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Correlations in quantum dots

Wolfgang Häusler
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Abstract. The lowest excitations of a repulsively interac-
ting few particle system are investigated within correlated
‘‘pocket state’’ basis functions. For long range interaction
and non—isotropic confining potentials the method be-
comes exact, in the limit of large mean inter—particle
distances r

4
. The multiplet structure of the many—electron

energy levels is explained and the ratios d between the
lowest excitation energies, which are related to the elec-
tron spin, are determined quantitatively using group the-
oretical means. The d are independent of the detailed form
of the inter—particle repulsion and of sufficiently large r

4
.

The obtained d—values are confirmed by available numer-
ical data. The method is applied to 1D and 2D quantum
dots.

PACS: 71.10#x; 71.45Gm; 73.20Dx; 73.20Mf

1. Introduction

Advanced nanostructuring techniques on the basis of high
mobility semiconductor hetero—structures allow to isolate
finite numbers of electrons from the 2D bulk material by
means of suitably shaped gate electrodes or by etching
techniques [1]. These quantum dots [1—5], contain some-
times less than N"10 electrons [6].

Quantum dots show the single electron phenomena
[7] like the Coulomb blockade [8], the single electron
tunneling oscillations [9] and the periodic conductance
oscillations [3] due to the high value of the energy e2/2C
associated with the addition or removal of one single
electron of charge e. For systems containing only few
electrons [6, 10], a proper definition of a (charge indepen-
dent) capacitance C is difficult [11, 12]. This reflects the
importance of correlations due to the Coulomb interac-
tion on top of the charging energy in absence of an
effective screening mechanism in semiconductor systems
at low electron densities.

.

For a 1D model has been shown numerically and
explained in terms of localized charge density distribu-
tions [11] that for mean electron distances r

4
larger than

the Bohr radius a
B
"e+2/me2 (which depends on the ma-

terial through the dielectric constant e and the effective
mass m) non of the lowest excitation energies scale like
\¸~2 with the typical diameter ¸ of the system. The level
spectrum is considerably modified by interactions. It has
been demonstrated that the Hartree Fock approach is not
reliable to describe ground state properties in 1D [13] and
in 2D [14].

Bosonization techniques can be applied to 1D systems
of infinite size if the dispersion of the non—interacting part
of the Hamiltonian is linear. This means that scattering
events are assumed to take place only in the vicinity of the
two Fermi points. Various correlation functions have
been determined [15] but only very recently indications of
a crystallization of the (charge) density—density correla-
tion function have been found in presence of long range
Coulomb interactions [16]. However, the almost vanish-
ing density—density correlation function at short distances
[17] has not been reproduced and is possibly not con-
tained in the linearized model. For calculations of conduc-
tance properties [18, 19] the existence of a Wigner crystal
is frequently presumed [20]. Spin involving excitations
are usually ignored within this class of models.

The correlation effects in quantum dots influence
qualitatively spectral [11, 14, 21, 22, 23] and transport
[24, 12] properties. Non—linear transport involves excited
states [4, 5, 25, 26, 27] of the correlated electrons [28]. To
determine the many—electron excitations in a confined
system by using its symmetry is the main purpose of the
present work. Without further spatial symmetries the per-
mutations S

N
of N elements constitude the only unalien-

able symmetry for N identical particles. In the particular
case of an isotropic harmonic potential in 2D the group
theoretical classification has been given recently [29].
A group theoretical analysis should be applied to a suit-
ably chosen N-particle basis rather than to (effective)
one-electron states.

.
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After specifying the particular model in Sect. 2 the
lowest excitation energies of a finite number of repulsively
interacting particles confined in a quantum dot will be
determined in Sect. 3. To satisfying approximation the low
lying spectrum can be expressed in terms of only one
parameter that, being a tunneling integral, varies expo-
nentially with r

4
. The accuracy of the description present-

ed here is increasing with increasing relative influence of
the interaction compared to the kinetic energy when
r
4
<a

B
, correlation effects are fully taken into account.

The ratios between the lowest excitation energies are
shown to be insensitive to the detailed form of the repul-
sive interaction between the particles, they depend only on
N and the shape (which includes the dimensionality) of the
quantum dot. In Sect. 4 the physically realized many
Fermion or Boson states will be selected using group
theory. The resulting spectra for one- and two-dimen-
sional models of quantum dots are presented in Sects.
5 and 6. They are compared with available numerical
data. Final conclusions are drawn in Sect. 7.

2. Model

An N—particle quantum dot without magnetic field is
described by the Hamiltonian

H"

N
+
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D), (1)

x
i
and p

i
are position and momentum of the i’th particle in

d dimensions with (effective) mass m and spin s. The dot
confinement v(x) and the interaction w (x) both do not
depend on spin. The 2D-case v (x)\x2, w ( Dx D)\1/Dx D has
been investigated for N"2 [21] and N"3 [23] elec-
trons.

A 1D square well

v(x) " »
0
H( Dx D!¸/2), »

0
<n2N2/m¸2

w(x) " e2
e~a@x@

eJx2#j2
, j;¸ (2)

has been studied for N44 [22, 11, 17] and (2) will be the
specific example in Sect. 3. A (small) transversal spread of
the wave functions is described by j and a~1 is the range
of the interaction.

At large mean inter—particle distance r
4
,¸/(N!1)

Z100 a
B

the charge density distribution in the ground
state is inhomogeneous and, for a"0, shows N well
separated peaks. This behaviour is due to the dominant
Coulomb energy compared to the kinetic energy, and is
known as ‘‘Wigner crystallization’’. In absence of a true
phase transition in 1D and 2D, it reflects the short dis-
tance behaviour of the density—density correlation func-
tion. The charge density between the peaks in the investi-
gated finite system is almost vanishing [17]. The quantum
mechanical ground state energy at large r

4
is much better

approximated by equidistantly located classical point
charges than by a homogeneous charge distribution [11].
Like in 3D [30] the excitations in the low density limit can
be described as phonon like vibrations of the charges
around their equilibrium positions due to (linearized)
Coulomb forces between them. These excitations scale
\r~c

4
with the particle density, c is close [11] to 3/2 [30].

In the limit r
4
Z100 a

B
the spectrum is independent of the

statistics of the particles, Fermionic or Bosonic, cf.
Sect. 5.

For electrons with s"1/2 the vibrational levels are
2N-fold spin—degenerate. When r

4
decreases to intermedi-

ate values a
B
(r

4
(100 a

B
these levels start to split expo-

nentially [11] into a finite number of sub-levels. The
following part of the paper is devoted to describe this
resulting fine structure of lowest excitation energies in few
electron quantum dot systems.

3. Pocket states

For Hamiltonians not explicitly depending on spin like (2)
the eigenenergies are solely determined from spatial space
(they correspond to solutions of a differential equation
with boundary conditions). Ignoring in the following the
identity and the spin of the particles increases the Hilbert
space (for the not necessarily (anti-) symmetric functions)
and leads to an increased number of resulting eigenvalues.
Later in Sect. 4.2 the Fermionic or Bosonic space will be
restored and the extra eigenvalues will drop out. For
N distinguishable particles the Hamiltonian (1) can be
conceived as describing one particle in a space of N · d
dimensions.

3.1. Single particle description

If d"1, as in (2), the configuration space is a (hyper—)
cube ¸N where the repulsive interaction ¼ establishes
potential barriers (at least of height e2/j). ¼ separates the
minima of the total potential +

i
v(x

i
)#¼. In absence of

symmetries, as in 1D, there are N! minima which for like
particles are equivalent, i.e. they transform into one an-
other by permuting their coordinates. In 2D the number
of minima can be a multiple of N !, this case will be
discussed in Sect. 6. The minima are located on a hy-
per—ring in configuration space (i.e. a (N!2)-dimen-
sional manifold) perpendicular to the main diagonal of the
(hyper—) cube ¸N. The center of the ring coincides with the
center of the cube. Every minimum is surrounded by
N!1 nearest neighbouring minima at equal distances.

3.2. Pocket state approximation (PSA)

To solve the one particle quantum mechanics at low
energies I use an approximation familiar from the treat-
ment of the symmetric double well with a potential
»(x)"» (!x) as sketched in Fig. 1 for a one-dimen-
sional configuration space. The Hilbert space is restricted
to two ‘‘pocket’’ states D¸T and DRT each peaked around
one minimum of ». Time reversal symmetry is not broken,
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Fig. 1. Double minimum potential, schematically. If S¸ DH DRT;X
the Hilbert space can be restricted to spanMD¸T, DRTN to describe the
lowest excitation.

therefore 04Sx D¸T"S!xDRT and both states are re-
lated to one another by the mirror symmetry. The ground
state is approximated as the symmetric, the first excited
state as the antisymmetric linear combination of both
basis functions. The energy difference D between the cor-
responding eigenvalues is proportional to the matrix ele-
ment S¸ DH DRT of the Hamiltonian that describes tunnel-
ing between left and right. This approximation is good if
the barrier between both potential minima is high so that

D;X . (3)

X is the energy of higher excitations in the double well. To
describe higher excited states nodes have to be introduced
which cannot be approximated by D¸T and DRT.

Due to the exponential decay of Sx D¸T and Sx DRT
under the barrier D decreases exponentially with increas-
ing distance r between the minima and D\exp(!j~1@2)
with increasing height j~1 of the barrier. If X decreases
only algebraically with r (3) is fulfilled at sufficiently large
r justifying then the truncation of the Hilbert space to
spanMD¸T, DRTN.

The problem discussed in Sect. 3.1 can be treated in
similar spirit. The pocket state approximation (PSA) is
not limited to one—dimensional or translationally invari-
ant (tight binding) potentials [31]. The Hilbert space is
truncated to spanMDpTN of 14p4N! states, in coordi-
nate representation Sx

1
, . . . , x

N
DpT each being strongly

peaked around one certain potential minimum and small
elsewhere. The elements of the Hamiltonian matrix H

H
pp{

,Sp DH Dp@T

describe correlated tunneling between two different ar-
rangements p and p@ of the N particles. The basis MDpTN
accounts for correlations. The ground state has the same
symmetry as the Hamiltonian and is given by the linear
combination

1

JN!

N !

+
p/1

DpT . (4)

The inhomogeneous charge density

o(x)"
1

(N!1)!
+
p,p{

:dx
2

. . . dx
N
Sx, x

2
, . . . , x

N
DpT

Sp@ Dx, x
2
, . . . , x

N
T , (5)

obtained in [17], reflects the separation of different prob-
ability amplitudes Sx

1
, . . . , x

N
DpT and Sx

1
, . . . , x

N
Dp@T.

The one to one correspondence between pocket states
DpT and permutations p3S

N
is established through the

multiplication

pA"p ·p@ Q Sx
1
, . . . , x

N
DpAT"Sx

p(1)
, . . . , x

p(N)
Dp@T

where p (i) is the permutation of the sequence
i"1, . . . , N. All pocket states are similar in shape due to
the equivalence of the potential minima. The MDpTN form
a regular representation of S

N
, and therefore standard

group theoretical arguments, cf. [32], can be applied.
Each irreducible representation (IR) C occurs dC-times in
a regular representation where dC is the dimensionality of
C (cf. Sect. 4.2).

In the symmetrized basis

PC spanMD pTN (6)

the Hamiltonian matrix becomes block diagonal. The
projectors

PC :" +
p|SN

sC(p)O (p) (7)

are determined by the (real) characters sC(p) of IR C to the
element p3S

N
(cf. Sect. 4.2). Up to S

7
the sC(p) are

tabulated e.g. in [32]. O (p) performs the permutation p on
the vector space spanMDpTN.

In the following some general properties of the Hamil-
tonian matrix in the basis MDpTN will be proven. It is
convenient to consider the traceless matrix M

M
pp{

:"H
pp{

!H
pp

d
pp{

. (8)

Since H
pp

does not depend on p, H and M differ only by
a unit matrix and are both block diagonal in the basis (6).
If only entries M

pp{
are significantly different from zero

where p and p@ differ by odd permutations (like single
transpositions, this is the case for the dominant off-diag-
onal H

pp{
studied in the present work, cf. Sect. 3.3), each

eigenvalue e of M associated with a C-symmetric eigenvec-
tor has a counterpart !e corresponding to an eigenvec-
tor of adjoined symmetry CM (cf. Sect. 4.1). This follows
from the property sCM (p)"$sC (p), depending on the par-
ity ($1) of p. Thus the spectrum of M is symmetrically
distributed around e"0. If the eigenvalue e is associated
with a Fermion state !e represents a Bose state, see
Sect. 5, so that in particular for the 1D model (2) the
highest Fermion eigenvalue is spin polarized.

The rapid decay of Sx
1
, . . . , x

N
DpT with distance

allows furthermore to neglect all H
pp{

with p@ being not
one of the N!1 nearest neighbours of p in ¸N. Then the
M

pp{
may approximatively be either zero or equal to one

common constant t
N

(the rows and the columns of M still
represent S

N
) which causes all eigenvalues of M to be

proportional to t
N
. In Sect. 3.3 is shown that this assump-

tion is to good approximation valid.
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The H
pp{

\exp(!Jr
4
/r

#
) scale roughly exponenti-

ally with r
4

if r
4
'r

#
(cf. the following Section). On the

other hand the separation between different level
multiplets X\r~c

4
decrease only algebraically which justi-

fies the PSA according to (3) at sufficiently large r
4
(Sect.

5). The density scale r~1
#

is determined by (3) and separates
the regimes of weak and strong interaction. It character-
izes the applicability of PSA.

The vibrational excitations of typical energies X can be
conceived as the discrete energy level spectrum of the
particle introduced in Sect. 3.1 being confined in one
particular potential pocket. The applicability of the PSA
can in principle be extended to higher excited states by
including more than one pocket state per site so that
nodal (hyper-) planes can be incorporated. The lowest of
the vibrational excitations is related to the collective
motion of all particles in phase (acoustic mode). It is
parallel to the main diagonal of the cube ¸N and thus
perpendicular to the (hyper-) plane where all potential
minima are located (cf. Sect. 3.1). No additional p@- de-
pendence is introduced to the non-vanishing overlap inte-
grals H

pp{
and the ratios (cf. Sect. 3.3) between the split-

tings within the lowest and within the first excited vibra-
tional level multiplets should be equal. This is no longer
true for higher vibrational excitations when nodal planes
parallel to the main diagonal of ¸N are introduced. Then
the sequence of fine structure levels changes quantitatively
though each multiplet still contains the same frequency of
total spin S states (cf. Sect. 4.2) and the same total amount
of states.

The lowest vibrational excitation energy decreases
with increasing N at constant r

4
. This is why the pocket

state description is restricted to systems of finite sizes. In
the thermodynamic limit the acoustic mode evolves into
the zero energy Goldstone mode so that (3) is violated and
the low energy spectrum is no longer determined by well
separated multiplets with ‘universal’ internal structure.

3.3. WKB Approximation

To compare the magnitudes of the most important
off—diagonal entries H

pp{
for the 1D example (2) a semi-

classical method is used. This approach can be generalized
correspondingly to different situations like higher dimen-
sionalities. The locations x(p),(x(p)

1
, . . . , x(p)

N
) of adjacent

potential minima in ¸N differ just in one transposition of
two coordinates x(p)

i
and x(p)

j
with Dx(p)

i
!x(p)

j
D"J2 r

4
.

Accordingly, the dominant H
pp{

corresponds to an inter-
change of adjacent electrons in the N-electron chain (2).
In the following will be shown that the value of the
corresponding overlap integral does not depend very
much on the position k (14k4N!1) along the chain
where the exchange takes place. The k-dependence of
H

pp{
can be estimated within (simplified) WKB approxi-

mation. Only regarding the exponentially varying part
[33] yields

H
pp{

\exp!
T

:
0

dq A
m

2
(xR (q))2#¼ (x (q))B. (9)

The path x(q) connects p at q"0 with p@ at q"T and
minimizes the action (9) connected with the motion in the
negative potential !¼ (x(q)). T is the period for that
motion.

The problem to find the extremal path will be simplifi-
ed by taking just the straight line for x(q) connecting
p with p@. This disregards the motion of other electrons
apart from the two considered ones during the time
T and can be justified for small values of j in (2) when the
height of the potential saddle is dominated by j~1 and
slight variations in the positions of the other electrons
modify this value only little. In 2D situations (1) this
‘‘adiabatic’’ simplification is in general not valid.

The (imaginary) time integration in (9) then becomes

H
pp{

\exp!J2 r
4

1
:
0

dqJ2m(¼(x (q))!¼(x (0))) (10)

by virtue of energy conservation !m
2
(xR (q))2#¼ (x(q))"

¼(x(0))"¼(x (T)) along x (q). The factor J2 accounts
for the two masses carried from p to p@. For the interaction
w (x)"e2e (x2#j2)~1@2 in (2)

H
pp{

\exp C!A
N;kS

¸

a
B

2e
N!1D (11)

where

A
N;k

,

1
:
0

dq CwJ (2q!1)!wJ (1)

#

1

2

N
+
i/1

iOk,k`1

MwJ (k!i#q)!wJ (k!i)

#wJ (k#1!i!q)!wJ (k#1!i)ND ,

wJ (q),(q2#l2)~1@2, l,j/r
4
"(N!1)j/¸

contains the k-dependence of the WKB-action associated
with interchange of adjacent electrons in the chain.
A

N;k
still depends weakly on N and j.

The numerical data shown in Fig. 5 of [11] at low
densities agree with a log(D)\!J¸ behaviour. The N-
dependence obtained in [11] is however less pronounced
than suggested by (11). This indicates a pronounced de-
pendence of the prefactor on the dimensionality N of the
configuration space which has been ignored in (9). In
Fig. 2 A

N;k
is plotted for various N and j/¸"2·10~4 as

used in [11]. The variation of A
N;k

, less than 2% of their
mean value, leads to significant k-dependencies of
H

pp{
only if r

4
Z35 a

B
. But then the magnitude of H

pp{
has

decreased already to unobservable small values so that the
fine structure splitting disappears and the system consists
of classical electrons (Wigner molecule). Increasing j/¸ to
values up to 0.1 reduces the mean value of A

N;k
but leaves

their relative variations with k almost unaffected. If the
interaction is modified by an additional cutoff (a'0 in
(2)) the k-dependence of A

N;k
becomes even weaker. For

given electron number this justifies to assume all non-
vanishing H

pp{
,t

N
to be equal in 1D. According to

Sect. 3.2 equal non-vanishing off-diagonal elements of
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Fig. 2. A
N;k

as defined in the text versus the position k along the
chain for j/¸"2.10~4 and various N. The exchange of two adjacent
particles close to the boundary leads to a slightly smaller overlap
integral than other non-vanishing H

pp{
. These variations with k can

be neglected compared to the mean value of A
N;k

H
pp{

yield differences between the eigenvalues being pro-
portional to t

N
and thus to ratios being independent of the

parameters like r
4
, j or a (cf. (2)). These ratios are not

affected by the detailed shape of the inter-particle repul-
sion w(x). Only a non-zero range is required for w(x) to
cause the exponentially small overlap between adjacent
pocket states.

4. Symmetries

Appropriate use of symmetry facilitates understanding
and computation of eigenstates and transition rates [32].
Since the Hamiltonian commutes with the elements of
a symmetry group, its eigenfunctions transform according
to the irreducible representations (IR) C of this group. The
Hilbert space H of wave functions can be decomposed
into orthogonal subspaces HC

H"a
C

HC (12)

so that the Hamiltonian matrix in a symmetrized basis
is block diagonal. This can considerably simplify a
numerical diagonalization. Mostly the property (12) is
employed to single particle states, as obtained e.g. within
molecular field approximation. In the following (12) is
applied to the pocket state basis to select the appropriate
eigenvalues from the spectrum obtained in Sect. 3 that
satisfy the Pauli principle for identical Fermions or
Bosons carrying spin.

The indistinguishability of like particles requires that
any eigenfunction of (1)

t(x
1
p
1
, . . . , x

N
p
N
)

belongs to the one-dimensional (anti)symmetric IR of
S
N

with respect to permutations among the enumeration of

the particles. These permutations affect position x
j

and
spin p

j
of the j’th particle simultaneously.

Apart from this unalienable symmetry, in absence of
spin-orbit coupling, the Hamiltonian (1) is also invariant
under separate permutations of the MxL

1
, , . . . , xL

N
N and

MpL
1
, . . . , pL

N
N operators. Therefore t transforms addition-

ally according to IR Cx and Cp of the group of permuta-
tions among the spatial and the spin degrees, respectively.
Both permutation groups are isomorphous to S

N
.

4.1. The symmetry group S
N

A few properties of the symmetric group (cf. [32]) should
be summarized here. All irreducible representations (IR)
C of S

N
can be labeled uniquely by the partitions

[n
1
, . . . , n

N
] (13)

of ordered sequences of positive integers obeying

n
i
50,

N
+
i/1

n
i
"N, n

i
5n

i`1
for 14i4N.

E.g. [1,, . . . , 1] and [N] denote the antisymmetric and
the symmetric IR respectively (n

i
"0 is not written).

The only factor group of S
N

is isomorphous to S
2

im-
plying the existence of an adjoined IR CM to every C of
equal dimensionality and equal moduli for the characters
DsC(p) D"DsCM (p) D. From the orthogonality relations among
characters follows that Kronecker products

C
1
]C

2
contain G

[1, . . . , 1]

[N] H only if G
C
1
"CM

2
C
1
"C

2

. (14)

4.2. Physically realized many particle states

Though t is in general no product of a spatial and a spin
function, the Pauli principle requires that the Kronecker
product

C
x
]Cp]G

[1, . . . , 1]

[N] HOH for G
Fermions

Bosons

must contain the (anti)symmetric IR. Thus with (14)

G
Cp"CM

x
Cp"C

x
H for G

Fermions

Bosons
. (15)

For example spinless particles (i.e. Cp"[N]) must trans-
form according to [1, . . . , 1] or [N] in spatial space.

Also for particles with spin s"1/2 t cannot transform
according to any IR of S

N
under permutations of

Mp
1
, . . . , p

N
N. Only the IR’s Cp"[n

1
, n

2
] occur [34],

where n
1
"N/2#S and n

2
"N/2!S are related to the

total spin S. For electrons

Cp"[N/2#S, N/2!S] (16)

means that S fixes Cp and therefore Cx (15). S can take
integer or half integer values.
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States with aligned spins S"N/2 are associated with
an antisymmetric spatial state C

x
"[1, . . . , 1]. Cx can

only be equal to [N] if Cp"[N/2, N/2]"[1, 1] is anti-
symmetric, i.e. for N"2. Only in case of two electrons the
(symmetric) ground state of H

pp{
can be realized

(cf. Sect. 5).
The dimensionalities d

*n1,n2+
of the IR’s (16) can be

expressed explicitly [34]

d
*N@2`S,N@2~S+

"

(2S#1)N!

(N/2#S#1)! (N/2!S)!
(17)

in terms of N and S. They are equal to the frequency of
appearances of a given IR C"[N/2#S, N/2!S] in
a regular representation. Thus

d
*N@2`S,N@2~S+

4i
N,S

(18)

gives a lower bound to the number i
N,S

of eigenvalues of
the Hamilton matrix in the pocket state basis to a given
total spin S. In absence of further symmetries in spatial
space, like in 1D, (18) becomes an equality. Because of the
(2S#1)—fold Zeeman degeneracy of each fine structure
level the sum

N@2
+

S/0 03 1@2

(2S#1)d
*N@2`S,N@2~S+

"2N

is equal to the dimensionality of the spin space.
The cases s'1/2 will not be discussed here. For Fer-

mions and Bosons the generalization is in principle
straightforward though the number of possible Cp in-
creases and the unique relation to S (16) is lost.

5. Results for the 1D model (2)

For low electron numbers the individual blocks of the
Hamiltonian matrix in the symmetrized basis (6) can be
diagonalized analytically, in 1D up to N44. The results
are given in Table 1 in units of t

N
. Fine structure spectra

for N"5 and N"6, shown in Figure 4, are obtained by

Table 1. Analytical values for the fine structure spectrum E (N)
l of

model (2) within PSA for N44. S is the total spin of N Fermions
with s"1/2. The excitation energies E (N)

l !E (N)
B04%

, in units of t
N
, refer

to the eigenvalue E (N)
B04%

of the symmetric linear combination of
pocket states (4) which is the lowest eigenvalue and corresponds to
the s"0 Bosonic ground state

N S E (N)
l !E (N)

B04%

2 0 0
2 1 2t

23 1/2 t
33 1/2 3t
33 3/2 4t
34 0 (3!J3)t

44 1 (4!J2)t
44 1 4t

44 0 (3#J3)t
44 1 (4#J2)t
44 2 6t

4

Fig. 3. Ratio d,D
2
/D

1
between two fine structure energy differ-

ences for N"3 versus r
4

as indicated in the inset. Within PSA
d"1/2, cf. Table 1. Below r

4
Z0.3 a

B
the third excited state is of spin

S"1/2 which makes the definition of d ambiguous

Fig. 4. Fine structure multiplets for N"3, . . . , 6 as obtained with-
in PSA (pock). The numerical values (dashed) are obtained as in [11]
(num) for systems of length ¸"11.3 a

B
, N"3 and ¸"

13.2 a
B
, N"4. The N-dependence of t

N
is not considered, t

N
has

been adjusted to normalize the overall width of the multiplets

numerical diagonalization of blocks of sizes 25]25 and
81]81, respectively. The diagonalization of the full
Hamiltonian in the basis of non—interacting electrons, as
carried out in [11], was possible only for N44 including
a sufficient number of single particle levels to get accurate-
ly the fine structure. These data are included in Figure 4.
The sizes of the matrices were typically 15000]15000.
Not only the sequence of spin values is described correctly
within PSA but also the quantitative ratios d among the
distances between the levels.

Lieb and Mattis [35] have proven that for a finite
electron system in 1D

E (S)'E (S@) if S'S@ . (19)

E (S) is the lowest energy eigenvalue of the system to given
spin S. Nothing is required for the interaction w (x) be-
tween the electrons but boundedness and independence of
spin. Consequently the ground state is either S"0
or S"1/2. All fine structure spectra shown in Fig. 4
obey (19).
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The state with polarized spins S"N/2 is, according to
(15), totally symmetric Cx"[N] in spatial space for (ficti-
tious) Bosons with spins s"1/2 and therefore the ground
state (4) of the matrix M defined in (8). From the properties
of the eigenvalues of M described in Sect. 3.2 and from
[NM ]"[1, . . . , 1] follows for s"1/2 Fermions that the
spin polarized state S"N/2 is the energetically highest
state within the lowest vibrational multiplet. This state
occurs according to (17) and (18) only once because
d
*N+

"1. The argument can even be generalized to two
dimensional quantum dots if there is only l"1 classical
electron configuration of lowest energy, cf. Sect. 6.2 and 7.
According to [28] the S"N/2 state plays a particular
role for the transport through a quantum dot at finite
applied voltages — it leads to negative differential conduc-
tances. This state would be the Fermion ground state if
spin was ignored. Insofar the interacting electron system
lowers its ground state energy using the spin degree of
freedom. This has been found recently also for the 3D
Wigner crystal [36].

The approach of the numerically obtained ratios be-
tween excitation energies to the values obtained within the
pocket state description with increasing r

4
determines

again a scale r
#
of electron distances separating the almost

non-interacting regime from the regime of strong correla-
tions so that for r

4
'r

#
the PSA becomes valid. In Fig. 3

the ratios between the two lowest excitation energies are
shown for N"3. The value r

#
B1.7 a

B
estimated assuming

an exponential approach agrees nicely with the value
extracted from the decay of D

1
[11] and from the onset of

the charge density distribution to show N peaks [17].

6. Results for 2D quantum dots

Well separated peaks appear in the one particle distribu-
tion at low densities also in finite systems of higher dimen-
sionalities if continuous symmetries are absent. Then the
lowest spin involving excitations can be described using
pocket states. Like in 1D the spectrum shows vibrational
levels that split due to tunneling between different electron
arrangements. The important difference to 1D are the
reduced heights of the potential barriers, the electrons can
interchange their positions more easily by surrounding
each other. Some of the connecting paths involve just
slight changes of electron distances, so that the tails of the
long range Coulomb interaction creates only shallow bar-
riers between the locations of the potential minima. Then
the PSA fails if w (x) is only short range. Furthermore, the
PSA requires electron densities r~2

#
smaller than in 1D to

provide small kinetic energies and sufficient separations of
the electron arrangements. Nevertheless, the scaling be-
haviours D\exp(!Jr

4
/r

#
) of spin sensitive and X\r~c

4of vibrational excitations are still different, and D;X is
established for sufficiently large r

4
.

The two dimensional case is particularly relevant to
hetero-structures. Numerical results for excitation spectra
of Coulombically interacting electrons in rectangular,
hard wall quantum dots [12] at low electron densities are
available only for N"2 [37]. Figures 1 and 2 of [37]
confirm the expected grouping of the levels with increas-
ing system size ¸ into vibrational multiplets with internal

structure. A considerably larger value for r
#
compared to

1.7a
B

can be estimated from these figures.

6.1. Quasi 1D case

The striking similarities between vibrational and fine
structure excitations of two electrons in a 2D hard wall
rectangle of length ¸ and width ¸/10 (Fig. 1 in [37]) and
the corresponding spectrum for a 1D square well box
(Fig. 1 in [11]) can be understood by the large width u of
the pocket state wave function. In the narrow rectangular
system [37] u would be estimated by linearizing the inter-
action e2/e(x!r

4
) for x;r

4

u

a
B

B
1

2 A
21

4
nB

2@3

A
r
4

a
B
B
2@3

to be larger uZ¸/10 than the width of the rectangle as
long as r

4
"¸(3]104a

B
. Then transversal excitation

energies \n2(10/¸)2 exceed longitudinal vibrational or
fine structure excitations. The system is quasi one-dimen-
sional and its spectrum can be approximated by putting
j/¸"0.1 in (2).

6.2. Square shaped dots

To understand the spectrum for a hard wall square, Fig. 2
of [37], within PSA the method described in Sect. 3 has to
be generalized. The substitutional single particle (Sect. 3.1)
moves now in the configuration space ¸2N. The number of
potential minima may be a multiple l of N ! if there exist
l energetically equivalent classical electron configurations
for the repulsively interacting electrons. This is the case
e.g. already for N"2 where l"2.

The 4 pocket states describing two electrons
in a square for large r

4
are illustrated in Fig. 5a. The

Fig. 5 a. The 4 equivalent arrangements of minimal inter-particle
repulsion for N"2 electrons on a square that form the 4 pocket
states. b The resulting fine structure spectrum consists of 3 levels at
equal distances and total spins S as indicated
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dominant overlap integrals between them are of type
S1D H D2T"S1 DH D3T. Due to the longer tunneling path
overlap integrals like S1 DH D4T, which corresponds to the
permutation of two like particles, are much smaller. Ne-
glecting the latter and classifying the obtained eigenstates
according to their transformation properties with respect
to permutations among the particle enumeration leads to
a fine structure spectrum as shown in Fig. 5b. The mul-
tiplet contains in total l · 2N states (including Zeeman
degeneracies). The ground state is a symmetric linear
combination of these 4 pocket states. The one particle
density (5) shows 4 peaks of equal weight in the 4 corners,
each containing a charge e/2. In any dimensions the
ground state of two interacting electrons has minimal spin
S"0 (cf. [35]). Removal of the square symmetry (cf.
Sect. 7) would cause the two degenerate S"1 states to
split.

Three electrons in the classical ground state configura-
tion are again preferably located in the corners of the
square in l"4 possible ways so that tunneling into the
empty place is the dominant process. The fine structure
nmultiplet is determined by 4 · 3!"24 pocket states. Con-
sidering only the dominant overlap integral yields a spec-
trum shown in Figure 6. There are in total 4 · 23"32
states in the multiplet.

Four and five electrons in a square have only l"1
classical ground state configuration. The number of
pocket states is 4! and 5! respectively. For N"5 the
dominant tunneling process is the exchange of the central
electron with one of the electrons sitting on the corners.
The corresponding path is of shortest length and involves
only 2 electron masses. For N"4 it is not so obvious
which if the two possible paths for transitions between
different permutations of the electrons sitting one at each
corner prevails: i) the rotation of all four electron positions
simultaneously by 90° (ring exchange) ii) the exchange of
just two adjacent electrons leaving the remaining two
unaffected. In one case the mass and in the other case the
height of the potential barrier is larger. Assuming straight
lines like in (10) for the paths in configuration space
¸2N the action corresponding to i) can be expressed as
a single integral with the numerical value 1.6+Je¸/a

B
. In

the second case even the spatial trajectory is difficult to
determine, how the two electrons surround each other.
A rough estimate for the action connected with this latter
exchange may be obtained by the following linear path
during the timeT: the first electron moves along one edge
of the square, passing half the way at time T/2 while the
second electron moves along two pieces of straight lines,
bending halfway at the position of the lowest saddle point
of the potential. The numerical value of the action connec-
ted with this latter path is 1.1+Je¸/a

B
. Both imaginary

time actions are upper limits to the true classical values
and the approximation ii) is surely worse compared to i).
Therefore the pair exchange of adjacent electrons should
be the slightly favourable process. Neglecting all other
processes leads to a fine structure spectrum for four elec-
trons as it is shown in Fig. 6. However, the difference
between the two paths is not very pronounced so that
entries due to the ring exchange into the Hamiltonian
matrix can modify the N"4 fine structure if r

4
"¸ is not

very large.

Fig. 6. Fine structure spectra of a N"3, b N"4, c N"5 electrons
in a 2D square within PSA in units of t. The spin values S and the
number of states m per level are indicated. The tunneling integrals
t are described in the text

A prominent property of the obtained correlated
eigenstates in 2D are values of ground state spins, which,
in contrast to 1D, are not the lowest possible ones. The
three electron ground state becomes spin polarized and
also has the five electron ground state spin S"3/2 in the
square shaped quantum dot at low electron densities. This
proves the inapplicability of the Lieb and Mattis Theorem
to higher dimensionalities if N'2. The ground state spin
values influence crucially both the linear and the
non—linear transport behaviour of 2D quantum dots [39].

Cases with larger electron numbers can in principle be
treated analogously if D;X is fulfilled. With increasing
N this requires a decreasing electron density because:

1. the vibrational energies X\2ne/(N!1)1@d Jemr3
4

de-
crease with increasing size of the system due to acoustic
modes
2. the barriers between equivalent electron arrangements
decrease so that D increases (cf. [17]).

The first point depends only on the electron density while
the second point makes the pocket state approximation
less reliable in say three dimensional situations.

7. Summary and conclusions

Excitation spectra of repulsively interacting, highly corre-
lated few electron systems have been investigated in 1D
and 2D. This is particularly important for semiconductor
based single electron experiments using quantum dots,
where electron correlations can dominate over the kinetic
energy so that the energy spectra differ qualitatively [12]
from the non—interacting situation. The lowest levels
bunch up to multiplets and neither inter— nor intra—mul-
tiplet energy differences scale like \¸~2 with the system
diameter [11]. The spectrum is explained in terms of
correlated many—particle ‘‘pocket states’’. The inter—mul-
tiplet distances, corresponding to vibrational excitations
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due to Coulomb forces between localized electrons [17]
are independent of Fermion or Boson statistics. The fine
structure splitting of each multiplet is caused by correlated
motions connecting different arrangements of the particles
and reveals Fermionic or Bosonic statistics and spin. The
number of levels to a certain total spin S within each
multiplet is given by (17) for any number of electrons. The
splitting is proportional to tunneling integrals between
different pocket sites.

At sufficiently large r
4
only one of the tunneling inte-

grals dominates exponentially. Then the ratios d between
the fine structure energies are independent of the detailed
form of the repulsion between the particles and of r

4
.

Quantitative spectra for the 1D quantum dot with hard
walls are shown in Table 1 and Fig. 4 up to N46. The
comparison with numerically obtained ratios d yields the
scale r

#
B1.7 a

B
, found also in [11, 17], that separates

weak from strong interaction regime. ‘‘Slim’’ quantum
dots should behave effectively one—dimensional if they are
narrower than the pocket state.

Depending on the shape of a 2D quantum dot, discrete
symmetries of the confining potential can lead to l'1
possible arrangements already of classical electrons to
equally minimal electrostatic energy. The total number of
eigenvalues in a multiplet, including Zeeman degeneracy,
is then l · 2N. Symmetries which led to l'1, however, are
likely to be removed in polarizable environments for the
following reason. The energetically most favourable pla-
ces for the quantum dot electrons depend on the distribu-
tion of surrounding (non-conducting) charges which
themselves are influenced by the distribution of the (con-
ducting) dot charges. In this way the dot electrons can
adjust their environment to lower the total energy. For
example, two electrons in a square will easily polarize
their surrounding, leaving rather a diamond shaped con-
figuration for the potential. The interplay between the
surrounding and the granular electron density of the dot
finally tends to reduce the number of equivalent minima in
configuration space to its minimal value N !, the number
of permutations of N particles. Classical ground state
energies being unequal only on the scale of the tunneling
integral t

N
suffices. The shape of the quantum dot depends

additionally on voltages applied to side gates [3] so that
the fine structure spectra can change with gate voltage.

The lowest eigenstates in 2D can be approximated
within the pocket state basis if the inter-particle repulsion
decays slower than \Dx D~2. Then many of the qualitative
results obtained for the few electron quantum dot in 1D
are valid in 2D. This concerns in particular the exponen-
tial dependence of the excitation energies and the indepen-
dence of the ratios between them on r

4
. If l"1 the spin

polarized state is of highest energy within the lowest
vibrational multiplet. As example a square shaped quan-
tum dot has been investigated. Larger ground state spin
polarizations are found than S"0 or S"1/2 of
non—interacting or 1D electrons. The Lieb and Mat-
tis—theorem is inapplicable to systems of higher dimen-
sionality if N'2.

It would be interesting to measure the total spins of
the ground states, perhaps by sophisticated ESR-experi-
ments [38]. They influence the linear and the non—linear
conductance [39]. The electron states of aligned spins

S"N/2 play a distinguished role for non-linear transport
properties of quantum dots. They can cause negative
differential conductances [28]. Furthermore, the observed
dependencies on a magnetic field [27] oriented along the
current [40] can be explained in a natural way by the
Zeeman splitting of the many-electron states [41].
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