

Fachbereich Physik

Module catalogue

Physik (M.Sc.) and Physics (M.Sc.)

Universität Hamburg

English translation 25.01.23

Pflichtmodule (Compulsory modules):	_ 7
Introductory Project / Einarbeitungsprojekt	7
Preparatory Project / Vorbereitungsprojekt	8
Master's Thesis / Masterarbeit	9
Wahlmodule (Complementary subject):	_ 10
Wahlbereich	_10
Fachliche Vertiefungsphase (Advanced Master's Courses):	_ 12
Astronomie und Astrophysik (Astronomy and Astrophysics):	_ 12
Laborastrophysik	_12
Astronomische Beobachtungsmethoden und -instrumente	_13
Cosmology	_13
Seminar Topics in Low Frequency Radio Astronomy	_14
Extragalactic Astrophysics	_15
Seminar Extragalactic Astrophysics	_16
Galaxy Evolution	_17
Seminar on Galaxy Evolution	_18
Chemical Evolution of the Universe	_18
Computational Astrophysics	_19
Stellar Structure & Evolution	_20
Theory and Application of PHOENIX	_21
Stellar and Planetary Atmospheres	_22
MHD simulations with the FLASH code	_23
The Interstellar Medium and Star Formation	_24
Introduction to General Relativity and Astrophysical Applications	_25
Beschleuniger- und Elementarteilchenphysik (Accelerator and elementary particle physic	cs): _26
Accelerator Physics II	_26
Experimental Astroparticle Physics	_28
Accelerator Physics I	_28
Physik und Anwendungen von Laser-Plasma-Beschleunigern: Von medizinischer Bildgebung bis Hochenergiephysik	_30
Teilchenphysik und der Large Hadron Collider (LHC): Beschleuniger, Detektoren und Physik	_31
Quantenmechanik II	_32
Physics of the Standard Model	_33

Introduction to Supersymmetry and Supergravity	34
Quantenfeldtheorie I	35
Quantenfeldtheorie II	37
Theory of General Relativity	38
Introduction to String Theory	39
Phenomenology of Physics beyond the Standard Model	40
Quantum Chromodynamics (Advanced Topic in Particle Physics)	41
Introduction to Conformal Field Theory	42
Computer Algebra and Particle Physics	43
Biomedizinische Physik (Biomedical physics):	44
Biomedical Physics I	44
Biomedical Physics II	45
Biomedical Physics III	46
Biomedical Physics IV	47
Seminar on Biomedical Physics I	48
Festkörper- und Nanostrukturphysik (Solid state and nanostructure physics):	49
Advanced Solid State Lecture	49
Nanostructure Physics I	51
Nanostrukturphysik II: Oberflächenphysik und Magnetismus	52
Nanostrukturphysik IV - Energiematerialien und Nanobiotechnologie	53
Advanced Methods for Surface and Nanostructure Characterization	54
Seminar über Nahfeldgrenzflächenphysik und Nanotechnologie	56
Bio- and Nanointerfaces	57
X-Ray Analytics and Microscopy in Nanoscience	58
Die Kunst der Computer-basierten Modellierung und Simulation experimenteller Daten	59
Quantentransport und experimentelle Quantenphysik	61
Modern Scattering Methods in Nanomaterial Science	62
Methods in Nanobiotechnology II	63
Fundamentals of Photovoltaics	64
Complex Materials	65
Wahlpflichtpraktikum Physik	66
Methods in Nanobiotechnology I	67
Nonequilibrium Statistics and Transport Theory	68
Theorie der kondensierten Materie I	69

Seminar on Selected Topics of the Quantum Theory of Condensed Matter	70
Seminar on Many-Body Theory and Quantum-Statistical Methods	71
Seminar on Quantum Dynamics of Nonequilibrium Nano Systems	72
Quantum Statistics with Path Integrals	73
Symmetry Groups in Physics	73
Condensed-Matter Theory: Special Topics	74
Laserphysik und Photonik (Laser physics and photonics):	75
Methoden moderner Röntgenphysik I - Spektroskopie	75
Moderne Molekülphysik – Clusterphysik	76
Einführung in die Physik der Quantengase	78
Methoden moderner Röntgenphysik II - Struktur und Dynamik kondensierter Materie	79
Ultrafast Optical Physics I	80
Modern Molecular Physics	81
Ultrafast Optical Physics II	82
Light-Matter-Interactions: Atoms, Molecules & (Non) Linear Optics	83
Ultrakalte Quantengase	84
Nonlinear Optics	85
Nichtklassisches Licht und die zentralen Konzepte der modernen Quantenphysik	86
New Experiments with XFEL Sources	87
Seminar: Many-body Theory of Ultracold Atoms and Solid State Systems	88
Theory of Photon-Matter Interactions	89

Module title					
Module number	PHY-MV				
Semester	Wintersemester/Summersemester				
Applicability, module type and assignment to the curriculum	• •				
Prerequisites for participation	Binding: Recommended:				
Responsible person					
Lecturers					
Language	Which language of instruction? German o	r Engli	sh?		
Qualification objectives	 What learning outcomes should students have achieved after success have achieved after successful completion of the module? z. e.g. in the sense of: Learning outcomes that demonstrate knowledge or application: e.g define/ represent/ measure/ report/ evaluate information, theory a factual knowledge. Learning outcomes that demonstrate the practical skills using know e.g. perform, demonstrate, etc. 			essfully .g. and/or wledge:	
Content	The (teaching) content should state the ai specific, methodical, practical and interdis taught in order to achieve the module obj	ms of sciplina jective	the modu ary conter s?)	le. (Which nts should	n subject- be
Courses and teaching forms V= Vorlesung (lecture) Ü= Übung (exercises) S= Seminar (seminar) P= Praktikum (laboratory, practical)	How many SWS (hrs per semester week) for V and/or Ü and/or S and/or P? (V) (Ü) 				sws sws
Workload* (partial performances and		LP	P (hrs)	S (hrs)	PV (hrs)
total) *LP = Credit point *P = Attendance study *S = Self-study *PV = Exam preparation	Total workload				

The following detailed module descriptions are structured as follows:

Study / Examination achievements	Type of examination: Written or oral examinationination or presentation and/or written paper, project completion, internship completion, Language of the examination
Duration	1 or 2 semester
Frequency of the course	Every semester, annually or every 4 semesters?
Literaturee	

Pflichtmodule (Compulsory modules):

Module title	Introductory Project / Einarbeitungsprojekt						
Module number	PHY-MF-A/BE/BP/FN/LP-EP	PHY-MF-A/BE/BP/FN/LP-EP					
Semester	Wintersemester and Summersemester						
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Pflichtmodul Physics (M.Sc.): Pflichtmodul 	 Physik (M.Sc.): Pflichtmodul Physics (M.Sc.): Pflichtmodul 					
Prerequisites for participation	Binding: s. FSBs zu § 4 Recommended:						
Responsible person	Members of the group of university profe	ssors o	of the Dep	oartment o	of Physics		
Lecturers	Members of the teaching staff from the D	epartr	ment of Pl	nysics			
Language	German or English						
	In the familiarisation project, the study of a modern research field, from which the topic of the Master's thesis is to originate, has been deepened with the aim of familiarising oneself with the scientific Literaturee at the current level.						
Qualification objectives	ves The student learns how to independently collect the necessary information background knowledge and familiarisation with a special topic.				rmation,		
	For this module, the student is integrated into a scientific working group. Through the involvement in a working group, he or she learns group work and the optimal use of informal knowledge in a close-knit environment.						
Content	 Familiarisation with the subject area; Familiarisation with theoretical and/or experimental working techniques and tools; Working on partial aspects; Formulation of a work plan and time schedule. 						
Courses and teaching forms	Independent scientific work under gui	idance			15 SWS		
Workload (partial performances and	 Independent scientific work under guidance 	LP 15	P (hrs) -	S (hrs) 390	PV (hrs) 60		
total)	Total workload	15	-	390	60		
Study / Examination achievements	Type of examination: project completion Language of the exam: Physik (M.Sc.): German or English Physics (M.Sc.): English						
Duration	1 semester						
Frequency of the course	every semester						
Literature	To be announced in the course.						

Module title	Preparatory Project / Vorbereitungsprojekt				
Module number	PHY-MF-A/BE/BP/FN/LP-VP				
Semester	Wintersemester and Summersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Pflichtmodul Physics (M.Sc.): Pflichtmodul 				
Prerequisites for participation	Binding: Successful completion of the module Introductory Project Recommended:				
Responsible person	Members of the group of university professors of the Department of	of Physics			
Lecturers	Members of the teaching staff from the Department of Physics				
Language	German or English				
	By working on preparatory tasks, the student has acquired the specific experimental and/or theoretical methods and knowledge of the field to s an extent that he or she can successfully apply them to work on question from which the topic of the Master's thesis is to originate. Planning and structuring of the intended research project.				
Qualification objectives	The associated working group seminar serves to familiarise the student with problems of current research in the subject in which the candidate intends to conduct the Master's thesis.				
	For this module, the student is integrated into a scientific working group. Through the involvement in a working group, he or she learns group work and the optimal use of informal knowledge in a close-knit environment.				
	Einführung in das wissenschaftliche Arbeiten und die fachlichen und methodischen Grundlagen für die Masterarbeit sowie Planung des in der Masterarbeit zu bearbeitenden Forschungsprojekts				
	Introduction to scientific work and the subject-specific and methodological basics for the Master's thesis as well as planning of the research project to be worked on in the Master's thesis.				
Content	Acquisition of the necessary experimental and theoretical-mathematical skills, which are a prerequisite for the successful completion of the research task of the subsequent Master's thesis.				
	In the working group seminar, various topics of the working group's field of work are presented and discussed. A presentation (preferably in English) is compulsory for all students.				
	The module forms an inseparable unit with the preceding module "familiarisation project" and the subsequent module "master's thesis" and must therefore be taken in the same research area in which the master's thesis is to be written.				
Courses and teaching forms	Independent scientific work under guidance	15 SWS			

Workload	Independent scientific work under guidance	LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	guidance	15	-	390	60
total)	Total workload	15	-	390	60
Study / Examination achievements	nation Physik (M.Sc.): English Physics (M.Sc.): English				
Duration	1 semester				
Frequency of the course	every semester				
Literature	To be announced in the course.				

Module title	Master's Thesis / Masterarbeit					
Module number	PHY-MF-MA					
Semester	Wintersemester and Summersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Pflichtmodul Physics (M.Sc.): Pflichtmodul 					
Prerequisites for participation	Binding: Successful completion of the moduleVorbereitungsprojekt Recommended:					
Modulverantwortliche [®]	Members of the group of university professors of the Department of Physics					
Lecturers	Members of the teaching staff from the Department of Physics					
Language	German or English					
Qualification objectives	The Master's thesis should show that the candidate is able to familiarise himself/herself with a problem of current research in the subject within the given time limit, to apply suitable scientific methods increasingly independently and to present the results in a scientifically appropriate form.					
Content	The master's thesis forms the conclusion of the master's programm The Master's thesis consists of - the implementation of a research or scientific development project - experimental and/or theoretical treatment of the topic; - the evaluation and processing of the results; - the written documentation of the results by writing the Master's t - an oral presentation of the results in a lecture and scientific discus The results should contribute to a scientific publication.	ie. ct; :hesis; ssion.				
Courses and teaching forms	Independent scientific work in a team	30 SWS				

Workload (partial performances and	 Independent scientific work in a team 	LP 30	P (hrs) -	S (hrs) 830	PV (hrs) 70
total)	Total workload	30	-	830	70
Study / Examination achievements	Type of examination: Master's thesis (1/6), colloquium (1/6) Language of the exam: Physik (M.Sc.): German or English Physics (M.Sc.): English				
Duration	1 semester				
Frequency of the course	every semester				
Literature	To be announced in the course.				

Wahlmodule (Complementary subject):

Module title:	Wahlbereich					
Module number:	WAHL (je nach anbietendem Fach)					
Semester	Summersemester, Wintersemester					
Applicability, module type and assignment to the curriculum	Physik (B.Sc.); Physik (M.Sc.); Physics (M.Sc.): Elective module					
Prerequisites for participation:	According to the offering subject.					
Responsible person:	Members of the teaching staff from the offer	ing su	bject			
Lecturers:	Members of the teaching staff from the offer	ing su	bject			
Language:	According to the offering subject.					
Qualification objectives	Students have basic knowledge of either astr biomedical physics or a subject area outside	ophysi physic	ics and as s.	tronomy,		
Content:	There are no restrictions on the choice of subject area; students should follow their inclinations and interests. Only the time required for the elective area (12 credit points) is fixed. The number of credit points can be achieved by combining different modules, which must be meaningfully related.					
Courses and teaching forms:	• According to the offering department (V, Ü, S, P)					
Workload	 According to the offering department (V, Ü, S, P) 	LP	P (hrs) 	S (hrs) 	PV (hrs) 	

(partial performances and total)		12		
	Total workload	12	 	
Study / Examination achievements	 According to the offering department 	t.		
Duration	1 semester			
Frequency of the course	According to the offering department			
Literature:	To be announced in the courses.			

Fachliche Vertiefungsphase (Advanced Master's Courses):

E.

Module title	Laborastrophysik							
Module number	PHY-MV-A-E02							
Semester	Wintersemester and Summersemester	Wintersemester and Summersemester						
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective Physics (M.Sc.): Compulsory elective 	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 						
Prerequisites for participation	Binding: none Recommended: none	Binding: none Recommended: none						
Responsible person	Prof. Dr. Günter Wiedemann							
Lecturers	Prof. Dr. Günter Wiedemann							
Language	German or English							
Qualification objectives	The students know laboratory physics as the foundation of observational astrophysics. Thus, they have the ability to define necessary laboratory experiments by implementing the requirements of observational astrono as well as planning and carrying out astrophysically relevant measuremer in the HS laboratory and to obtain and evaluate astrophysically relevant measurement data under realistic conditions.				tional tory stronomy rements evant			
Content	Introduction to laboratory operation & equipment; methods of laboratory astrophysics; definition and planning of a measurement experiment; preparation and execution, evaluation and interpretation.							
Courses and teaching forms	 Laborastrophysik (V) Übungen zur Laborastrophysik (Ü)			2 SWS 2 SWS			
Workload (partial performances and total)	 Lecture Exercises Total workload 	LP 3 2 5	P (hrs) 28 28 56	S (hrs) 32 32 64	PV (hrs) 30 - 30			
Study / Examination achievements	Type of examination: Colloquium Language of the exam: German or English Deviations will be announced at the beginning of the event.							
Duration	1 semester							
Frequency of the course	every semester							
Literature	To be announced in the course.							

Astronomie und Astrophysik (Astronomy and Astrophysics):

Module title	Astronomische Beobachtungsmethoden und -instrumente						
Module number	PHY-MV-A-E12						
Semester	Wintersemester and Summersemester	Wintersemester and Summersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 						
Prerequisites for participation	Binding: none Recommended: none	Binding: none Recommended: none					
Responsible person	Prof. Dr. Günter Wiedemann						
Lecturers	Prof. Dr. Günter Wiedemann						
Language	German or English						
Qualification objectives	The students know the most important astronomical observation methods and instruments, modern IR/optical technologies and the interactions between astronomical research and both technical and experimental basics.				nethods ons al basics.		
Content	Basics of observational astronomy; methods (photometry, spectroscopy, astrometry etc); instruments (telescopes, measuring instruments, detectors); applications in observational astrophysics; practical exercises. The practical part can be carried out at the observatory (Bergedorf).						
Courses and teaching forms	 Astronomische Beobachtungsmethoden und - 2 SWS instrumente (V) Übungen zu Astronomische Beobachtungsmethoden und instrumente (Ü) 				2 SWS 2 SWS		
Workload (partial performances and total)	Lecture Exercises Total workload	LP 3 2 5	P (hrs) 28 28 56	S (hrs) 32 32 64	PV (hrs) 30 - 30		
Study / Examination achievements	Type of examination: oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.						
Duration	1 semester						
Frequency of the course	every semester						
Literature	To be announced in the course.						

Module title	Cosmology
Module number	PHY-MV-A-E14

Semester	Wintersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 					
Prerequisites for participation	Binding: none Recommended: Einführung in die Astronomie I und II					
Responsible person	Prof. Dr. Markus Brüggen					
Lecturers	Prof. Dr. Markus Brüggen					
Language	English	English				
Qualification objectives	The students know problem-solving strategies. They are able to think analytically and theorise in physics and are able to apply mathematical and information-technological solution strategies.					
Content	Basic knowledge of cosmology in theory and observation.					
Courses and teaching forms	Cosmology (V) SV Exercises in Cosmology (Ü) SV					
Workload (partial performances and total)	Lecture Exercises Total workload	LP 5 1 6	P (hrs) 42 14 56	S (hrs) 54 16 70	PV (hrs) 54 - 54	
Study / Examination achievements	Type of examination: Written or oral examination <i>written or oral</i> <i>examinationination</i> Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	Annually, Wintersemester					
Literature	To be announced in the course.					

Module title	Seminar Topics in Low Frequency Radio Astronomy	
Module number	PHY-MV-A-E15	
Semester	Wintersemester/Summersemester	
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 	
Prerequisites for participation	Binding: none Recommended: Einführung in die Astronomie I und II	
Responsible person	Prof. Dr. Markus Brüggen	

Lecturers	Prof. Dr. Markus Brüggen				
Language	English				
Qualification objectives	Students know the basics of scientific discourse and current research in low-frequency radio astronomy.				
Content	Current research in low-frequency radio a	strono	omy		
Courses and teaching forms	Seminar Topics in Low Frequency Radio Astronomy (S) 2 SWS			2 SWS	
Workload	. Cominer	LP 3	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	• Seminar	3	20	52	50
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Extragalactic Astrophysics
Module number	PHY-MV-A-E17
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Einführung in die Astronomie I und II
Responsible person	Prof. Dr. Markus Brüggen
Lecturers	Prof. Dr. Markus Brüggen
Language	English
Qualification objectives	The students know problem-solving strategies and are able to think analytically. They have the ability to evaluate astronomical data and to develop theories in physics. The students are able to apply mathematical and information-technical solution strategies.
Content	Basic knowledge of extragalactic astronomy in theory and observation; Milky Way system, large-scale structure, galaxy formation, galaxy clusters.

Courses and teaching forms	 Extragalactic Astrophysics (V) Exercises in Extragalactic Astrophysics (Ü) 			3 SWS 1 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	5	42	54	54
(partial performances and	Exercises	1	14	16	-
total)	Total workload	6	56	70	54
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Seminar Extragalactic Astrophysics				
Module number	PHY-MV-A-E19				
Semester	Wintersemester and Summersemester	Nintersemester and Summersemester			
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective Physics (M.Sc.): Compulsory elective 	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	Binding: none Recommended: Einführung in die Astronomie I und II				
Responsible person	Prof. Dr. Markus Brüggen				
Lecturers	Prof. Dr. Markus Brüggen				
Language	English				
Qualification objectives	Students are able to present research results, read and understand technical Literature and evaluate astronomical data. They also have the knowledge of theory building in physics.			technical vledge of	
Content	Modern topics from current research in e	Modern topics from current research in extragalactic astronomy.			
Courses and teaching forms	Seminar Extragalactic Astrophysic	:s (S)			2 SWS
Workload (partial performances and	• Seminar	LP 3	P (hrs) 28	S (hrs) 32	PV (hrs) 30
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Referat mit schriftlic Language of the exam: English	cher Au	usarbeitur	ng	

	Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	every semester
Literature	To be announced in the course.

Module title	Galaxy Evolution					
Module number	PHY-MV-A-E23					
Semester	Summersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 					
Prerequisites for participation	Binding: none Recommended: Einführung in die Astrono	omie &	Astrophy	vsik I & II		
Responsible person	Prof. Dr. Jochen Liske					
Lecturers	Prof. Dr. Jochen Liske					
Language	English					
Qualification objectives	Students are familiar with the evolution of the universe, the linear and non- linear growth of cosmic structures, the formation of elliptical and spiral galaxies, and the observational techniques used to observe galaxies.					
Content	Overview of galaxies and physical processes, cosmological background, (statistical) properties of galaxies, growth of density perturbations, formation of Dark Matter halos, formation of gaseous halos, linking halos to galaxies, formation of disks, observational facilities.					
Courses and teaching forms	 Galaxy Evolution (V) Exercises in Galaxy Evolution (Ü) 				2 SWS 2 SWS	
Workload (partial performances and total)	Lecture Exercises Total workload	LP 3 2 5	P (hrs) 28 28 56	S (hrs) 32 32 64	PV (hrs) 30 - 30	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	biennial					

Literatura	"Galaxy Formation and Evolution", Mo, van den Bosch and White,
Literature	Cambridge University Press.

Module title	Seminar on Galaxy Evolution				
Module number:	PHY-MV-A-E24				
Semester	Summersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Einführung in die Astronomie & Astrophysik I & II				
Responsible person	Prof. Dr. Jochen Liske				
Lecturers	Prof. Dr. Jochen Liske				
Language	English				
Qualification objectives	The students are able to read scientific publications and critically reflect on them. The students are able to reproduce the contents of publications and to describe their context in a presentation.				
Content	This seminar covers some of the classic scientific papers on galaxy formation and evolution, both theoretical and observational.				
Courses and teaching forms	• Seminar on Galaxy Evolution (S)				2 SWS
Workload (partial performances and	• Seminar	LP 3	P (hrs) 28	S (hrs) 32	PV (hrs) 30
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Chemical Evolution of the Universe
Module number	PHY-MV-A-E27
Semester	Summersemester

Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 						
Prerequisites for participation	Binding: none Recommended: Einführung in die Astronomie I und II						
Responsible person	Prof. Dr. Jochen Liske						
Lecturers	Prof. Dr. Jochen Liske						
Language	English						
Qualification objectives	Students are familiar with the most important astrophysical processes relevant for the chemical evolution of the Universe.						
Content	Cosmological background, primordial nucleosynthesis, structure formation, basics of stellar evolution and nucleosynthesis, neutron capture processes, galactic chemical evolution, cosmic chemical evolution.						
Courses and teaching forms	Chemical Evolution of the Universe (V) Exercises in Chemical Evolution of the Universe (Ü) 2 SWS 2 SWS						
		LP	P (hrs)	S (hrs)	PV (hrs)		
Workload	Lecture	3	28	32	30		
(partial performances and	Exercises	2	28	32	-		
total)	Total workload	5	56	64	30		
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English						
Duration	1 semester						
Frequency of the course	biennial						
Literature	"Nucleosynthesis and Chemical Evolution of Galaxies", Pagel, Cam-bridge University Press						

Module title:	Computational Astrophysics
Module number:	PHY-MV-A-T01
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation:	Binding: none Recommended: Einführung in die Astronomie I und II, elementare Programmierkenntnisse

Responsible person:	Prof. Dr. Peter Hauschildt						
Lecturers:	Prof. Dr. Peter Hauschildt						
Language:	English (Folien/Skript auf English)						
Qualification objectives	The students are able to use numerical methods in a targeted manner and to critically evaluate the results of computer programs.						
Content:	Topics covered include hardware basics, parallelisation, GPUs, common pitfalls, non-linear equations, linear equations, differential equations, Monte Carlo methods, and FFT/wavelets.						
Courses and teaching forms:	Computational Astrophysics (V) SWS Exercises in Computational Astrophysics (ü) SWS						
Arbeitsaufwand*		LP	P(hrs)	S (hrs)	PV (hrs)		
(Teilleistungen und insgesamt)	Lecture	5	42	54	54		
	Exercises	1	14	16	-		
	Total workload	6	56	70	54		
Study / Examination	Type of examination: Written exam	1	1	I.	1		
achievements	Deviations will be announced at the begin	nning c	of the ever	nts.			
Duration	1 semester						
Frequency of the course	biennial						
Literature:	Skript; Press et al, 'Numerical Receipes in [Fortran, C]'						

Module title	Stellar Structure & Evolution
Module number	PHY-MV-A-T02
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Peter Hauschildt
Lecturers	Prof. Dr. Peter Hauschildt
Language	English

Qualification objectives	The students know the physical structure of stars and their evolution.						
Content	This is a lecture in theoretical astrophysics. It describes the physics underlying stellar structure and evolution. The physical processes in the interior of the star and properties of the stellar matter are discussed. Furthermore, the calculation of stellar models and typical results are discussed. The development from the pre-main sequence to the final stages of stars of different masses is discussed. The properties and evolution of normal and compact stars are described.						
Courses and teaching forms	 Stellar Structure & Evolution (V) Exercises in Stellar Structure & Evolution (Ü) 						
		LP	P (hrs)	S (hrs)	PV (hrs)		
Workload	LectureExercises	5	70	40	40		
(partial performances and total)		1	14	16	-		
	Total workload	6	84	56	40		
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.						
Duration	1 semester						
Frequency of the course	biennial						
Literature	Kippenhahn, Weigert, Weiss: Stellar Structure and Evolution http://emedien.sub.uni- hamburg.de/han/SpringerEbooks/dx.doi.org/10.1007/978-3-642-30304-3						

Module title	Theory and Application of PHOENIX
Module number	PHY-MV-A-T03
Semester	Wintersemester/Summersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: very good programming skills in Fortran90 and MPI, proven basic knowledge of PHOENIX Recommended: Einführung in die Astronomie I+II, Computational Astrophysics, Stellar and planetary atmospheres
Responsible person	Prof. Dr. Peter Hauschildt
Lecturers	Prof. Dr. Peter Hauschildt
Language	English

Qualification objectives	The students have a better understanding of PHOENIX, including the methods, algorithms and programme modules used. They know the application of PHOENIX to astrophysical simulation problems.					
Content	The different modules of PHOENIX are discussed and reviewed. Practical experiences in the application of PHOENIX will be discussed.					
Courses and teaching forms	Theory and Application of PHOENIX (V)				2 SWS	
Workload		LP	P (hrs)	S (hrs)	PV (hrs)	
(partial performances and total)	• Lecture	3	28	32	30	
	Total workload	3	28	32	30	
Study / Examination achievements	Prerequisites for registering for the module examination: active participation Type of examination: Oral examination Language of the exam: English Deviations will be announced at the beginning of the events.					
Duration	1 semester					
Frequency of the course	Every semester					
Literature	To be announced in the course.					

Module title	Stellar and Planetary Atmospheres					
Module number	PHY-MV-A-T04					
Semester	Wintersemester	Nintersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective Physics (M.Sc.): Compulsory elective 	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Einführung in die Astrophysik I & II					
Responsible person	Prof. Dr. Peter Hauschildt					
Lecturers	Prof. Dr. Peter Hauschildt					
Language	English					
Qualification objectives	Students will understand the structure of stellar and planetary atmospheres, radiative transfer and numerical models of atmospheres, as well as the formation of spectra and their critical interpretation.					
Content	The structure of stellar and planetary atmospheres, radiative transfer and numerical models of atmospheres, and the formation of species.					
Courses and teaching forms	Stellar and Planetary Atmospheres (V) Stellar and Planetary Atmospheres (Ü) SV				3 SWS 1 SWS	
Workload	LP P (hrs) S (hrs) PV (hrs)					

(partial performances and	Lecture	5	42	54	54	
total)	Exercises	1	14	16	-	
	Total workload	6	56	70	54	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	biennial					
Literature	To be announced in the course.					

Module title	MHD simulations with the FLASH code					
Module number	PHY-MV-A-T06					
Semester	Wintersemester/Summersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Empfehlung 2. oder 3. FS Physics(M.Sc.): Compulsory elective module Empfehlung 2. oder 3. FS 					
Prerequisites for participation	Binding: none Recommended: Knowledge of numerical methods and magnetohydrodynamics					
Responsible person	Prof. Dr. Robi Banerjee					
Lecturers	Prof. Dr. Robi Banerjee					
Language	English					
Qualification objectives	Students know how to use the simulation code FLASH and applications in the astrophysical field.					
Content	Selected topics in magnetohydrodynamic MHD problems.	s (MH	D) and nu	merical so	olutions of	
Courses and teaching forms	• MHD simulations with the FLASH	code ((V)		2 SWS	
Workload		LP	P (hrs)	S (hrs)	PV (hrs)	
(partial performances and	• Seminar	3	28	32	30	
	Total workload	3	28	32	30	
Study / Examination achievements	Requirements for registration for the module examination: successful participation in the exercises Type of examination: Oral examination Language of the exam: English Deviations will be announced at the beginning of the events.					

Duration	1 semester
Frequency of the course	Every semester
Literature	To be announced in the course.

Module title	The Interstellar Medium and Star Formation			
Module number	PHY-MV-A-T10			
Semester	Wintersemester			
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	3inding: none Recommended: Einführung in die Astrophysik I & II			
Responsible person	Prof. Dr. Robi Banerjee			
Lecturers	Prof. Dr. Robi Banerjee			
Language	German or English			
Qualification objectives	The students have basic knowledge of the interstellar medium (including composition, physical properties, dynamics) and the formation of stars (including prerequisites, time scales, thermodynamics, development of protostars, gas outflows). Furthermore, they know the hydrodynamic and magneto-hydrodynamic equations and can apply them.			
Content	ISM (three phases + physical properties); Molecular clouds (observations + physical properties); Conditions for star formation (i.e. cold dense regions, Jeans criterion, BE spheres) Turbulence (Larson's relation, Kolmogorov turbulence); Fragmentation; Initial mass function (IMF, reconstruction from observations); IMF (theoretical ideas, conversion from CMF to IMF); The collapse (1D calculations: Larson/Penston, Shu); Magnetic fields: mass-to-flux ratio, ambipolar diffusion; Magnetic fields: observational techniques (polarisation, Zeeman, RM); 3D collapse: disc formation, Jets; Jet launching; Observations of Jets; Formation of Massive stars; Feedback (HII-Regions, SN) + triggered star formation; Protostellar evolution (Hayashi track, classes); Evolution of protoplanetary discs; Planet formation (grav. instability, core accretion models).			

Courses and teaching forms	 Interstellar Medium and Star Formation (V) Exercises in Interstellar Medium and Star Formation (Ü) 			3 SWS 1 SWS	
Workload	• Lecture	LP 5	P (hrs) 42	S (hrs) 54	PV (hrs) 54
(partial performances and	Exercises	1	14	16	-
total)	Total workload	6	56	70	54
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	biennial				
Literature	Frank Shu "The Physical Universe"; Bruce Drain "Physics of the Interstellar and Intergalactic Medium"; Steven Stahler & Francesco Palla "The Formation of Stars"; Derek Ward-Thomson & Anthony Whitworth "An Introduction to Star Formation".				tar

Module title	Introduction to General Relativity and Astrophysical Applications
Module number	PHY-MV-A-T16
Semester	Summersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Einführung in die Astrophysik I & II
Responsible person	Prof. Dr. Robi Banerjee
Lecturers	Prof. Dr. Robi Banerjee
Language	English
Qualification objectives	The students know the general theory of reality. They have knowledge about curved spaces in more dimensions and can describe them. They also know astrophysical phenomena based on ART.
Content	curvilinear space; concepts of Special Relativity and SPACETIME; Equivalence Principle; curved SPACETIME; Geodesics; Tensor calculus; Einsteins' field equation.
Content	Applications: Schwarzschild geometry, Black Holes (BH), Kerr BHs, Accretion Discs, Gravitational lensing, Gravitational Waves, Gravitational Wave Sources, Cosmology

Courses and teaching	Introduction to General Relativity and Astrophysical Applications (V)				4 SWS
forms	Exercises in Introduction to Generation Astrophysical Applications (Ü)	ral Rel	ativity and	k	2 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	6	56	62	62
(partial performances and	Exercises	2	28	32	-
	Total workload	8	84	94	62
Study / Examination achievements	Type of examination: Written exam Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	biennial				
Literature	James B. Hartle: GRAVITY, An Introduction to Einstein's General Relativity; Ray d'Inverno: Introducing Einstein's Relativity; Bernhard Schutz: A First Course in General Relativity.		ity;		

Beschleuniger- und Elementarteilchenphysik (Accelerator and elementary particle physics):

Module title	Accelerator Physics II
Module number	PHY-MV-BE-E02
Semester	Summersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Besuch der Lecture "Accelerator Physics I"
Responsible person	Prof. Dr. Wolfgang Hillert
Lecturers	Prof. Dr. Wolfgang Hillert
Language	English
Qualification objectives	The students understand the most important interrelationships in the planning and further development of accelerator facilities. They have deeper insights into the design and application of modern accelerators such as synchrotron radiation sources, high-energy colliders or free electron lasers. They know the most important effects limiting the beam quality and intensity as well as the achievable luminosity and methods to generate high- intensity and coherent X-rays.
Content	This course is a continuation and consolidation of the introductory course "Accelerator Physics I". In principle, it is possible to start directly with the

Courses and teaching	 advanced course without having attended the introductory course. However this requires an independent familiarization with the matrix formalism describing the linear beam optics which in general should be easily possible due to existing very good textbooks. Contents: Synchrotron radiation and radiation equilibrium Synchrotron radiation sources Space charge effects (direct space charge) Luminosity and colliders Phase space cooling (stochastic cooling, electron cooling) Free electron lasers 				
forms	Exercises in Accelerator Physics II	(Ü)			2 SWS
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	Lecture Exercises	3	28	32	30
total)	• Exercises	2	28	32	-
	Total workload	5	56	64	30
Study / Examination achievements	Type of examination: Successful work with the exercises, final oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	 H. Wiedemann, Particle Accelerator Physics (Third Edition), Springer 2007, Berlin, ISBN 978-3-5-540-490343-2 D. A. Edwards, M. J. Syphers, An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN 0-471-55163-5 F. Hinterberger, Physik der Teilchenbeschleuniger und Ionenoptik (2. Ausgabe), Springer 2008, Berlin, ISBN 978-3-540-75282-0 K. Wille, Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Aufl., Teubner 1996, Stuttgart, ISBN 3-519-13087-4 (vergriffen) K. Wille, The physics of particle accelerators, Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7 S. Y. Lee, Accelerator Physics (Third Edition), World Scientific 2012, New Jersey, ISBN 978-981-4374-94-1 A. W. Chao, K. H. Mess, M. Tigner, F. Zimmermann, Handbook of Accelerator Physics and Engineering (Second Edition), World Scientific 2013, New Jersey, ISBN 978-981-4415-84-2 				ger 2007, gh Energy (2. 1996, 005, 2, New ific 2013,

Module title	Experimental Astroparticle Physics				
Module number	PHY-MV-BE-E05				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Astrophysik				
Responsible person	Prof. Dr. Dieter Horns; Prof. Dr. Caren Hag	gner			
Lecturers	Prof. Dr. Dieter Horns; Prof. Dr. Caren Hag	gner			
Language	English				
Qualification objectives	The students are able to put concrete experiments and their measurements into a context and are able to critically question which interpretation of the measurement results is appropriate. They can understand how a measurement or observation concept is derived from a physical question in the field of astroparticle physics. The students learn to work out current research results in joint discourse within the framework of seminar presentations.				
Content	Astroparticle physics with a focus on neutrino physics (neutrino detection, neutrino generation, neutrino oscillation), cosmic accelerators (generation, propagation and detection of cosmic radiation). In addition, current topics from the relevant areas of astroparticle physics (dark matter, cosmology, etc.).				
Courses and teaching forms	Experimental Astroparticle Physics (V) Exercises in Experimental Astroparticle Physics (Ü) 2 SWS				
Workload (partial performances and total)	Lecture Exercises	LP 6 2	P (hrs) 56 28	S (hrs) 62 32	PV (hrs) 62 -
	lotal workload	8	84	94	62
Study / Examination achievements	Studienleistung: Vortrag Type of examination: Oral examination Language of the exam: English Deviations will be announced at the begin	ning c	of the ever	nt.	
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module number	PHY-MV-BE-E09				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Wolfgang Hillert				
Lecturers	Prof. Dr. Wolfgang Hillert				
Language	English				
Qualification objectives	 Students know the basics of accelerator physics and are able to design the basic elements of a simple accelerator facility themselves and calculate its key parameters. In detail: Understanding of the functional principle of different types of particle accelerators. Conception and design of simple magneto-optical systems Basic knowledge of radio frequency engineering and technology at particle accelerators Knowledge of linear beam dynamics in particle accelerators and their application 				
Content	 Overview of accelerator types: electrostatic accelerators and induction accelerators, DTL, RFQ, Alvarez, linac, cyclotron, synchrotron, microtron. Components of accelerators: Particle sources, radio frequency systems and cavities, magnets, vacuum systems Linear beam optics: equations of motion, matrix formalism, beam parameters, phase space representation Circular accelerators: periodic magnetic structures, transverse and longitudinal beam dynamics Visits to accelerators on the DESY site (e.g. FLASH, PETRA III, HERA) to illustrate and deepen the subject matter. 				
Courses and teaching forms	 Accelerator Physics I (V) Exercises in Accelerator Physic 	s I (Ü)			2 SWS 2 SWS
Workload (partial performances and total)	 Lecture Exercises Total workload 	LP 3 2 5	P (hrs) 28 28 56	S (hrs) 32 32 64	PV (hrs) 30 - 30
Study / Examination achievements	Type of examination: Successful work with the exercises, final oral examinationination Language of the exam: English Deviations will be announced at the beginning of the event.				

Duration	1 semester			
Frequency of the course	annually			
Literature	 S. Y. Lee: Accelerator Physics, 3rd edition, World Scientific, New Jersey 2011, ISBN 978-981-4374-94-1 K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, 2. überarb. und erw. Auflage, Teubner 1996, Stuttgart, ISBN 978-3-519-13087-1 K. Wille: The physics of particle accelerators, Oxford Univ. Press 2005, Oxford, ISBN 0-19-850550-7 (engl. Übersetzung, teuer!) D. A. Edwards, M. J. Syphers: An Introduction to the Physics of High Energy Accelerators, Wiley & Sons 1993, New York, ISBN 0-471-55163-5 F. Hinterberger: Physik der Teilchenbeschleuniger und Ionenoptik, 2. Ausgabe, Springer 2008, Berlin, ISBN 978-3-540-75281-3 H. Wiedemann: Particle Accelerator Physics I, 4th edition, Springer 2015, Berlin, ISBN 978-3-319-18316-9 A. W. Chao, M. Tigner: Handbook of Accelerator Physics and Engineering, 2nd edition, World Scientific, Singapore, 2013, ISBN 978-4417-17-4 			

Module title	Physik und Anwendungen von Laser-Plasma-Beschleunigern: Von medizinischer Bildgebung bis Hochenergiephysik				
Module number	PHY-MV-BE-E15				
Semester	Summersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Florian Grüner				
Lecturers	Prof. Dr. Florian Grüner				
Language	German or English				
	After successful completion of the module, the students know the basics of the so-called plasma wakefield acceleration, and know where the ultra-high field gradients come from and why the electro-nuclear bunches are so short.				
Qualification objectives	Their knowledge can be applied in the following areas:				
	- Synchrotron and undulator radiation				
	- Free-electron lasers (FELs)				
	 table-top FELs driven by laser plasma accelerators 				

	- medical imaging with laser-based undulator sources					
Content	In addition to modern and well-established accelerators, a new field is emerging in accelerator physics: laser plasma accelerators. They are based on so-called high-power lasers that can accelerate electrons in plasmas of a few centimetres in length to GeV energies. This compactness promises new applications, from medical imaging to brilliant X-ray sources to high-energy physics. We discuss in detail the underlying physics with a focus on the brilliant X-ray sources, in particular the linking of laser plasma accelerators and free-electron lasers.					
Courses and teaching forms	 Physik und Anwendungen von Laser-Plasma- Beschleunigern: Von medizinischer Bildgebung bis Hochenergiephysik (V) Übungen zur Physik und Anwendungen von Laser- Plasma-Beschleunigern: Von medizinischer Bildgebung bis Hochenergiephysik (Ü) 					
Workload (partial performances and total)	 Lecture Exercises Total workload 	LP 6 2 8	P (hrs) 56 28 84	S (hrs) 62 32 94	PV (hrs) 62 - 62	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
Literature	To be announced in the lecture					

Module title	Teilchenphysik und der Large Hadron Collider (LHC): Beschleuniger, Detektoren und Physik
Module number	PHY-MV-BE-E18
Semester	Summersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Teilchenphysik für Fortgeschrittene
Responsible person	Prof. Dr. Johannes Haller
Lecturers	Prof. Dr. Johannes Haller
Language	German or English

Qualification objectives	The students have an in-depth understanding of the current topics in particle physics, in particular of the research topics that are being investigated at the LHC.					
Content	Introduction, accelerator and the LHC, basics of pp collisions, track detectors at the LHC, QCD and electroweak processes at the LHC, calorimeters of the LHC detectors, trigger and data acquisition systems, physics of the top quark, search and study of the Higgs boson, search for new physics, search for supersymmetry, outlook.					
Courses and teaching forms	 Teilchenphysik und der Large Hadron Collider (LHC): 4 SWS Beschleuniger, Detektoren und Physik (V) Übungen zur Teilchenphysik und der Large Hadron Collider 2 SWS (LHC): Beschleuniger, Detektoren und Physik (Ü) 				4 SWS 2 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	Lecture	6	56	62	62	
(partial performances and	Exercises	2	28	32	-	
	Total workload	8	84	94	62	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
	"Elementarteilchenphysik", Berger, Spring "Collider Physics", Barger + Phillips, Addis	ger, 20 on We	06 slev			
	"Cuarks and Leptons", Halzen + Martin, Wiley, 1984					
Literature	"Feynman-Graphen und Eichtheorien für Experimentalphysiker", Schmüser, Springer, 1988					
	"Physics at the Terascale", Brock+ Schörner-Sadenius (Eds.) Wiley, 2011					
	The ATLAS Experiment at the CERN LHC, JINST 3:S08003, 2008					
	The CMS Experiment at the CERN LHC, JINST 3:S08004, 2008					

Module title	Quantenmechanik II
Module number	PHY-MV-BE-T01
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Lecture Theoretische Physik II (Quantenmechanik I)

Responsible person	Prof. Dr. Peter Schmelcher					
Lecturers	Members of the teaching staff from the Department of Physics					
Language	German or English					
Qualification objectives	The students know systematic treatment of the quantum mechanical description of many-particle systems and relativistic quantum mechanics as well as the concept of field operators in second quantisation. They have the ability to mathematically describe relativistic particles (fermions and bosons).					
Content	Second quantisation; multi-particle states; Fock space; field operators; fermions and bosons; scattering theory and correlation functions; relativistic wave equations: Klein-Gordon and Dirac equation; covariance and symmetries of the Dirac equation; Dirac equation in the electromagnetic field: exact solutions and radiation corrections.					
Courses and teaching forms	 Quantenmechanik II (V) Übungen zur Quantenmechanik II 	Quantenmechanik II (V) 4 SWS Übungen zur Quantenmechanik II (Ü) 2 SWS				
Workload (partial performances and	LectureExercises	LP 6 2	P (hrs) 56 28	S (hrs) 62 32	PV (hrs) 62 -	
total)	Total workload	8	84	94	62	
Study / Examination achievements	Type of examination: Written or oral exam Language of the exam: German or English Deviations will be announced at the begin	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester					
Frequency of the course	annually					
Literature	notes of the lecturer; C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics, Volume 2; John Wiley & Sons, 1991; F. Schwabl, Quantenmechanik für Fortgeschrittene (QM II), Springer, 2008; S. Weinberg, Quantum Mechanics, Cambridge University Press, 2013.					

Module title	Physics of the Standard Model		
Module number	PHY-MV-BE-T02		
Semester	Summersemester		
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		
Prerequisites for participation	Binding: none		

	Recommended: Quantenmechanik, Kern- und Teilchenphysik, Quantum Field Theory I, Advanced Particle Physics						
Responsible person	Prof. Dr. Gudrid Moortgat-Pick						
Lecturers	Members of the teaching staff from the D	epartr	ment of Pl	nysics			
Language	English	English					
Qualification objectives	The students know the structure of the Standard Model (QCD and electroweak sector), have applied quantum field theory, group theory and gauge symmetries, learn the perturbation theory approaches, know the basics of pp- and ei-based accelerator ex-periments (LHC, lepton accelerator) and can perform studies in both theo-retical and experimental physics.						
Content	Yang-Mills theories, QCD phenomenology, renormalisation, linking couplings, electroweak interactions, Higgs mechanism, collider phenomenology, Monte Carlo simulation, Fourier physics, CKM matrix, CP violation, neutrino physics and oscillations, anomalies, BL, strong CP, drawbacks of the Standard Model.						
Courses and teaching forms	 Physics of the Standard Model (V) Exercises in Physics of the Standard Model (Ü) 1 SWS 						
		LP	P (hrs)	S (hrs)	PV (hrs)		
Workload	Lecture	5	42	54	54		
(partial performances and	Exercises	1	14	16	-		
	Total workload	6	56	70	54		
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.						
Duration	1 semester						
Frequency of the course	annually						
	Quantum Field theory and the Standard Model, Matthew Schwartz						
Literature	The Standard Model, a primer, Burgess and Moore						
	A modern introduction to QFT, Maggiore						
	An introduction to QFT, Peskin and Schro	eder					

Module title	Introduction to Supersymmetry and Supergravity		
Module number	PHY-MV-BE-T03		
Semester	Wintersemester		
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		
Prerequisites for participation	Binding: none Recommended: Theoretische Physik I und II		

Responsible person	Prof. Dr. Gudrid Moortgat-Pick					
Lecturers	Members of the teaching staff from the Department of Physics					
Language	English					
Qualification objectives	The students know the mathematical structure of supersymmetry, learn to apply the supersymmetric Lie algebra, calculate in superspace and can perform supersymmetric transformations and field theoretical calculations in supergravity and know the GUT theory.					
Content	 Introduction to the principles of supersymmetry and supergravity Supersymmetry algebra and its representation theory Supersymmetric Yang-Mills Theories The supersymmetric standard model Extended supersymmetry and Seiberg-Witten theory Supergravity and its coupling to matter. Extended supergravities and their geometric properties Supersymmetry and supergravity in arbitrary dimensions 					
Courses and teaching forms	 Introduction to Supersymmetry and Supergravity (V) Exercises in Introduction to Supersymmetry and Supergravity (Ü) 					
		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	Lecture	5	42	54	54	
(partial performances and	Exercises	1	14	16	-	
total)	Total workload	6	56	70	54	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
Literature	Weinberg, S, Quantum Field Theory 3, Supersymmetry					

Module title	Quantenfeldtheorie I
Module number	PHY-MV-BE-T04
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Theoretische Physik I und II

Responsible person	Prof. Dr. Gleb Arutyunov						
Lecturers	Members of the teaching staff from the Department of Physics						
Language	German or English						
	The aim of the course is to provide both a theoretical and technical introduction to quantum field theory.						
	Students know canonical quantisation and path integral quantisation techniques for bosonic and fermionic fields with emphasis on symmetries, functional techniques with the generating functional and correlation functions and perturbation theories in the form of Feynman diagrams. They know the formulation of non-Abelian gauge theories.						
Qualification objectives	Upon completion of the module, students have the knowledge of Poincaré and internal symmetries, Noether's theorem, discrete symmetries, canonical quantisation of Klein-Gordon, Dirac and electromagnetic fields, the concept of gauge invariance, asymptotic states and S-matrix, the path integral quantisation, the definition of correlation functions, the generating functional of correlation functions, the Wick theorem, Feynman diagrams, self-energy and vertex functions, and dimensional regularisation and renormalisation group						
	For a given Lagrangian density, students are able to identify its global symmetries to determine the dynamical invariants, derive the Feynn and construct the Feynman diagrams for a given scattering pro correlation function.				l and local man rules rocess or		
Content	Canonical quantisation and path integral quantisation techniques for bosonic and fermionic fields will be discussed in depth. Emphasis will be placed on symmetries, functional techniques with the generating functional and correlation functions, and perturbation theory in the form of Feynman diagrams. A bird's eye view on renormalisation techniques and non-Abelian gauge theories will be offered. The lecture will be complemented with exercises.						
Courses and teaching forms	 Quantenfeldtheorie I (V) Übungen zur Quantenfeldtheorie 	I (Ü)			4 SWS 2 SWS		
Workload (partial performances and total)	LP P (hrs) S (hrs) PV (hr • Lecture 6 56 62 62 • Exercises 2 28 32 -						
	Total workload	8	84	94	62		
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.						
Duration	1 semester						
Frequency of the course	annually						
Literature	notes of the lecturer; T. Lancaster and S. J. Blundell, Quantum Field Theory for the Gifted Amateur, Oxford University Press, 2014;						
M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory,							
--							
Perseus Books, The Advanced Book Program, 1995.							

Module title	Quantenfeldtheorie II				
Module number	PHY-MV-BE-T06				
Semester	Summersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Theoretische Physik I und	l II, Qu	antenfeld	theorie I	
Responsible person	Prof. Dr. Gleb Arutyunov				
Lecturers	Members of the teaching staff from the D	epartr	ment of Pl	nysics	
Language	German or English				
Qualification objectives	The students have a deepened and extended knowledge of quantum field theory. They know renormalisation techniques, non-Abelian gauge theories and their covariant quantisation methods. They can discuss spontaneous symmetry breaking and topological solutions in quantum field theory. The learning outcome further includes the understanding of the basics of the S-matrix of quantum electrodynamics, including the self-energy of the electron, vacuum polarisation and the anomalous magnetic moment of the electron. Furthermore, it includes the knowledge of the covariant Faddeev- Popov method and the BRST symmetry. The Goldstone theorem and the Higgs phenomenon are also part of the curriculum. Students will be able to derive renormalisation group equations for the vertex and Green's functions to calculate the beta function in quantum electrodynamics to a loop and in a generic non-Abelian gauge theory. You will gain an understanding of the Landau pole and asymptotic freedom and be able to explain the consequences of spontaneous breaking of global and local			ntum field e theories ontaneous ory. sics of the gy of the Faddeev- I the Higgs the vertex quantum y. You will m and be I and local	
Content	The aim of the course is to deepen and broaden the knowledge of quantum field theory and to further develop the students' competence. This includes a through treatment of renormalisation techniques, introduction to non-Abelian gauge theories and their covariant quantisation methods, discussion of spontaneous symmetry breaking and topological solutions in quantum field theory. The lecture is complemented by exercises.				
Courses and teaching forms	Quantenfeldtheorie II (V) Ubungen zur Quantenfeldtheorie II (Ü) 2 SWS			4 SWS 2 SWS	
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and total)	LectureExercises	6 2	56 28	62 32	62 -

	Total workload	8	84	94	62
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	Lecturesskript / Notes of the lecturer; M. E. Peskin and D. V. Schroeder, An Intro Perseus Books, The Advanced Book Progra	ductic am, 19	in to Quai 95.	ntum Field	d Theory,

Module title	Theory of General Relativity				
Module number	PHY-MV-BE-T07				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: klassische Feldtheorie, Quantenmechanik, Kern- und Feilchenphysik				
Responsible person	Prof. Dr. Günter Sigl				
Lecturers	Members of the teaching staff from the Department of Physics				
Language	English				
Qualification objectives	The students know the basics of general relativity. They are able to tackle research projects on topics of field theory, theoretical cosmology and mathematical physics, for example within the framework of a Master's thesis.			to tackle blogy and er's thesis.	
Content	Principles of relativity, special relativity, basics of differential geometry, Einstein equations, Schwarzschild metrics, experimental tests of gravitational theory, gravitational waves, basics of and applications to cosmology.				
Courses and teaching forms	 Thoery of General Relativity (V) Exercises in Thoery of General Relativity (Ü) 2 SW 			4 SWS 2 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	6	56	62	62
(partial performances and total)	Exercises	2	28	32	-
	Total workload	8	84	94	62

Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	annually
	Steven Weinberg: Gravitation and Cosmology, New York: John Wiley and Sons, 1972.
	Steven Weinberg (2008), Cosmology, Oxford University Press
	Robert M. Wald: General Relativity, University of Chicago Press, 1984.
	C. W. Misner, K. S. Thorne, J. A. Wheeler: Gravitation, Palgrave Macmil-lan, 1973.
	Sean M. Carroll: Spacetime and Geometry: An Introduction to General Relativity, Addison Wesley, 2009.
	Sean M. Carroll: Lecture Notes on General Relativity.
Literature	L. D. Landau, E. M. Lifshitz: Lehrbuch der theoretischen Physik II: Klassische Feldtheorie, Akademie Verlag Berlin 1984.
	Bernard F. Schutz: A First Course in General Relativity, Cambridge University Press, New York 1985 (2nd edition 2009).
	Bernard F. Schutz: Gravity from the Ground Up, Cambridge University Press, New York 2003.
	E. F. Taylor, J. A. Wheeler: Exploring Black Holes: Introduction to Gen-eral Relativity, Addison-Wesley Longman, San Francisco 2000.
	J. B. Hartle: Gravity: An Introduction to Einstein's General Relativity, Addison-Wesley, San Francisco 2003.

Module title	Introduction to String Theory	
Module number	PHY-MV-BE-T11	
Semester	Summersemester	
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 	
Prerequisites for participation	Binding: none Recommended: Stringsteilkurs	
Responsible person	Prof. Dr. Volker Schomerus	
Lecturers	Members of the teaching staff from the Department of Physics	
Language	English	
Qualification objectives	After successful attendance of the lecture, students will be able to read further Literaturee and recent research papers in the field of string theory.	

Content	This course covers the basics of string and superstring theory in flat and curved backgrounds. Topics include: Classical strings, quantization, relation with gauge theory and gravity, supersymmetry, superstring theories as well as selected chapters of 2-dimensional conformal quantum field theory, Calabi-Yau compactifications and the AdS/CFT correspondence.				
Courses and teaching forms	 Introduction to String Theory (V) Exercises in Introduction to String Theory (Ü) 2 SWS 			2 SWS 2 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and	Exercises	2	28	32	-
total)	Total workload	5	56	64	30
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Phenomenology of Physics beyond the Standard Model
Module number	PHY-MV-BE-T12
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Quantenmechanik, Kern- und Teilchenphysik, Quantum Field Theory I, Advanced particle Physics or Physics of the Standard Model
Responsible person	Prof. Dr. Gudrid Moortgat-Pick
Lecturers	Members of the teaching staff from the Department of Physics
Language	English
Qualification objectives	The students know the open questions of the standard model (dark matter, baryon-antibaryon asymmetry, etc.).), which extensions of the theory are possible to clarify these questions, which description possibilities there are (effective theories, concrete models), get an overview of models and learn about their symmetries and structure and with which observables these models can be delegated to accelerator-based (LHC, e+e accelerator, Muon accelerator) and non-accelerator-based experiments (gravitational waves, ALPS, etc.).

Content	Phenomenology at accelerators for different models of physics beyond the Standard Model, supersymmetry, extra dimension model-le, models with extra gauge bosons, Yang-Mills theories, QCD phenomenology, renormalisation, linking couplings, Electroweak interactions, Higgs mechanism, Higgs physics, LHC phenomenology, Monte Carlo tools, flavour physics, CKM matrix, CP violation, neutrino physics and oscillations, anomalies, B-L, strong CP, drawbacks of the Standard Model.				
Courses and teaching forms	 Phenomenology of Physics beyond the Standard Model (V) Exercises in Phenomenology of Physics beyond the Standard Model (Ü) 			3 SWS 1 SWS	
Workload (partial performances and	LectureExercises	LP 5 1	P (hrs) 42 14	S (hrs) 54 16	PV (hrs) 54 -
total)	Total workload	6	56	70	54
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	Quantum Field theory and the Standard Model, Matthew Schwartz The Standard Model, a primer, Burgess and Moore A modern introduction to QFT, Maggiore An introduction to QFT, Peskin and Schroeder				

Module title	Quantum Chromodynamics (Advanced Topic in Particle Physics)
Module number	PHY-MV-BE-T22
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Grundkenntnisse der Teilchenphysik, Kenntnisse in Quantenfeldtheorie
Responsible person	Prof. Dr. Gudrid Moortgat-Pick
Lecturers	Prof. Dr. Gudrid Moortgat-Pick, Dr. Markus Diehl
Language	English
Qualification objectives	The participants know the main features of quantum chromodynamics as a quantum field theory, in particular the role played by symmetries and

	quantum loops. Furthermore, the participants will be able to evaluate the challenges of a quantitative description of the processes at modern particle colliders, in particular the LHC.				
Content	 Symmetries of QCD and their consequences Perturbation theory, renormalisation and the ongoing coupling. Concepts and tools for describing QCD in high energy experiments. 				
Courses and teaching forms	Quantum Chromodynamics (Advanced Topic in Particle 2 SWS Physics) (V)			2 SWS	
Workload (partial performances and	Lecture	LP 3	P (hrs) 28	S (hrs) 32	PV (hrs) 30
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	biennial				
Literature	 J. Collins, Foundations of Perturbative QCD, Cambridge University Press, 2011 G. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press, 1993 				

Module title	Introduction to Conformal Field Theory	
Module number	PHY-MV-BE-T25	
Semester	Summersemester	
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 	
Prerequisites for participation	Binding: none Recommended: Theoretische Physik 1-3, Basic knowledge in quantum field theory.	
Responsible person	Prof. Dr. Volker Schomerus	
Lecturers	Members of the teaching staff from the Department of Physics	
Language	English	
Qualification objectives	After successful attendance of the lecture, students will be able to rea further Literaturee and recent research papers in the field of conforma quantum field theory.	
Content	The course provides an introduction to conformal quantum field theories (CFTs), their applications and methods. Topics covered: Conformal symmetry,	

	correlation functions, operator product evolutions, 2-dimensional CFT (Virasoro algebra and its representations, minimal models) and conformal bootstrap in dimension d > 2.				
Courses and teaching forms	 Introduction to Conformal Field T Exercises in Introduction to Confo 	heory ormal F	(V) ield Theo	ry (Ü)	2 SWS 1 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and total)	Exercises	1	14	16	-
	Total workload	4	42	48	30
Study / Examination achievements	Type of examination: Written or oral exam Language of the exam: English Deviations will be announced at the begin	ninatio	on If the ever	nt.	
Duration	1 semester				
Frequency of the course	biennial				
Literature	Weinberg, S, Quantum Field Theory				

Module title	Computer Algebra and Particle Physics		
Module number	PHY-MV-BE-T29		
Semester	Wintersemester		
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		
Prerequisites for participation	Binding: none Recommended: Quantenphysik		
Responsible person	Prof. Dr. Sven-Olaf Moch		
Lecturers	Prof. Dr. Sven-Olaf Moch		
Language	English		
Qualification objectives	Students have basic knowledge of algorithms relevant to theoretical particle physics and experience in working with computer algebra systems.		
Content	Introduction to basic algorithms and computer algebra systems such as Mathematica, Maple or FORM with emphasis on applications in theoretical particle physics; definition and use of expressions, patterns, substitutions and functions; techniques for calculating Feynman integrals. The course includes exercises and hands-on practice with modern software.		
Courses and teaching forms	 Computer Algebra and Particle Physics (V) Exercises in Computer Algebra and Particle Physics (Ü) 1 SWS 		

		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	5	42	54	54
(partial performances and	Exercises	1	14	16	-
total)	Total workload	6	56	70	54
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	biennial				
Literature	A. Grozin, Introduction to Mathematica for Physicists, Springer, 2014 J. von zur Gathen and J. Gerhard, Modern Computer Algebra, Cambridge University Press, 2013				

Biomedizinische Physik (Biomedical physics):

Module title	Biomedical Physics I
Module number	PHY-MV-BP-E01
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Erika Garutti; Prof. Dr. Florian Grüner
Lecturers	Prof. Dr. Erika Garutti; Prof. Dr. Florian Grüner
Language	English
Qualification objectives	The students know modern methods of medical imaging (PET, SPECT, MRI, CT, multi-modal) and the basic techniques of radiation therapy.
Content	In this course we cover the complex field of different aspects of medical therapy and imaging, with a focus on the latter. In particular, we discuss the physical limitations of current medical imaging techniques and address the question of how physics can add value by pushing the boundaries further. Main aspects are spatial resolution and sensitivity in imaging tumour tissue and / or medical diagnostics. In the Journal Club, these topics are analysed in light of the most modern
	developments in the fields. Students also learn how to build and discuss a scientific publication.

Courses and teaching forms	 Biomedical Physics I (V) Journal Club (Ü) 				2 SWS 2 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and total)	Exercises/Journal Club	2	28	32	-
	Total workload	5	56	64	30
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	J. L. Prince and J. M. Links: Medical imaging: signals and systems, Prentice Hall, 2006; C. Grupen and I. Buvat: Handbook of Particle Detection and Imaging; W. R. Leo: Techniques for Nuclear and Particle Physics Experiments, Springer				

Module title	Biomedical Physics II
Module number	PHY-MV-BP-E02
Semester	Summersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Arwen Ruth Pearson
Lecturers	Prof. Dr. Arwen Ruth Pearson
Language	English
Qualification objectives	Students know the structure of macromolecules, cells and tissues and with key factors of cellular and extracellular biochemistry related to diseases, including cancer.
Content	In this course we will cover the basics of macromolecular, cellular and tissue structure and architecture from a biophysical perspective. We will cover the basics of metabolism and homeostasis, especially the regulation of the cell cycle, in order to understand the changes at the molecular level associated with the onset of disease. This course aims to put the imaging and detection tools presented in "Biomedical Physics I" into a physiological context. We will also discuss the potential for combined imaging and therapeutic approaches.

	In Journal Club, these topics will be analysed in light of cutting-edge developments in the fields. Students will also learn how to structure and discuss a scientific publication.			e e and	
	In particular, the following topics will be presented in the course:				
	- Macromolecular structure and function;				
	- The architecture of the cell;				
	- Biological homeostasis;				
- The cell cycle;					
	- Metabolic pathways and regulation;				
	- Intra- and intercellular communication;				
	- Therapeutic delivery agents.				
Courses and teaching forms	 Biomedical Physics II (V) Journal Club (Ü) 				2 SWS 2 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and total)	Exercises/Journal Club	2	28	32	-
coccily	Total workload	5	56	64	30
Study / Examination achievements	Type of examination: Written or oral exar Language of the exam: English Deviations will be announced at the begir	ninatio	on of the ever	nt.	
Duration	1 semester				
Frequency of the course	annually				
Literature	Physical Biology of the Cell, Phillips, Kond Scientific.	ev, The	eriot & Or	me. Garla	nd

Module title	Biomedical Physics III
Module number	PHY-MV-BP-E03
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Florian Grüner
Lecturers	Dr. Elisabetta Gargioni
Language	English

Qualification objectives	The students know the basics of radiation transport and its application in radiotherapy and radiation protection. They also have basic knowledge of the role of medical imaging in radiotherapy.				
Content	In this module we will learn the basic aspects of the physics of radiotherapy and radiation protection and focus on radiation transport and dose calculation. The application of multimodal medical imaging in target volume definition and radiation planning will also be discussed and analysed. Participation in the modules "Biomedical Physics I" and "Biomedical Physics II" are not prerequisites for this module. The following aspects are covered here: - Interactions of photons and charged particles with matter - Basics of radiation transport and Monte Carlo techniques - Basics of computed tomography, PET/SPECT and MRI - Multimodal imaging in radiotherapy - Target volume definition and irradiation techniques - Basics of radiation treatment planning				
Courses and teaching forms	Biomedical Physics III (V)				2 SWS
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	Lecture	3	28	32	30
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	Annually				
Literature	P. Mayles, A. Nahum, J. C. Rosenwald (Eds.), Handbook of Radiotherapy Physics – Theory and Practice, Taylor & Francis (2007); M. Goitein, Radiation Oncology: A Physicist's-Eye View, Springer (2008).				

Module title	Biomedical Physics IV
Module number	PHY-MV-BP-E04
Semester	Summersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Florian Grüner

Lecturers	Dr. Elisabetta Gargioni				
Language	English				
Qualification objectives	The students know the basics of the physics of radiation therapy. They also have basic knowledge of the physical and biological optimisation of a radiation treatment plan and the application of different radiation techniques and treatment concepts for some tumour entities.				
Content	In this module you will gain an insight into the fundamental aspects of physics in radiotherapy and mathematical modelling in radiobiology, focus on radiation techniques and therapy concepts. Building on the of the module "Biomedical Physics III", we will discuss and analyse the current state of radiation planning, radiation techniques and applicat multimodal imaging in radiotherapy, especially of moving tumours. During a practical evening session at the Department of Radiotherapy Radiation Oncology, students will have the opportunity to record the measurement data for the dosimetric characterisation of a medical lin accelerator and analyse the results. The following aspects will be covered: - Radiation techniques and new treatment methods in modern radiot - Optimisation techniques for radiation treatment planning - Dosimetry and quality assurance in radiotherapy - Treatment of mobile tumours - Basics of fractionation and of the five "R" in radiotherapy			s of y, with a e content the ation of py and he basic linear	
Courses and teaching forms	Biomedical Physics IV (V) 2 SWS			2 SWS	
Workload (partial performances and	Lecture	LP 3	P (hrs) 28	S (hrs) 32	PV (hrs) 30
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	 P. Mayles, A. Nahum, J. C. Rosenwald (Eds.), Handbook of Radiotherapy Physics – Theory and Practice, Taylor & Francis (2007); M. Goitein, Radiation Oncology: A Physicist's-Eye View, Springer (2008). 				

Module title	Seminar on Biomedical Physics I
Module number	PHY-MV-BP-E05

Semester	Wintersemester					
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module					
and assignment to the	Physik (M.Sc.): Compulsory elective module					
curriculum	Physics (M.Sc.): Compulsory elective module					
Prerequisites for	Binding: none					
participation	Recommended: none					
Responsible person	Prof. Dr. Erika Garutti; Prof. Dr. Florian Gr	üner				
Lecturers	Prof. Dr. Erika Garutti; Prof. Dr. Florian Gr	üner				
Language	English					
Qualification objectives	Students have the knowledge of modern methods of imaging in medicine (PET, SPECT, MRI, CT, multimodal) and the basic techniques of radiotherapy.					
Content	In this seminar series, six experts will present six relevant topics in biomedical physics. The topics will be presented from the point of view of a doctor (concrete application of techniques in medical cases) or industrial producers (relevance of research from the point of view of industrialisation). (The seminar complements the module "Biomedial Physics I" (PHY-MV-BP- E01). It is divided into two parts: The first part is an introduction to the field by experts from UKE and major companies that develop and produce medical imaging tools. The second part is the presentation of related topics by the course participants).					
Courses and teaching forms	Seminar on Biomedical Physics I (S)			2 SWS	
Workload		LP	P (hrs)	S (hrs)	PV (hrs)	
(partial performances and	• Seminar	3	28	32	30	
total)	Total workload	3	28	32	30	
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
Literature	To be announced in the course.					

Festkörper- und Nanostrukturphysik (Solid state and nanostructure physics):

Module title	Advanced Solid State Lecture
Module number	PHY-MV-FN-E01

Semester	Summersemester						
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module						
and assignment to the	Physik (M.Sc.): Compulsory elective module						
curriculum	Physics (M.Sc.): Compulsory elect	ive mo	odule				
Prerequisites for	Binding: none						
participation	Recommended: Physik IV (= Festkörperph	iysik) o	or				
· ·	Nanostrukturphysik A und B						
Responsible person	Prof. Dr. Robert H. Blick; Prof. Dr. Michael	Rübha	ausen				
Lecturers	Prof. Dr. Robert H. Blick; Prof. Dr. Michael	Rübha	ausen				
Language	English						
Qualification objectives	The students have in-depth knowledge of the scientific status of research in solid state and nanostructure physics. They have in-depth knowledge to be able to successfully carry out an experimental Master's thesis in the field of solid state and nanostructure physics.						
	The scope of the material includes:						
	- Boltzmann classical charge and heat trar	nsport, ires sn	localisati	on, interfe	erence		
	- Dielectric function of solids and nanostructures. elementary excitations						
	such as plasmons, polarons, polaritons, excitons, magnons;						
	- Metal-insulator transitions (Mott insulator, Hubbard model);						
	- Correlated electron systems using the example of high-temperature superconductors and manganates;						
Content	- Giant magnetoresistance and spin currents (interlayer exchange coupling, spin valves and exchange bias, Rashba effect).						
	Furthermore, they will be familiarised with current formalisms for the						
	theoretical description of modern solids, a	as far a Ion ruli	as they are	e necessai tibilities r	ry for the		
	theory, propagators) and they will be intro	oduced	d to curre	nt issues i	n solid		
	state and nanostructure physics and their	exper	imental m	nethods. K	ey		
	experiments and applications of new mat	erials s asis of	such as gr	aphene or current sp	ecialist		
	publications, which the students deal with in the course.						
Courses and teaching forms	Advanced Solid State Lecture (V)				4 SWS		
	Exercises in Advanced Solid State	Lectur	re (U)		2 SWS		
Workload		LP	P (hrs)	S (hrs)	PV (hrs)		
(partial performances and total)	Lecture Exercises	6	50	62	62		
		2	28	32	-		
	Total workload	8	84	94	62		
Study / Examination	Type of examination: Written or oral exam	ninatic	n				
achievements	Language of the exam: English Deviations will be announced at the beginning of the event.						
Duration	1 semester						

Frequency of the course	annually
Literature	To be announced in the course.

Module title	Nanostructure Physics I					
Module number	PHY-MV-FN-E02					
Semester	Wintersemester					
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module					
and assignment to the	Physik (M.Sc.): Compulsory elective	/e moo	dule			
curriculum	Physics (M.Sc.): Compulsory election	ive mo	odule			
Prerequisites for	Binding: none	Binding: none				
participation	Recommended: Nanostrukturphysik A ode	er Phy	sik IV (= F	estkörper	physik)	
Responsible person	Prof. Dr. Dorota Koziej					
Lecturers	Prof. Dr. Dorota Koziej					
Language	English					
Qualification objectives	Students will be able to summarise the main research results on the synthesis of and research on semiconductor nanostructures and devices.					
Content	 Semiconductors: Fundamentals and charge carrier transport Interfaces in semiconductors, classical semiconductor devices Molecular beam epitaxy, self-organisation, HL quantum dots Transport in low-dimensional electron systems Nanoplasmonics Metamaterials Semiconductor nanoparticles and quantisation effects Semiconductor Nanorods and Devices Thermoelectric nanostructures 					
Courses and teaching forms	Nanostructure Physics I (V) Everging in Nanostructure Physics	c I (Ü)			4 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	• Lecture	6	56	62	62	
(partial performances and	• Exercises	2	28	32	-	
total)	Total workload 8 84 94 62					
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					

Literature	To be announced in the course.
------------	--------------------------------

Module title	Nanostrukturphysik II: Oberflächenphysik und Magnetismus					
Module number	PHY-MV-FN-E04					
Semester	Summersemester					
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 					
Prerequisites for participation	Binding: none Recommended: Festkörperphysik und Quantenmechanik (Physik III)					
Responsible person	Prof. Dr. Roland Wiesendanger					
Lecturers	PD Dr. Kirsten von Bergmann, PD Dr. Jens Wiebe					
Language	English (Deutsch, falls alle Teilnehmer dies wünschen)					
Qualification objectives	After successfully completing this module the students will have a good overview of both fundamentals and current research in the fields of surface science, electronic structure and magnetism in reduced dimensions, and spintronics. A focus of this lecture will be put on magnetic atoms, nanostructures, and films on single crystal surfaces. The students will be able to understand experimental sample preparation procedures as well as experimental techniques of low-temperature physics and different surface science characterization tools, such as for instance spin-sensitive scanning probe methods. They will be able to identify different magnetic interactions responsible for the emergence of magnetic order and will have an overview of the different theoretical tools needed for the understanding and prediction of complex magnetic states including their dynamics. Finally, they will be able to connect the topics to current research activities like, e.g., topological materials, magnetic skyrmions, and magnet-superconductor hybrid systems. Students will be eligible to perform the Nanostrukturphysik II - Vertiefungspraktikum either during the module or anytime afterwards.					
Content	 Ultra-high-vacuum and low temperature technology Surface structures, including superstructures Surface characterization tools using electrons or photons Scanning probe methods including spin- and time-resolved variants Magnetoresistance effects Complex magnetic order including spin spirals and skyrmions Surface electronic structure including surface states and Rashba effects Dimensionality effects on band magnetism 					

	- Generalized Heisenberg models in quantum mechanical and semiclassical descriptions including crystal field anisotropy and exchange interactions					
	- Role of spin-orbit coupling in surface magnetism					
	- Magnetization dynamics: precession, spin waves, Landau-Lifschitz-Gilbert equation					
	 Recent hot topics: topological insulators, magnetic skyrmions, topological superconductors, Majorana bound states 					
Courses and teaching forms	Nanostrukturphysik II (V) Ubungen zur Nanostrukturphysik II (Ü) 2 S					
		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	• Lecture	6	56	62	62	
(partial performances and	Exercises	2	28	32	-	
	Total workload	8	84	94	62	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
Literature	 Festkörperphysik, R. Gross und A. Marx (De Gruyter 2014) Festkörperphysik, S. Hunklinger (De Gruyter Oldenbourg) Tieftemperaturphysik, C. Enss und S. Hunklinger (Springer 2000) Magnetism in Condensed Matter, S. Blundell (Oxford University Press) Simple Models of Magnetism, R. Skomski (Oxford Graduate Texts) Magnetism, J. Stöhr und H.C. Siegmann (Springer) Physics of Ferromagnetism, S. Chikazumi (Oxford Science Publications) Surface Physics: An Introduction, P. Hofmann (e book only 2016) Oberflächenphysik des Festkörpers, M. Henzler / W. Göpel (Teubner 1994) Physics of Surfaces and Interfaces, H. Ibach (Springer 2006) Scanning Probe Microscopy and Spectroscopy, R. Wiesendanger (Cambridge University Press) 					

Module title	Nanostrukturphysik IV - Energiematerialien und Nanobiotechnologie				
Module number:	PHY-MV-FN-E11				
Semester	Summersemester				
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				

Prerequisites for	Binding: none					
participation	Recommended: none					
Responsible person:	Prof. Dr. Robert H. Blick; Prof. Dr. Arwen Ruth Pearson					
Lecturers	Prof. Dr. Robert H. Blick; Prof. Dr. Arwen F	Ruth Pe	earson			
Language	German or English					
Qualification objectives	After successfully completing the module, students will be able to summarise the main research results on energy storage and energy generation using nanomaterials or the application of nanostructures and nanomaterials in the fields of medicine and biotechnology.					
Content	Current research results are to be presented in regular rotation, alternating between the two thematic fields of energy materials or nanobiotechnology, with particular emphasis on the interdisciplinary aspects within the nanosciences with the thematic fields of physics, chemistry, biology, engineering sciences and medicine.					
Courses and teaching forms	 Nanostrukturphysik IV (V) Übungen zur Nanostrukturphysik 	IV (Ü)			2 SWS 1 SWS	
Workload (partial performances and total)	Lecture Exercises Total workload	LP 3 1	P (hrs) 28 14 42	S (hrs) 32 16 48	PV (hrs) 30 - 30	
		4	42	40	50	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
Literature:	To be announced in the course.					

Module title	Advanced Methods for Surface and Nanostructure Characterization			
Module number	PHY-MV-FN-E12			
Semester	Summersemester			
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	Binding: none Recommended: Festkörperphysik; Nanostrukturphysik			
Responsible person	Prof. Dr. Andreas Stierle			

Lecturers	Prof. Dr. Andreas Stierle					
Language	English					
Qualification objectives	The students have the understanding of different methods for the structural and chemical characterisation of nanostructures and surfaces as well as the development of decision-making competence for the choice of methods for the chemical and structural characterisation of nanostructures and surfaces. After successful completion of the module, students know how to characterise the atomic structure of surfaces and nanostructures using X-ray and electron diffraction methods. They know different methods to describe the morphology, atomic structure or near order. Furthermore, the students know electron spectroscopic methods that are used to characterise the chemical and electronic properties. Finally, they					
	have an overview of spatially resolving sca	anning	probe tee	chniques.		
	I. X-ray diffraction on systems with reduce	ed dim	ensions			
	- X-ray reflection					
	- X-ray diffraction under grazing incidence	, smal	l angle sca	attering		
	- Surface X-ray diffraction					
	- Diffraction from thin films, multilayers and nanoparticles					
	II. electron diffraction in low-dimensional systems					
	- Diffraction of low-energy electrons					
Content	- Diffraction of high energy electrons					
	- Electrons as a local probe: EXAFS					
	- Photoemission spectroscopy					
	- Auger electron spectroscopy					
	IV Scanning probe techniques					
	- Scanning tunneling microscopy					
	- Atomic force microscopy					
	- Scanning electron microscopy					
	Advanced Methods for Surface and Na	anostr	ucture		2 SWS	
Courses and teaching forms	 Characterization (V) Exercises in Advanced Methods for Surface and 2 SWS Napostructure Characterization (Ü) 					
		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	Lecture	3	28	32	30	
(partial performances and	Exercises	2	28	32	-	
total)	Total workload	5	56	64	30	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					

Frequency of the course	annually
Literature	1. J. Als-Nielsen, D. Mc Morrow, Elements of modern x-ray physics, Wiley
	2. H. Dosch, critical phenomena at surfaces and interfaces, Springer
	3. G. Ertl, J. Küppers, Low energy electron diffraction and surface chemistry, Springer
	4. K. Wandelt, surface and interface science, Wiley
	5. R. Waser, nanoelectronics and information technology, Wiley
	6. E. Mittemeijer, U, Welzel, modern diffraction methods, Wiley

Module title	Seminar über Nahfeldgrenzflächenphysik und Nanotechnologie				
Module number	PHY-MV-FN-E16				
Semester	Sommer- und Wintersemester	Sommer- und Wintersemester			
Applicability, module type	Nanowissenschaften (M.Sc.): Con	npulso	ry electiv	e module	
and assignment to the	Physik (M.Sc.): Compulsory electi	ve mo	dule		
curriculum	Physics (M.Sc.): Compulsory elect	ive mo	odule		
Prerequisites for	Binding: none				
participation	Recommended: Physik IV (= Festkörperph	nysik) c	oder		
· ·	Nanostrukturphysik A und B				
Responsible person	Prof. Dr. Roland Wiesendanger				
Lecturers	Prof. Dr. Roland Wiesendanger				
Language	German or English				
	Students have in-depth knowledge of and in research in solid state and nanostructu	l insigh re phy	nt into cur sics.	rent deve	lopments
Qualification objectives	Students know modern solid state and na current questions using experimental me knowledge to be able to successfully carry of experimental solid state and nanostruc	nostru thods. y out a cture p	icture phy They hav Master's hysics.	vsics, by a e in-depth thesis in t	ddressing n the field
Content	Deepening of current topics in solid state and nanostructure physics				
content	Experimental methods of solid state and nanostructure physics				
Courses and teaching forms	Seminar über Nahfeldgrenzflächenphysik und 2 SWS Nanotechnologie (S)		2 SWS		
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	• Seminar	3	28	32	30
total)	Total workload	3	28	32	30

Study / Examination achievements	Type of examination: Referat Language of the exam: German or English Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	every semester
Literature	To be announced in the course.

Module title	Bio- and Nanointerfaces
Module number	PHY-MV-FN-E18
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: Grundlagen der physikalischen Chemie
Responsible person	Prof. Dr. Robert H. Blick
Lecturers	Prof. Dr. Robert H. Blick; PD Dr. Thomas F. Keller
Language	German or English
Qualification objectives	The students have basic knowledge of important bio-physical processes at interfaces and have a fundamental and interdisciplinary understanding for further lectures and theses in this interdisciplinary field. After successfully completing the module, the students know how cells transmit electrical signals, how ion channels and nanopores function and what influence an interface has on the conformation of a protein. They know applications in the field of microfluidics, sensor technology and biomedicine as well as methods for the investigation of bio-physical processes, with the help of which current scientific questions can be answered.
Content	 I Introduction II Basics Force and energy Thermodynamic potentials Diffusion Debye-Hückel shielding, zeta potential III Bio- and nano-interfaces Physical description of organic and inorganic interfaces Biophysical interfaces Surface tension and osmosis

	- Cell membranes				
	- Electrical properties of cell membranes and ion transfer				
	- Structure and spatial structure of proteins				
	- Protein-protein / protein-surface interactions				
	- AFM force spectroscopy: force-induced	secon	dary struc	ture chan	ges
	- Enzyme catalysis by tunnel effect				
	VI Applications				
	- Microfluidics				
	- Implant surfaces in research				
	- Bioelectronic devices				
	- Biosensors and in-vitro/in-vivo diagnost	ics			
Courses and teaching forms	Bio-Nano-Interfaces (V)	Bio-Nano-Interfaces (V) 2 SWS			2 SWS
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	Lecture	3	28	32	30
total)	Total workload	3	28	32	30
Study / Examination	Type of examination: Written or oral exar	ninatio	on		
achievements	Language of the exam: English				
	Deviations will be announced at the begin	nning o	of the eve	nt.	
Duration	1 semester				
Frequency of the course	annually				
	"Biophysics: A Physiological Approach", P University Press, 2012.	atrick	F. Dillon, (Cambridg	e
	"Bioelectronics Handbook: MOSFETs, Biosensors, and Neurons", Massobrio, Giuseppe, McGraw-Hill Companies, 1998.				
Literature	MIT Open course ware http://ocw.mit.edu/courses/materials-science-and- engineering/(3-051j)				
	"Intermolecular and Surface Forces", 2 nd ed., J.N. Israelachvili, Academic Press, London, 1992.				
	"Biomaterials: Protein–Surface Interactions", R.A. Latour, in Encyclopedia of Biomaterials and Biomedical Engineering, 2005.				

Module title	X-Ray Analytics and Microscopy in Nanoscience	
Module number	PHY-MV-FN-E23	
Semester	Summersemester	
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module	
and assignment to the	Physik (M.Sc.): Compulsory elective module	
curriculum	Physics (M.Sc.): Compulsory elective module	

Prerequisites for	Binding: none				
	Recommended: none				
Modulverantwortliche®	Prof. Dr. Christian Schroer				
Lecturers	Prof. Dr. Christian Schroer				
Language	English				
Qualification objectives	Students will be able to summarise the essential current X-ray analytical and X-ray microscopic methods for the investigation of functional nanomaterials.				
	The following topics will be covered:				
	- Interaction of X-rays with matter				
	- Wave optics of X-rays and X-ray opti	ics			
Contant	- tomography				
Content	- Scanning microscopy and analysis				
	X-ray fluorescence, absorption, diffraction				
	- Imaging X-ray microscopy				
	- Imaging with coherent X-rays				
Courses and teaching forms	X-Ray Analytics and Microscopy in Nanoscience (V) 2 SWS		2 SWS		
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and	Lecture	3	28	32	30
total)	Total workload	3	28	32	30
Study / Examination	Type of examination: Hausarbeit Language of the exam: English				
achievements	Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	Wird in der Lehrveranstaltung bekannt gegeben.				

Module title	Die Kunst der Computer-basierten Modellierung und Simulation experimenteller Daten	
Module number	HY-MV-FN-E31	
Semester	Wintersemester	
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 	

Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Michael Rübhausen				
Lecturers	Prof. Dr. Michael Rübhausen; Dr. Benjami	in Grin	nm-Lebsa	nft	
Language	German or English				
Qualification objectives	The students have an understanding of mathematical descriptions of experimental data with explicit consideration of numerical and experimental errors. They know the basics of statistics, numerics and programming as well as the modelling of an experimental data set.				
Content	 Statistics - Revision of the basics Numerics: Integrating, differentiating, FFT, solving a linear system of equations DGL's: Runge Kutta Fit algorithms considering experimental errors: Linear function; Gauss-Newton method; Levenberg Mar-quardt; Monte-Carlo Stability of a fit under consideration of experimental errors Global versus local fit minimum 				
Courses and teaching forms	 Die Kunst der Computer-basierten Modellierung und Simulation experimenteller Daten (V) Übungen zur Kunst der Computer-basierten Modellierung und Simulation experimenteller Daten (Ü) Computerübungen zur Kunst der Computer-basierten Modellierung und Simulation experimenteller Daten (CÜ) Projekt zur Kunst der Computer-basierten Modellierung und Simulation experimenteller Daten (Pj) 1 SW 			2 SWS 2 SWS 2 SWS 1 SWS	
Workload (partial performances and total)	 Lecture Exercises Computerexercises Project 	LP 3 2 2 2	P (hrs) 28 28 28 28 14	S (hrs) 32 16 16 23	PV (hrs) 30 16 16 23
	Total workload	9	98	87	85
Study / Examination achievements	Type of examination: Project completion Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	Numerical Recipes – The Art of Scientific Computing (3rd Edition)				

Module title	Quantentransport und experimentelle Quantenphysik		
Module number	PHY-MV-FN-E32		
Semester	Wintersemester		
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		
Prerequisites for participation	Binding: none Recommended: Grundlagen der Elektrodynamik und Quantenmechanik		
Responsible person	Prof. Dr. Robert H. Blick		
Lecturers	Prof. Dr. Robert H. Blick; Dr. Lars Tiemann		
Language	German or English		
	The students have an in-depth knowledge of the important principles of semiconductor and solid-state physics and fundamental knowledge of new, exotic states of matter. They have an understanding of important quantum effects in solids and their experimental investigation methods.		
Qualification objectives	The students know how modern semiconductor structures are constructed and how they can be processed into nanostructures. They understand under which conditions quantum effects occur in semiconductors, how they are to be interpreted physically and how they are investigated experimentally. The students know the applications of modern measurement techniques of semiconductors at temperatures ≤ 4.2 Kelvin and have the necessary basics to be able to work experimentally in the field of quantum transport.		
Content	 I Introduction II Fundamentals of solid state and semiconductor physics (approx. 15% of the VL) band structures Properties of charge carriers III Fundamentals of semiconductor technology (approx. 15%) Growth of semiconductors Processing, structuring and clean room technologies Characterisation methods IV Quantum effects and quantum transport (approx. 60%) Transport of charge carriers Interactions and defects Quantisation by confinement potentials and magnetic fields Quantum Hall effects and graphene Topological systems Quantum effects in nanostructures V Measurement Methods and Technologies (approx. 10%) 		

	 Fundamentals of low-temperature physics (4.2 Kelvin to millikelvin range) 				
	- Fundamentals of measurement data acquisition for transport at low temperatures				
	(Measurement methods and data acquisition/programming)				
Courses and teaching forms	 Quantentransport und experimentelle Quantenphysik (V) Seminar zu Quantentransport und experimentelle 			2 SWS	
	Quantenphysik (S)		1	r	1 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and total)	• Seminar	1	14	8	8
	Total workload	4	42	40	38
Study / Examination achievements	Type of examination: Presentation or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
	"Semiconductor Nanostructures: Quantum states and electronic transport", Thomas Ihn, Oxford Univ. Press, 2011				
Literature	"The physics of low-dimensional semiconductors: an introduction", John H. Davies, Cambridge Univ. Press, 2009				
	"Semiconductor spintronics", Thomas Schäpers, De Gruyter, 2016				
	"Introduction to the Physics of Electrons in Solids", Henri Alloul, Springer- Verlag, 2011				

Module title:	Modern Scattering Methods in Nanomaterial Science			
Module number:	PHY-MV-FN-E33			
Semester	Wintersemester			
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module			
and assignment to the	Physik (M.Sc.): Compulsory elective module			
curriculum	Physics (M.Sc.): Compulsory elective module			
Prerequisites for	Binding: none			
participation:	Recommended: Nanochemie I & II, Methoden moderner Röntgenphysik I			
Responsible person:	Prof. Dr. Dorota Koziej			
Lecturers:	Mads Ry Jørgensen, AU			
	Dorota Koziej, UHH			
	Ann-Christin Dippel, DESY			

Language:	English				
Qualification objectives:	The students know the theoretical background and have practical experience with synchrotron X-ray scattering techniques relevant for the characterisation of nanoparticles.			or the	
	In detail:				
	- Consider the properties of synchrotron nanoparticles.	radiatio	on for the	structura	l study of
	- Explain the principle of small angle X-ray diffraction (PXRD) and total scattering (TS	y scatte 5).	ering (SAX	S), powde	er X-ray
	- Identify the main technical components consider their effects on the resulting dat	in the a	experime	ntal set-u	ps and
	- Perform analyses of SAXS, PXRD and TS	data fr	om nanop	oarticles.	
	- Discuss the strengths and weaknesses o characterising the properties of nanopart	f the th icles	nree meth	ods for	
Content:	- Nanoparticle synthesis and sample prep	aratior	n in the la	b.	
	- The theory and principles behind PXRD, SAXS & TS and data analysis will be presented in a series of lectures and exercises.				
	- Experiments on two beamlines at the German Electron Synchrotron (DESY).				
	Students will perform experiments in small groups on their own samples.				
	- The data collected during the experiments will be analysed during the workshops.				
Courses and teaching	Modern Scattering Methods in Nanomaterial Science (V) 1 SW:			1 SWS	
forms:	 Sample preparation and synchrotron experiments (P) Data analysis (Ü) 2 SWS 2 SWS 			2 SWS 2 SWS	
Workload		LP	P(hrs)	S (hrs)	PV (hrs)
(partial performances and	 Lectures & e-learning (V) 	2	14	24	22
total)	Experiments (P)	2	28	16	16
,	Data analysis (U)		28	2	-
		5	70	42	38
Study / Examination	Type of examination: Referat mit schriftlicher Ausarbeitung				
achievements	Language of the exam: English				
	Deviations will be announced at the begin	ining u	in the even	π.	
Duration	1 semester				
Frequency of the course	annually				
Literature:	To be announced in the course.				

Module title	Methods in Nanobiotechnology II
Module number	PHY-MV-FN-E34
Semester	Summersemester

Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module				
and assignment to the	Physik (M.Sc.): Compulsory elective module				
curriculum	Physics (M.Sc.): Compulsory elective module				
Prerequisites for	Binding: none				
participation	Recommended: none	Recommended: none			
Responsible person	Prof. Dr. Wolfgang Parak				
Lecturers	Prof. Wolfgang Parak; Dr. Neus Feliu; Dr.	Florian	Schulz		
Language	English				
Qualification objectives	The students have knowledge of modern methods and aspects of nanobiotechnology. They are prepared for scientific work in this topic and can understand, classify and also summarize technical primary Literaturee on the topic.				
Content	In this course, basic methods of nanobiotechnology are presented and discussed. The focus of this module is on the synthesis of materials, especially colloids, and their characterization. Experimental techniques and background information on measurement applications will be covered. Examples covered include synthesis of colloidal nanoparticles and microparticles, functionalization of surfaces, purification methods, determination of particle sizes and particle separation processes, bioconjugation, photophysical principles, etc.				
Courses and teaching forms	 Methods in Nanobiotechnology II (V) Exercises in Methods in Nanobiotechnology II (Ü) Practical: Methods in Nanobiotechnology II (P) 			2 SWS 2 SWS 2 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and	• Exercises	2	28	32	-
total)	Praktikum	2	28	32	-
	Total workload	7	84	96	30
Study / Examination achievements	Type of examination: Presentation (50%) and oral examination (50%) Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Fundamentals of Photovoltaics
Module number	PHY-MV-FN-E35
Semester	Summersemester

Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Physik V				
Responsible person	Prof. Dr. Christian Schroer				
Lecturers	Members of the teaching staff from the D	epartr	ment of Pl	nysics	
Language	English				
Qualification objectives	Students are familiar with the concept of photovoltaic power generation and are prepared for scientific work in this field.			ration and	
Content	The following topics will be covered: - Concept of photovoltaic energy generation - Theoretical, technical and economic limits of photovoltaics - Technology of different types of solar cells - Fabrication of solar cells				
Courses and teaching forms	Fundamentals of Photovoltaics (V) 2 S			2 SWS	
Workload (partial performances and	• Lecture	LP 3	P (hrs) 28	S (hrs) 32	PV (hrs) 30
total)	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Written draft Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Complex Materials		
Module number	PHY-MV-FN-E36		
Semester	Summersemester		
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (B.Sc.) (nur 6. FS): Compulsory elective module Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		

Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Dorota Koziei				
Lecturers	Prof. Dr. Dorota Koziej				
Language	English				
Qualification objectives	Students know the theoretical background and have acquired practical experience with complex materials.			ical	
Content	 The course is divided into three parts: I) Synthesis of 0-, 1-, 2- and 3-dimensional building blocks w length scale from nm to μm. Including practical aspects of b flow chemistry. II) Assembly of building blocks into 1-, 2-, and 3-dimensiona complex structures over multiple length scales up to cm. In various methods for synthesis of inorganic and polymeric bublocks are discussed. Part II focuses on self- and directional methods, dispersion-based coating, 2D and 3D ink printing the bublocks that connect the microscopic to the macroscopic wo their applications. Part III focuses on applying the concepts learned to a proble modern functional materials. This includes the implementation 			vith a batch and Part I, uilding assembly that can ilding rld and em of tion of	
Courses and teaching forms	 Complex Materials (V) Project (Pj) 				3 SWS 2 SWS
Workload (partial performances and total)	Lecture Project Total workload	LP 4 2 6	P (hrs) 42 28 84	S (hrs) 40 32 94	PV (hrs) 38 - 62
Study / Examination achievements	Studienleistung: Project completion Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Wahlpflichtpraktikum Physik
Module number	PHY-MV-FN-E37
Semester	Wintersemester and Summersemester

Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module				
and assignment to the	Physik (M.Sc.): Compulsory elective module				
curriculum	Physics (M.Sc.): Compulsory elective module				
Prerequisites for	Binding: none				
participation	Recommended: none				
Responsible person	Members of the group of university	professo	rs of the Dep	oartment o	of Physics.
Lecturers	Members of the teaching staff from	the Depa	irtment of Pl	nysics	
Language	German or English				
Qualification objectives	Possession of knowledge and application of modern and sophisticated me- thods or knowledge of modern techniques and procedures. The students possess the key qualifications (in particular methodological competence, work planning, social competence/teamwork, preparation of documentation, practice of a scientific presentation, literary research) in connection with physical contents.				
Content	The elective internship can be done in a physics research group of the student's choice.				
Courses and teaching forms	• i.d.R. (P) + (S)				6-15 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
workload (partial performances and	 Practical lab course mit Seminar 	6-15	140-340	20-55	20-55
total)	Total workload	6-15	140-340	20-55	20-55
Study / Examination achievements	Type of examination: Completion of the internship (presentation and/or written paper) Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	every semester				
Literature					

Module title	Methods in Nanobiotechnology I		
Module number	PHY-MV-FN-E39		
Semester	Wintersemester		
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module		
and assignment to the curriculum	Physik (M.Sc.): Compulsory elective module		
	Physics (M.Sc.): Compulsory elective module		

Prerequisites for	Binding: none				
participation	Recommended: none				
Responsible person	Prof. Dr. Wolfgang Parak	Prof. Dr. Wolfgang Parak			
Lecturers	Prof. Wolfgang Parak; Dr. Neus Feliu; Dr. I	Florian	Schulz		
Language	English				
Qualification objectives	The students know modern methods and are prepared for scientific work in this top understand and classify technical primary present it in summary form.	The students know modern methods and aspects of nanobiotechnology and are prepared for scientific work in this topic. The students are able to understand and classify technical primary Literaturee on the topic and also present it in summary form.			ology and to and also
Content	In this course, basic methods of nanobiotechnology are presented and discussed. The focus of this module is on the synthesis of materials, especially colloids, and their characterization. Experimental techniques and background information on measurement applications will be covered. Examples covered include synthesis of colloidal nanoparticles and microparticles, functionalization of surfaces, purification methods, determination of particle sizes and particle separation processes, bioconjugation, photophysical principles, etc.			and 5, ques and ered.	
Courses and teaching forms	 Methods in Nanobiotechnology I (V) Exercises in Methods in Nanobiotechnology I (Ü) Practical: Methods in Nanobiotechnology I (P) 			2 SWS 2 SWS 2 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and	Exercises Bractical lab course	2	28	32	-
total)		2	28	32	-
	Total workload	7	84	96	30
Study / Examination achievements	Type of examination: Presentation (50%) and oral examination (50%) Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Nonequilibrium Statistics and Transport Theory		
Module number	PHY-MV-FN-T13		
Semester	Summersemester		
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		

rerequisites for Binding: none							
participation	Recommended: none						
Responsible person	Prof. Dr. Michael Thorwart	Prof. Dr. Michael Thorwart					
Lecturers	Prof. Dr. Michael Thorwart/ PD Dr. Alexan	Prof. Dr. Michael Thorwart/ PD Dr. Alexander Chudnovskiy					
Language	English						
Qualification objectives	Students are familiar with modern concepts in quantum statistics of systems in non-equilibrium and quantum transport theory and are prepared for scientific work in this field.						
Content	Modern concepts of quantum statistics of systems in nonequilibrium and quantum transport theory.						
Courses and teaching forms	 Nonequilibrium Statistics and Transport Theory (V) Exercises in Nonequilibrium Statistics and Transport Theory (Ü) 4 SWS 2 SWS 				4 SWS 2 SWS		
		LP	P (hrs)	S (hrs)	PV (hrs)		
Workload	Lecture	6	56	62	62		
(partial performances and	Exercises	2	28	32	-		
total)	Total workload	8	84	94	62		
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.						
Duration	1 semester						
Frequency of the course	biennial						
Literature	To be announced in the course.						

Module title	Theorie der kondensierten Materie I
Module number	PHY-MV-FN-T14
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Daniela Pfannkuche
Lecturers	Members of the teaching staff from the Department of Physics
Language	German or English

Qualification objectives	Students will have the basic knowledge and experience in using typical methods of condensed matter theory.				
Content	 Electrons in crystals Electronic band structure Electron dynamics in crystals phonons Superconductivity 				
Courses and teaching forms	 Theorie der kondensierten Materie I (V) Übungen zur Theorie der kondensierten Materie I (Ü) 				4 SWS 2 SWS
Workload (partial performances and total)	LectureExercises	LP 6 2	P (hrs) 56 28	S (hrs) 62 32	PV (hrs) 62 -
,	Total workload	8	84	94	62
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Seminar on Selected Topics of the Quantum Theory of Condensed Matter				
Module number	PHY-MV-FN-T17				
Semester	Wintersemester/ Summersemester				
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Daniela Pfannkuche				
Lecturers	Prof. Dr. Daniela Pfannkuche				
Language	English				
Qualification objectives	Students have basic knowledge of modern topics and methods in condensed matter theory. They are able to synthesize knowledge from contemporary scientific publications and reproduce it in a scientific presentation. Students have in-depth knowledge of selected current topics in condensed matter theory and can actively contribute to scientific discussions.				

Content	Current aspects and novel developments of quantum many-body theory: novel materials and advanced methods.				
Courses and teaching forms	 Seminar on Selected Topics of the Quantum Theory of Condensed Matter (S) 				2 SWS
Workload (partial performances and total)		LP	P (hrs)	S (hrs)	PV (hrs)
	• Seminar	3	28	32	30
	Total workload	3	28	32	30
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	every semester				
Literature	To be announced in the course.				

Module title	Seminar on Many-Body Theory and Quantum-Statistical Methods					
Module number	PHY-MV-FN-T18					
Semester	Wintersemester/ Summersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module Nanowissenschaften (M.Sc.): Compulsory elective module 					
Prerequisites for participation	Binding: none Recommended: none					
Responsible person	Prof. Dr. Michael Potthoff					
Lecturers	Prof. Dr. Michael Potthoff					
Language	English					
Qualification objectives	Students will be able to discuss current physical problems in the field of many-particle theory and quantum statistical methods, and to develop and present a specialized topic.					
Content	Novel research directions on many-body theory and quantum statistical methods.					
Courses and teaching forms	Seminar on Many-Body Theory and Quantum-Statistical 2 SW Methods (S)				2 SWS	
Workload	LP P (hrs) S (hrs) PV • Seminar 3 28 32 32					

(partial performances and total)	Total workload	3	28	32	30	
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	every semester					
Literature	To be announced in the course.					

Module title	Seminar on Quantum Dynamics of Nonequilibrium Nano Systems							
Module number	PHY-MV-FN-T19							
Semester	Wintersemester/ Summersemester							
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module 							
Prerequisites for participation	Binding: none Recommended: none							
Responsible person	Prof. Dr. Michael Thorwart							
Lecturers	Prof. Dr. Michael Thorwart							
Language	English							
Qualification objectives	Students are familiar with current research topics in the field and are prepared for scientific work.							
Content	Scientific analysis of current issues in quantum statistics of systems in non- equilibrium and quantum transport.							
Courses and teaching forms	Seminar on Quantum Dynamics of Nonequilibrium Nano 2 SWS Systems (S)				2 SWS			
Workload		LP	P (hrs)	S (hrs)	PV (hrs)			
(partial performances and	Seminar	3	28	32	30			
total)	Total workload	3	28	32	30			
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.							
Duration	1 semester							
Frequency of the course	every semester							
Literature	To be announced in the course.							
Module title	Quantum Statistics with Path Integrals							
---	--	---	----------	----------	----------	--	--	--
Module number	PHY-MV-FN-T24							
Semester	Summersemester							
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Com Physik (M.Sc.): Compulsory elective Physics (M.Sc.): Compulsory elective 	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 						
Prerequisites for participation	Binding: none Recommended: none							
Responsible person	Prof. Dr. Michael Thorwart							
Lecturers	Prof. Dr. Michael Thorwart							
Language	English							
Qualification objectives	Students will be familiar with current methods in the field of path integrals for quantum many-body systems and will be prepared for scientific work.							
Content	 Advanced introduction to quantum statistics with path integrals Current methods from the field of path integrals for quantum many- particle systems 							
Courses and teaching forms	 Quantum Statistics with Path Integrals (V) Exercises in Quantum Statistics with Path Integrals (Ü) 							
		LP	P (hrs)	S (hrs)	PV (hrs)			
Workload (partial performances and	LectureExercises	6 2	56 28	62 32	62 -			
total)	Total workload	8	84	94	62			
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.							
Duration	1 semester							
Frequency of the course	biennial							
Literature	To be announced in the course.							

Module title	Symmetry Groups in Physics
Module number	PHY-MV-FN-T25
Semester	Wintersemester

Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 					
	Physics (W.sc.). Compusory elect	ive mu	uule			
Prerequisites for participation	Becommended: Theoretische Physik I. The	orotic	cho Physi	k II		
Posponsible porcon	Prof. Dr. Michael Potthoff			K II		
Lecturers	Prof. Dr. Michael Potthoff					
Language	English					
Qualification objectives	Students will be familiar with basic tools of apply group theory concepts in different f	of grou ields o	p theory a of theoreti	and will be cal physic	e able to s.	
	 Symmetry concepts in various fields of p Basic concepts of mathematical group th Examples of symmetry groups in classical 	hysics. neory il and c	quantum i	mechanic	5	
Content - Discrete groups, applications to geo - Group actions, representation theory - Topological groups, Lie groups and l - Applications to quantum theory of r			try and in condensed matter theory algebras ny-particle systems			
Courses and teaching forms	 Symmetry Groups in Physics (V) Exercises in Symmetry Groups in I 	 Symmetry Groups in Physics (V) Exercises in Symmetry Groups in Physics (Ü) 2 SWS 				
		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	Lecture	6	56	62	62	
(partial performances and	Exercises	2	28	32	-	
	Total workload8849462					
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	biennial					
Literature	To be announced in the course.					

Module title	Condensed-Matter Theory: Special Topics				
Module number	PHY-MV-FN-T28				
Semester	Summersemester				
Applicability, module type	Nanowissenschaften (M.Sc.): Compulsory elective module				
and assignment to the	Physik (M.Sc.): Compulsory elective module				
curriculum	Physics (M.Sc.): Compulsory elective module				

Prerequisites for	Binding: none							
participation	Recommended: none							
Responsible person	Prof. Dr. Daniela Pfannkuche/ Prof. Dr. Mi	Prof. Dr. Daniela Pfannkuche/ Prof. Dr. Michael Potthoff						
Lecturers	Members of the teaching staff from the D	epartr	ment of Pl	nysics				
Language	English							
Qualification objectives	Students are familiar with modern topics a special methods of condensed matter the	Students are familiar with modern topics and have experience in using special methods of condensed matter theory.						
Content	 Topological properties of selected model systems Ballistic transport Quantum Hall effects Green's functions and diagrammatic perturbation theory Magnetism 							
Courses and teaching forms	 Condensed-Matter Theory: Specia Exercises - Condensed-Matter The 	 Condensed-Matter Theory: Special Topics (V) Exercises - Condensed-Matter Theory: Special Topics (Ü) 4 SWS 2 SWS 						
		LP	P (hrs)	S (hrs)	PV (hrs)			
Workload	Lecture	6	56	62	62			
(partial performances and	Exercises	2	28	32	-			
	Total workload	8	84	94	62			
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.							
Duration	1 semester							
Frequency of the course	annually							
Literature	To be announced in the course.							

Laserphysik und Photonik (Laser physics and photonics):

Module title	Methoden moderner Röntgenphysik I - Spektroskopie			
Module number	PHY-MV-LP-E05			
Semester	Wintersemester			
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	Binding: none Recommended: none			
Responsible person	PD Dr. Michael Martins			

Lecturers	PD Dr. Michael Martins; Dr. Edgar Weckert						
Language	German or English	German or English					
Qualification objectives	Students have worked out the basics of modern X-ray physics. They know the introduction to the subject but also the applications of X-rays for the investigation of a wide variety of systems. Students have acquired a sound technical knowledge to successfully complete an experimental master thesis in the field of interaction of X-rays with matter.						
Content	This includes an introduction to the subject matter but also the applications of X-rays to study a wide variety of systems Interaction of X-rays with matter Absorption, scattering, Auger effect, hard and soft X-rays Accelerator-based sources of X-rays Synchrotron radiation and free electron lasers Experimental methods Spectroscopy and diffraction						
Courses and teaching	- X-ray optics Optical materials, EUV lithography, Fresnel equations - Application of X-Ray Radiation Small quantum systems				4 SWS		
forms	Übungen zu Methoden moderner F	Übungen zu Methoden moderner Röntgenphysik I (Ü) 2 SWS					
Workload (partial performances and total)	 Lecture Exercises Total workload 	LP 6 2 8	P (hrs) 56 28 84	S (hrs) 62 32 94	PV (hrs) 62 - 62		
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.						
Duration	1 semester						
Frequency of the course	annually						
Literature	Will be announced in the course; extensive sli	Nill be announced in the course; extensive slide script.					

Module title	Moderne Molekülphysik – Clusterphysik
Module number	PHY-MV-LP-E06
Semester	Summersemester

Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 							
Prerequisites for participation	Binding Recomr	Binding: none Recommended: none						
Responsible person	PD Dr. I	Michael N	Martins					
Lecturers	PD Dr. I	Michael N	Martins					
Language	Germar	n or Engli	sh					
	Students have knowledge of the fundamentals, applications and so status of research on clusters, as well as the knowledge to calculat geometric and electronic structures of small clusters. They know the subject area to the size range, which lies between a solid state physics. The acquired knowledge will enable them to su					ns and sci calculate etween a iem to suc	entific toms and ccessfully	
Qualification objectives	complete an experimental master thesis in the field of very small							
	The students are able to calculate geometrical and electronic structures of small clusters, which they have been enabled to do by the exercises of the introduction to quantum chemical calculus.							
	- Introduction to cluster physics: What are clusters?							
	- Fundamentals of quantum chemical methods							
	- Experimental methods of cluster, molecule, and ion physics							
	- Bonds in clusters							
	Geometric, electronic, chemical, and magnetic properties of mass-selected clusters							
	In detail the following topics are covered							
Content	- Experimental methods of cluster physics: fabrication, detection spectroscopy							
	- Introduction to quantum chemistry and the calculation of clusters and molecules							
	- Geometric structure of clusters and structure determination							
	- Electronic structure of clusters - photoelectron spectroscopy, metal							
	- Chemical properties and catalysis							
	- Carbon clusters, fullerenes and nanotubes							
Courses and teaching forms	•	Modern Übungei	e Molekülphysik – Cluster n zu Moderne Molekülphy	physik ysik – ((V) Clusterphy	/sik (Ü)	4 SWS 2 SWS	
Workload		-	· · ·	LP	P (hrs)	S (hrs)	PV (hrs)	
(partial performances and	•	Lecture		6	56	62	62	
total)	• Exercises 2 28 32					-		

	Total workload	8	84	94	62	
Study / Examination achievements	Type of examination: Written or oral exan Language of the exam: German or English Deviations will be announced at the begin	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	semester					
Frequency of the course	annually					
Literature	Umfangreiches Folienskript					

Module title	Einführung in die Physik der Quantengase							
Module number	PHY-MV-LP-E09							
Semester	Wintersemester							
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory electiv Physics (M.Sc.): Compulsory election 	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 						
Prerequisites for participation	Binding: none Recommended: none							
Responsible person	Prof. Dr. Andreas Hemmerich							
Lecturers	Prof. Dr. Andreas Hemmerich							
Language	German or English							
Qualification objectives	Students are familiar with a central area of modern atomic physics. They know the state of the art in research and can read original Literaturee independently. Experimental observations and basic theoretical concepts are equally covered. Students are prepared for an experimental or theoretical master thesis in the field of ultracold atoms.							
Content	The lecture first discusses the cooling of atomic gases using laser light as a central method for approaching absolute temperature zero and then introduces the quantum physics of gases at absolute temperature zero. Fundamental concepts at the intersection of quantum optics, thermodynamics, and many-body quantum physics are contrasted with detailed experimental observations.							
Courses and teaching forms	Einführung in die Physik der Quantengase (V) 4 SWS Übungen zur Einführung in die Physik der Quantengase (Ü) 2 SWS							
Workload (partial performances and total)	LectureExercises	LP 6 2	P (hrs) 56 28	S (hrs) 62 32	PV (hrs) 62 -			
	Total workload	8	84	94	62			

Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	annually
Literature	Laser Cooling and Trapping, H. Metcalf, P. van der Straaten, Springer Verlag (1999); Bose-Einstein Condensation in Dilute Gases, C. J. Pethick and H. Smith, Cambridge University Press (2002); Script: http://photon.physnet.uni-hamburg.de/ilp/hemmerich/teaching/

Module title	Methoden moderner Röntgenphysik II - Struktur und Dynamik kondensierter Materie				
Module number	PHY-MV-LP-E10				
Semester	Summersemester				
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Methoden moderner Röntgenphysik I				
Responsible person	PD Dr. Michael Martins				
Lecturers	PD Dr. Michael Martins				
Language	German or English				
Qualification objectives	Students will have in-depth knowledge of the scientific state of the art of experimental research in solid state physics using modern methods of X-ray physics, as well as in-depth experimental expertise to successfully conduct an experimental master's thesis in the field of solid state and nanostructure physics.				
Content	 Coherence and its applications (interference, diffraction, speckle, coherence lengths and function, structure determination with coherent X-ray scattering) Soft matter (polymers, colloids, nanocomposites, small-angle X-ray scattering and applications) Glass physics (physical properties, structure determination, dyna-mics, nuclear resonant scattering) Correlated electron systems (structural properties, phase transitions, properties, phase transitions) 				

Courses and teaching forms	 Methoden moderner Röntgenphysik II (V) Übungen zu Methoden moderner Röntgenphysik II (Ü) 				4 SWS 2 SWS
Workload	Lecture	LP 6	P (hrs) 56	S (hrs) 62	PV (hrs) 62
(partial performances and	Exercises	2	28	32	-
total)	Total workload	8	84	94	62
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Ultrafast Optical Physics I
Module number	PHY-MV-LP-E11
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Markus Drescher
Lecturers	Prof. Dr. Markus Drescher
Language	English
Qualification objectives	After successful completion of this module, students will know and understand ultrashort phenomena. In addition, they know the introduction to technologies that form the basis for modern short pulse lasers. They have the basic knowledge for the description of ultrashort optical pulses as well as their generation, manipulation, diagnostics and application in modern methods of nonlinear optics and optical spectroscopy.
Content	 Description of ultrashort optical pulses and their interaction with matter; Generation of ultrashort pulses with lasers; Basic principles of nonlinear optics; Diagnostics of ultrashort optical pulses; Ultrashort pulses in non-conventional spectral regions.

	In the assigned exercises, problems are solved together in order to consolidate the acquired knowledge by means of examples and tasks.				
Courses and teaching forms	Ultrafast Optical Physics I (V) Exercises in Ultrafast Optical Physics I (Ü) 2 SV			2 SWS 2 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and	Exercises	2	28	32	-
total)	Total workload	5	56	64	30
Study / Examination achievements	Type of examination: Oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Modern Molecular Physics
Module number	PHY-MV-LP-E16
Semester	Wintersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Recommended: Quantenmechanik Einführung in die Atom-, Molekular- und Laserphysik und Quantenoptik Binding: none
Responsible person	Prof. Dr. Jochen Küpper
Lecturers	Prof. Dr. Jochen Küpper
Language	English
Qualification objectives	Students know the basic concepts of modern experiments in molecular physics. They have acquired a detailed understanding of atoms and molecules and their interaction with external fields and other particles as well as an understanding of experimental concepts in molecular physics.
Content	 Introduction to (selected) modern experiments in molecular physics. Structure of diatomic / linear molecules Spectroscopy of diatomic / linear molecules Molecules in external fields fundamentals of (adiabatic) alignment and orientation, pendulum states molecular symmetry polyatomic molecules

	- basis of precision spectroscopy, frequency combs				
	- introduction to molecular dynamics				
Courses and teaching forms	 Modern Molecular Physics (V) Exercises in Modern Molecular Physics (Ü) 1 SW 			2 SWS 1 SWS	
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload	Lecture	3	28	32	30
(partial performances and total)	Exercises	1	14	16	-
	Total workload	4	42	48	30
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Ultrafast Optical Physics II
Module number	PHY-MV-LP-E21
Semester	Summersemester
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module
Prerequisites for participation	Binding: none Recommended: none
Responsible person	Prof. Dr. Franz Kärtner
Lecturers	Prof. Dr. Franz Kärtner
Language	English
Qualification objectives	Students will have advanced knowledge in ultrashort pulse generation, amplification, manipulation and their applications in spectroscopy, metrology and the attosecond sciences. Upon successful completion, students will be able to quantitatively model and analyze ultrashort pulse laser oscillators and amplifiers, and pulse propagation in linear and nonlinear media.
Content	 Ultrafast pulse generation Amplification, manipulation and their applications in spectroscopy, metrology and the attosecond sciences Ultra-short pulse laser oscillators and amplifiers Pulse propagation in linear and nonlinear media

Courses and teaching forms	 Ultrafast Optical Physics II (V) Exercises in Ultrafast Optical Physics II (Ü) 			3 SWS 1 SWS	
Workload (partial performances and	LectureExercises	LP 5 1	P (hrs) 42 14	S (hrs) 54 16	PV (hrs) 54 -
total)	Total workload	6	56	70	54
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	annually				
Literature	To be announced in the course.				

Module title	Light-Matter-Interactions: Atoms, Molecules & (Non) Linear Optics		
Module number	PHY-MV-LP-E22		
Semester	Summersemester		
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 		
Prerequisites for participation	Binding: none Recommended: none		
Responsible person	Prof. Dr. Christian Bressler		
Lecturers	Members of the teaching staff from the Department of Physics		
Language	English		
Qualification objectives	Students will learn about (classical) radiation lifetimes and linewidths, polarization and methods to measure these properties (spectrometers, detectors, TCSPC, etc.). We develop an understanding of various broadening mechanisms (pressure, Doppler, travel time, etc.), and the concepts will be transposed towards x-ray generation and spectroscopy.		
Content	Reminder Maxwell equations, spectrometer resolution, Bohr-model, Fourier-transformations		
 Light-Matter Interactions: Atoms, Molecules & (Non) Linear Optics (V) Exercises in Light-Matter Interactions: Atoms, Molecules & (Non) Linear Optics (Ü) 		2 SWS 1 SWS	

		LP	P (hrs)	S (hrs)	PV (hrs)	
Workload	Lecture	3	28	32	30	
(partial performances and	Exercises	1	14	16	-	
total)	Total workload	4	42	48	30	
Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	annually					
Literature	Demtröder: Laser Spectroscopy					

Module title	Ultrakalte Quantengase				
Module number	PHY-MV-LP-E26				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory electiv Physics (M.Sc.): Compulsory election 	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	Binding: none Recommended: none	Binding: none Recommended: none			
Responsible person	Prof. Dr. Klaus Sengstock	Prof. Dr. Klaus Sengstock			
Lecturers	Members of the teaching staff from the Department of Physics				
Language	German or English	German or English			
Qualification objectives	After successful completion of the module, students will have knowledge of current research topics in the field of ultracold quantum gases. Furthermore, they will have an understanding of the underlying concepts using experimental and theoretical methods.				
Content	Hubbard models, Two-dimensional Bose gases, Artificial gauge fields, BEC- BCS transition				
Courses and teaching forms	Ultrakalte Quantengase (V) Übungen zu Ultrakalte Quantengase (Ü) 2 SWS				
Workload (partial performances and total)	Lecture Exercises	LP 3 2	P (hrs) 28 28	S (hrs) 32 32	PV (hrs) 30 -
	l otal workioad	5	50	64	30

Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	annually
Literature	Many-body physics with ultracold gases; Immanuel Bloch, Jean Dalibard, Wilhelm Zwerger; Rev. Mod. Phys. 80, 885 (2008);
	Quantum Gas Experiments: Exploring many-body states; edited by Päivi Törmä and Klaus Sengstock; ISBN 978-1-78326-474-2 (2014).

Module title	Nonlinear Optics				
Module number	PHY-MV-LP-E27				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective Physics (M.Sc.): Compulsory elective 	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Franz Xaver Kärtner				
Lecturers	Prof. Dr. Franz Xaver Kärtner	Prof. Dr. Franz Xaver Kärtner			
Language	English				
Qualification objectives	Students know the most important nonlinear optical processes. They are able to simulate and design frequency conversion units, ultrafast parametric optical amplifiers and measurement techniques based on nonlinear optical processes.				
Content	Nonlinear optical concepts and symmetrie second harmonic generation, phase match rectification, many-Rowe relationships, su generation, optical parametric amplification amplification, nonlinear third-order effect effect, self-phase modulation, self-focusin scattering, optical solitons, extreme nonlin Rabiflopping, higher order harmonic gene solids.	es, nor hing, q im anc on, ult s, third ng, stin near o ration	nlinear wa Juasi-phas I differend rafast opt d-harmon nulated Ra ptics: Carl , strong fi	ve equations te matchin te frequer tical paran tic generat aman and rier-wave eld physic	on, ng, optical ncy netric tion, Kerr Brillouin s in
Courses and teaching forms	 Nonlinear Optics (V) Exercises in Nonlinear Optics (Ü) 3 SWS 1 SWS 			3 SWS 1 SWS	
Workload		LP	P (hrs)	S (hrs)	PV (hrs)
(partial performances and total)	LectureExercises	5 1	42 14	54 16	54 -

	Total workload	70	54						
Study / Examination achievements	Type of examination: Written or oral exan Language of the exam: English Deviations will be announced at the begir	ype of examination: Written or oral examination anguage of the exam: English Deviations will be announced at the beginning of the event.							
Duration	1 semester								
Frequency of the course	annually								
Literature	Nonlinear Optics, R. W. Boyd, Academic P The Elements of Nonlinear Optics, P. N. Bu 1991.	ress 2(utcher,	008; , Cambrid	ge Univer	sity Press,				

Module title	Nichtklassisches Licht und die zentralen Konzepte der modernen Quantenphysik				
Module number	PHY-MV-LP-E28				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: Festkörperlaser, Grundkenntnisse der Quantenmechanik				
Responsible person	Prof. Dr. Roman Schnabel				
Lecturers	Prof. Dr. Roman Schnabel				
Language	German or English				
Qualification objectives	After successfully completing the module, students will be able to summarize the main scientific developments in the field of non-classical light states and will have gained a deeper understanding of quantum physics via the concept of "non-classicality".				ssical light ysics via
Content	Criteria for nonclassicality; detection and generation of Fock states, squeezed states, and Einstein-Podolsky-Rosen restricted states; and Bell's inequality, teleportation, and quantum key distribution.				, d Bell's
Courses and teaching forms	 Nichtklassisches Licht und die zentralen Konzepte der modernen Quantenphysik (V) Übungen zu Nichtklassisches Licht und die zentralen Konzepte der modernen Quantenphysik (Ü) 				4 SWS 2 SWS
		LP	P (hrs)	S (hrs)	PV (hrs)
Workload (partial performances and	LectureExercises	6 2	56 28	62 32	62 -
total)	Total workload	8	84	94	62

Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: German or English Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	annually
Litoratura	C. C. Gerry und P. L. Knight, Introductory Quantum Optics, University Press, Cambridge (2005);
	HA. Bachor und T. C. Ralph, A guide to experiments in quantum optics, Wiley, 2nd edition (2003).

Module title	New Experiments with XFEL Sources				
Module number	PHY-MV-LP-E29				
Semester	Summersemester				
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 				
Prerequisites for participation	Binding: none Recommended: none				
Responsible person	Prof. Dr. Christian Bressler; Prof. Dr. Mich	ael Rül	bhausen		
Lecturers	Members of the teaching staff from the Department of Physics				
Language	English				
Qualification objectives	After this course, students will be able to understand the details of FEL generation, XFEL experiments and will be acquainted with the different measurement techniques. follow contemporary publications in the field and prepare own ideas for future XFEL experiments.				
Content	Major recent scientific developments in the fields of spectroscopy and scattering with intense X-rays, inclu-sive atomic physics, femtosecond molecular physics, plasma physics. Also presented are experimental tools such as X-ray lenses, femtosecond timing between 2 independent light sources, X-ray emissivity spectrometers, detectors.				
Courses and teaching forms	New Experiments with XFEL Sources (V) Exercises in New Experiments with XFEL Sources (Ü) SWS				
Workload (partial performances and	LectureExercises	LP 3 1	P (hrs) 28 14	S (hrs) 32 16	PV (hrs) 30 -
	Total workload	4	42	48	30

Study / Examination achievements	Type of examination: Written or oral examination Language of the exam: English Deviations will be announced at the beginning of the event.
Duration	1 semester
Frequency of the course	annually
Literature	To be announced in the course.

Module title	Seminar: Many-body Theory of Ultracold Atoms and Solid State Systems					
Module number	PHY-MV-LP-T02					
Semester	Wintersemester/ Summersemester					
Applicability, module type and assignment to the curriculum	 Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 					
Prerequisites for participation	Binding: none Recommended: none					
Responsible person	Prof. Dr. Ludwig Mathey					
Lecturers	Prof. Dr. Ludwig Mathey					
Language	English	English				
Qualification objectives	The participants work on a topic from modern atomic physics, solid state or quantum optics, and develop the expertise of this topic, as well as the competence of giving presentations.					
Content	Development and discussion of a current research topic. This includes both conceptual questions of theoretical physics, in particular in atomic physics, solid state or quantum optics, as well as applied questions, such as from the field of quantum technology.					
Courses and teaching forms	Seminar: Many-body Theory of Ultracold Atoms and Solid 2 SWS State Systems (S)			2 SWS		
Workload (partial performances and	LP P (hrs) S (hrs) F • Seminar 3 28 32					
total)	Total workload32832				30	
Study / Examination achievements	Type of examination: Referat mit schriftlicher Ausarbeitung Language of the exam: English Deviations will be announced at the beginning of the event.					
Duration	1 semester					
Frequency of the course	every semester					
Literature	To be announced in the course.					

Module title	Theory of Photon-Matter Interactions				
Module number	PHY-MV-LP-T03				
Semester	Wintersemester				
Applicability, module type and assignment to the curriculum	 Nanowissenschaften (M.Sc.): Con Physik (M.Sc.): Compulsory elective Physics (M.Sc.): Compulsory elective 	 Nanowissenschaften (M.Sc.): Compulsory elective module Physik (M.Sc.): Compulsory elective module Physics (M.Sc.): Compulsory elective module 			
Prerequisites for participation	Binding: none Recommended: Theoretische Physik I-III				
Responsible person	Prof. Dr. Robin Santra				
Lecturers	Prof. Dr. Robin Santra, Prof. Dr. Nina Rohr	ringer			
Language	English				
Qualification objectives	Students will be able to develop a precise quantum mechanical description for practically relevant situations of light-matter interaction. They have achieved a conceptual and quantitative understanding of experiments that focus on the behavior of electrons in the electromagnetic field. This generally includes experiments with optical lasers as well as with X-ray sources.				
Content	 canonical formalism quantum theory of the free electromagnetic field quantum theory of many-electron systems interaction between the photon field and the electron field semiclassical theory applications 				
Courses and teaching forms	 Theory of Photon-Matter Interactions (V) Exercises in Theory of Photon-Matter Interactions (Ü) 2 SWS 			4 SWS 2 SWS	
Workload (partial performances and total)	 Lecture Exercises Total workload 	LP 6 2 8	P (hrs) 56 28 84	S (hrs) 62 32 94	PV (hrs) 62 - 62
Study / Examination achievements	Type of examination: Written exam (60%) and written draft (40%) Language of the exam: English Deviations will be announced at the beginning of the event.				
Duration	1 semester				
Frequency of the course	biennial				
Literature	 Molecular Quantum Electrodynamics, by D. P. Craig and T. Thirunamachandran, Dover Quantum Theory of Light, by R. Loudon, Oxford University Press 				

•	Modern Quantum Chemistry, by A. Szabo and N. S. Ostlund, Dover
•	Quantum Theory of Many-Particle Systems, by A. L. Fetter and J. D.
	Walecka, Dover
•	Atomic Structure Theory, by W. R. Johnson, Springer
•	In addition, a script will be provided.