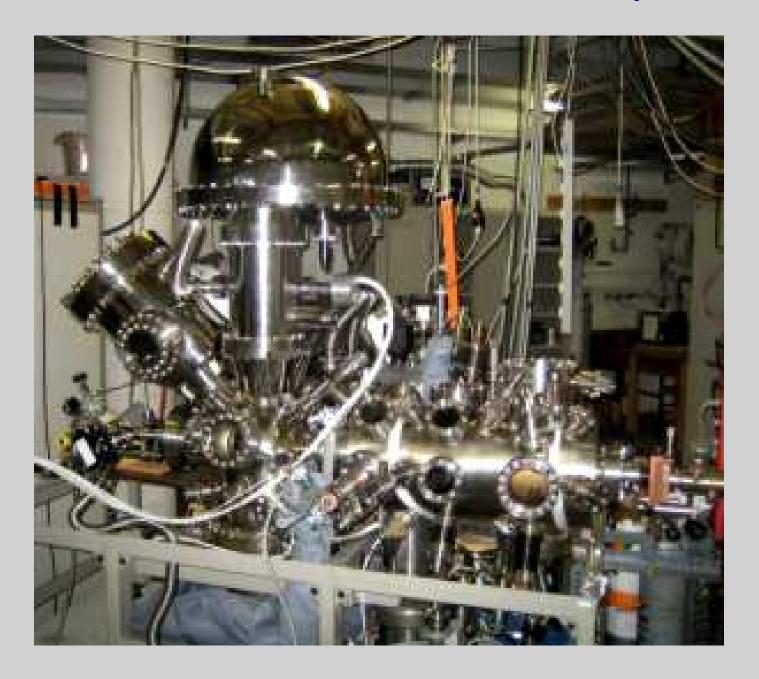

Das Doppelspalt-Gedankenexperiment ...

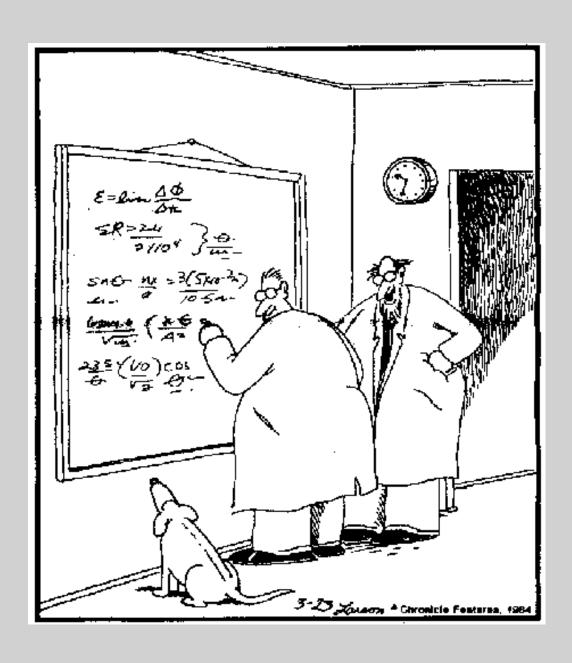

... und seine Konsequenzen

Prof. Dr. Michael Potthoff

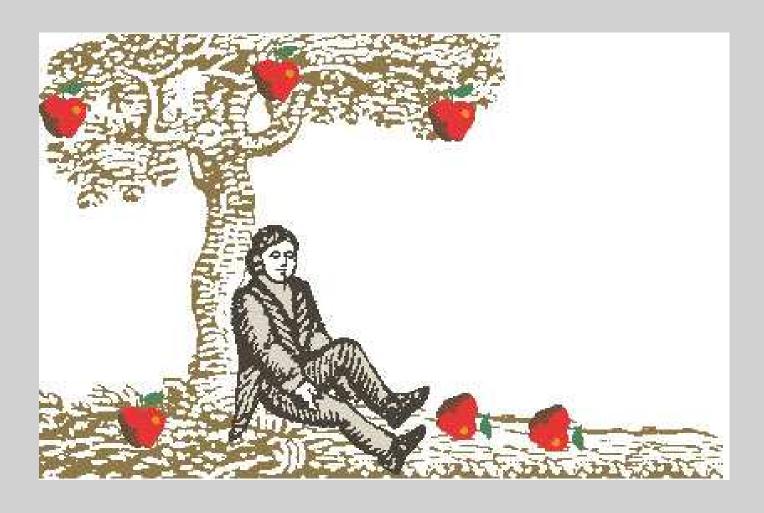
I. Institut für Theoretische Physik

Experimentalphysik

Experimentalphysik


repräsentative Szene am Institut für Angewandte Physik

Vorsicht: Theorie



Vorsicht: Theorie

Gedankenexperimente?

Google: Gedankenexperiment

Google: Gedankenexperiment

Web Bilder Videos Maps News Shopping E-Mail Mehr ▼

Webprotokoll | Sucheinstellungen | Anmelden

Gedankenexperiment

Suche

Ungefähr 4.350 Ergebnisse (0,26 Sekunden)

Erweiterte Suche

Alles

Bilder

Videos

New s

Shopping

Mehr

Hamburg

Standort ändern

Das Web

Seiten auf Deutsch Seiten aus Deutschland Übersetzte Seiten

Mehr Optionen

Veranstaltungen der nächsten 4 Wochen - Veranstaltungen und ... Q

20. Juli 2001 ... Ringvorlesung 'Physik im Alltag` ", Dr. Andreas Gellrich und Yves Kemp Deutsches Elektronen Synchrotron (DESY) Hamburg ... "Das Doppelspalt-Gedankenexperiment und seine

Konsequenzen". 17.00 Uhr Jungiusstr. 11 ...

www.physnet.uni-**hamburg**.de/aktuelles_veranstaltungen28.shtml - Im Cache - Ähnliche Seiten

<u>Druck - Veranstaltungen und Aktuelles des Fachbereichs</u> **Physik** 4

Ringvorlesung 'Physik im Alltag` ", Dr. Andreas Gellrich und Yves Kemp ...

www.physnet.uni-

hamburg.de/aktuelles_veranstaltungen28_print.shtml - Im Cache

Veranstaltungen und Aktuelles des Fachbereichs Physik Q

Allgemeines Vorlesungswesen Ringvorlesung 'Physik im Alltag` ", Dr.

Andreas ...

dserver.physnet.uni-

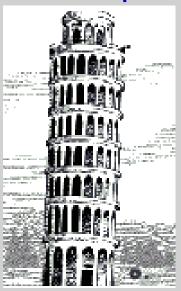
hamburg.de/aktuelles veranstaltungen28 print.shtml - Im Cache

Physik im Alltag - Arbeitsstelle für Wissenschaftliche

Weiterbildung Q

27. Jan. 2009 ... Unter dem Motto "Physik im Alltag" laden wir Sie berzlich

Die Top Ten der Experimente-Charts

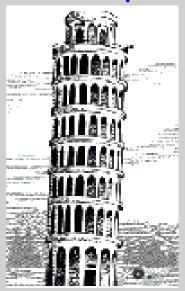

- 1.
- 2.
- 3. Millikans Öltröpfchenversuch (\sim 1910)
- 4. Newtons Aufspaltung des Sonnenlichts mit Hilfe eines Prismas (1665-1666)
- 5. Youngs Doppelspalt-Experiment mit Licht (1801)
- 6. Cavendishs Experiment mit einer Torsionwaage (1798)
- 7. Eratosthenes' Messung des Erdumfangs (3. Jhdt. v. Chr.)
- 8. Galileos Experimente mit rollenden Bällen auf schiefen Ebenen (\sim 1600)
- 9. Rutherfords Entdeckung des Atomkerns (1911)
- 10. Foucaultsches Pendel (1851)

Die Top Ten der Experimente-Charts

1.

2. Galileos Experimente mit fallenden Körpern (\sim 1600)

- 3. Millikans Öltröpfchenversuch (\sim 1910)
- 4. Newtons Aufspaltung des Sonnenlichts mit Hilfe eines Prismas (1665-1666)
- 5. Youngs Doppelspalt-Experiment mit Licht (1801)
- 6. Cavendishs Experiment mit einer Torsionwaage (1798)
- 7. Eratosthenes' Messung des Erdumfangs (3. Jhdt. v. Chr.)
- 8. Galileos Experimente mit rollenden Bällen auf schiefen Ebenen (\sim 1600)
- 9. Rutherfords Entdeckung des Atomkerns (1911)



Die Top Ten der Experimente-Charts

1. Doppelspalt-Experiment zur Interferenz einzelner Elektronen

2. Galileos Experimente mit fallenden Körpern (∼1600)

- 3. Millikans Öltröpfchenversuch (∼1910)
- 4. Newtons Aufspaltung des Sonnenlichts mit Hilfe eines Prismas (1665-1666)
- 5. Youngs Doppelspalt-Experiment mit Licht (1801)
- 6. Cavendishs Experiment mit einer Torsionwaage (1798)

Thesen zur Quantenmechanik

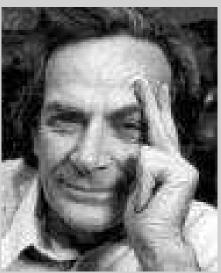
Doppelspalt-Gedankenexp ist die "top number one" weil:

- → Der Anwendungsbereich ist weitaus größer als bei anderen Theorien: Elementarteilchenphysik, Atomphysik, Molekülphysik, chemische Bindungen, Eigenschaften von Festkörpern, Informationstechnologien (Halbleiterbauelemente), Astrophysik des frühen Universums, ...
- → Die Quantenmechanik ist (bislang) die erfolgreichste Beschreibung von Naturphänomenen, die jemals erdacht worden ist.
- → Die Grundlagen der Quantenmechanik sind nach wie vor unverstanden.

Thesen zur Quantenmechanik

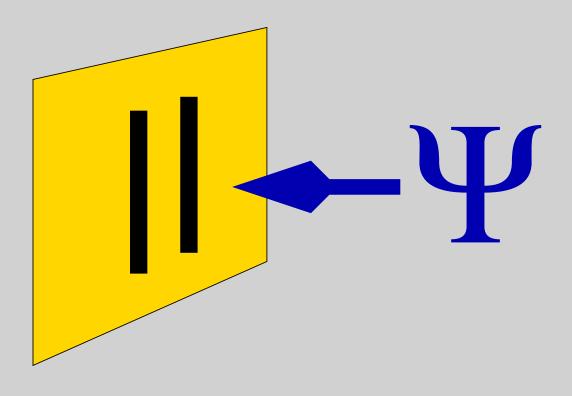
Doppelspalt-Gedankenexp ist die "top number one" weil:

- → Der Anwendungsbereich ist weitaus größer als bei anderen Theorien: Elementarteilchenphysik, Atomphysik, Molekülphysik, chemische Bindungen, Eigenschaften von Festkörpern, Informationstechnologien (Halbleiterbauelemente), Astrophysik des frühen Universums, ...
- → Die Quantenmechanik ist (bislang) die erfolgreichste Beschreibung von Naturphänomenen, die jemals erdacht worden ist.
- → Die Grundlagen der Quantenmechanik sind nach wie vor unverstanden. Roger Penrose: "Die Quantentheorie macht absolut keinen Sinn"



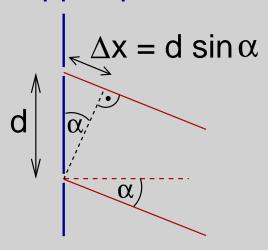
Thesen zur Quantenmechanik

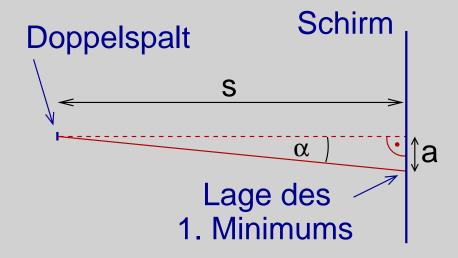
Doppelspalt-Gedankenexp ist die "top number one" weil:


- → Der Anwendungsbereich ist weitaus größer als bei anderen Theorien: Elementarteilchenphysik, Atomphysik, Molekülphysik, chemische Bindungen, Eigenschaften von Festkörpern, Informationstechnologien (Halbleiterbauelemente), Astrophysik des frühen Universums, ...
- → Die Quantenmechanik ist (bislang) die erfolgreichste Beschreibung von Naturphänomenen, die jemals erdacht worden ist.
- → Die Grundlagen der Quantenmechanik sind nach wie vor unverstanden. Richard Feynman:

"Das Doppelspalt-Experiment birgt das Herz der Quantenmechanik"

virtuelles Labor





Bestimmung der Wellenlänge von Elektronen

Interferenzmuster kann erklärt werden, wenn Elektronen Wellen sind ...

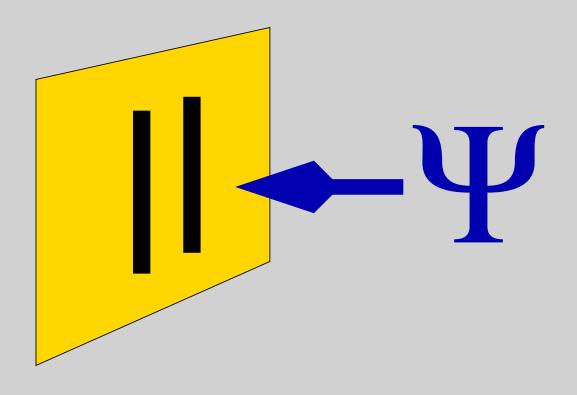
Doppelspalt

Bedingung für destruktive Interferenz:

$$d\sin\alpha = \frac{\lambda}{2}$$

Bestimmung von des Ablenkwinkels α :

$$\tan \alpha = \frac{a}{s} \approx \sin \alpha$$


also:

$$\lambda \approx 2d \, \frac{a}{s} = 2 \cdot 400 \cdot 10^{-9} \, \text{m} \cdot \frac{20 \cdot 10^{-6} \, \text{m}}{3 \, \text{m}} \approx 5.4 \cdot 10^{-12} \, \text{m} = 5.4 \, \text{pm}$$

Elektronenwellen haben extrem kleine Wellenlänge!

virtuelles Labor

Wellenlänge und Impuls

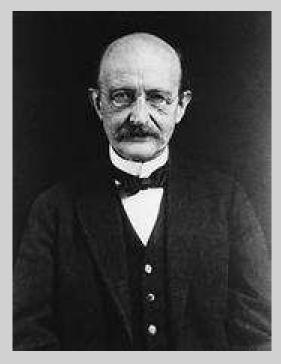
Das Doppelspaltexperiment zeigt:

$$\lambda \cdot p = h$$

h ist eine universelle Naturkonstante

Einheit:
$$[h] = [\lambda] \cdot [p] = \mathbf{m} \cdot \mathbf{kg} \frac{\mathbf{m}}{\mathbf{s}} = [\mathbf{Wirkung}]$$

Berechnung von *h*:


$$E_{
m kin.}=rac{p^2}{2m}$$
 also: $p=\sqrt{2mE_{
m kin}}$

und deshalb:

$$h = \lambda \cdot \sqrt{2mE_{\rm kin}} \approx 5.4 \cdot 10^{-12} {\rm m} \cdot \sqrt{2 \cdot 9.1 \cdot 10^{-31} {\rm kg} \cdot 50 \cdot 10^3 \cdot 1.6 \cdot 10^{-19} J}$$

$$h\approx 6.5\cdot 10^{-34}\mathrm{Js}$$

$$h = 6.626 \cdot 10^{-34} \text{Js}$$

Max Planck

Wirkungsquantum *h*

h spielt die entscheidende Rolle bei:

- Energiedichte der Hohlraumstrahlung Nobelpreis 1918, Max Planck
- Deutung des Fotoeffekts
 Nobelpreis 1921, Albert Einstein
- Compton-Effekt (Streuung von Photonen an Elektronen)
 Nobelpreis 1927, Arthur Compton
- Elektronenbeugung an Ni
 Nobelpreis 1937, Clinton J. Davisson

Generell gilt:

Wirkung in der Größenordnung von *h* → Quantenphänomene!

Wirkung = Energie \times Zeit = Ort \times Impuls = \cdots

de Broglie-Wellenlänge

Jedem Objekt kann eine Wellenlänge zugeordnet werden:

$$\lambda = \frac{h}{p}$$

de Broglie - Wellenlänge

Louis de Broglie

Verhalten sich alle Objekte als Wellen?

de Broglie - Wellenlänge von Gewehrkugeln

Geschwindigkeit: $v=1000\,\mathrm{km/h}$, Masse: $m=10\,g$

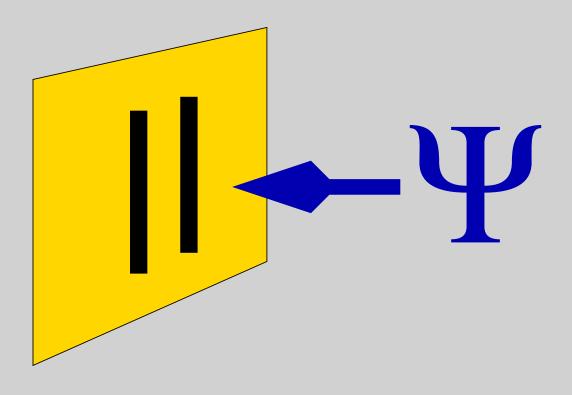
also: $p=0.01\,\mathrm{kg}\cdot278\,\mathrm{m/s}=2.78\,\mathrm{kg}\cdot\mathrm{m/s}$

und:
$$\lambda = \frac{h}{p} = \frac{6.626 \cdot 10^{-34} \text{Js}}{2.78 \, \text{kg} \cdot \text{m/s}} = 2.38 \cdot 10^{-34} \, \text{m}$$

Verhalten sich alle Objekte als Wellen?

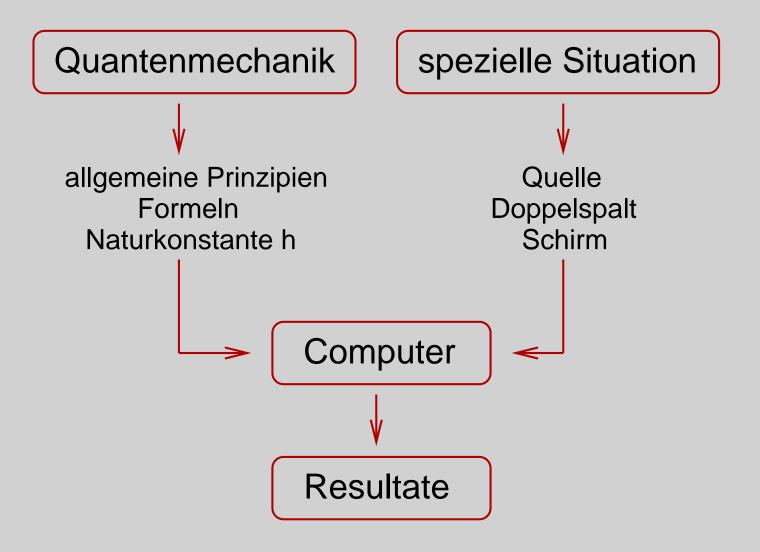
de Broglie - Wellenlänge von Gewehrkugeln

Geschwindigkeit: $v=1000\,\mathrm{km/h}$, Masse: $m=10\,g$


also: $p=0.01\,\mathrm{kg}\cdot278\,\mathrm{m/s}=2.78\,\mathrm{kg}\cdot\mathrm{m/s}$

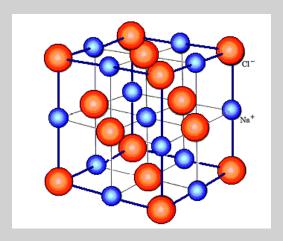
und: $\lambda = \frac{h}{p} = \frac{6.626 \cdot 10^{-34} \text{Js}}{2.78 \, \text{kg} \cdot \text{m/s}} = 2.38 \cdot 10^{-34} \, \text{m}$

das ist lächerlich!



virtuelles Labor

virtuelles Doppelspaltexperiment



→ Spalte bauen im Nanometerbereich ???

→ Spalte bauen im Nanometerbereich ???

Idee: Beugung an kristallinem Festkörper

Gitterkonstanten im nm-Bereich!

→ Spalte bauen im Nanometerbereich ???

Davisson und Germer (1927):

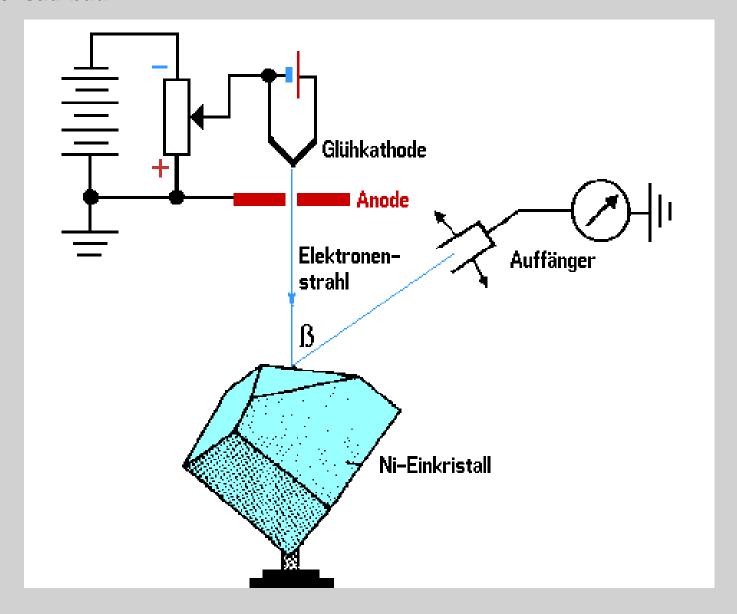
Second Series December, 1927

Vol. 30, No. 6

The

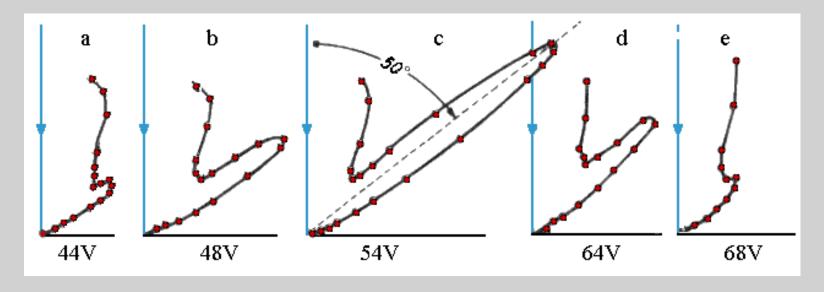
PHYSICAL REVIEW

DIFFRACTION OF ELECTRONS BY CRYSTAL OF NICKEL


By C. DAVISSON AND L.H. GERMER

ABSTRACT

The intensity of scattering of a homogeneous beam of electrons of adjustable speed incident upon a single crystal of nickel has been measured as a function of direction. The crystal is cut parallel to a set of its [111]-planes an bombardment is at normal incidence. The distribution in latitude and azimuth has been determined for such scattered electrons as have lost little or none of their incident energy.



Versuchsaufbau:

Resultat:

→ funktioniert tatsächlich!

C. Davisson und L.H. Germer

Heute: Elektronenbeugung an Kristallen zur Aufklärung der Kristallstruktur!

•

→ funktioniert tatsächlich!

C. Davisson und L.H. Germer

Heute: Elektronenbeugung an Kristallen zur Aufklärung der Kristallstruktur!

1961: tatsächliche Durchführung des Doppelspaltexperiments mit Elektronen (Claus Jönsson, Tübingen, Zeitschrift für Physik 161, 454).

•

Doppelspaltexperiment mit Neutronen

einfacher mit Neutronen:
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE_{\rm kin}}}$$

Zeilinger: Neutronen aus Forschungsreaktor (Institut Laue-Langevin, Grenoble) $E_{\rm kin}=200\mu{\rm eV}$, Spaltbreite 23 $\mu{\rm m}$, Spaltabstand 127 $\mu{\rm m}$

Doppelspaltexperiment mit Neutronen

einfacher mit Neutronen:
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE_{\rm kin}}}$$

Zeilinger: Neutronen aus Forschungsreaktor (Institut Laue-Langevin, Grenoble) $E_{\rm kin}=200\mu{\rm eV}$, Spaltbreite 23 $\mu{\rm m}$, Spaltabstand 127 $\mu{\rm m}$

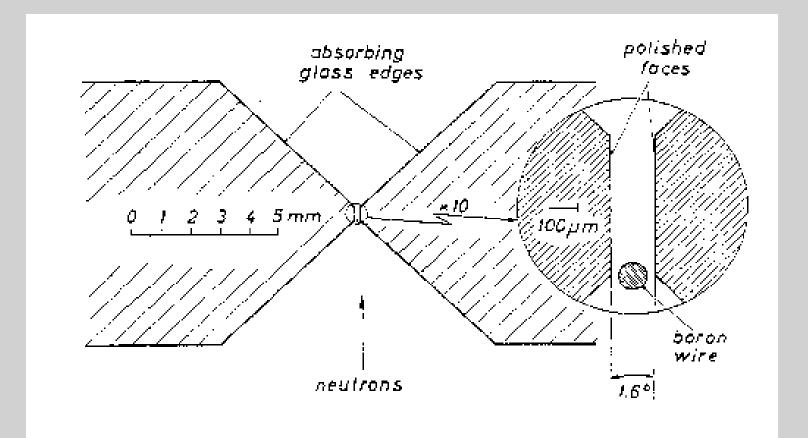


FIG. 6. Horizontal section through the double slit.

Doppelspaltexperiment mit Neutronen

einfacher mit Neutronen:
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2mE_{\rm kin}}}$$

Zeilinger: Neutronen aus Forschungsreaktor (Institut Laue-Langevin, Grenoble) $E_{\rm kin}=200\mu{\rm eV}$, Spaltbreite 23 $\mu{\rm m}$, Spaltabstand 127 $\mu{\rm m}$

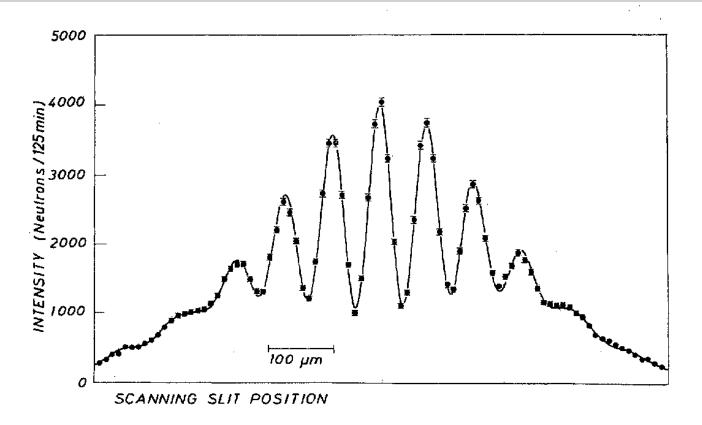
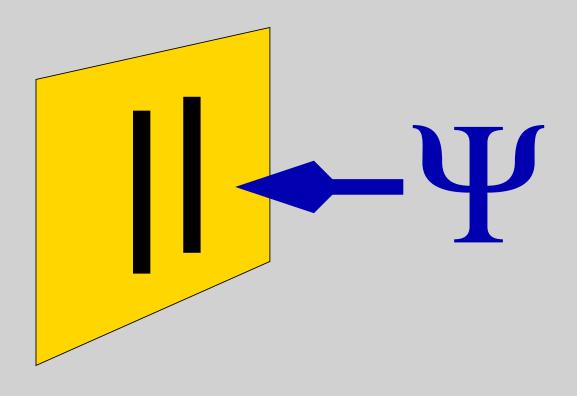
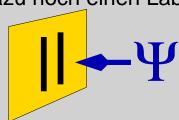



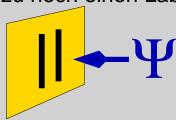
FIG. 7. Double-slit diffraction pattern. The solid curve represents the first-principles theoretical prediction. The slight asymmetry is explained by the known small unequality of the widths of the two slits.

virtuelles Labor

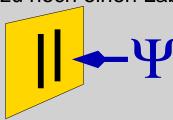


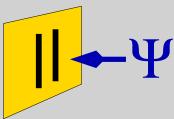
Was sind Elektronen?

- Interferenzmuster
- de Broglie-Wellenlänge
- → Elektronen sind Wellen!

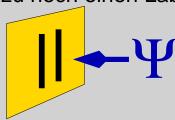


- Interferenzmuster
- de Broglie-Wellenlänge
- → Elektronen sind Wellen! Dazu noch einen Labortest ...

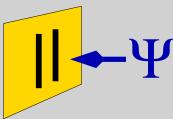

- Interferenzmuster
- de Broglie-Wellenlänge
- → Elektronen sind Wellen! Dazu noch einen Labortest ...


- Punkte auf dem Schirm: jeweils ein ganzes Elektron!
- Elektronen verhalten sich am Schirm wie Teilchen
- → Elektronen sind Teilchen!

- Interferenzmuster
- de Broglie-Wellenlänge
- → Elektronen sind Wellen! Dazu noch einen Labortest ...

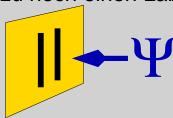


- Punkte auf dem Schirm: jeweils ein ganzes Elektron!
- Elektronen verhalten sich am Schirm wie Teilchen
- → Elektronen sind Teilchen! Kann das im Labor bestätigt werden?

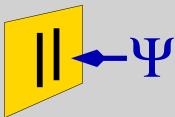


- Interferenzmuster
- de Broglie-Wellenlänge
- → Elektronen sind Wellen! Dazu noch einen Labortest ...

- Punkte auf dem Schirm: jeweils ein ganzes Elektron!
- Elektronen verhalten sich am Schirm wie Teilchen
- → Elektronen sind Teilchen! Kann das im Labor bestätigt werden?



- nein: destruktive Interferenz! (Welleneigenschaft)
- → Elektronen verhalten sich mal wie Wellen, mal wie Teilchen:


"Welle-Teilchen-Dualismus"

- Interferenzmuster
- de Broglie-Wellenlänge
- → Elektronen sind Wellen! Dazu noch einen Labortest ...

- Punkte auf dem Schirm: jeweils ein ganzes Elektron!
- Elektronen verhalten sich am Schirm wie Teilchen
- → Elektronen sind Teilchen! Kann das im Labor bestätigt werden?

- nein: destruktive Interferenz! (Welleneigenschaft)
- → Elektronen verhalten sich mal wie Wellen, mal wie Teilchen:
- "Welle-Teilchen-Dualismus" noch ein Versuch ...

Der Einzug des Zufalls

Doppelspaltversuch mit einem einzigen Elektron: Punkt auf dem Schirm bei Position x_1 Wiederholung bei exakt gleichen Bedingungen: Punkt bei $x_2 \neq x_1$

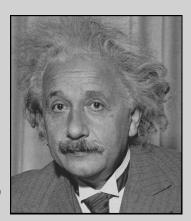
gleiche Bedingungen → verschiedene Resultate

vollständige Kontrolle des gesamten Versuchaufbaus → unkontrollierbares Resultat

das Resultat des Doppelspaltversuchs mit einem einzigen Elektron ist zufällig!

Die Quantenmechanik kann Einzelereignisse nicht mit Sicherheit vorhersagen!

Der Einzug des Zufalls

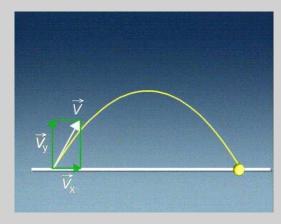

Doppelspaltversuch mit einem einzigen Elektron: Punkt auf dem Schirm bei Position x_1 Wiederholung bei exakt gleichen Bedingungen: Punkt bei $x_2 \neq x_1$

gleiche Bedingungen → verschiedene Resultate

vollständige Kontrolle des gesamten Versuchaufbaus → unkontrollierbares Resultat

das Resultat des Doppelspaltversuchs mit einem einzigen Elektron ist zufällig!

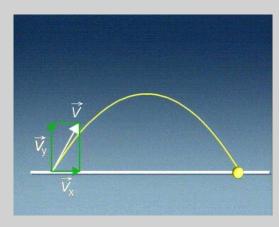
Die Quantenmechanik kann Einzelereignisse nicht mit Sicherheit vorhersagen!


Albert Einstein: "Gott würfelt nicht"

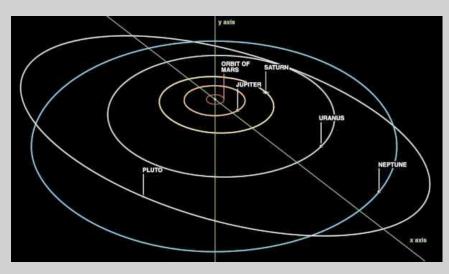
Das klassische mechanische Weltbild

Newtonsche Beweungsgleichung für ein Teilchen:

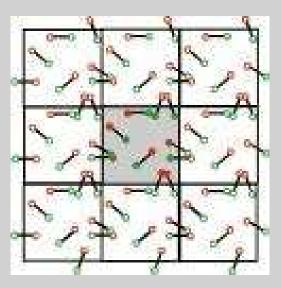
$$\vec{F} = m \cdot \vec{a}$$


- \rightarrow Ort und Geschwindigkeit zur Zeit t_0 bestimmen Ort und Geschwindigkeit zu jeder Zeit
- → sämtliche Systemeigenschaften sind durch die Anfangsbedingungen determiniert

Das klassische mechanische Weltbild


Newtonsche Beweungsgleichung für ein Teilchen:

$$\vec{F} = m \cdot \vec{a}$$



- \rightarrow Ort und Geschwindigkeit zur Zeit t_0 bestimmen Ort und Geschwindigkeit zu jeder Zeit
- → sämtliche Systemeigenschaften sind durch die Anfangsbedingungen determiniert

klassischer Determinismus

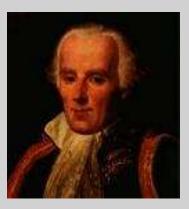
Planetensystem

Gas

Pierre Laplace

Pierre Laplace

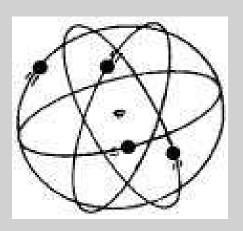
Pierre Laplace


Pierre Laplace

Doppelspalt-Experiment:
Es gibt keinen Determinismus!

objektiver Zufall

Pierre Laplace


Nach dem Vorbild der Himmelsmechanik ist die Welt durch Anfangsbedingungen und Bewegungsgesetze vollständig determiniert. Aufgabe der Naturphilosophie ist "lediglich" die Lösung der entsprechenden Gleichungen.

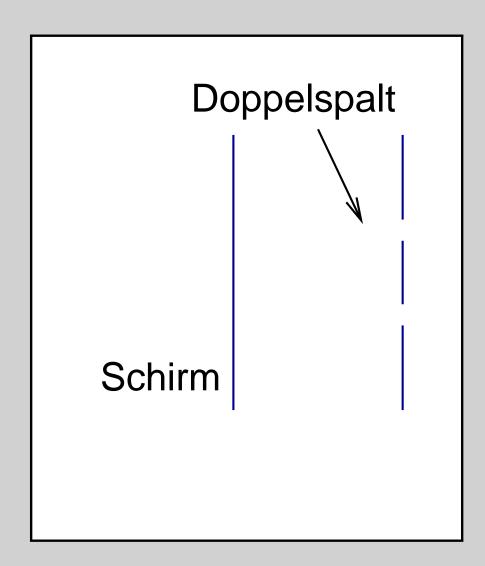
Doppelspalt-Experiment: Es gibt keinen Determinismus!

objektiver Zufall

Bild eines Atoms (klassische Sichtweise) nicht richtig, denn Wirkung $\sim h$

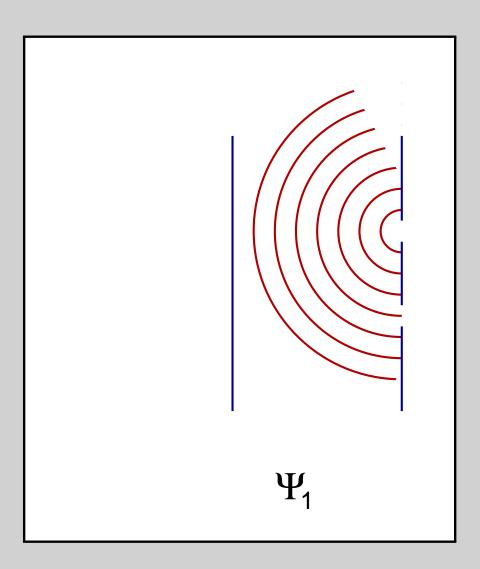
Willensfreiheit?

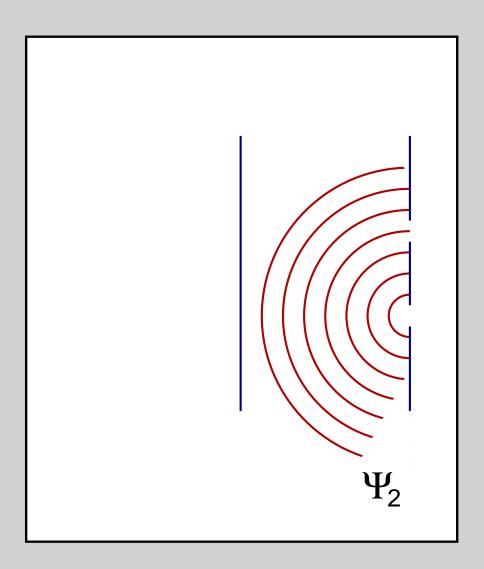
Willensfreiheit?



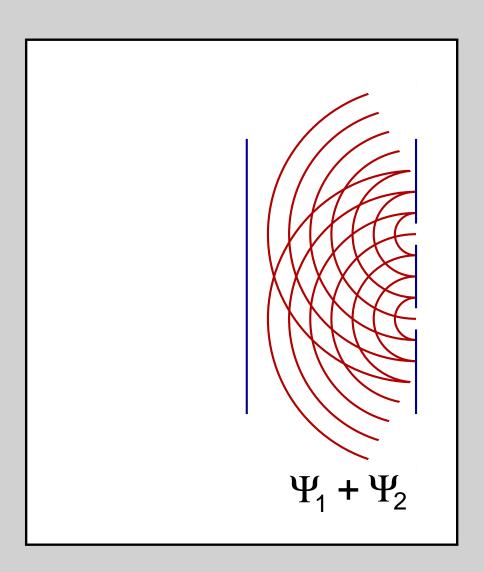
Laplacescher Dämon

"Quantendämon"


Wellencharakter?
Teilchencharakter?
Zufälligkeit?

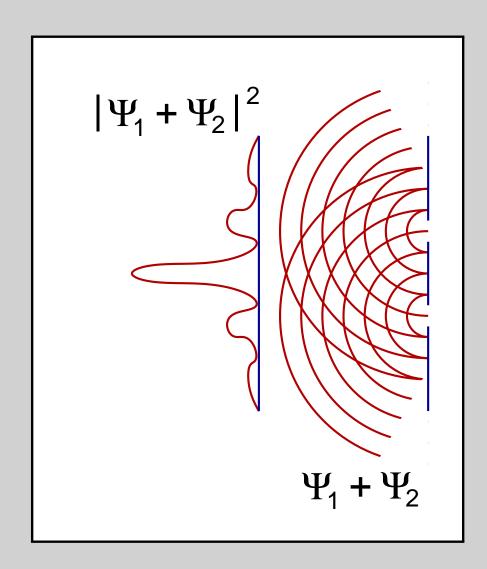

Wellencharakter?

Teilchencharakter?


Wellencharakter?
Teilchencharakter?

Wellencharakter?

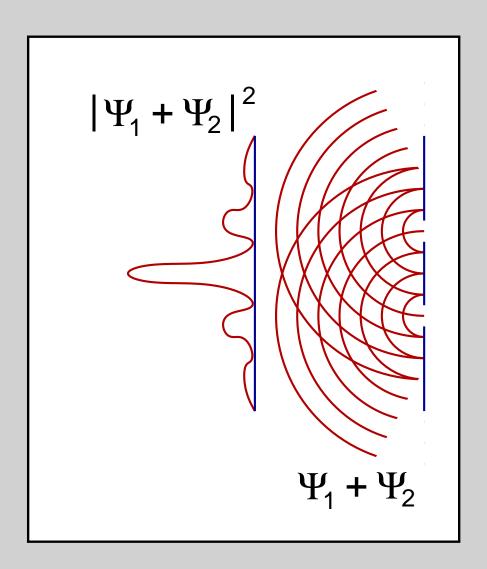
Teilchencharakter?



Wellencharakter?

Teilchencharakter?

$$|\Psi(x)|^2 = |\Psi_1(x) + \Psi_2(x)|^2$$

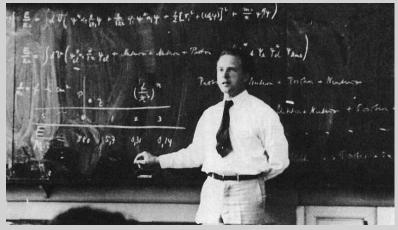

Wellencharakter

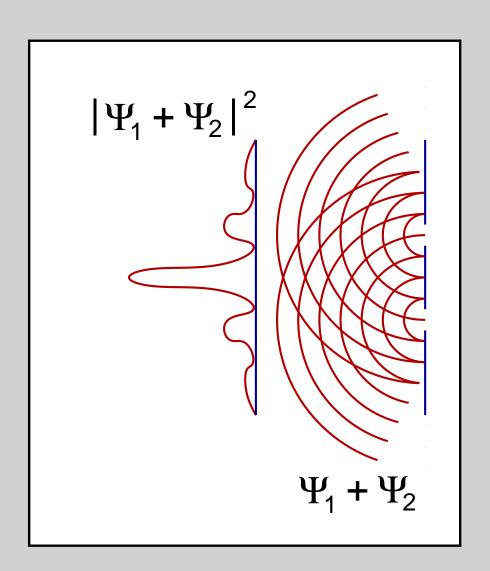
Teilchencharakter

Zufälligkeit

 $|\Psi(x)|^2$: Wahrscheinlichkeit dafür, das Elektron bei x zu finden

 $\Psi(x)$: Amplitude der Wahrscheinlichkeitswelle





Wellencharakter ✓
Teilchencharakter ✓
Zufälligkeit ✓

Niels Bohr

Die Wellenfunktion

- solange keine Messung durchgeführt wird: Welle $\Psi(x)$
- Teilwellen können sich überlagern (Interferenz)
- Ausbreitung der Welle bestimmt sich aus der

Die Wellenfunktion

- solange keine Messung durchgeführt wird: Welle $\Psi(x)$
- Teilwellen können sich überlagern (Interferenz)
- Ausbreitung der Welle bestimmt sich aus der

Schrödinger-Gleichung:

$$i\frac{h}{2\pi}\frac{\partial\Psi(x,t)}{\partial t} = -\frac{h^2}{8\pi^2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)$$

Erwin Schrödinger

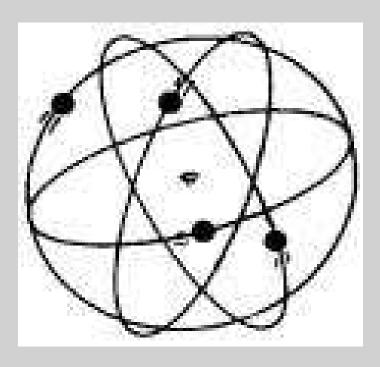
Die Wellenfunktion

- solange keine Messung durchgeführt wird: Welle $\Psi(x)$
- Teilwellen können sich überlagern (Interferenz)
- Ausbreitung der Welle bestimmt sich aus der

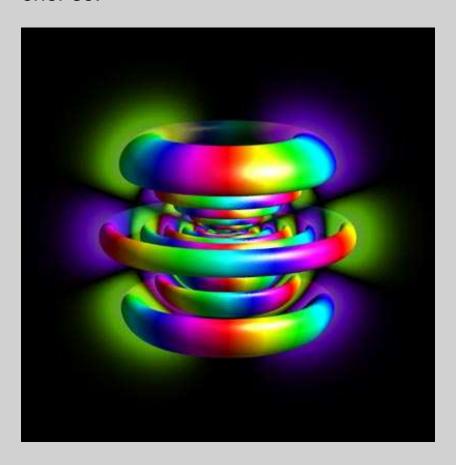
Schrödinger-Gleichung:

$$i\frac{h}{2\pi}\frac{\partial\Psi(x,t)}{\partial t} = -\frac{h^2}{8\pi^2 m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + V(x)\Psi(x,t)$$

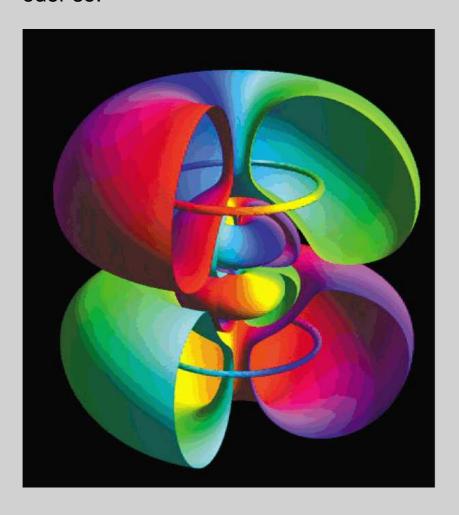
- Resultat einer Ortsmessung ist zufällig
- Wahrscheinlichkeit, das Elektron am Ort x zur Zeit t zu finden: W(x,t)
- $-W(x,t) = |\Psi(x,t)|^2$


 $\Psi(x,t)$: Amplitude der Wahrscheinlichkeitswelle

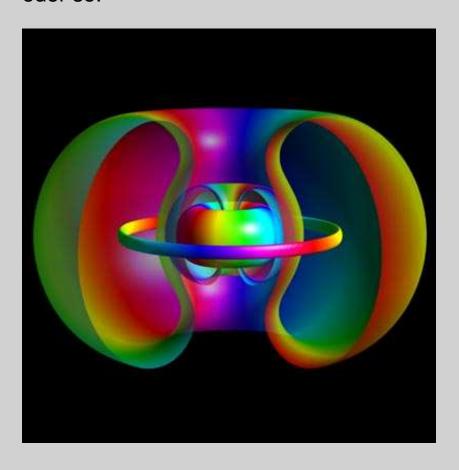
Erwin Schrödinger



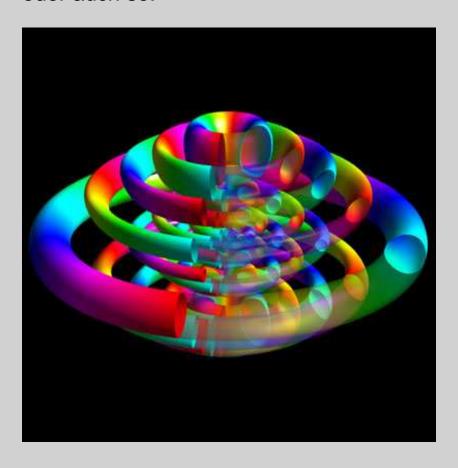
so nicht:


eher so:

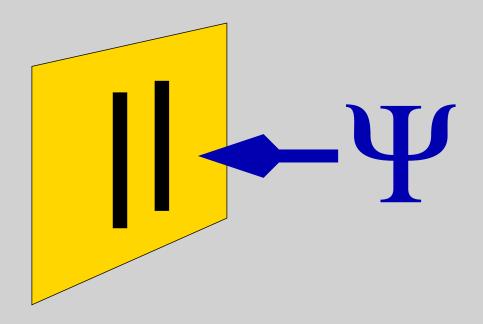
Lösung $\Psi_{11,5,3}(x,y,z)$ der Schrödinger-Gleichung für das Wasserstoff-Atom


oder so:

Lösung $\Psi_{4,2,1}(x,y,z)$ der Schrödinger-Gleichung für das Wasserstoff-Atom (fester Zeitpunkt t)

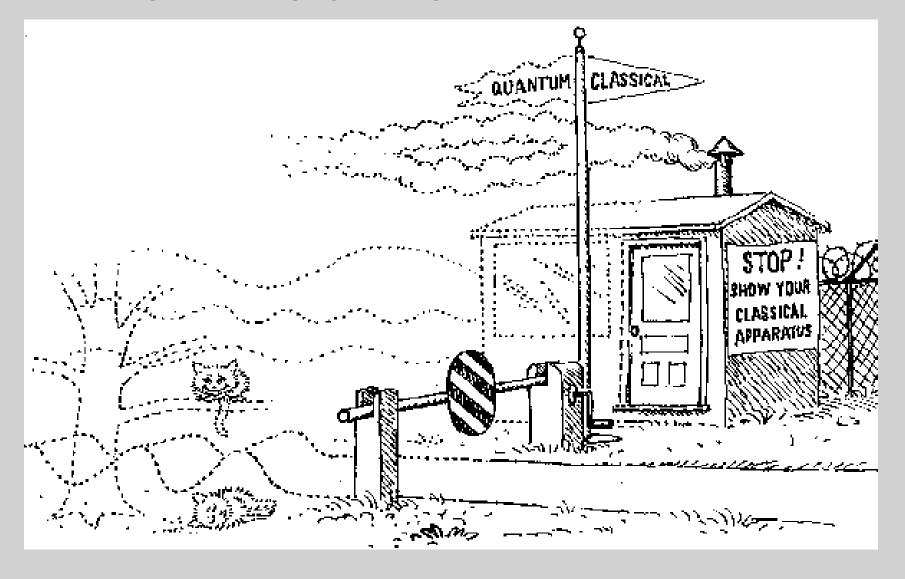

oder so:

Lösung $\Psi_{4,2,2}(x,y,z)$ der Schrödinger-Gleichung für das Wasserstoff-Atom

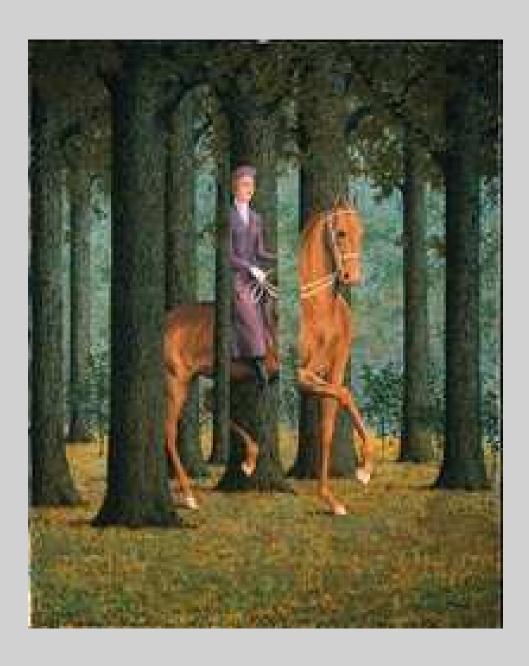

oder auch so:

Lösung $\Psi_{8,7,2}(x,y,z)$ der Schrödinger-Gleichung für das Wasserstoff-Atom

virtuelles Labor


Unbestimmtheit in der Quantenwelt

Physikalische Größen sind unbestimmt, solange man sie nicht misst! Die Messung ist der Übergang vom Möglichen ins Faktische!


Unbestimmtheit in der Quantenwelt

Physikalische Größen sind unbestimmt, solange man sie nicht misst! Die Messung ist der Übergang vom Möglichen ins Faktische!

Veranschaulichungen

Unbestimmtheit in der Makrowelt?

ein weiteres Gedankenexperiment:

(wird hoffentlich nie durchgeführt)

"Eine Katze ist zusammen mit der folgenden diabolischen Vorrichtung (die vor Berührung durch die Katze gesichert sein muss) in einen Stahlbehälter eingeschlossen. In einem Geigerzähler befindet sich etwas radioaktives Material, aber nur so wenig, dass davon in einer Stunde vielleicht ein Atom zerfällt, mit der gleichen Wahrscheinlichkeit aber auch keins; zerfällt ein Atom, so entlädt sich das Zählrohr und setzt mittels eines Schalters einen Hammer in Bewegung, der eine kleine Flasche mit Blausäure zertrümmert. Überlässt man dieses System für eine Stunde sich selbst, und zerfällt in dieser Stunde kein Atom, so ist die Katze am Leben. Das erste zerfallende Atom hätte sie vergiftet."

(Erwin Schrödinger)

Unbestimmtheit in der Makrowelt?

ein weiteres Gedankenexperiment:

(wird hoffentlich nie durchgeführt)

"Eine Katze ist zusammen mit der folgenden diabolischen Vorrichtung (die vor Berührung durch die Katze gesichert sein muss) in einen Stahlbehälter eingeschlossen. In einem Geigerzähler befindet sich etwas radioaktives Material, aber nur so wenig, dass davon in einer Stunde vielleicht ein Atom zerfällt, mit der gleichen Wahrscheinlichkeit aber auch keins; zerfällt ein Atom, so entlädt sich das Zählrohr und setzt mittels eines Schalters einen Hammer in Bewegung, der eine kleine Flasche mit Blausäure zertrümmert. Überlässt man dieses System für eine Stunde sich selbst, und zerfällt in dieser Stunde kein Atom, so ist die Katze am Leben. Das erste zerfallende Atom hätte sie vergiftet."

(Erwin Schrödinger)

Unbestimmheit in der Mikrowelt → Unbestimmheit in der Makrowelt

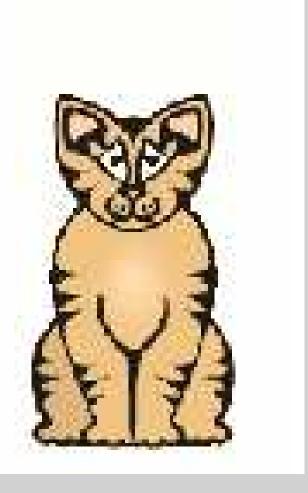
Zustand des Atoms:

$$\Psi = \Psi_{\rm nicht\ zerfallen} + \Psi_{\rm zerfallen}$$

Zustand des Katze:

$$\Psi = \Psi_{\text{lebendig}} + \Psi_{\text{tot}}$$

Unbestimmheit in der Mikrowelt → Unbestimmheit in der Makrowelt


Zustand des Atoms:

 $\Psi = \Psi_{\rm nicht\ zerfallen} + \Psi_{\rm zerfallen}$

Zustand des Katze:

 $\Psi = \Psi_{\text{lebendig}} + \Psi_{\text{tot}}$

 Ψ_{lebendig} :

Unbestimmheit in der Mikrowelt → Unbestimmheit in der Makrowelt

Zustand des Atoms:

$$\Psi = \Psi_{\text{nicht zerfallen}} + \Psi_{\text{zerfallen}}$$

Zustand des Katze:

$$\Psi = \Psi_{\rm lebendig} + \Psi_{\rm tot}$$

Ψ_{tot} :

Unbestimmheit in der Mikrowelt → Unbestimmheit in der Makrowelt

Zustand des Atoms:

$$\Psi = \Psi_{\rm nicht\ zerfallen} + \Psi_{\rm zerfallen}$$

Zustand des Katze:

$$\Psi = \Psi_{\rm lebendig} + \Psi_{\rm tot}$$

$$\Psi = \Psi_{lebendig} + \Psi_{tot}$$
:

einerseits: alle Vorhersagen der Quantenmechnik waren bisher korrekt!

Beispiel:

magnetisches Moment eines Elektrons: $\frac{e}{m}(1+\varepsilon)$ $\varepsilon=0.00115965241(20)$ (Experiment)

 $\varepsilon = 0.00115965241(20)$

 $\varepsilon = 0.0011596524(4)$ (Quantentheorie)

einerseits: alle Vorhersagen der Quantenmechnik waren bisher korrekt!

Beispiel:

magnetisches Moment eines Elektrons: $\frac{e}{m}(1+\varepsilon)$

 $\varepsilon = 0.00115965241(20) \qquad \qquad \text{(Experiment)}$

 $\varepsilon = 0.0011596524(4)$ (Quantentheorie)

andererseits: Grundlagen der Theorie nicht vollständig verstanden!

Beispiel:

Wellenfunktion des Universums $\Psi_{\rm Universum}$ Wer macht das Experiment, dessen Ausgang mit der Wahrscheinlichkeit $|\Psi|^2$ vorhergesagt wird ?

einerseits: alle Vorhersagen der Quantenmechnik waren bisher korrekt!

Beispiel:

 $\begin{array}{ll} \text{magnetisches Moment eines Elektrons: } \frac{e}{m}(1+\varepsilon) \\ \varepsilon = 0.00115965241(20) \qquad \qquad \text{(Experiment)} \\ \varepsilon = 0.0011596524(4) \qquad \qquad \text{(Quantentheorie)} \end{array}$

andererseits: Grundlagen der Theorie nicht vollständig verstanden!

Beispiel:

Wellenfunktion des Universums $\Psi_{\rm Universum}$ Wer macht das Experiment, dessen Ausgang mit der Wahrscheinlichkeit $|\Psi|^2$ vorhergesagt wird ?

Richard Feynman:

"Ich glaube, ich kann mit Sicherheit sagen, dass die Quantenphysik von niemandem heutzutage verstanden wird"

einerseits: alle Vorhersagen der Quantenmechnik waren bisher korrekt!

Beispiel:

 $\begin{array}{ll} \text{magnetisches Moment eines Elektrons: } \frac{e}{m}(1+\varepsilon) \\ \varepsilon = 0.00115965241(20) & \text{(Experiment)} \\ \varepsilon = 0.0011596524(4) & \text{(Quantentheorie)} \end{array}$

andererseits: Grundlagen der Theorie nicht vollständig verstanden!

Beispiel:

Wellenfunktion des Universums $\Psi_{\rm Universum}$ Wer macht das Experiment, dessen Ausgang mit der Wahrscheinlichkeit $|\Psi|^2$ vorhergesagt wird ?

Enrico Fermi:

"Ich bin immer noch verwirrt, aber auf einem höheren Niveau."

einerseits: alle Vorhersagen der Quantenmechnik waren bisher korrekt!

Beispiel:

 $\begin{array}{ll} \text{magnetisches Moment eines Elektrons: } \frac{e}{m}(1+\varepsilon) \\ \varepsilon = 0.00115965241(20) \qquad \qquad \text{(Experiment)} \\ \varepsilon = 0.0011596524(4) \qquad \qquad \text{(Quantentheorie)} \end{array}$

andererseits: Grundlagen der Theorie nicht vollständig verstanden!

Beispiel:

Wellenfunktion des Universums $\Psi_{\rm Universum}$ Wer macht das Experiment, dessen Ausgang mit der Wahrscheinlichkeit $|\Psi|^2$ vorhergesagt wird ?

Ein großes Dankeschön an Klaus Muthsam!

Kostenloses Download seines Simulationsprogramms unter:

http://www.muthsam.de/doppelspalt.htm

Auf Wiedersehen!

