Blatt 7 SoSe 2014

Übungen zur Theoretischen Physik A

Aufgabe 19 — Impulsoperator

Der Impuls p_x ist eine Observable und sollte daher durch einen hermiteschen Operator \hat{p}_x dargestellt werden. Prüfen Sie, ob

$$\hat{p}_x = -i\hbar \frac{d}{dx}$$

tatsächlich hermitesch ist!

Aufgabe 20 — Eigenwerte von Operatoren

a) Gegeben sei ein Operator \hat{P} mit den Eigenschaften

$$\hat{P}^\dagger = \hat{P} \quad \text{und} \qquad \hat{P}^2 = \hat{P} \; .$$

Bestimmen Sie seine möglichen Eigenwerte!

b) Bestimmen Sie die möglichen Eigenwerte des hermiteschen Operators \hat{P} mit der Eigenschaft

$$\hat{P}^2 = \hat{1} .$$

c) Konstruieren Sie für die Fälle a) und b) jeweils 2×2 -Matrizen mit denselben Eigenschaften!

Aufgabe 21 — Quantenmechanik mit 2×2 -Matrizen - Spin

Der Spin eines Teilchens

$$\hat{m{S}} = \left(egin{array}{c} \hat{S}_x \ \hat{S}_y \ \hat{S}_z \end{array}
ight)$$

ist eine Messgröße, deren x, y und z-Komponenten durch die Operatoren (Matrizen)

$$\hat{S}_x = \frac{\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\hat{S}_y = \frac{\hbar}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{S}_z = \frac{\hbar}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

dargestellt werden.

- a) Ist $\hat{\boldsymbol{S}}$ hermetisch, d.h. sind die drei Komponenten von $\hat{\boldsymbol{S}}$ hermitesch?
- b) Welche Eigenwerte haben die Komponenten des Spins?
- c) Sind \hat{S}_x und \hat{S}_y kompatibel? Berechnen Sie den Kommutator! Was gilt für \hat{S}_y und \hat{S}_z ?

Sind \hat{S}_z und \hat{S}_x gleichzeitig scharf messbar?

- d) Wie lautet die Heisenbergsche Unschärferelation für \hat{S}_y und \hat{S}_z ?
- e) Gegeben ist der Zustand

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \; .$$

Berechnen Sie die Unschärfen $\Delta \hat{S}_y$ und $\Delta \hat{S}_z$ im Zustand $|\Psi\rangle!$ Ist die Heisenbergsche Unschärferelation erfüllt?

- f) Berechnen Sie $\hat{\boldsymbol{S}}^2=\hat{\boldsymbol{S}}\cdot\hat{\boldsymbol{S}}!$ Sind $\hat{\boldsymbol{S}}^2$ und \hat{S}_z kompatible Observable?
- g) Geben Sie, falls möglich, einen vollständigen Satz gemeinsamer Eigenzustände von $\hat{\boldsymbol{S}}^2$ und \hat{S}_x an!