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Abstract. The rates for symmetry-species conversion of CDs groups are calculaied using
a model in which the interaction between the quadrupolar moment of the deuterons with
electric-field gradient at the site of the nucleus causes symmetry-changing transitions. Just the
same phonons are considered for energy conservation as are used to deseribe the temperature
dependence of inelastic neutron scattering experiments. For the conversion rate, a similar
temperature dependence is found as has already been obtained for CHs. For temperatures around
the tunnelling energy, a behaviour is predicied for CDs that is different from the behaviour in
protonated systems according to all theories known to us.

In comparison with the corresponding protonated species embedded in the same surroundings,
the conversion rate at elevaled temperatures tums aut to be larger by orders of magnitude. Only
the low-temperature conversion rate is suppressed owing to the lack of resonance phonons at
the usually smaller tunnelling frequency in CDs.

The relative increase of the conversion rate with deuwteration due to Rarnan processes
is predicted to be independent of temperature but strongly dependent on the height of the
orientational potential in the case of shallow potentials. If the tunnelling energy is smaller than
23 peV, the conversion rates increase by a constant factor of ~ 10 compared to the protonaied
species at a given temperature.

1. Introduction

The rotational dynamics of light molecules like hydrogen X, or methane CX4 and molecular
groups such as methyl groups CX; (X = H.D) has been studied extensively in the past
[1,2]. Their main common feature is that rotation between two equilibrium orientations
corresponds to a permutation of identical particles. Consequently, the rotational potential
has t¢ be invariant under these rotations, i.e. the Hamiltonian has to transform according to
the totally symmetric irreducible representation of the corresponding rotational group. This
allows the classification of all eigenstates of the Hamiltonian with respect to the irreducible
representations T of the point group: for Xy, " € (g, u); for CX3, ' € (A, E?*, EY); and for
CX4, T € (A, T,E).

For high potential barriers between the equ:llbnum orientations, the ground-state
energies of the various I" differ only by a small amount. This energy difference is calied
the tunnelling energy. Experimentally, tunnelling energies cover a range of many orders
of magnitude, starting from nearly free rotation down to the lowest splitiings of several
kilohertz observed by sophisticated nuclear magnetic resonance (NMR) techniques.

The symmetry arguments for the spatial space part of the wavefunctions also hold in
the presence of a coupling to other spatial degrees of freedom, in particular coupling to
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phonons. As a consequence. the symmetry T' also remains a good quantum number if
dissipation is included.

So far, we did not consider the nuclear spin degree of freedom. The compleie
wavefunctions have to be totally symmetric (totally antisymmetric) for deutcrons/bosons
(protons/fermions) with respect to particle enumeration. It twns out that the total
wavefunctions can be written as a product of a spatial part times a spin part, if either
the number of identical particles is two (hydrogen) or only the even permutations are
considered (these correspond just to the proper rotations of CX; or CXy molecules).
Under this assumption, the spin wavefunctions can be classified with respect to irreducible
representations of the point group of the rotations because this group is isomorphic to the
group of (even) permutations. For protonated systems, it turns out that for H;, CHsz and
CH, there exists a one-to-one comespondence between the symmetry I' and the total nuclear
spin /. In particular, we have

r I ) r I %—;
Hy g 1 (ortho) CHy A 3/2 CH. T 1 N
u Q0 (meta) E 1/2 E 0

Therefore, the spin rotational states are frequently called spin species and a symmetry-
changing process is connected intimately with a change in the total nuclear spin. The
nomenclature ‘nuclear spin conversion’ is not misleading in protonated systems.

In the deuterated cases the quoted one-to-one correspondence between I' and 7 does
not exist, Instead, there are spin states of the same symmetry I" but different nuclear spin
. namely

L1 - L I Z 0 ; 4
Dy g 0,2 (ortho) CD;s A 0,1,3 CD, M @
T 1,1,2,3
u 1 (meta) E 1,2 E 0.2

The title of the present paper is chosen to signify that we are interested in transition rates
between the symmetry species I', characterized by the potential energy, and not in the rate
for a change of the total nuclear spin quantum number / (which does not necessarily include
a change in the symmetry quantum number T [3.4]).

Such symmetry-changing transitions necessarily require operators that contain the
nuclear spin {5]. However, the energy of the systern depends only very weakly on the
nuclear spin (examples are the dipolar energy and the quadrupolar energy), which is one
reason for the slowness of symmetry-changing transitions. Usually their rate is much smaller
than any other relaxation rate in these systems.

There have been several theoretical approaches to this problem. In solid Hy the
conversion rates have been calculated assuming the dipolar interaction between two Ha
molecules to be responsible for the wansitions [6—8]. Owing to the dependence of this
interaction upon the intermolecular distance, energy conservation is guaranteed by direct
coupling to the phonons, Nijman and Berlinsky [9] considered solid CH,4. They found
that the intramolecular dipolar interaction is more effective in causing T < A conversion
than the intermolecular dipolar interaction owing to the smaller distance between protons
of the same molecule compared to the distance between two distinct methane molecules.
However, the intramolecular dipolar interaction does not couple to the lattice modes directly.
Therefore, the authors proposed a *hybrid’ mechanism in which the intramolecular dipolar
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Hamiltonian mixes states of different symmetry and the coupling to the lattice is achieved
by the distance dependence of the intermolecular octupole~octupole coupling. Concerning
the temperature dependence of the conversion rates, the H, case differs qualitatively from
the methane case, because in H, the energy splitting between ortho and para hydrbgen is
larger than the Debye temperature. Thus two phonons are required to conserve energy. The
calculation of Nijman and Berlinsky was restricted. to the low-temperature regime, where
they found a dependence of the conversion rates on the occupation number of phonons
with energy resonant to the T < A splitting. The idea of the ‘hybrid’ mechanism was
recently transferred to the problem of symmetry conversion in CH; (5, 10]. The same rotor
phonon coupling is used as in theoretical approaches [11] to the temperature dependence
of dissipative influences, visible, for example, in neutron scatiering spectra. In [5] (referred
to as I in the following) some paratlels between both temperature dependences are drawn.
The temperature dependence of the conversion rates was calculated in I for the model of
an isolated CHs group, where only the inira-methyl dipolar interactions were considered.
This interaction mixes the A and E states and the rotor phonon ¢oupling guarantees the
conservation of energy. Intermolecular contributions to the dipolar interaction have not
been considered.

~ As one of the few mvestigations about deuterated rotors, the ertho—para conversion
in solid D; has been studied [12]. Here the situation is more complicated than in Hp,
since deuterons possess a quadrupolar moment Q. The interaction of this moment with the
electric-field gradient at the site of the nuclei. that originates from the charge distributions
of neighbouring molecules, provides an additional conversion mechanism. The conversion
rate due to this quadrupolar interaction was found to be of the same order of magnitude'as
the conversion rate due to dipolar interaction between the D, molecules.

In this paper we consider CD; groups. Here. the electric-field gradient at the site of a
given deuteron has its origin almost exclusively in the charge distribution of the chemical
bond between the deuteron and the carbon atom. (Note that this intramolecular energy
confribution is also present and of comparable magnitude in Dy, but it is of even parity and
therefore does not mix rotational states of different symmetry.) Intermolecular contributions
to the electric-field gradient are usually negligibly small [13]. Additionally, the quadrupolar
interaction is stronger than the dipolar interaction among the deuterons of a CDs; group by a
factor ~ 100-200. Thus, all dipolar interactions can safely be neglected in a calculation of
the symmetry-species conversion rates for CDy. The strength of the quadrupolar interaction
for a CD; group is of a comparable strength to the dipolar interaction among the protons
of a CHz group. The mechanism considered by us is a ‘hybrid’ mechanism in which the

_quadrupolar interaction mixes states of different symmetry and the rotor phonon interaction
provides energy conservation. An important difference from the CH; problem considered in
I'is given by the fact that the quadrupolar interaction mixes not only A and E states but also
E* and E® states. (For CHj, matrix elements of the dipolar Hamiltonian between E states
vanish.) Thus, we have to deal with B? ﬁvE" conversion in addition 10 A < E conversion,
However, the A < E conversion rate observed in experiments is not influenced by the
E* « E° conversion. The calculations will be performed using second-order perturbation
theory with respect to the rotor phonon interaction Hamiltonian.

The organization of the paper is as follows. In section 2 we introduce the model
Hamiltonian. Section 3 is devoted to the calculation of the conversion rates, and the
specific results obtained for a Debye phonon density of states are discussed in section 4. In
section 5 we compare the general findings to those of paper I and discuss the similarities
and differences to earlier theories. '
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2. The model

In this section we introduce the Hamiltonian that will be used later 10 calculate the symmetry
conversion rates of rotational tunnelling CDs groups:

H=H® +HP 4+ H' + HR, 3)

The first three terms on the fght-hand side of eguation (3) do not involve nuclear spin
operators and are usually considered in theoretical treatments of the temperature dependence
of rotational tunnelling [T, 14]:

HR = —B82 + V3 cos(3¢) = Z ET|\mCupmT | )

mlp

= b b+ ) N &)
k

Z[gk c0s(3p) + gf sin(3e) bk + 5)) = 3 Y ghpelmCp) ' Tl (e +57)  (6)

kmm' Cp

where B is the rotational constant (8 ~ 324 peV for CD;) and b}f and by are creation
and annihilation operators for phonons enumerated by & with ¢nergy «y. The form of the
interaction between the rotor and the phonons is diagonal in the symmetry I'. It is usually
considered to describe the temperature dependence of inelastic neutron scattering (INS)
spectra. Both terms ~ g; and ~ g; refer 10 a breathing or a shaking type of coupling to the
kth phonon mode, respectively. Both types of coupling cause an opposite shifting behaviour
of the tunnelling line [14b]. The linear coupling in the phonon coordinates is experimentaliy
well jusiified since it leads to the usually observed Arrhenius-type temperature dependence
of the line broadenings in INS experiments.

The eigenstates of H® will be denoted by |mI}, where m € Ny (Ng =
nen-negative integers) is the librational quanium number and [ indicates the symmctry type
(T = A, E* of E®). As already explained in the introduction, we classify the eigenstates of
H® with respect to the symmetry group C;, regarding even permutations only. The matrix
of HY is not altered by this simplification [4]. The eigenstates form products of a spatial
{mI'y and a spin [ ) part

(mTu} = [mT) x |Tep) 7

where y (= ur) denotes all other quantum numbers (ie. total spin [ and its z component
I;) within a given symmetry species. [, is the representation conjugate to T, i.e.

A A
I.={E" for F={E*}.
E* EP

For CDs, there is no one-to-one correspondence between the symmetry species I" and the
total nuclear spin / of the CD; group. Instead, there are eleven A states with / =0, 1, 3
and eight E* and E® states with / = 1, 2, respectively. The spin states for CD; may be
found in [4,15].

Finally, we consider the quadrupolar Hamiltonian H? in equation (3). For methyl
deuterons it is well known [16] that the electric-field gradient (EFG) tensor is axially



Symmetry-species conversion in CD3 systems . 6125

symmetric to an excellent approximation. The principal axis of the BFG coincides with
the C-D bond axis in most cases. The quadrupolar energy of a single deuteron in the
presence of an EEG of strength egq along the z axis is given by

(e*q Q/am 31} — 1%, : 8

H? is the sum of the quadrupolar interactions of the three deuterons:
HQ = Z HY,. | (8D}

@ is the quadrupolar moment of the deuteron. [, and / represent spin operators acting on
the spin states of the deuteron [13]. Defining the quadrupolar coupling constant

Co=eq0/h ©)

and using now, conwary to (8a), the rotational axis of the CDs; group as magnetic
quantization axis, one finds ) '

HQ — (TF/Z)CQIIZ (3 cos B — 1)[3([(1))2 + 3(](2))2 +3([(3))2 — (](i))Z _ (]("))2 (1(3))2]
~ {2 sin(20) exp(ie) [(1‘”1(1J + 1‘”1“3)
+eP I + 171 + a1 + 12199 + 1}
+ {2 sin” 9 exp(=2ip)[(7{M) + e(IP)? + (1)) 4+ HO)]. (10)

Here. :“) 19 2P, (" =18, uMt = 19, € = exp(2ri/3) and HC means
Hermitian conjugate; :5‘ is the angle between the non-vanishing component of the EFG and
the rotational axis. For the tetrahedral angle ¢+ one has cos ¢y = 1/3. Deviations from this
value of about 5% have been observed by 2H NMR [17).

Typical values for Cq are 0.1-0.132 neV [16], whereas the strength of the dipole—dipole
interaction among the deuterons (yZ/r3, yp = gyromagnetic ratio) is of the order of 1 peV.’
(Note that the gyromagnetic ratio of deuterons is a factor 6.5 smaller than that of protons.)
The strength of the quadrupolar interaction compared to that of the dipole—dipole mteractlon
allows us to neglect the latter completely in the following discussion.

In the basis (7) the quadrupolar Hamiltonian reads

HO=3" 3 Q™ imlu)(m'T'u). (1)
mlpmT !
The QT“7* are collected in table 1.

In contrast to the dipolar Hamiltonian in the CH; case, the quadrupolar Hamiltonian
also has non-vanishing matrix elements between E* and E states, Qf:,;ﬁﬂh“' {4,18]. In CD;3,
all three symmetry species are mixed by the quadrupolar interaction,

In the following we want to treat HY perturbationally. If we assume for m = m’

An < |ET — EV] ' (12)

with A, := EE ~ E2, it is sufficient to diagonalize the matrix of H® + HQ within each
librational multiplet. This assumption can safely be justified since the lowest tunnelling
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Table 1. Matrix elements Q;”m',"“r of the quadmpolar Hamiltonian {10) as they are defined
in equation (11). All matrix elements are proporiional to the guadrapolar energy Cg (defined
in {9)) and depend upon the angle © between the C-D bond and the rotational axis., The
symmetry-changing matrix elements (parts {c} and {£)} furthermore depend upon the rotational
wavefunction |mI”) (cf equation {4)).

(@  Amp Axn Az An A Az Ara Aj Ao Ao Aw

Az ~¢p Lip

& B B B = 52 Ej ,E?g . .E.;-l.

-1 -P

) By E} B B, B, E Ely EY
= “4c e

a 1 { .
o -7D #C - %€

B, -7‘§c iC
Elo VIED _7I27c - ;C
2 45D F€ D

E;Z %] E;U 55-1 %—2 E?l E?G , ,E?—'l

B __aéi(: -§D

By . —bb ~kC
B,
B #e
E

S

H—.
(]
|
fg,i.—-
Cu
9]

-

T

1
ﬁ”

lw ]}
g

]

b 1~ 3O
B _xé | e
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Table 1. (continued)

) Ap A Aa Aszg Az A2 Az.s A Aw Al-g App
;3 1 i
B, 54 -8 -7 78

3 ; -8 1 1 -7m8
0 54 - 78 =t
1 1 i
B - 44 -8 ok =4
a 1
B - 130A -7
1 1 3
E?Z -‘EA 73—03 - 'l{!B
2 1 3
B3, ~ A o -4
] M 1 3
Ei ~ 74 7B L4
P =P = (3w CQ)3/2)(3 0% 8 — 1Sy o0 i
C=Chpp =13 :rCQ)(Sszj sm(Zﬁ) (mE“]e""’lm'Eb) C= cr
D=D = LGcQ)(aJ‘ 12) sin? D {m E° {e21® [’ B2) D=D*
A= Ay 1= (37 CQB3V3/2) smaa)(meﬂ[e@[m’p.)
B = B 1= (37Cq)(3+/3/2) sin® # {mE2 |29 |m" A)

energies are smaller than all librational energies by a factor of usually < 107>, In denterated
systems this factor is even smaller. The unitary 27 x 27 dimensional matrix, which achieves
the diagonalization

Semy(H® + HY) 0y (Smy) ™" = (Diagonal) )
formally vields the cigenstates

|q;£#) = Z(vsi’#’ru)*lmruul)_ ) 7 (13)
™

In the following we concentrate on systems in which the munnelling frequencies A are
large compared 1o the energy differences of HR. This is valid for tunnelling frequencies
> 10Cq = 1 neV. The elements S2“* of the unitary matrix are given in first order by

Serin o QERA TN, < (14)

El[.L.E.h, . .
and they are proportional to Cg, whereas the S, * are of order unity since E* and E°
states are degenerate. Equation (14) allows us to write

Y STHIK (PR Y — g 18 w1+ O] — (1= drrde,)Om)  (19)
F"g(E’,E") P

where n < 1. which has the value of a typical non-vanishing element S=***', will be taken
into account only in lowest non-vamshmg order (note that ' = pp.. f equation (7).

3. Symmetry conversion rates

As in ] we calculate the transition rates Rr ... taking the time derivatives of the expectation

value of projectors Pr into the I'-symmetric part of the Hilbert space for a I''-symmetric
thermal equilibrium state '

o = Prexp(~pH) Pre/ T Pp exp(—FH) Pr]
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in second order regarding H!, Contrary to the CHj problem, we now have to deal not only
with Rag but also with the fransition rates Rppr.

For times long compared (o all other relaxation times of our system we have to solve
the following linear rate equations for the symmelry species concentration Cp = (Fr):

d -
360 = 2 (RrerCr — ReverCr) (16)
t r#r
where
d
Reer = —(Pe())r. (17)

The rate equations (16) can be written in matrix form:

d Ca —2zRp—Ea Rpep Rpops Ca
T Ce j=| ZRaer —Raep — Rpep Res g Ca (18)
CEb ZR,M_Ea REI «Fr —RA*_p_a — REa +~—Fb CEb

where z ;= ZE/Z* with

ZF = Qr ZGXP(—ﬁE;) wp =11, og= 8.
m

We have anticipated the fact that the rates Ry have 10 fulfil the detailed balance condition
Rrop/Roer = Z7/Z". 19

The transition-rate matrix has eigenvalues A = 0, by = —(1 + 22)Racpe and Ay =
—2Rps—p — Racp . the first of which corresponds to the stationary solution at thermal
equilibrium. Az is connected with A < E conversion, 1/7.,, = —Az and i3 = —1 /7T, p
with E* <> E® conversion.

1/Teon describes changes in Cg i= 3(Cp» + Cp) due to A < E transitions, irespective
of E being E2 ot E®. Thus, for the description of experiments designed to obtain information
about the A <> E conversion time, the rates Rg.._p are irrelevant. Therefore we restrict
ourselves 1o the calculation of Ra g and 1/7cqy.

Ra«p: is calculated in time-dependent perturbation theory in second order with respect
to H' and HR. For HY it is assumed that it mixes the symmetry species A and E slightly
without changing the eigenvalues of Hy (cf I). (Note that this procedure is not applicable

for the calculation of Rgs..pe. since E* and E states are degenerate.) Accordingly, we use
as unperturbed Hamiltonian:

Ho =" EL|9Rs) (wh*| + H. (20)

mCu

The rotor—phonion interaction reads in the basis (13):

H = 3 S 33 gf,. SEHs (STUT Wy W'y (T by 4 b)), @1

kmm.l ]".u rluf r”ﬂ"
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In a calculation similar to that performed in I we find in O(»?) for the inelastic transition
rate Ra.pa:

—BEE
Racw =27 ZME (\E5, — EaD

Z
mom i
B pA L QEuae o gEae)
-+ G(Emo - Em)] ;; g.‘:mmu Amc. _gkmmo—A;—
x $(|EE — EA — ) + 00, : 22)

Here, § is the inverse temperature, n(E) := [exp(8E)—1]"" the phonon occupation number
and :

1 x>0

G)(x):{o 1 <0.

This rate depends on (i) the bare tunnelling energy Ao, (ii) the librational energies, which
for a pure V5 cos(3¢) orientational potential are related to Ag, (iii) the strength of the rotor—
phonon coupling, (iv) the type of the rotor—phonon coupling (breathing or shaking) and (v)
the temperature,

With the abbreviations

Ap = (mE*e¥|mA) 7 (23a)
B, 1= {(mE*|e™2¢|mA) : (23b)

we eventually find for the A « E conversion rate:
— =3 (2) 3 (35 + 5% ) T exp(-BEEIn(IEE, - ED
Teon 2 Q ZE' ZA Foo My o m
O(EE, - EA) wom lgn (Am) g (A=)
+ & - ]; 3t} ) Bmumy A_mu — Bkmmy, A

A Bmo _ oE B m 2
- Em— Ekmmy A
o m

This conversion rate, in particular its temperature dependence, has much similarity to
the one obtained for the CH; system. For a detailed discussion of its properties we refer
to I. Tt depends on the phonon density of states at all possible energy differences between
unperturbed rotor levels of different symmetry (cf equation (4)). Therefore, at temperatures
somewhat above the tunnelling energy Ag. a thermally activated behaviour is obtained for the
temperature dependence, with an activation energy that corresponds to the librational energy
Eyp 1= E — Ep. The conversion rate at zero temperature is proportional to ngiz where g ‘
is the rotor-phonon coupling strength of breathing type only (equation (6)). Furthermore,
this rate is proportional to A3, if the phonon density of states at low frequencies is ~ w*
{cf section 4). '

The prominent difference of (24) to the conversion rates obtained for protonated systems
is the temperature dependence at low temperatres T =~ Ay when the librationally activated

+sin* g

]E(IEﬁu — BN — ). 24)
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contribution is not important. Then only the term m = mp = 0 contributes and the complete
low-temperature dependence is proportional to the function

FAg) == [1+ ¥ exp(—BAg)]/[1 — exp(— Ag)]. (25)

In figure 1 the ratio between the behaviour in CDs and the usoal [142#(Ap)] behaviour
{n is the Bose function) is shown in Asrhenius representation. This {1 4 2n(Ap)] factor
determines the low-temperature conversion rate in all theories for protonated systems known
to us. The temperature dependence of the CD; conversion rate is enhanced as compared t0
CH; for T > 0. For T = Ag, this enhancement factor is ~ 1.12.

0.2-
In(f/(14+2n))
0.1+
D.ﬂ T T T T ¥
0 3 BAy 6

Figure 1. Ratio of the low-temperature conversion rate in CDj and the [1 + 2n({Ap)] factor
in Arthenius representation, This factor is obtained in all theories known to us describing the
conversion in profonated systems. The temperature-dependent function f{Ap) is defined in (28)
and n(Ag) = fexp(BAg) — 117! denotes the Bose function.

4, Debye phonons

As an explicit example, we specify the coupled phonon density of states. Introducing
Debye phonons similar 0 I and assuming the rotor—phonon coupling to be propontional to
the modulus of the phonon wavevector, leads to

3
43}
2 8 800 — ) = 3¢ (LE) VslML, PO@)Owp —w).  (26)
k
Here wp denotes the Debye frequency,

ro. cos(3¢) |, breathing .
M = {mD| { $inGe) } im'T) for { shaking \ type of coupling

(cf also equations (4)-(6)) and g := g;°/(Vaen)/* is a dimensionless factor for the
coupling strength; within this approximation the conversion rate becomes proportional to
g?. Additionally, the angle & for the polar angle between the CD bond with respect to the
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rotational axis may be fixed by the tetrahedral angle cos ¥y = 1/3. Both assumptions lead
to a conversion rate

— 33 2 33 L 3 E Apdp (| gE _ A
Teon 3 (2C ) (ZE )momexp( ﬁEma}l Eml [”(lEmn E’"D

+ ©(Ey, — Ep)O(wp — | E, — EpD) Ame ) _ 2 (—A"*

Mo m mmn Amu m_mo Am

B Bn \|* :
mh [ Zm ) R [ Bm 2
mmg (Amu) Mmmo (Am) ] ] ( 7)

which is very similar to the corresponding expression (9) of L.
For low temperatures T° < Ap the conversion rate (27) becomes

2

+2

1/ Teun = (373 [2)C3 (Vs g? f0d) Mgl ME — ME P[4 + 21Bol?) £ (Aq). 28)

An important property of (28) is the 1/7e ~ A3 proportionality, which is a consequence
of ME — M@ ~ Ao. This A} dependence is obtained already in all other theories on
_symmetry conversion rates in rotational tunnelling systems. M{D vanishes for shaking-type
contributions (o the rotor-phonon coupling, so that the conversion rate at low temperatures
is a measure for the coupling strength of breathing type. The whole temperature dependence
is determined by the function f(Ag), which is defined in (25). The mechanism of this direct
process is the absorption or emission of a phonon with energy Ag, and the deviation from
the {1 + 2r(Ag)] law in the temperature dependence has its origin solely in the different
-multiplicity of the spin states of A and E symmetry in the case of CDs.

As already stated in the previous section, the crossover from this direct process to
4 librationally activated or Orbach-type process occurs af temperatures somewhat above
the tunnelling energy Ag, depending on the relative weights of shaking and breathing
contributions to the rotor—phonon coupling (cf I). The dominant contribution to the
conversion rate in this temperature range (Ag <« T <€ Fyy) reads

1

Teon

. Ex\ 1 . :
= 3(1+ ¥)7°CLvag? (;"7“) 7 |Mor P Aal” +21Bo ) exp(~F Es) 29)
4}

where we have ignored the [" dependence of Mg, The Ay 2 proportionality as a direct
consequence of (24) is of general validity, whereas the Ehb proportionality originates from
the Debye assumption for the phonon density of states,

To allow comparison with recent experimental evidence [19] of 2 Raman-type rotor—
phonon coupling, we give the result for the conversion rate due to those inelasiic phonon
scattering processes [10]. (Here, a phonon with energy « is absorbed and another one with
energy Ao+ w is emitted, or vice versa.} A rotor—phonon coupling quadratic in the phonon
coordinates:

Hheman = 9 1850 COSG30) + 23 SING30) (Bt + b (e + b))
133

= 3 3 e i) (0 Tl (b + b7 (B + b (30)

k" mm' Tp
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is assumed.
If we neglect the energy difference Ay between the two phonons involved, a calculation
similar to section 3 yields a conversion rate due to this process:

1 967° Vsg? |Mfy — M,
( )R=—7” (1+ Fe P43 in 1Mot e ol agf 4 21BT7 31
0

Teon
where & 1= §5./ (Viewpap)'/2. This rate depends only on breathing-type phonon coupling
and is proportional to T7 for 8Aq < 1. The comresponding rate for CH; derived by Wiirger
[10] reads in our notation:

(1 Teondrscms = (27)7(81/56) (v */ 1Y (Vag® [ (| MGy — MG */ A3 Bo*T7.

Note that at temperatures T ~~ Ay the factor exp(—pf4A,) in (31), which is omitted in [10].
adds a T low-temperature contribution. For A¢ < 25 ueV the conversion rate is insensitive
to Ag because Mf, — ME and Ag both show the same exponential dependence on the barrier
height 2V5 as can be seen from figure 2. On the other hand, the matrix elements A4, and
By start o behave qualitatively differently as Ay approaches Beuw,: Bo -» 0, whereas
Ap remains non-vanishing in this limit. This causes a drastic increase of the Raman-
type conversion rate with deuteration in relatively weakly hindered systems. The recent
cxperimental observation can be interpreted along these lines {19b).

e
(¥}

|ndgg~nige| 7 2g
@
=
| |
Bl o
I
logyg( AP/ 4,(H))

F-1.5

10 ' 20

Va/BcH,
Figure 2. Cusve I: [ME — Mp|/Ag versus Va/B for a threefold Mathieu Hamiltonian H® (cf
(). M;m, 1= (m[] cos(3¢) im'T), where |mI") are the eigenstates of H* to symmetry I = A,
B2, Eb. Curve II: logy gl Ao{CD3)/ Ao (CH3)] versus Vi/8cy,.
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It should be poinied out that in the case of CHz there exists another possibility of a
Raman process via direct coupling of the dipolar interaction to the lattice modes. In CDs,
the only possible origin for a Raman process stems from quadratic coupling of the rotor to
the phonons.

5. Comparison with CHj

In this section, we compare the conversion rates for CD; to those for CHz. We disregard
differences in the coupling strengths g, 2 and in the Debye frequencies wp. The latier is
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5.2. Orbach process
Here, just the opposite behaviour is found: the dominant factor in this case is
Ag(CH3) \ ‘ :
o~ (_.E’i__3.)_) ‘ (35)
Ap(CD3) :
which is much larger than 1. Furthermore, neither the small factor [M% — ME[* nor the
factor AS due to the coupled density of low-energy phonons occurs (cf (29)). Because the

librational energy Ei;(CDs) is smatler than Eu,(CHs), one has to be aware of the Arrhenins
factors ' ’

4

exp[—f Em(CD3)] - T (36)

- exp[—pB E;p(CH3)] .
in addition to the prefactors discussed already. This is the reason for the maximum occurring
in figure 3(a) around T/Ag =~ 4. According to (35). CD; systems are expected to convert
much faster than the comesponding CHs systems in the temperature range where both
systems convert via the Orbach process.

Cfw
H
2
s 3N 111
=
207
A \
4
o 7 T 4 7 T3 o 20 40 6D
T/‘AU(CH.'S) V3/BCH3

Figure 3. Logarthm of the ratio & = (z3)Vep, /(zZ)icn, for the Debye phonon model (26)
and for breathing and shaking coupling types of equal strengths, Here, quadrupolar and dipolar
energies are assumed to be equal: Cq = y?/+>. {2) Ploi of & versus temperature in wnits of
the twnnelling energy Ap{CHz) of the protenated methyl group. The parameters chosen are
Vs = 108y, and wp = 18Bcy,. (b) Plot of o versus Va/Bey, for wp = 35Bcp,: () direct
process, T = 0.3 K; (I) Orbach process, T = 25 K; (II1) Raman process. Cusves | and I are
calcufated according to (22), which is not valid for Va < 8Bcy,.

Thus, for a rotor—phonon coupling linear in the phonon coordinates (cf (6)), the ratio
o strongly depends on temperature. This is shown in figure 3(g). At temperatures below
the tunnelling energy of the deuteraled compound, Ay{CDs), o saturates at a certain low-
temperature value (for the parameters chosen in figure 3(a), this value is & = 3 x 107%),
At slightly elevated temperatures the factor f(Aqg(CDs)) (cf (25)) starts to increase. The
resulting increase in « is only compensated when the temperature comes close to Aq(CHz);
then also (z.,})en, increases proportionally to {14-2n(Ag(CHs))], where # is the Bose factor.
The subsequent rise in a(T) around T =~ 2A,{CH3) takes place because the deuterated
compound starts to convert via the librationally activated (Orbach-type) process, before the
protonated compound (£, (CD3) < Eyp(CHs)) also begins to convert via this mechanism at
T > 4A¢(CHs). In the high-temperature limit Ag(CH;3) <« T < Ey(CHa), o is determined
by the factor (35), which is generally large compared to I {cf curve II in figure 2).
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expected to decrease slightly when CH; is substituted by CDs. Furthermore, we neglect
any isotope effect on the hindering potential Vi cos(3g). The important medification is
a reduction of the (quantum) energy unit Bep, = 7 Bcw,. This influences the rotational
wavefunctions and the eigenvalues of H® (cf (4)).

One common prefactor in all expressions for the relative change in the conversion rates
@ = (T Den, /(15)) cn, with deuteration is the square of the ratio of the quadrupolar and
the dipolar energy [Co/(y%/r*)J?, which varics between 1 and 2, depending on the system
considered.

We discuss the influence of direct, Orbach and Raman processes on the relative
modification of the conversion rate o, assuming unchanged surroundings of the rotor. This
in particular means that V3 and the coupled phonon density of states are supposed not o
alter with deuteration. The three processes differ considerably not only in their temperature
dependences but also in the dependence on the magnitude of the hindering potential. For
direct and Orbach-type processes our rates (22) are not valid for nearly free rotors. On the
other hand, if V5 2 8Bcy, the rotor matrix elememts A, and By, for the lowest relevant
values of the librational quantum number i are of the order of 1, independent of deuteration.

5.1. Direct process

For this process (cf (28) and equation (9) of I, with m = m’ = 0), which is relevant at low
temperatures, two factors depending weakly on V; appear in «:

(| Ac{CD3)[* + 2| Bo{CD1)i")/ 1 Bo(CH3) 2 (32a)

being roughly equal to 3 for not too small Vs, and

{MA(CDs) — ME(CDs) / | MA(CHy) — ME(CHy)[?

32b
Ag(CDs3)? Ao{CH3)? (320)
which can be deduced from figure 2. Already more important is the factor
F{A(CDaY)
14 2n{Ag(CHa)’ 33)

which for temperatures larger than Aq(CDs) but still smaller than Ay(CHs) is strongly in
favour of (t;l)ep,. The most important factor in the conversion rate due to the direct
process is, however, given by

Ao(CD)
« (AO(CHs)) 34

owing to the small density of low-energy phonons. This factor can easily surmount all
the aforementioned factors by orders of magnitude (cf curve 11 in figure 2). Therefore, the
direct process is strongly suppressed with deuteration as a direct consequence of the Ag
proportionality of the conversion rates in this temperature regime.
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5.3. Raman process

In the case of quadratic rotor~phonon coupling (30), Raman-type conversion takes place.
The corresponding ogaman 1aios vary slightly with temperature for T < Agp owing to the
exp{—B Ap) dependence, but become constant at higher temperatures,

We now trn to a discussion of the dependences of o and agama, On the height of the
orientational potential V3. These dependences are visualized in figure 3(»). The curves I
and IT belong to linear phonon coupling and to temperatures T = 0.5 K (dominated by
the direct process) and T = 25 K (Orbach process), respectively. The decrease of [ and
the increase of II are both direct consequences of (34) and (35), i.e. of the Ao dependence
of the individual conversion rates. The increase of « with temperature (via hnear phonon
coupling) becomes more pronounced. the smaller the tunnelling energy.

Curve III refers to the Raman process. For Vs 2 18Bcp, the conversion due to this
process is increased by a factor of about 10 upon deuteration, approximately independent of
V3 (and of the temperature). For lower values of V3, %raman INCIEases drasucally as V3 — 0,
The reason for this peculiar isotope effect in nearly free rotating systems, which convert via
& Raman process, has already been discussed in connection with equation (31): (r“l)cp[,
depends only on the rotor matrix element By, which vanishes as V3 — 0, whereas ('l:';ml‘)cns
additionally depends on Ag, which remains finite. in this limit. Furthermore, it should be
noted that the Raman conversion rale is very sensitive to even slight changes in the Debye
energy due to the wp® proportionality (cf (31)).

6. Discussion

Let us start by discussing the approximations made in the calculation of the symmetry
conversion rates.

Our approximation to restrict the diagonalization of H® + HQ to a definite librational
quantum number m is allowed if A, < |EL — ETY| for m # m' (equation (12)). This
restriction should be justified for most physical systems—recall that CD; groups are always
more hindered than CH; groups in the same surroundings—if the temperatures considered
are small compared with the barrier height 2V,

The most serious approximation is thé perturbational approach with respect to the rotor—
phonon coupling H'. Second-order perturbation theory is frequently used to describe the
- temperature dependence of rotational tunnelling despite the fact that the coupling strength
is unknown.

Next, we neglected the energy shifts due (o H? in equation (20), which are of the order
of Cq. For V3 2 100Bcp,, corresponding to 375 K, this approximation is no longer valid.
We expect that sophisticated NMR methods—as applied to CH; [20]—are able to measure
Teon fOr such small tunnelling frequencies. However, for the temperature dependence of the
mansition rates Ra.p (equation (22)) the modification of the eigenenergies is irrelevant.
An evenmally altered low-temperature behaviour will hardly be observable for temperatures
of the order of Ay, i.e, 7 ~ 11.6 wK. At all higher temperatures mainly librational energy
differences are of importance. ' '

We did not take into account the dipolar interaction among the deuterons of the CDs
. group, since this is about 200 times weaker than the quadrupolar interaction. As an aside
we want to point out that the long-ranging dipotar energies in CHs systems are expected to
be important also between different methyl groups. If they are taken into account in CHs-
containing systems, a qualitative modification occurs because then (in contrast to the pure
intramolecular dipolar interaction) also E* <> E° transitions are allowed. The argument
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to neglect this intermolecular dipolar interaction was the Iarger distance of the CH; group
from surrounding protons compared to the distance between the methyl protons. On the
other hand. the significance of the intermolecular dipolar interaction clearly shows up in T;
experiments [21]. For conversion only A < E transitions are relevant, which remain of
the same order of magnitude also if the intermolecular dipolar interactions are taken into
account. We are presently undertaking a study of this mechanism for CHs.

In the calculation of the conversion rates (22) and (24), we utilized equations (14) and
(15}, Owing to the limitations in the observable tunnelling energy Ay 2 0.1 eV, neutron
scattering experiments should be explainable by our equation (24). In the following we
restrict our discussion to physical situations in which n « 1.

The temperature dependence of 1., in CDs is found to be quite similar to that of
the corresponding more strongly hindered CHs system. In particular, for temperatures
Ew =2 T > Ay the behaviowr is librationally activated (cf (29)) as in 1 and the low-
temperature conversion rate (28) is proportional (o the rotor-phonon coupling strength of
breathing type. As in [, a fast conversion at lowest temperatures should be accompanied
by the tendency for a positive shifting of the inefastic tunnelling line with temperature
and accordingly a pronounced negative shifiing of the inelastic tunnelling line should be
connected with very slow low-temperature conversion rates.

For low temperatures T < Ayp a slightly different law for the temperature dependence
is obtained than in all other rotational tunnelling systems (H; [6-8], CHs [5, 10} and CH,
[91) considered so far.

To our knowledge there exists only one experiment, performed by Buchman e al [22],
that has measured conversion times of deuterated methane, They measured t.o, of CDy as
a function of temperature for 35 mK < T < 400 mK by NMR susceptibility measurement.
The authors emphasize that their data do not contradict a [1 - 2r{Ag)] law as predicted by
Nijman and Berlinsky [9] for CH,. However, the error bars in [22] are too large to allow
one to distinguish between a [14-22(Ap)] low-temperature behaviour and a slightly modified
law that follows from the different spin multiplicity in CD, in an analogous manner, as we
found for CDs.

In the comparison of conversion rates of CD; with the comesponding CHa-containing
system, we have made the following assumptions: first, the hindering potential was supposed
to remain unchanged- with isotopic substitution. In some cases this is known to be wrong
{15]. However, it has been shown within a molecular-field approximation that a change
of V3 should occur only if Va S 5Bcy, [15). Secondly, the coupled phonon density of
states was assomed not to change with deuteration. If the rotors themselves contribute
significantly 10 the phonon density of states (via their librafional excitations), devieration
should be accompanied by a reduction of the phonon frequencies. In experiments like those
described in [19] and [26], where the methyl rotors are diluted in a surrounding matrix, this
source for change in the phonon coupling is expected to be negligible. Thirdly, we assumed
that both the coupling mechanism—linear or quadratic in the phonon coordinates—and the
coupling type—breathing or shaking—do not change with deuteration.

Using these assumptions, the ratios o := (t54)en,/ (T Jon, are plotted in figures 3(a)
and () versus temperature and barrier height, respectively. For a linear phonon coupling
a reduction of the conversion rate is predicted for low temperatures (direct process), which
is a consequence of the AE proportionality of the conversion rates {cf (28) and (34)).
However, at elevated temperatures, when the Orbach process starts to become significant,
o may rise by several orders of magnitude; recall the Ay ? proportionality of the conversion
rates in this temperature regime (c¢f (29) and (35)). The maximum in & as a function of
temperature is connected with the smaller librational energy in CD; compared 10 CHs (cf
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(36)). Specifically, for the Raman process wpaq.. is (nearly) independent of temperamre
but this ratic strongly increases as V3 becomes smaller than ~ 18Bcp,, corresponding (o
tunnelling energies Ao(CHj) larger than 25 peV. For stronger hindered rotors a constant
value ®raman = 10 is obtained. The vanishing of (z3;)ch, when V3 — 0 is prevented in
realistic situations by the inzermolecular dipolar interaction between the methyl protons and
protons located in the neighbourhood of the CHsz group.

A lJarge and nearly temperature-independent increase of the comversion rates with
denteration has been observed by optical hole burning experiments on dilute dimethyl-
s-tetrazine molecules in an n-octane matrix [19b]. The experimentally obtained factor
Gesp 2 60 can be explained by supposing a low orientational barrier of V3 = 2.55Bcy,. This
value also explains nicely the observed change in the side hole splitting with deuteration
[19b]. .

Further experiments on systems containing CDs groups are desirable. It should be
possible to observe the modified low-temperature behaviour in (i) neutron wansmission
experiments [23] (the enhancement factor ({/%)1/{I/*)7—c — 1) for the temperature-
dependent part of the total scattering cross section for CD; equals 15/11 instead of 5/3 as in
the case of CH3), (ii} INS experiments [24], (iif) specific-heat experiments [25] and eventually
{(iv) optical hole burning experiments [19,26]. The experimental data already obtained by
the latter method can be explained by our theory. One system of recommendation would
be y-picoline, which even deuterated shows a tunnelling energy of Ag = 100 eV [271.
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