Blatt 6 Sommersemester 2018

Einführung in die Theoretische Physik II

Anwesenheitsaufgaben

Aufgabe 1 — Arbeit, Potenzial, Spannung

Gegeben ist das elektrische Feld

$$E(r) = \alpha z e_z$$
.

 α ist eine Konstante. Weiter gegeben ist ein Weg \mathcal{C} in Parameterdarstellung:

$$r(\lambda) = \begin{pmatrix} r_0 \cos(k\lambda) \\ r_0 \sin(k\lambda) \\ \lambda \end{pmatrix}.$$

 r_0 und k sind Konstanten.

- a) Veranschaulichen Sie sich die Geometrie des Weges $\mathcal{C}!$
- b) Berechnen Sie

$$rac{dm{r}(\lambda)}{d\lambda}$$
 und $m{E}(m{r}(\lambda))$!

- c) Berechnen Sie $r_A = r(\lambda_A)$ und $r_B = r(\lambda_B)$ für $\lambda_A = 0$ und $\lambda_B = z_0 = 2\pi/k!$ z_0 ist eine weitere Konstante.
- d) Berechnen Sie das Wegintegral von $m{r}_A$ nach $m{r}_B$

$$\int_{\mathcal{C}} \boldsymbol{E}(\boldsymbol{r}) d\boldsymbol{r} = \int_{\lambda_A}^{\lambda_B} \boldsymbol{E}(\boldsymbol{r}(\lambda)) \cdot \frac{d\boldsymbol{r}(\lambda)}{d\lambda} d\lambda \,!$$

- e) Wie groß ist die Arbeit ΔW_{AB} , die das elektrische Feld an einer Punktladung q verrichtet, die sich von r_A nach r_B entlang von $\mathcal C$ bewegt?
- f) Zeigen Sie, dass $\mathsf{rot} m{E}(m{r}) = 0$ ist!
- g) Versuchen Sie durch "gezieltes Raten" ein Potenzial des elektrischen Felds zu finden, also eine Funktion $\Phi(r)$, für die $E(r) = -\text{grad}\Phi(r)$ gilt!
- h) Wie groß ist die elektrische Spannung U_{AB} zwischen r_A und r_B ?

Aufgabe 2 — Rotation eines sphärisch symmetrischen Zentralfelds

Zeigen Sie, dass die Rotation eines Zentralfelds, dessen Stärke nur vom Abstand vom Ursprung abhängt, stets verschwindet!

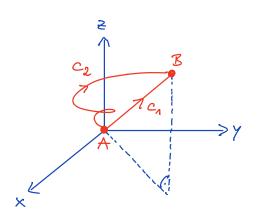
Berechnen Sie dazu die Rotation von

$$\boldsymbol{E}(\boldsymbol{r}) = f(r)\boldsymbol{r} \; ,$$

wobei f(r) eine beliebige Funktion von $r = |\mathbf{r}|$ ist!

Aufgabe 3 — Wegunabhängigkeit

Gegeben ist ein elektrisches Feld $\boldsymbol{E}(\boldsymbol{r})$, das wirbelfrei ist, und zwei Punkte A und B (siehe Zeichnung).


Warum gilt dann, dass das Wegintegral

$$\int_A^B \boldsymbol{E}(\boldsymbol{r}) \, d\boldsymbol{r}$$

nicht davon abhängt, entlang welchen Weges vom Punkt A zum Punkt B die Feldstärke integriert wird?

Warum gilt also, dass

$$\int_{\mathcal{C}_1} \boldsymbol{E}(\boldsymbol{r}) d\boldsymbol{r} = \int_{\mathcal{C}_2} \boldsymbol{E}(\boldsymbol{r}) d\boldsymbol{r} \quad ?$$

Hausaufgabe

${\bf Aufgabe} \ {\bf 1--- Geschlossenes} \ {\bf Wegintegral} \ {\bf und} \ {\bf Potenzial}$

Gegeben ist das elektrische Feld

$$\boldsymbol{E}(\boldsymbol{r}) = \alpha \begin{pmatrix} 2xy \\ x^2 \\ 0 \end{pmatrix}$$

 α ist eine Konstante.

a) (4 Punkte). Berechnen Sie explizit das geschlossene Wegintegral

$$\oint_{\mathcal{C}} \boldsymbol{E}(\boldsymbol{r}) \, d\boldsymbol{r}$$

entlang eines Kreises in der x-y-Ebene mit Radius R, der mathematisch positiv (entgegen des Uhrzeigersinns) orientiert ist!

b) (4 Punkte). Berechnen Sie rot ${m E}({m r})$ und geben Sie, falls möglich, ein Potenzial $\Phi({m r})$ an!

Wie groß ist die elektrische Spannung U_{AB} zwischen $r_A = 0$ und $r_B = (0, 0, 1)$?