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PACS. 71.45L - Charge-density-wave systems. 
PACS. 73.20D - Electron states in low-dimensional structures (inc. quantum wells, super- 

lattices, layer structures and intercalation compounds). 
PACS. 73.20M - Collective excitations (inc. plasmons and other charge-density excitations). 

Abstract. - The charge density and the pair correlation function of interacting electrons with 
spin, confined within a quasi-one-dimensional ((quantum dot., are calculated by numerical 
diagonalization. The transition from a dense homogeneous charge distribution to a dilute 
Wigner-type electron arrangement is investigated. The influence of the long-range part of the 
Coulomb interaction is explicitly studied. When the interaction is exponentially screened the 
<mystallized. Wigner molecule is destroyed in favour of an inhomogeneous charge distribution 
similar to a charge density wave. 

Single charges dominate the electronic properties of submicron structures at  low 
temperatures. Due to small capacitances the charging energy associated with the addition of 
one electron into a given structure can exceed the thermal energy. Two recently discovered 
important phenomena can be explained by single-electron charging effects: the Coulomb 
blockade of the d.c.-current through small tunnel junctions [l, 21, and the periodic oscillations 
of the conductance of quantum dots [3,4]. 

In contrast to metallic systems, semiconductor nanostructures allow to reduce the number 
of electrons in a quantum dot by varying a gate voltage. Optical-absorption experiments 
were performed on quantum dots which contain only N = 2...4 electrons 151. For very low 
electron densities additional effects in the transport properties can be expected due to the 
increasing importance of the Coulomb interaction [6] since the electrons tend to ((crystallize. 
into an inhomogeneous ground state [7]. Besides Coulomb effects, linear [81 and non-linear [91 
transport experiments show fine structure in the current voltage characteristics that can be 
traced black to the granularity of the charge density distribution and to the lowest collective 
excitations [lo], respectively. Crystallized charge density distributions have been assumed 
recently [ 111 in the calculation of the transport properties of semiconductor nanostructures. 
We provide a microscopic justification of this assumption and analyse its range of 
validity. 

In this paper we consider a quasi-one-dimensional (1D) system containing a few 
interacting electrons with their spin degrees of freedom. We show that the charge density 
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p(x) becomes inhomogeneous for sufficiently large mean electron distance r, . There are two 
consecutive regimes of charge localization. First, p(x) starts to become inhomogeneous with 
increasing r, .  When r, is further increased, p(x) vanishes almost completely between well- 
separated maxima. In analogy with the Wigner lattice, we denote this limiting configuration 
in a finite system as a .Wigner molecule>>. A similar effect of the repulsive force between the 
electrons, but in a strong magnetic field, has been discussed recently by Maksym [121. We 
identify two classes of elementary excitations in this limit: vibrations of the charge density 
and tunnelling between different permutational arrangements of the electrons [6,131. The 
latter are associated with changes in symmetry and total spin [13]. They are a consequence 
of strong electron correlations which are known to dominate the behaviour of low- 
dimensional electron systems, especially also in high magnetic fields [14]. Exact ground- 
state correlations in an infinite 1D system for a special type of <<screened>> interaction, namely 
a r-', but without spin, were considered, for instance, by Sutherland [15]. We show 
quantitatively that exponential screening of the Coulomb interaction does not destroy the 
nature of the correlations, and especially the spin-dependent tunnelling excitations. We 
argue that the correlation-induced granularity of the charge density may be visible in linear 
transport through quantum dots as a splitting of the conductance peaks [8] when the gate 
voltage is varied. 

We consider N interacting electrons including spin, confined in a 1D square-well potential 
of finite length L. The height of the potential was assumed to  be finite but large. The 
Hartree-Fock approximation is known [ 161 to overestimate the ferromagnetic state and 
cannot reproduce the true ground state which is antiferromagnetic in 1D [17]. We calculate 
eigenvalues and eigenstates of the Hamiltonian exactly. 

The kinetic energy 

and the Coulomb interaction 

scale like 1/L2 and 1/L, respectively. Thus, the latter dominates at large L. The natural 
energy and length scales are given by the Hartree EH = e 2  /aB, and the Bohr radius, aB = 
= ch2/me2 ( E  relative dielectric constant, m effective electron mass). c2, ? creates occupation of 
the n-th one-electron state with energy E , (  = (nn)'/2 for an infinitely high well) and spin cr. 
Vnrngnznl is the matrix element of the interaction potential V(x ,  x') = e Z / c v w .  
The cut-off at short distances simulates a small transversal spread A << L of the wave functions 
and leaves the V,4nsnz,1 finite. In the calculations we assumed AIL = 2 The eigenvalues 
of H = EH ( u B  /L)[(aB /L)Ho + HI ] depend only weakly on A when A << L [6]. To investigate 
the effect of the long-range part of the interaction, in some of the calculations an exponential 
cut-off at large distances was introduced. 

The Hamiltonian matrix was diagonalized numerically on the basis of the Slater 
determinants restricted to M one-electron states. The latter were constructed from the 
single-electron states Q,(x)x,, where Q, is a spatial function and xo a spinor with Q = 1, ? .  
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Considering 1 Q n Q M leads to  a matrix of the rank R = r:) ( R  < 1.5.104, for 

M = 10 ... 17). We used Lanczos procedures when R > 3 lo3. 
The charge density and the pair correlation function were determined from the normalized 

eigenfunctions $( xl ,  . . . , xN ) = 2 (b ,  /*) det { p %, ( xj )xu( }, where v enumerates the con- 

figurations { nl Q 1 ,  . . . , nN uN }. The coefficients b, can be chosen real. In second quantization 
the charge density is given by 

R 

v = l  

p(x) = 2 ($6") 1 (x) Y o b )  I$6"') 9 (3) 
R M 

v = l  n = l  
where 1$6")) = 2 be I v )  is the N-electron ground state. Y ! ( x )  = 2 pn(x)c i ,  creates an 

electron at  position x with spin (3 and I V )  = cilul ... cnNoN 10) is a non-interacting Slater 

determinant. Straightforwardly we have p ( x )  = 2 b,"@ 2 pn(x)pn,(x){v'  I C ~ ~ , ~ C ~ , , ,  1v) .  

The development of maxima and minima in p(x) with increasing mean electron distance 
r, L/ (N  - 1) is shown in fig. 1 for N = 3,4. The finite height of the square-well potential 
was assumed to be proportional to 1/L2, such that the number of non-interacting bound 
states was independent of L. This implies a non-vanishing but small p(x) outside the 
box. 

We distinguish three characteristic regimes of electron densities. For small distances, 
r, S O . l a B ,  the Coulomb interaction perturbs EH (aB /L) 'H0 only weakly, such that p(x) is 
dominated by the lowest occupied single-particle states. This explains the minimum at x = 0 
(fig. 1). p(x) changes qualitatively at  r, b aB. A structure consisting of N peaks emerges. The 
mitical>> length for this transition is of the same order as found in [13] for the transformation 
from an almost non-interacting energy spectrum to the multiplet spectrum dominated by 
interaction. When r, increases further, say r, b 100aB, p(x) vanishes almost completely in 
finite regions between the maxima, indicating a fully established Wigner molecule. In this 
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Fig. 1. - Charge density p(x) for a)  N = 3 and b )  N = 4 for different L ( O . l a B  S L S 945aB, M = 13). 
The normalization is such that Jdxp(x) = N .  When L 3 laB N peaks begin to emerge. For L B 1OOaB 
the peaks are well separated. Inset: p(z) for a pair potential with an exponential cut-off (a = 10aK' ) for 
N = 3 and L = O . l a B  (dotted line); L = 9.5aB (dash-dotted line); L = 472aB (dashed line); L = 1 4 1 7 ~ ~  
(solid line) (M = 11). The minima at  large system lengths are less pronounced as for a = 0. 
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limit the ground-state energy can be approximated by that of a chain of elementary charges 
at  equal distances r, . 

In order to investigate the influence of the long-range part of the Coulomb interaction, we 
introduced an exponential cut-off V(x ,  x ') cc exp [ - a  1 x - x ' 1 ]/d--, where 1 /a 
is the cut-off distance. The inset of fig. 1 shows p(x) for N = 3 and a = 10aB1. Despite the 
extremely short range of the interaction, pronounced maxima are observed. However, in 
contrast to a = 0 the density between the maxima is much higher even for very large r, . The 
inset of fig. 1 rather resembles a charge density wave [18] than a Wigner molecule. We 
conclude that the long-range part of the Coulomb interaction is essential for the charge 
condensation and for long-range density-density correlations. The ground-state energy for 
U > r,-' does not converge towards the Coulomb energy of N elementary point charges for 
L-3 W .  

For large r, (r, >> aB ) the spectrum consists of multiplets (l). Their energetic separation B 
corresponds to vibrational excitations. These excitations are independent of the symmetry of 
the spatial part of the N-electron wave function and of the total spin. Asymptotically, 0 
decreases as rs-Y. If one assumes for each peak of the charge density a &function or a 
Gaussian form, then one obtains y = 3 /2  or 1, respectively, by considering the harmonic part 
of the Coulomb forces between the charges when a = 0 [13]. Power law behaviour is also 
observed for a > 0. However, the exponent changes from y S  1.5 (a = 0) to y = 2 (a  > 0) 
(fig. 2). This can be understood by taking into consideration that for ar, >> 1 the Coulombic 
forces are so well screened that each electron is practically moving freely within an interval 
of the length r,. 
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Fig. 2. Fig. 3. 

Fig. 2. - Influence of a pair potential on the energy difference between the lowest two multiplets Q 
(vibrational excitation). The ratio Q(a = 10afl)/Q(a = 0) is plotted vs. the particle distance r, for 
N = 2 ( x )  and N = 3 (0) (M = 11). Inset: logarithm of the energy difference A between the ground state 
and the first excited state within the lowest multiplet vs. system length L for N = 2, a = 0 (+) and a = 
= 10uf' (0); N = 3, a = 0 ( x )  and a = l O a i ' ( Y )  (A4 = 11). 
Fig. 3. - Pair correlation function pe(z,  5')  (cf. eq. (4)) for the N = 3 ground state (5' = 1/2) at L = 
= 9 . 5 ~ ~  ( M  = 13). The contour lines correspond to equally spaced p c  values. 

(') There are Z N  (equal to the dimension of the spin Hilbert space) states per multiplet, differing in 
total spin and in symmetry with respect to permutations of the spatial space coordinates of the 
N-electron wave function [13]. 
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On the other hand, the internal splitting A is due to tunnelling through the Coulomb 
barrier between adjacent permutational arrangements of the electrons [ 131. Thus, J 
decreases roughly exponentially with increasing L, even for a > 0 (inset of fig. 2) since the 
tunnelling barrier is still present, although its thickness, o(l / a ) ,  is considerably reduced as 
compared to  the Coulombic limit. Therefore d is larger and the decrease is less rapid than for 
a = 0 when r, is increased. The enhancement results from the reduced thickness of the 
screened Coulomb barrier such that the corresponding tunnelling integral ( a A )  increases. 
The modified dependence on r, is due to the fact that only for r, e a -' the thickness of the 
interaction barrier varies with r, , The tunnelling excitations can be described approximately 
in terms of correlated, localized basis functions even for a > 0. However, in order to obtain 
similar quantitative agreement with the numerically determined eigenvalues as for a = 0, a 
larger mean electron distance r, is required to fulfil A<<B. A s  a consequence, the 
characteristic length for the transition from almost non-interacting to the interaction- 
dominated behaviour increases with increasing a. 

The pronounced correlations between the electrons in our model are also observed in the 
pair correlation function of the N-electron state I + ( N ) ) ,  

(4) 

p c  is related to  the density-density correlation function p 2  via p 2  (x, x') = p(x) 6(x  - x') + 
+ pc(x, x'). Physically, p c  is the probability of finding an electron at position x when another 
electron sits at x '( J dx J dx ' p c  (x, x ' ) = N ( N  - 1)). Figure 3 shows a contour plot of p c  for 
the N = 3 ground state (S  = 1 /2) with L = 9 . 5 ~ ~ .  Practically the same result is obtained for 
the spin-polarized excited state (S = 3/2), the difference being less than 1% independent of x 
and x'. In the limit of sufficiently large r,(A<<O) the differences between p c  for different 
levels of the same multiplet turn out to be exponentially small similar to the corresponding 
energy differences A (2). 

It is known [19] that the Hartree-Fock approximation overestimates the tendency of 
electrons with parallel spins to avoid each other and underestimates the correlations between 
electrons with antiparallel spins. Therefore large differences between correlation functions 
for different spin configurations are expected in this approximation. Recently Pfannkuche et 
al. demonstrated this property explicitly for two electrons in a two-dimensional parabolic 
potential [20]. The weak sensitivity of the pair correlation function on S shows that highly 
correlated electrons in a < d m > >  quantum dot cannot be treated within molecular-field 
approximation. 

In conclusion, we have analysed the charge density and the pair correlation function for 
the lowest eigenstates of N = 2 ,3 ,4  electrons confined in a quasi-1D square well. Three 
different regimes were identified. At high electron densities the Coulomb interaction is only 
a weak perturbation. Between a i '  2 r;' b 10-2ag1 the electron density concentrates 
around N maxima. Simultaneously the eigenvalue spectrum develops a multiplet structure 
that is dominated by the interaction. Both the inhomogeneity of the charge density and the 
multiplet character of the spectrum are not destroyed when the long-range part of the 

p c ( x ,  x') = E,(+'"' lY~(x)Y~,(x')Y,,(x')~3(x)l~(")). 
3, 

(?-) In that limit conclusions about p and p e  of a system of repulsively interacting bosons can be 
drawn. Assuming for simplicity spinless particles, the eigenstates transform totally symmetric under 
permutations among the boson arrangements. The bosonic state can be regarded as one particular 
constituent of the vibrational multiplet (with the lowest energy on the scale A ) .  Therefore the curves in 
fig. 1 for r, 2 aB and fig. 3 should describe respectively p and p e  of the ground state for bosons 
interacting via V(z, x'). 
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interaction is removed. However, there are quantitative changes in the asymptotic 
behaviour of tunnelling and vibrational excitations at  low densities. For the lowest densities 
(equivalent to r, 3 1 0 0 ~ ~ )  the formation of a Wigner molecule is observed. In this limit where 
the long-range part of the interaction is crucial, ~ ( x )  vanishes within finite intervals between 
the maxima. The structure in the density-density correlation function becomes more 
pronounced with increasing influence of the interaction but is less sensitive to  total electron 
spin than expected within Hartree-Fock approximation. It is worth mentioning that, to Qur 
knowledge, the best numerical estimate for the critical value of r, for the formation of a 
Wigner crystal in 3D is also r: = 100aB [211. 

Experiments are frequently performed on 2D quantum dots that are based on 
GaAs-AlGaAs heterostructures. In many of these the electron density corresponds to the 
intermediate regime. In typical quantum dots [3,4] (area of the dot = lo5 nm2 , number of 
electrons = lo2, effective mass = 0.07",, dielectric constant = 10) the mean distance 
between electrons is about 3aB. Even for this relatively high electron density in comparison 
with more recent experiments [5], the charge density distribution cannot be expected to  be 
homogeneous if we assume that the qualitative features of the electronic properties discussed 
above apply also to the 2D case. In small quantum dots that are weakly coupled to leads and 
that contain only a finite number of electrons, like the experimentally investigated 
double-barrier systems [3], a granular charge density should lead to characteristic features in 
linear-transport properties as a function of the gate voltage VG. A variation of VG not only 
changes the charge density or the electron number inside the dot but probably 
simultaneously its shape. In [4] the gate electrode is positioned besides the dot region. For 
this geometry the influence of VG on the shape of the dot area is obvious. The resonance 
condition for the appearance of a conductance peak in linear transport, EF = EN+ - EN, 
may be fulfdled more than once for given N when VG is increased. Here EF is the chemical 
potential of the leads (where no electron-electron interaction is assumed) and EN the 
N-electron ground-state energy of the quasi-isolated dot. Such a model could account for the 
experimentally observed fine structure in the conductance peaks in the linear-transport 
regime reported in[8] which seem to be presently not yet very well understood. 
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Additional Remark. 
In the meantime a work by H. J. SCHULZ appeared in Phys. Rev. Lett., 71 (1993) 1864, 

where some of the features discussed here have also been found in the 1D Luttinger liquid 
when a long-range Coulomb interaction is considered. 
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