C

[ larger cluster vs. more bath sites
exact: Lieb, Wu (1968) [0 enhanced convergence



DMFT as Type-l, 11111
Approximation
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dynamical mean-field theory H

information on excitations (PES,IPE) — one-particle Green’s function G, 3(w)

1 : :
G=_—— Dyson’s equation
G o — ZulG]
free (U = 0) skeleton expansion X [G]= i + i © +...

é

Green’s function
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dynamical mean-field theory H

information on excitations (PES,IPE) — one-particle Green’s function G, 3(w)

1 , .
G=— Dyson’s equation
thé - Zu[G]
free (U = 0) skeleton expansion X [G]= i + ot © A noc
Green’s function ‘
DMFT as type-l approximation: Metzner, Vollhardt (1989)
G — . 1 Q= 1~ Georges, Kotliar, Jarrell (1992)
G; o — ZulG] G; — 2ulG]
with 3 [G]: functional of an impurity model
(vertices restricted to a single-site)
(Gt+,0)ii L

DMFT self-consistency cycle: Hyny—o X —e G =
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dynamical variational principles H

<, 1 60y[G
Luttinger-Ward functional: ‘ R — ¢ = 3y[G]
C) T G
Qe ulG]l=TriInG — Tr((G £ 0 — G) + Py[G] Luttinger, Ward (1960)

Euler equation < Dyson’s equation

1 604 u|G] o
= ——% — g l-qgrl-3sylc
T G t0 ~ ZUlG]

L universal, extremely complicated
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dynamical variational principles H

<, 1 60y[G
Luttinger-Ward functional: ‘ R — ¢ = 3y[G]
@ T G
Qe ulG]l=TriInG — Tr((G £.0 — G) + Py[G] Luttinger, Ward (1960)

Euler equation < Dyson’s equation

0= — : =G -G, —2Zy|G
T G t,0 ~ ZulC]

L universal, extremely complicated

DMFT as type-Il approximation:
dy[G] — Py[G] (impurity model)
0 Zy[G] — Zy[G]
[J Dyson’s equation — DMFT s.-c. equation

conserving approximations:
PulG] — Pu|G]
(certain diagram classes)
[ type-ll

Baym, Kadanoff (1961)
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Luttinger-Ward functional:

<,
@‘ o

dynamical variational principles H

1 §&y[G]

e YulG]

Q. ulG] =TrInG — Tr((G, 5 —

)

G) + oyl[G]

Luttinger, Ward (1960)

Euler equation < Dyson’s equation

1 082 G
0= — t,U[ ] _ G_1
T 0G

— Gy — ZulG]

L universal, extremely complicated

DMFT as type-Il approximation:
dy[G] — Py[G] (impurity model)
0 Zy[G] — Zy[G]
[J Dyson’s equation — DMFT s.-c. equation

conserving approximations:
PulG] — Pu|G]
(certain diagram classes)
[ type-ll

Baym, Kadanoff (1961)

type-Ill approximation ?
QulG]=TrinG —
Q¢ y[G]=Trin G — Tr((Gtz 0~

choose reference system with U = U*
Tr(Gg o — G HG) + PulG]

G™1)G) + oy[G]

~Tr(G¢,

9

Ot UlG] = Q2 UG

reduces to Rayleigh-Ritz principle !

— G, y)G = Q¢ ulpee,U]
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dynamical variational principles H

problem:
type-lll & impurity model as reference system [0 local Green’s function



XIV Training Course in the Physics of Strongly Correlated Systems Salerno, October 2010

dynamical variational principles H

problem:
type-lll & impurity model as reference system [0 local Green’s function

alternative functional:

1

Qt,U[G] = Trln —
G; o — ZulG]

— Tr(Xu|G]G) + Py |G] Chitra, Kotliar (2001)

Euler equation < Dyson’s equation

DMFT as type-Il approximation: type-1ll approximation ?
dy[G] — Py[G] reference system:

>ulG] — Zy[G] impurity model with U = U*
[0 DMFT self-consistency equation [0 G uis local!
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dynamical variational principles H

problem:
type-lll & impurity model as reference system [0 local Green’s function

alternative functional:

1 : :
QulG] =Trln — — Tr(Xy[G|G) + Py [G] Chitra, Kotliar (2001)
G o — XulG]
Euler equation < Dyson’s equation
DMFT as type-Il approximation: type-lll approximation ?
dy[G] — Py[G] reference system:
>ulG] — Zy[G] impurity model with U = U*
[0 DMFT self-consistency equation [0 G uis local!

functional of the local Green’s function:

Q¢ U [GUOC)] DMFT as type-Il approximation
Chitra, Kotliar (2000) Georges (2004)
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self-energy as the basic variable

original system

self-energy-functional approach H
Potthoff (2003)

reference system

o ©oo0o oo o0oO
o o oo oo o %o@oo@o
) ® ®

o o O o O o O
o o o O o O o OVO&O%
— ® ) ) —

[J X is local

o oo o o o o
o o oo o o o
® ® ®

[0 3 is non-zero on the correlated sites only
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self-energy-functional approach H

self-energy as the basic variable Potthoff (2003)

original system reference system
°1% o°1% o°1% &® %0 o° % o° % Qo 3 f A
. OO Oo OO Oo °o o° . OO.OO Oo.oo °o.oo . Ovo &o %
o° °o o° °o o° °o c’o.oo o°.°o oo.oo ovo ovo ovo

[0 32 is local
[0 3 is non-zero on the correlated sites only

1
Q¢ u[X] =Trin = = + Fy[X] Fy[X] = Legendre transform of &y [G]

O QulZiul=%u U

[0 Euler equation: — Gyu[X] =0 < Dyson’s equation [

—1
t,0 >

. ~ 0 . :
I Euler equation on A.: %Qt,U[thau] = 0 < DMFT self-consistency equation [

[1 DMFT as type-Ill approximation



VI Dynamical Theory of the
Mott Transition



DMFT of the Mott Transition
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atom solid
E ,
N ,
W«IS ;::/ $
U<<W
metal

U>>wW
insulator

Mott transition “
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generic model H

H=—t Z CIGCJ'J + E Zniani—a
o

1)0

parameters:

— lattice structure, dimension
— n.n. hopping: ¢

— local interaction: U

— electron density : n = N/L
— temperature T’

Hubbard model generic for the Mott transition
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DMFT phase diagram H

0.05 - : . - . - .
+————+
N o—o U, NRG i
0.04 =--= U_, NRG Hubbard model
* U, QMC 1 half-filling
0.03 | " U, QMC e
> P semielliptical DOS
= W =4
0.02 T
NRG
0.01 ¢ I Bulla, Costi, Vollhardt
(2001)
0.00 :
1.0
QMC
Joo, Oudovenko (2000)

T = 0: continuous phase transition
T > 0: discontinuous transition
T > T crossover Georges, Krauth, Kotliar, Rozenberg (1996)
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DMFT phase diagram H

single site

T = 0: continuous phase transition
T > 0: discontinuous transition
T > T crossover Georges, Krauth, Kotliar, Rozenberg (1996)
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effective Heisenberg model “

Anderson’s superexchange mechanism

energy gain by forbidden by
virtual hopping Pauli principle

site i site j site i site j

at low energies / temperatures:

. t2
H = Z‘stlsj with Jii o< — 5
(]

antiferromagnetic Heisenberg model
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magnetic correlations and entropy H

Heisenberg insulator for U > t:
2

[J at low energies: Heisenberg model with J ~ =
[0 long-range AF order (also for D = oo, within DMFT)

Mott insulator for U > t:
[J metastable paramagnetic state with well-formed local moment S = 1/2
[1 strong nearest-neighbor (AF) magnetic correlations

SulGl= 1 + T+ ECE +...

‘=‘:=I

Mott insulator within DMFT:
[0 no feedback of nonlocal magnetic correlations on X

QpMFET = LQimp + Trln

1 — LTrln Gimp

Gy

OF
[I free energy F', entropy S = ~57 ™ system of decoupled local moments

S(T =0) =L log2 (Mott insulator, DMFT)
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entropy problem H

single site

metal: S(0)/L =0
insulator:  S(0)/L = log 2 (mean-field artifact)

at finite 71 Fet = Emet — T'Smet > Eins — T'Sins = Fins

the insulator wins at higher temperatures

Q: mean-field artifact ?
Q: phase-diagram topology for D =27
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Hubbard

/ \ bath
5@ omrr ()

N 4
000000

single impurity in a bath

plaquette DMFT |

Hubbard

/ \ bath

3(W) C-DMFT @
N Pl

(0—0)(0—0)(0—0)

cluster impurity in a bath

singlet formation 0O S(7'=0) =0
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plaquette DMFT |

Hubbard Hubbard
/ \ / \ bath

bath
>(w) DMFT O 2(w) C-DMFT

N 4 N 4
(@) (00 (0—0)(0—0)(6—9)

single impurity in a bath cluster impurity in a bath
0.25} .

_ 0.20} o

D = 2 square lattice: Badl B?d
meta insulator
L. = 4 (plaquette) = 0.15} o
diagrammatic QMC, finite T’ Vs
~ Paramagnetic
smaller U 0.05; insulator
C

coeX|ste_nce (different s_h_ape) 0.00 el 55 3T 52
T > 0: first-order transition Usft

Park, Haule Kotliar (2008)
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Hubbard

/

2(w)

N

DMFT

N /Q
000000

single impurity in a bath

plaquette DMFT |
Hubbard

/

2(w) C-DMFT

N 4
(0—0)(0—0)(0—0)

cluster impurity in a bath

the insulator wins at higher temperatures

the metal wins at higher temperatures ?

single site

me

14

plaquette

Uei(T) Uco(T)

Insujlator




Mott Transition within the DIA
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dynamical impurity approximation (DIA) “

0.04

0.03

0.02

0.01

Hubbard model

half-filling
semi-elliptical DOS
coex. W =4
ey ey ey by
46 48 5 52 54 56 58 6 DIA with ns = 2

U

qualitative agreement with full DMFT (QMC, NRG)

Georges et al 1996, Joo, Oudovenko 2000, Bulla et al 2001
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DIA - convergence to the DMFT “

006 | | | | | |
0.05
T -
0.04 —
0.03 B Hubbard model
002 — half-filling
- semi-elliptical DOS
0.01 W =4
0 DIA with ng = 2
4.6
U Pozgajcic 2004

quantitative agreement with full DMFT (QMC, NRG)
Georges et al 1996, Joo, Oudovenko 2000, Bulla et al 2001

rapid convergence with increasing  ns
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entropy problem |

1.5 T T T T T T T T T T T T T | T T T T
0 U=5.2 |
> i
(@}
o i
5
10l insulator
|Og 2 | i 1 T 1771 | T 171 | T 171 :
> 0.8l i T.=0.011 |
05 0.6 ] ]
0.4+ —
02k 1 A Hubbard model
metal 0_ 111 | I | | [ |_ i half-fllllng
| | 0 | 0.01 O'?Z 0.034 semi-elliptical DOS
0.0 0.0 0.5 1.0 1.5 2.0 W =4
temperature T DIA with ns = 2

Mott insulator: macroscopic ground-state degeneracy

Fermi liquid: linear S(T) =~T + - --
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DIA - phase transitions “

T U = 5.2, different T" > 0: discontinuous
- U=5.2 +-2.694
-2.696
0 -2.698 . .
T = 0, different U: continuous
2.7 —T . —T—
I 6.0 |
T=0
0.010 5.9
-2.702 58 |
— 5.7
-2.704 c 55
o 0 54
-2.706 3 53 |
C -0.005 £o
l I 50 |
| | ! | | ] | ] | ] | ! | |
0 01 02 03 04 0 01 02 03 04 05
\Y; Vv

[1 metastable states
[1 order of phase transitions



Mott Transition in D =1
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(Q(t) + uN) / L

Q
o

-0.2

-1.0

R | L =10 -
C

0.5 1.0 1.5

intra-cluster hopping t’

SFT grand potential “

D = 1 Hubbard model
L = 1000 — 2000 sites

energy scale:
nearest-neighbor hopping ¢ = 1

u = U/2 (half-filling)

single variational parameter:
t t .t t_ t
o000 0 °

enhanced ¢’ compensates for missing inter-cluster hopping

for more itinerant system (U — 0) stronger compensation necessary
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VCA: optimal intra-cluster hopping

U2

0 0.05

0.10

optimal intra-cluster hopping t’

O 2 4 6 8 10 12

| | |
14 16

U

2.13
2.12
2.11
2.10
2.09

weak coupling: strong renormalization of

— t=1p=U/2
Q(t') = Q[X(t)]

t’ vs. small self-energy

|
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finite-size scaling “

(!) .O|'1.0;2.0;3.0;4.07'5 — t=1,p=U/2

o
SN
T T

— VCA vs. “direct” cluster method

i (isolated cluster with L. sites)
-0.45

o
[

ground-state energy E,/L

-0.55]

-0.25]

03|

VCA: faster convergence

no upper bounds for true ground-state energy within SFT
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VCA: recipe for practical calculations “

set up cluster reference system (here: choose L., U)
and fix the variational parameters (here: t)

use Lanczos to get poles and weights of Green’s function

1
Glp@) =D Qam———QF

w— wl,
and the cluster grand potential " = E} — u(N)
setup M = A + Q'VQ with Apry = W/ S and V. =t — t/
get w,, as eigenvalues of M (poles of the approximate lattice Green’s function)
compute SFT grand potential for T = O:
Q) = QBN = + > wmO(—wm) — Y whnO(—wy,) .

m m

redo these steps for different cluster parameters
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more variational parameters “

- t=1,p=U/2
_ U=4

— several hopping paramters optimized
simultaneously

tp tp 1 15 1y

h G 15 1H 1

optimized hopping parameters

variation of optimal ¢/ less that 10%

significant effects at chain edges

third hopping parameter bulk-like

Friedel oscillations

almost no effecton Egpand A
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. L
(o—o—e-e 0o

tpbc

1:’1 1:’1 t,l 1:’1 t,l

FIPIRPIY

1:’1 1:’1 t,l t’l t’l

FIPIY

more variational parameters “

additional hopping linking chain edges
(boundary conditions)

second-neareast-neighbor hopping
(magnetic frustration)

third-neareast-neighbor hopping

hopping parameters not present in original system: almost v anishing

optimal t,,. = 0, no periodic (but open) boundary conditions

optimal hopping = 0, if incompatible with particle-hole symmetry
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bath sites “

'2.53 | T | T | T | T

ref.sys. H
t'=t
-2.54

1 Ve e eV

VilgleldV

VTS

t’ = t,opt.

ref.sys. J ref.sys. |
-2.55 ‘ 5

\
L =4
\\\ c

SFT grand potential Q(t") /L

-2.56 -
i L =8 i
Cc
257 -
exact :
IS ettt el Mttt vl B
-0.4 -0.2 0 0.2 0.4
hybridization strength V
| vs. H: optimization of bath sites more effective than hoppi ng

J vs. H, I: bath sites at chain center ineffective

different L.: larger clusters more effective than optimization
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local Matsubara Green'’s function “

0.0 R
g I cluster DF
O |
E :

-0.1 )

- VCA,L=2 L=4 )
Cc Cc
_O 2 oo b e e b b e b
"0 1 2 3 4 )
frequency w

-0.16

-0.17

-0.18

-0.19

VCA comparable to C-DMFT

DMRG, C-DMFT, cluster DF: Hafermann et al. 2007

t=1,pu=U/2,U =56
VCA withng = 3
C-DMFT with ng = oo
(B = 20)

cluster DF for L. = 2
(B = 20)

(dynamical) DMRG:
numerically exact



Mott Transition in D =2
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Hubbard

/ \ bath
s omEr ()
/

\
000000

single impurity in a bath

plaquette VCA H

/
2(w)  VCA O
N y
o—0O0—-~0 000

optimal cluster impurity

the insulator wins at higher temperatures

the metal wins at higher temperatures ?

single site

me

4

plaquette

Uei(T) Uco(T)

Insujlator
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parameter optimization H

reference system

for plaquette VCA
e ON-site energies at correlated sites: e =0 (particle-hole symmetry)
e oOn-site energies at bath sites: ¢, = U/2 = p (particle-hole symmetry)
e t": optimal value small, [t | < t/25 (t'" irrelevant for Ly, — oo )
o t': optimal value ¢, =t + At with At , <t/10 (¢’ =tfor Ly — o0)

e settingt’ =tandt” =00 change of V,pt < 1%, €2 essentially unchanged
[1 one-dimensional optimization of  V sufficient

e critical interaction:
U.=5.79 with V, ¢/, ¢ optimized simultaneously (downhill simplex)
Uc. =5.79 with V' optimized only

e DIA(ns =2):U.=11.3
DMFT: U, = 11 Zhang, Imada 2007, U, = 12 Gull et al. 2008
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SFT functional E[2(V)]/L

O
N

O
U1

O
o

-
N

O
o

Mott insulator

N | (oo
|

B @ 5.4 |
i U=4.2 metal
1 | L | L | L | L | L | [
0 01 02 03 04 05 06 0.7

variational parameter V

SFT functional H

D=2n=1,T=0
VCA, Lo =4, L, = 4
physical states:

(V) = min, max
small Vit insulator
large Vipt: metal

coexistence:
4.6 ~ Uc]_ < Uc2 ~ 6.35

first-order transition
atU. =5.79 (T = 0)

hidden critical point
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Gloc(iw) and S (iw) at U = 5.8 |

Im G,__(iw) Im 2, (i)
O [ | [ | [ [ | [ O
W insulator
i metal (unstable) .
-0.4 —
metal ]
-0.6 |- —
-0.8 —
U=5.8 |
-1 1 | 1 | 1
0 0.5 1 1.5 0
&)

[1 third, metastable solution is metallic
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physical quantities in the coexistence range

guasiparticle weight

@ © ¥ « Q9
o o o o o
r~ I I _ I _ I I _ I _ I _ I I I I
N i i
- o _ _
i ) 1 1
(&)
© - —
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 — —
_ +
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_ o 4
- (&) €
< <
(0] | _ | _ | _ | | | | | _
%) o 7o)
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o o o

ABlaus arels-punolb
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hidden critical point scenario H

T _ _ T
single site plaquette
Ue(T) Uea(T)
Mott insulator
>
U U

plaquette

Uci (T)

hcp
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