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PACS. 72.20H - High-field and nonlinear effects. 
PACS. 73.20D - Electron states in low-dimensional structures (inc. quantum wells, super- 

PACS. 73.40G - Tunnelling: general. 
lattices, layer structures and intercalation compounds. 

Abstract. - The influence of excited levels on the non-linear-transport properties of a quantum 
dot weakly coupled to ideal leads is studied using a master-equation approach. A quantum- 
mechanical model for interacting electrons is used to determine the spectrum of the dot. The 
current-voltage characteristic shows Coulomb blockade and additional fine structure that is 
related to the excited states of the correlated electrons. Asymmetric coupling to the leads causes 
asymmetric conductance peaks. It is demonstrated that spin selection rules can lead to regions of 
negative differential conductance. 

Periodic oscillations of the conductance through quantum dots that are weakly coupled to 
leads [ l ]  are well-established consequences of the charging energy of single electrons 
entering or leaving the dot at sufficiently low temperatures. They are observed in linear 
transport as a function of the carrier density, At bias voltages larger than the differences 
between discrete excitation energies within the dot, a characteristic splitting of the conduc- 
tance peaks is observed[2-5]. We will demonstrate unambiguously that this is related to 
transport involving the excited states of n correlated electrons and that the shape of the 
peaks depends on the coupling between the quantum dot and the leads. Regions of negative 
differential conductance have occurred in some of the experiments [2,5]. It was suggested 
that the existence of excited states with weaker coupling to the leads than ground states can 
lead to such an effect [2,6]. Only in the context of the fractional quantum Hall effect (FQHE) 
states such a behaviour was found [6]. Our paper presents a novel physical mechanism, that 
is due to spin selection rules, which leads to such a situation. This <<spin blockade. is a 
consequence of the existence of excited states with different total spin. 

As a model, we consider the double barrier Hamiltonian 

H = H~ + H ,  + H~ + H ;  + H;,  (1) 
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where H L I R  = C 
k, 0 

cL/R, k, , CL/R, k ,  describes free electrons in the left/right lead and 

the interacting electrons within the dot, The energies of the non-interacting electrons are E ,  

and TImlqwm4 the matrix elements of the Coulomb interaction. The voltage VG is the potential 
change in the dot due to an externally applied voltage and serves to change the electron 
density in the well. 

To specify the dot Hamiltonian H D  we consider n S 4 interacting electrons in a 
quasi-one-dimensional (1D) square well of length L including the spin degree of freedom [7]. 
We calculated numerically the exact eigenvalues E ,  and the corresponding n-electron states 
I v )  for this correlated electron model, The interaction potential a ((x - x ' ) ~  + A 2 ) - ' l 2  was 
used, where A (<< L)  is due to  a transversal spread of the electronic wave function. Since the 
interaction is spin independent, the n-electron total spin S is a good quantum number. The 
properties of the correlated states and the energy spectrum have been discussed in detail 
previously ["I. For not too large electron densities tendency towards Wigner crystallization 
is found [8].  In this regime, the excitation spectrum consists of well-separated multiplets, 
each containing 2" states. The energetic differences between adjacent multiplets decrease 
algebraically with electron density. They correspond to vibrational excitations. The 
considerably smaller intra-multiplet energy differences decrease exponentially. The wave 
functions of individual levels within a given multiplet differ in symmetry and S. The 
excitation energies in the lowest multiplet can be calculated analytically [9] and depend only 
on one tunneling integral t ,  (table I). In summary, two different energy scales characterize 
the n-electron excitations. We will demonstrate that they can in principle be distinguished by 
a non-linear-transport experiment. 

The barriers are represented by the tunneling Hamiltonians 

k, m, 9 

where T t c , ,  are the transmission probability amplitudes which we assume to  be 

TABLE I. - S p i n  and energies of low-lying excitations of the correlated electron model at sufficiently 
large electron distances r, = L/(n  - l)>>aB. The tunnelling integmls t ,  decrease exponentially with r,. 
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independent of m and U. We assume that the phase coherence between the eigenstates of H is 
destroyed on a time scale zm, which is much larger than the time an electron needs to travel 
from one barrier to the other, Thus, the motion of the electrons inside the dot is suffi- 
ciently coherent to guarantee the existence of quasi-discrete levels. We assume also that the 
leads are in thermal equilibrium described by the Fermi-Dirac distributions fL/R(E)  = 
= (exp [ P ( E  - p L/R)] + l)-'. The chemical potential in the left/right lead is ,uL/R and P = l / k ~  T 
the inverse temperature. We assume the tunneling rates through the barriers tL/R = 
= (2x/h) 2 I Tk/m", 1 6( - E) to be independent of energy E. If they are small compared to 
the phase breaking rate z;', the time evolution of the occupation probabilities of the 
many-electron states in the dot can be calculated using a master equation. 

In contrast to [ 10,111, where changes in the occupation probabilities for one-electron levels 
were considered, we take into account the populations Pi of all possible Fock states I i) of HD. 
Transitions between the latter occur when an electron tunnels through a barrier. Our method 
allows to determine the stationary non-equilibrium state without further restrictions. 
Deviations from equilibrium linear in the applied voltage have been mentioned in [12]. In 
addition, the exact many-electron states of the dot including spin can be taken into account 
without being restricted to the conventional charging model. A similar method was applied in 
the FQHE regime without spin[6]. 

For sufficiently small HT, simultaneous transitions of two or more electrons [13] which are 
processes of higher order in HT are suppressed. Each of the states li) is associated with a 
certain electron number ni, an energy eigenvalue Ei and the total spin Si. The transition rates 
between states I i) and l j )  with ni = nj + 1 are given by I'k(R1 - and Fk$Ri +, depending on 
whether an electron is leaving or entering through the left/right barrier, respectively. Here, 
rjfL - = yj , i tL/R[l  - fL/L/R(E)], r k G R I  + = Yi,jtL/RfL/R(E) and the electron provides the 
energy difference E = Ei - Ej. As an additional, very important selection rule, we take into 
account that each added or removed electron can change the total spin Si of the ni electrons in 
the dot only by 2 1/2. The consideration of the vector coupling Clebsch-Gordan coefficients 
yields the spin-dependent factors 

k 

in the transition rates. 
The matrix of the transition rates is r = rLi + + rR, + + rL, - + TR9 -. The master equation 
for the time evolution of the occupation probabilities Pi is 

d -pi = 2 ( r i , j ~ j  - q i p i ) ,  Z p i  = 1 .  
dt j ~ j  * i )  i 

(5) 

From the stationary solution {Fi}, which is obtained by putting dFi/dt  = 0 in (5) one can 
determine the d.c. current 

It equals the number of electrons that pass the left/right barrier per unit of time. 
At zero bias voltage the occupation probabilities of the n-electron states are given by a 

Gibbs distribution Pf = (exp [ -P(Ei - pni)])/Z, with the chemical potential ,u = pL = pR. 
They solve the rate equation (5 )  for all t L/R. 27 is the grand canonical partition function. For 
temperatures lower and voltages higher than the level spacings, Fi deviate from equilibrium 
and cannot be described by defrning an effective chemical potential for the dot. 
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Fig. 1. - Current-voltage characteristic (pR = 0) and the splitting of the fourth conductance peak at 
,LLL = O.3EH and ,pR = 0 (inset) of a dot of length L = 15aB described by the correlated electron model for 
p = 2OO/EH ( E H  e2/ug Hartree energy). Tunnelling integrals are t2 = 0.03EH, t3 = 0.07EH and t4 = 
= 0. 09EH, numerically determined ground-state energies Eo (1) = 0.023EH, Eo ( 2 )  = 0.30EH, Eo (3) = 
= 0.97EH, E 0 ( 4 )  = 2. 1 5 E ~ .  Dashed, dotted and solid lines correspond to  t L / t R  = 1, 2 and 0.5, 
respectively. The current is plotted in units of the total transmission rate ? = t L  t R / ( t L  + t R ) .  

Fig. 2. - The most prominent feature in fig. 1 for t L  > t R  is magnified and the populations of the most 
relevant dot states U) n = 2, S = 0, b )  n = 2, S = 1, e)  n = 3, S = 1/2 (ground state), d )  n = 3, S = 1/2 
(frst-excited state), e )  n = 3, S = 3/2_vs. bias voltage V are shown. The prominent feature of 
decreasing current (dotted, in units of e t )  is accompanied by an increase of the population of the spin- 
polarized n = 3, S = 3/2 state at the expense of the other populations. The populations shown here do 
not sum up to  unity because of the occupation of other states. 

Current-voltage characteristics and conductivity peaks calculated by using the excitation 
energies given in table I are shown in fig. 1 for temperatures lower than the excitation 
energies. We observe fine structure in the Coulomb staircase consistent with recent 
experiments [2,5], and earlier theoretical predictions using a different approach [lo, 111. 
Within our model, the Coulomb steps are not of equal length as in the phenomenological 
charging model used in [lo-121. The deviation from the classical behaviour is related to the 
inhomogeneity of the quantum-mechanical charge density of the ground state [7]. The 
heights of the fine-structure steps are more random due to the non-regular sequence of total 
spins (cf. table I) and the spin selection rules. In certain cases, fine-structure steps in the I-V 
characteristic may even be completely suppressed. 

Strikingly, regions of negative differential conductance occur (fig. 1). They are related to 
the reduced probability for the states with maximal spin, S = n/2, to decay into states with 
lower electron number. In contrast to transitions that involve S s: n l2 ,  they are only possible 
if S is reduced. The corresponding Clebsch-Gordan coefficients are smaller than those for 
transitions with increasing S (cf. eq. (4)) which leads to an additional reduction of the current 
as compared to the situation where S e n/2. When the voltage is raised to such a value that 
an S = n/2 state becomes involved into the transport, this state attracts considerable 
stationary population at  the expense of the better conducting S < n/2 states, as can be seen 
in fig. 2. Both effects together can then add up to a decreasing current. The decrease in the 
I-V curve becomes less pronounced if t L  < tR,  because then the dot is mostly empty and the 
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(n - 1) + n transitions determine the current. On the other hand, if t L  > t R  the .spin 
blockade), becomes more pronounced, because the n - ( n  - 1) transitions limit the current in 
this case. Both features can be observed in fig. 1 and also the experimental data of [2,51 are 
clearly consistent with an interpretation that the potential barriers are slightly different. Nega- 
tive differential conductances can in principle be used to construct a mesoscopic oscillator. 

For foed V, the conductance shows peaks when VG is varied which can be described within 
thermal equilibrium in the limit of linear response [14]. Only the (correlated N-electron) 
ground states are involved at  zero temperature. For finite-bias voltages, eV = pL - p ~ ,  
larger than the level spacing, a varying number of levels contribute to the current when V, is 
changed. The conductance peaks split and show structure as is observed experimentally and 
explained qualitatively in [2,3,15] within the charging model. Asymmetric coupling to the 
leads changes the shape of the peaks considerably, as can be seen in fig. 1. We propose to 
explain the &xlination.of the conductance peaks observed in the experiment [2,31 by 
asymmetric barriers and find that this inclination will be reversed if the sign of the bias 
voltage is changed. Our result is consistent with the most recent experimental observation of 
the dependence of this inclination on the ratio of the barrier transmissions[3]. Such 
asymmetric conductance properties can be used to construct mesoscopic rectifiers. Similar 
rectifying effects were inferred earlier from the high-frequency properties of mesoscopic 
systems containing asymmetric disorder [16]. 

In summary, we have investigated non-linear transport through a double barrier taking 
into account Coulomb interactions, spin and non-equilibrium effects. Occupation probabili- 
ties, current-voltage characteristics and conductances us. gate voltage at  finite-bias voltage 
have been calculated using a master equation approach. 

Taking into account the quantum mechanics of coulombically interacting electrons 
including their spins leads to considerable corrections to the transport as compared to the 
charging model. The Coulomb-blockade intervals in the I-V characteristic and the distances 
between the conductance peaks are no longer constant. Because of spin selection rules for the 
correlated electron system, the heights of the single steps in the fine structure of the 
Coulomb staircase look more or less random. Most strikingly, regions of negative differential 
conductance occur because for each electron number the state of maximum spin can only 
contribute to  transport by reducing the total spin, and the transition probability into states 
with lower spin is reduced by the Clebsch-Gordan coefficient. As a consequence, the 
transition probability into states with lower electron number is reduced. This general feature 
of a <(spin blockade. is not restricted to the quasi-1D model considered here but should also 
apply to 2D dots considered in the experiments as long as the number of electrons is 
sufficiently small. Asymmetric barriers cause pronounced asymmetries of the conductance 
peaks. We predict the reversal of this asymmetry when the bias voltage is reversed. 

All of the theoretically predicted features described above are qualitatively consistent 
with experiment [2,3,5]. Further experiments, in particular using d i m  quantum dots., are 
however necessary to clarify the quantitative aspects. 

Preliminary theoretical results taking into account a magnetic field in the direction of the 
transport show that the negative differential conductance is influenced and suppressed at 
high fields, when the spin-polarized states with 5' = n/2 become the ground states [17]. This 
is consistent with recent experimental findings [18]. To clarify these questions and to be able 
to make quantitative comparisons with existing experimental data, generalization of the 
above correlated electron model to 2D [9] is necessary. 
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