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Abstract. The influence of excited levels on nonlinear 
transport properties of a quantum dot weakly coupled to 
leads is studied using a master-equation approach. A 
charging model for the dot is compared with a quantum 
mechanical model for interacting electrons. The current- 
voltage curve shows Coulomb blockade and additional 
finestructure that is related to the excited states of the 
correlated electrons. Unequal coupling to the leads cau- 
ses asymmetric conductance peaks. Negative differential 
conductances are predicted due to the existence of exci- 
ted states with different spins. 

PACS: 72.20.Ht; 73.20.Dx; 73.20.Mf; 73.40.Gk 

I. Introduction 

Periodic oscillations of the conductance through quan- 
tum dots that are weakly coupled to leads [-1] are well 
established consequences of the charging energy of single 
electrons entering or leaving the dot at sufficiently low 
temperatures. They are observed in linear transport as 
a function of the carrier density. At bias voltages larger 
than the differences between discrete excitation energies 
within the dot, a characteristic splitting of the conduc- 
tance peaks is observed [-2, 3]. We will demonstrate un- 
ambiguously below that this is related to transport in- 
volving the excited states of n correlated electrons and 
that the shape of the peaks depends on the coupling 
between the quantum dot and the leads. Furthermore, 
it is shown that negative differential conductances can 
occur due to a 'spin blockade' [41 which is a conse- 
quence of the existence of excited states with different 
spins. Recently, negative differential conductances have 
also been found in the transport through a two-dimen- 
sional dot with parabolic confinement in the fractional 
quantum Hall effect (FQHE) regime without spin [5], 
where the origin of the effect are excited states for which 
the coupling to the leads is weaker than for the ground 
state. 

II. Model 

As a model for a quantum dot being weakly coupled 
to leads and capacitively influenced by the voltage ap- 
plied to the gate electrode as schematically shown in 
Fig. 1, we consider the double barrier Hamiltonian 

H = HL + HR + HD + HT + HT + H in, (1) 

where 

HL/R x-~ L/R + =2.., ~k CL/R,k CL/R,k 
k 

describes free electrons in the left/right lead,and 

+ + 

l 11,12,13,14 

the interacting electrons within the dot. The energies of 
the noninteracting electrons are el and V~1~21314 the ma- 
trix-elements of the Coulomb-interaction. The potential 
change in the dot �9 is due to the external voltages ap- 
plied to the leads and the gate. In the experiment ~b 
is controlled by the voltage VG that can be thought of 
being connected to the dot via a perfectly insulating ca- 

left  lead ~ D O T ~  r ight  lead  

g a t e  

Fig. ]. Schematic picture of the quantum dot, the left/fight and 
the gate electrode. The tunneling barriers H~/R are assumed to be- 
have as (weakly transmissive) capacitors 
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pacitor. The variation of VG serves to change the electron 
density in the well. 

The barriers are represented by the tunneling Hamil- 
tonians 

H I / R  - ~ ' [ T L / R  ~+ cz+h.c.), - -  / A ~k,l ~L/R,k 
k,l  

where TkLt R are the transmission probability amplitudes 
which we assume to be independent of 1. The inelastic 
term H in allows for transitions between the dot levels 
without changing the electron number. A phononic heat 
bath and a Fr6hlich type coupling (coupling constant 
~/g) would be a microscopic model leading to such a 
term. We assume that the phase coherence between the 
eigenstates of H - H  in is destroyed on a time scale zr 
which is much larger than the time an electron needs 
to travel from one barrier to the other. Thus, the motion 
of the electrons inside the dot is sufficiently coherent 
to guarantee the existence of quasi-discrete levels. We 
assume also that the leads are in thermal equilibrium 
described by the Fermi-Dirac-distributions 

fL/e. (e) = (exp [fi (e -- #L/R)] + 1)- 1 

The chemical potential in the left/right lead is #L/R and 
fi = 1/kB T the inverse temperature. We assume the tun- 
neling rates through the barriers 

t L / R  2~ v ITL/R]2 
- T  , 6(dC/R-E) 

k 

to be independent on energy E. If they are small com- 
pared to the phase breaking rate z ;  1, the time-evolution 
of the occupation probabilities of the many-electron 
states in the dot can be calculated using a master-equa- 
tion method which is described in the next section. 

HI. Method 

In contrast to [6, 7], where changes in the occupation 
probabilities for one-electron levels were considered, we 
take into account the populations P~ of all possible Fock 
states [i) of HD. Transitions between the latter occur 
when an electron tunnels through a barrier. Our method 
allows to determine the stationary non-equilibrium state 
without further restrictions. Deviations from equilibrium 
linear in the applied voltage have been mentioned in 
[8]. In addition the exact many-electron states of the 
dot including spin can be taken into account without 
being restricted to the conventional charging model. A 
similar method was applied in the FQHE regime without 
spin [5]. 

A. Transition rates due to tunneling 

Due to the smallness of H T, simultaneous transitions 
of two or more electrons [9] which are processes of high- 
er order in H T are suppressed. Further selection rules 

will be specified below. Each of the states 1i5 is associated 
with a certain electron number n~ and with an energy 
eigenvalue E~. The transition rates between states {i) and 

EL/R, + l]) with ni= n j+  1 are given by EL/R'~,, - and ~,j , de- 
pending on whether an electron is leaving or entering 
the dot through the left/right barrier, respectively. A 
straightforward perturbation theory calculation in low- 
est order in H T yields 

Fj L/R" - = t L/R [ 1 -- fL/R (E)] 

L'/L/R, + = tL/RfL/R(E ) 

and the electron provides the energy difference E=E~ 
- E j .  

B. Inelastic transitions due to electron-phonon processes 

Assuming a bosonic heat bath being weakly coupled 
to the electrons, the transition rate between [i) and [j) 
(ni = n j) induced by H in is given by 

Fji,~. -- r [nB (IEI) + (9 (E)], 

where r =  gPph. This is the lowest order result quadratic 
in the electron-heat bath coupling strength ~/g. Pph is 
the boson density of states, 

riB(E) = (exp [fiE] - 1)-i 

the Bose-Einstein-distribution and (9(x) the step func- 
tion. 

C. Master  equation and DC-current 

The full matrix of transition rates is 

F =  F L, + + F R, + +FL.-  +FR. - -+-F in" 

The master equation for the time evolution of the occu- 
pation probabilities P~ is 

dp = (r ,jPj-rj P ), ZP =I. (2) 
dt  j ( j  r i) i 

From the stationary solution (d~/d t = 0) of (2) one deter- 
mines the de-current 

I - - I L / R = ( - - / + )  e Z /~(Fi L/R'- FL/R'% - - * i , j  :" 

i,j(jg:i) 

It equals the number of electrons that pass the left/right 
barrier per unit of time. 

IV. Results 

A. Charging Model  

As a tutorial example we consider the phenomenological 
charging model [6-8] for N single-electron levels, where 
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Fig. 2. Stationary occupation probabilities/~ for a dot containing 
N=6 one-electron levels. Electron numbers are ni=l ([]), hi=2 
(/k), hi=3 (~) and ni=4 (�9 Some of the data points for ni=4 
with ln(P~)<20 are not shown in this figure, te=t R, #L=I.5U, #a 
=--0.3U, #=(#L+#R)/2 and 4~=0. Energies of the one-electron 
levels are el=0.1 U, ~2=0.2U, %=0.3U, e4=0.4U, %=0.5U and 
%=0.6 U. Inverse temperature is fl=25/U and the relaxation rate 
r= 100E t--t L tR/(tL+ t a) is the total transmission rate 

I/d- 

4 . . . . . . . .  . -  

" I/d " ~  
2' "1 

( I J , \ 7  
2.0 2.2 2,4 

= I i 

1 2 3 eV /U  

Fig. 3. Current-voltage characteristic of a dot represented by N = 6 
one-electron levels. Model parameters are as in Fig. 2. Inverse tem- 
perature is fl=lOO/U, #R=0. Inset: Current versus Vs for #L 
=0.26U and #R=0. V=O.26U/e is between the double and the 
triple of the bare level-spacing such that the conductance peaks 
are modulated as explained in the text. Dashed lines: results for 
r=0 and equal barriers, dotted and solid lines: tR/tL=0.5 and 2, 
respectively. Shaded regions: suppressions of steps induced by re- 
laxation r/t-100 at tL=t R 

V11121314 = (U/2) C~ll,l 4 (~12,13" 
The stationary solution of (2) was obtained by solving 
numerically the system of 2 N linear equations. 

I. Stationary occupation probabilities. At zero bias volt- 
age the occupation probabilities of the n-electron states 
are given by a Gibbs distribution 

Pi G = (exp [--  f l (Ei-  #ni)])/Lr 

with the chemical potential # = #L = #g. They solve the 
rate equation (2) for all r. Y" is the grand canonical parti- 
tion function. For  temperatures lower and voltages high- 
er than the level-spacings, /~ deviate from equilibrium. 
For  r> t L/R (fast equilibration via bosons) PJP~ can be 
satisfactorily approximated by p G/pj~ for ni=nj. This 
can be seen in Fig. 2 where In/~ for a given ni lie on 
straight lines with slope - f t .  This confirms the assump- 
tions of a Gibbs distribution among states with given 

electron number in [7, 8]. When ni # n j, PjPj can be far 
from equilibrium. It is impossible to scale all of the points 
onto one common curve by defining an effective chemical 
potential for the dot [10]. 

2. Current-voltage-characteristics. The current-voltage 
characteristics (Fig. 3) for temperatures lower than the 
level-spacing shows finestructure in the Coulomb stair- 
case consistent with recent experiments [2] and earlier 
theoretical predictions using a different approach [6]. 
To avoid artifacts arising from the finite number of one- 
electron levels we do not plot the part arising from states 
with n > 3 and discuss only the realistic case n < N. Intra- 
dot relaxation (~  r) suppresses the lowest of the finestruc- 
ture steps because the electron that contributes to the 
current at the n-th Coulomb step has to enter the n-th 
or a higher one-electron level. For  r >> t L/R the n -  1 other 
electrons occupy with high probability all of the lower 
one-electron levels. Asymmetric coupling to the leads 
changes the height of the steps in the I -  V curve. This 
can be explained for the n - t h  Coulomb step as follows. 
If t 5 > t R (#L > #R) the stationary occupation probabilities 
favor the n-electron levels, while for tL< t  R the (n--1)- 
electron states are perferred. Since there are more n-elec- 
tron levels than ( n -  1)-electron levels, the probability for 
an electron to escape is reduced in the former case as 
compared to the probability for an electron to enter in 
the latter case. These processes limit the current. They 
lead to a reduction and an enhancement of the current 
in the first and second case, respectively. 

3. Splitting of conductance peaks. For  fixed V, the conduc- 
tance shows peaks when VG is varied. The linear response 
limit of our method is in agreement with [11]. For  finite 
bias voltage, eV = #L--#R, larger than the level spacing, 
transitions involving excited states can occur. The 
number of levels that contribute to the current varies 
when V~ is changed. This leads to the splitting of the 
conductance peaks observed experimentally and ex- 
plained qualitatively in [2, 12]. F rom the quantitative 
treatment of the charging model using (2) for T =  0, i.e. 
only constant nonvanishing or vanishing ~,/s, we obtain 
that the number Of transitions contributing to the cur- 
rent varies with VG as 0 - 6 - 4 - 1 2 - 4 - 6 - 0  in the spe- 
cific example shown for finite temperature in Fig. 3, inset. 
Taking into account the stationary/~'s the sequence of 
current values is 0 -  3/2 - 4/3 - 2 -  4/3 - 3/2 - 0. If the 
difference Eo(n)-Eo(n-1)  between the energies of the 
many electron ground states lies outside the interval 
[#R, #L] the transport via other energetically allowed 
transitions is Coulombically blocked. While the relaxa- 
tion rates have almost no influence on the conductance, 
asymmetric coupling to the leads changes the shape of 
the peaks considerably. We propose to explain the slight 
asymmetry observed in the experiment [-2, 13] by the 
asymmetry of the barriers. The asymmetry in the fine- 
structure of the observed conductance peaks will be re- 
versed if the sign of the bias voltage is changed. Such 
asymmetric conductance properties can be used to con- 
struct a mesoscopic rectifier. Similar effects were inferred 
earlier from the high frequency properties of mesoscopic 
systems containing asymmetric disorder [14]. 
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B. Correlated electron model 

However, the charging model is a severe simplification 
for interacting electrons, especially for systems with re- 
duced dimensionality. Therefore, we consider as a second 
example n < 4 interacting electrons in a quasi one-dimen- 
sional (1D) square well of length L including the spin 
degree of freedom [-15-17]. Therefore, the dot Hamilton- 
ian now reads 

l,o" 

+ 2 V11121314 + + Cll,a- 1 Cl2,a 2 Cl3,a 2 C/4,0" 1 �9 
11,12,13,14 

ffl ~G2 

1. Spectrum. We calculated numerically the exact eigen- 
values E~ and the corresponding n-electron states Iv) 
for this correlated electron model. The interaction poten- 
tial 

V ( x ,  x ' )  oc  ( ( x  - x ' )  2 -~ ~ 2 )  - 1/2 

Table 1. Spin and energies of low lying excitations of the correlated 
electron model at sufficiently large electron distances rs-L/(n-1) 
>> aB. The tunneling integrals t, decrease exponentially with rs 

n S E i -  Eo (n) 

2 0 0 
2 1 2t2 
3 1/2 0 
3 1/2 2 t3 
3 3/2 3 t 3 
4 0 0 
4 1 (1-~2 + ]f3)t4 
4 t (1 +~/3) t 4 
4 0 (2] /3) t  4 
4 1 (1 +~_2+]/~)t4 
4 2 (3 +1/~) t4 

1 . 5  

was used, where 2 (~L)  is a low distance cutoff due to 
a transversal spread of the electronic wave function. 1 
Since the interaction is spin independent, the n-electron 
spin S is a good quantum number. The properties of 
the correlated states and the energy spectrum are dis- 
cussed in detail in [15, 16]. For not too large electron 0 . 5  
densities tendency towards Wigner crystallization is 
found [17]. In this regime, the excitation spectrum con- 
sists of well separated multiplets, each containing 2" 
states. The energetic differences between adjacent multip- 
lets decrease algebraically with electron density. They 
correspond to excitations of (almost) harmonic motions 
of the separated electrons repelling each other by Cou- 
lomb forces. These are phonon like excitations. Quantum 
corrections split the 2"-fold degenerate levels at increas- 
ing electron densities. They can be traced back [15] to 
processes where  electrons exchange their positions by 
tunneling through a Coulomb potential barrier. The cor- 
responding tunneling integral t, for n electrons sets the 
energy scale for this splitting. The considerably smaller 
intra-multiplet energy differences decrease exponentially 
with the electron density. The wave functions of individ- 
ual levels within a given multiplet differ in symmetry 
and S. For  n <4,  the excitation energies in the lowest 
multiplet can be calculated analytically [18] and depend 
only on one tunneling integral t, (Table 1). In summary, 
two different energy scales characterize the n-electron 
excitations. We will now demonstrate that they can be 
distinguished in principle by a nonlinear transport exper- 
iment. 

2. Spin selection rules. As an additional selection rule, 
we take into account that each added or removed elec- 
tron can change the total spin S of the n electrons in 
the dot only by + 1/2 with probabilities (S+ 1)/(2S+ 1) 
and S/(2S + 1), respectively. The values of these spin fac- 
tors are found from a sum over the corresponding 
Clebsch-Gordan coefficients and enter the transition 
rates as prefactors. We emphasize here again that this 

_r/e{ 

-3 l ' '  

0.9 i.i 1.3 

, , ' e V / E  H 0.5 1 1.5 

Fig. 4. Current-voltage characteristic (#R = 0, ~ = 0) and the splitting 
of the fourth conductance peak at #L=0.3EH and #R=0 (inset) 
of a dot described by the correlated electron model for fl = 200/E n 
(En--e2/aB Hartree-energy) and r=t. Tunneling integrals are t 2 
=0.03En, ta=0.07E H and t4=0.09En, numerically determined 
ground state energies Eo(1)=0.023En, Eo(2)=0.30En, Eo(3) 
=0.97EH, E0(4)=2.15EH. Dashed, dotted and solid lines corre- 
spond to tR/t L= 1, 0.5 and 2, respectively 

can be done only by considering all possible Fock states 
in the rate equation (2). 

3. Current-voltage characteristics. Occupation probabil- 
ities are similar as for the charging model but modified 
by spin effects. Current-voltage characteristics and con- 
ductivity peaks calculated by using the excitation ener- 
gies given in Table 1 are shown in Fig. 4. First of all, 
we observe that the lengths of the steps in the Coulomb 
staircase and accordingly the distances of the conductivi- 
ty peaks are no longer equal since the exact n-electron 
ground state energy is not proportional to n ( n - 1 )  as 
in the charging model for small e{s. The deviation from 
the classical behavior is related to the inhomogeneity 
of the quantum mechanical charge density of the ground 
state [15]. Second, the heights of the finestructure steps 
are more random as compared to those in Figl 3 due 
to the non-regular sequence of total spins (cf. Table 1) 
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Fig. 5. Dot states for n~ = 2 and n~ = 3. The lines represent transitions 
that are allowed by the selection rules. In linear transport, only 
the ground state to ground state transition (solid line) determines 
the transport. At finite transport voltage additionally transitions 
between excited states come into play. Since the transition to the 
highest state (dotted) is a 'dead end', the current is reduced when 
the voltage is raised to a value that allows the system to go into 
the highest state 

and the spin selection rules. In certain cases finestructure 
steps in the I -Vcharac te r i s t ic  may even be completely 
suppressed. 

4. Spin blockade effect. Strikingly, regions of negative 
differential conductance occur (Fig. 4). They are related 
to the reduced possibility for the states of maximal spin 
S=n/2 to decay into states of lower electron number 
[4]. In Figure 5, the states involved in transitions be- 
tween n = 2  and n = 3  electron numbers are shown to- 
gether with the transitions allowed by the spin selection 
rules. The 3-electron state of maximal spin S=  3/2 has 
only one possibility to reduce its electron number. There- 
fore, the lifetime of this state is significantly larger than 
for the other states. If the applied voltage V allows for 
the occupation of this state, it attracts a considerable 
amount of the stationary occupation probability. The 
reduced occupation of the other states leads to a reduced 
current. The state with polarized spin appears only once 
within each multiplet for given electron number. There- 
fore only one finestructure step with negative differential 
condcutance can occur within each Coulomb step. The 
peak in the I - V  curve can become less pronounced if 
t L < t g, because then the dot is empty and the (n - 1) ~ n 
transitions determine the current. The spin selection 
rules reduce the probability for n ~ ( n - 1 )  transitions 
(especially important for tL> t R) and the negative differ- 
ential conductance becomes more pronounced (Fig. 4). 
Such a behavior can in fact be seen in the experimental 
data [-2, 19] but certainly needs much more elaborate 
further investigations. These negative differential con- 

ductances can in principle be used to construct a mesos- 
copic oscillator. 

V. S u m m a r y  

In summary, we have investigated nonlinear transport 
through a double barrier taking into account Coulomb 
interactions, spin and non-equilibrium effects. For two 
model Hamiltonians occupation probabilities, current- 
voltage characteristics and conductances versus gate-vol- 
tage at finite bias voltage have been calculated using 
a master equation approach. 

Thermally induced intra-dot relaxation processes lead 
to a suppression of the n lowest finestructure steps in 
the n-th Coulomb step of the I - V  curve. At finite bias 
voltages, the intra-dot relaxation results in thermal equi- 
librium only among the states with equal dot electron 
number. We have demonstrated explicitly that the sta- 
tionary non-equilibrium populations cannot be de- 
scribed by a Gibbs distribution. Asymmetric barriers 
cause pronounced asymmetries in the conductance peaks 
versus gate-voltage. We predict the reversal of the asym- 
metry when the bias voltage is reversed. Taking into 
account the quantum mechanics of Coulombically inter- 
acting electrons including their spins leads to striking 
modifications of the transport as compared to the charg- 
ing model. First of all, the Coulomb blockade intervals 
in the I -  V characteristic and the distances between the 
conductance peaks are no longer constant. Because of 
spin selection rules for the correlated electron system, 
the heights of the single steps in the finestructure of the 
Coulomb staircase look random. Furthermore, regions 
of negative differential conductance occur because for 
each electron number the one state of maximum spin 
has a reduced transition probability into states w i t h  
lower electron number. This general feature of a 'spin 
blockade' is not restricted to the quasi-lD model consid- 
ered here but should also apply to 2D dots used in exper- 
iments containing few electrons. All of the theoretically 
predicted features described above are qualitatively con- 
sistent with experiment [2]. Further experiments, in par- 
ticular using 'slim quantum dots', are however necessary 
in order to clarify the quantitative aspects. 

Preliminary results taking into account a magnetic 
field in transport direction show that the occurrence of 
negative differential conductance is suppressed when the 
Zeeman splitting becomes larger than the excitation en- 
ergies of the dot states. To clarify these questions and 
to be able to make quantitative comparisons with exist- 
ing experimental data, generalization of the above corre- 
lated electron model to 2D is necessary. 
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