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Abstract. Linear and nonlinear transport through a quantum dot that is weakly coupled to ideal 
quantum leads is investigated in the parameter regime where charging and geometrical quantization 
effects coexist. The exact eigenstates and spins of a finite number of correlated electrons confined 
within the dot are combined with a rate equation. The current is calculated in the regime of sequen- 
tial tunneling. The analytic solution for an Anderson impurity is given. The phenomenological 
charging model is compared with the quantum mechanical model for interacting electrons. The cur- 
rent-voltage characteristics show Coulomb blockade. The excited states lead to additional fine-struc- 
ture in the current voltage characteristics. Asymmetry in the coupling between the quantum dot and 
the leads causes asymmetry in the conductance peaks which is reversed with the bias voltage. The 
spin selection rules can cause a ‘spin blockade’ which decreases the current when certain excited 
states become involved in the transport. In two-dimensional dots, peaks in the linear conductance 
can be suppressed at low temperatures, when the total spins of the corresponding ground states dif- 
fer by more than 1/2. In a magnetic field, an electron number parity effect due to the different spins 
of the many-electron ground states is predicted in addition to the vanishing of the spin blockade ef- 
fect. All of the predicted features are consistent with recent experiments. 

Keywords: Quantum dot transport; Electron-electron interaction; Coulomb blockade. 

1 Introduction 

Due to the considerable progresses in nanostructure fabrication and CVo-technology 
the physics of mesoscopic systems has attracted much attention during the last ten 
years. Systems with typical geometrical diameters that are small as compared to the 
phase coherence length L, show a great variety of new quantum Phenomena [I ,  21. 

On the basis of these effects, new electronic devices were proposed. Most promis- 
ing for future applications in electronic data processing and communication are the 
single electron tunneling (SET) transistors [3, 41. In SET-devices, a controlled trans- 
fer of electrons - one by one - can be achieved [51 by applying AC-volrages 16-91. 
This could also open the way to a new current standard based on counting the elec- 
trons that pass the device per unit of time [lo-121. 

Thus, transport properties of mesoscopic systems are highly interesting in view of 
possible future applications. The main problem is the very low temperature needed to 
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operate such devices. However, charging effects have recently been observed in ultra- 
small systems even at room temperature [ 131. 

Investigating mesoscopic systems is also of great fundamental importance. They 
allow to study the transition from quantum to classical behavior since typical geome- 
trical dimensions and numbers of degrees of freedom lie in the intermediate regime 
between the quantum world of the atoms, and the macroscopic systems of every days 
life. Furthermore, the comparatively small number of electrons in well-controllable 
small systems allows to investigate few interacting particles experimentally as well as 
theoretically, thus contributing to increase the general understanding of many-particle 
physics [15]. It is now possible to create “artificial atoms” [4] by confining electrons 
within potential wells - so-called quantum dots - and to tune externally electron 
number and geometrical dimensions by applying gate-voltages. 

When only a few electrons are confined in very small dots, Coulomb interaction 
influences strongly the excitation spectrum. By investigating arrays of ultrasmall dots 
with infrared absorption spectroscopy [17-191, electron numbers as low as only one 
or two can be studied. In these experiments, the confining potential is almost inevita- 
bly parabolic and the radiation couples only to the center of mass degree of freedom 
of the electrons. Then, the effects of correlations are very difficult to observe, accord- 
ing to Kohn’s theorem [21]. 

Capacitance spectroscopy [22] has also been used to investigate the spectra of ultra- 
small single quantum dots which contain very small numbers of electrons. Here, only 
equilibrium properties play a role. No information about excited states is obtained. 

In contrast, nonlinear transport experiments on single quantum dots yield in princi- 
ple the complete spectrum of the excited states [23, 241. When the quantum dot and 
the leads, which connect to the macroscopic world, are only weakly coupled, the 
transport will be dominated by the quantum properties of the electrons in the isolated 
dot. If the latter is very small, the charging energy Ec, that is needed to add an elec- 
tron, can exceed considerably the thermal energy kaT. Then, the linear current is 
suppressed. This is the Coulomb blockade effect [lo]. For small voltages, and at low 
temperatures, no current flows if for the chemical potentials p~ and p~ of the reser- 
voirs on the left and on the right hand side of the dot, respectively, 
p~ M p~ # Eo(n) - Eo(n - 1). Here, &(n) is the ground state energy of n elec- 
trons. 

On the other hand, if p~ x pR = &(n) - Eo(n - 1). the number of electrons in- 
side the dot can oscillate between n and n - 1 (SET oscillations), the conductance is 
finite. The resulting periodic oscillations of the conductance as a function of external 
parameters like gate voltage (change in electron density) or magnetic field (change in 
energy spectrum) [3, 25-27] are well established consequences of the charging en- 
ergy. They can be observed when kBT << &, such that thermal smearing is sup- 
pressed, and if the coupling to the leads (tunnel-resistance &) is sufficiently weak, 
RT >> h/e2, in order to avoid quantum smearing. This guarantees that the electron 
number n is a good quantum number on a sufficiently long timescale. The heights 
and the widths of the peaks depend on the temperature and the coupling to the leads 
[281. 

In GaAsIGaAlAs heterostructures, two-dimensional electron gas of high mobility 
is generated at the interface by properly doping the different materials. Depletion by 
applying negative voltages to suitably shaped metallic gates on top of the sample, 
which are separated from the electron gas by insulating layers, leads to ultra-small 
electron islands - ‘quantum dots’ - that are weakly connected by tunnel barriers to 
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‘leads’ [29]. Even the height of the barriers can be tuned by changing the gate volt- 
ages. 

The electron density in these systems is considerably lower than in metals. The ex- 
citation energies for a fixed number of particles can exceed considerably the thermal 
energy at millikelvin-temperatures which are available in 3He-4He dilution refrigera- 
tors. At bias voltages V larger than the differences between the quasi-discrete excita- 
tion energies of the electron island, additional steps in the current as a function of 
the bias voltage occur [23, 29-36]. They are due to transitions between the excited 
states of n and n + 1 electrons and cannot be fully understood by using the semi- 
classical charging model. Kohn’s theorem [21] is circumvented in these experiments 
and information about the spectrum of the excited states of the interacting electrons 
in the quantum dot can be obtained via non-linear transport [30, 311. 

It is the main purpose of the present paper to describe extensively the transport 
properties in this regime. We combine the results of exact quantum mechanical calcu- 
lations of the energy spectra of a few - up to four - electrons, and the corresponding 
eigenstates with a rate equation and calculate the non-linear current-voltage character- 
istic in the region of sequential tunneling. In addition to recovering the transport phe- 
nomena related to the usual Coulomb blockade mechanism, we predict a number of 
additional striking non-linear transport effects that are related to quantum mechanical 
selection rules. The spin selection rule is only one example. Additional features are 
related to the spatial properties of the many particle states. All of these are genuine 
quantum effects and are discussed extensively in the following sections. 

In the semi-classical model of quantum dot transport the quantum mechanical cor- 
relation effects are neglected. Here, the current increases with increasing bias voltage 
V .  In contrast - as we will extensively discuss below - when the quantum effects 
are fully taken into account, the current does not necessarily increase when, by in- 
creasing V ,  the number of transitions between n and n - 1 electron states increases. 
Especially spin selection rules can suppress very effectively Certain transitions and 
thus reduce the current. This happens, for instance, if the electrons in the dot are 
spin-polarized, and the total spin adopts its maximum value, S = n/2. Then, the elec- 
tron number can only be decreased if simultaneously the total spin is reduced [24]. 
Regions of negative differential conductance may be caused by this ‘spin blockade’. 
It is a consequence of the existence of excited states With different total spins 124, 
37, 38, 40, 411. Such regions have been observed in recent experiments [23, 311. 

Negative differential conductances have also been found in the transport through a 
two-dimensional (2D) dot with parabolic confinement in the fractional quantum Hall 
(FQHE) regime without spin [42]. Here, the effect is assumed to originate in excited 
states for which the coupling to the leads is weaker than for the ground state. 

The transport properties were also investigated in the presence of a magnetic field 
parallel to the current [23, 431. The results of our calculations are fully consistent 
with these experiments. 

m e  paper is organized as follows. In Sections 2 and 3 we describe the model and 
the method of calculation, respectively. Section 4 contains a tutorial example - the 
Anderson impurity. In the Section 5 the conventional charging model is discussed to 
some extent. In the Section 6 a 1D quantum dot is treated fully quantum mechani- 
cally. The current-voltage characteristic is calculated, and the various additional 
blockade effects are discussed. A full account of the predicted features in the non-lin- 
ear transport spectra is provided in this section. In the Section 7, the influence of a 
magnetic field on the transport spectra is investigated. In Section 8, the results for a 
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2D quantum are presented and discussed. New effects related to quantum selection 
rules are here predicted. A short summary of the new quantum transport effects is 
given in Section 9 together with a discussion of the possibilities of experimental veri- 
fication. 

2 The model 

2.1 The tunneling Hamiltonian 

For the theoretical treatment of systems in which different regions of a sample are 
only very weakly coupled via tunneling barriers (Fig. I ) ,  the so-called tunneling Ha- 
miltonian was proposed [44]. This approach has serious problems [45] because it is 
not possible to deduce the Hamiltonian unambiguously from first principles using a 
model for the barrier potential. Justification is only possible in lowest order of the 
tunneling matrix elements. 

However, the tunneling Hamiltonian is very successful for describing weak links. 
It allows to treat the tunneling as a weak perturbation to the decoupled system which 
is exactly the limit where the Hamiltonian can be justified. 

As a model for an electronic island weakly connected to quantum wires on the left 
and on the right (Figs. 1 and 2). we consider the double barrier tunneling Hamilto- 
nian 

Here, 

describe free electrons in the leftlright lead. The operators cLIRk,u and c ~ ~ ~ , ~ , ~  create 
and annihilate electrons with wave vector k and spin 0 in the leftlright lead, respec- 

Fig. 1 
junctions are modeled by the terms FITuR. 

Schematic picture of the quantum dot, the lefvright and the gate electrodes. The tunneling 
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Fig. 2 The double barrier potential model. 
There are electrons at both sides of the struc- 
ture up to the chemical potentials ~ L / R .  In the 
dot, energy differences between discrete states 
corresponding to subsequent electron numbers 
are indicated. Solid lines stand for ground 
state to ground state energy differences while 
dashed lines involve excited many-electron 
levels. 

tively. The leads are assumed to be connected to very large reservoirs at temperature 
T.  We describe the occupation of their states by the Fermi-Dirac distributions 

&R(&) = (exp[P(& - p L / R ) ]  + I ) - ' .  The chemical potential in the lefdright lead is 
&/R and p = I /ksT.  

2.1.1 The Hamiltonian of the electron island 

The general form of the Hamiltonian for n interacting electrons with spin 0 = f1/2 
is given by 

Electrons in the non-interacting single-electron states m are created and destroyed by 
c:,~ and cm,,, respectively. The magnetic field B is taken into account by the Zee- 
man term in the first sum. The energies of the non-interacting electrons in the island 
are Em. Vmlm2m3m4 the matrix-elements of the Coulomb interaction. 

The interactions between the electrons outside the dot are neglected. The interac- 
tion between the electrons inside and outside of the dot is parametrized by an electro- 
static potential eQ. It comprises the influence of the voltages applied to the leads 
and/or the gate, VG [46]. This simplifying assumption is visualized in Fig. 3. It 
seems to be quite realistic for describing the recent experiments [30]. We find 

Fig. 3 Equivalent circuit for the experimental setup 
we have in mind. The dot region is coupled capaci- 
tively to a gate. The tunneling barriers are assumed to 
behave as (weakly transmissive) capacitors. 
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The voltages applied to the leads are given by the chemical potentials via 
p L / R  = -eVL/R. The bias voltage is = VR - VL. The C's are the capacitances of 
the tunnel junctions and the gate capacitor, respectively. They lead to an additional 
influence of the chemical potentials on the eigenenergies of the dot. In all our calcu- 
lations, we assumed CG = CL = CR. Other values renormalize only the voltage 
scales. In the experiments, their ratios can be determined from the relative changes of 
voltages when tracing a given conductance peak (see Section 6.6). 

Since the Hamiltonian with @ = 0 and B = 0 commutes with both, the potential ener- 
gy = Cm,a(-eQ))C&Cm,~ and the Zeeman energy H B  = Em,, XgpBB~C$,oCm,u, 
the latter do not change the electronic eigenstates, but they do influence the correspond- 
ing energies. Thus, we have implicitly assumed that the shape of the electronic wave 
functions within the dot are not influenced by the applied voltages. Only the electron 
number-dependent energy -en@ has to be added. The total energy of a n-electron eigen- 
state I YIP) is then given by 

E,(O,B) = E i ( @ = O , B = O )  - e @ ~ ~ i + g / i ~ B M j ,  ( 5 )  

where ni is the number of electrons and M ,  the total magnetic quantum number of 
the correlated state. 

2.1.2 Coupling to a heat bath 
The electronic system is assumed to be coupled via a Frohlich-type coupling [47] 

Here, & is the coupling matrix element while a+ and ug create and annihilate Bo- 
Sons with wave vector 4, respectively. The coupling to Bosons gives rise to transi- 
tions between the dot levels without changing the electron number. A phononic bath 
is a microscopic model that leads to such terms. For simplicity, we assume that the 
product of the matrix element g ( 4 ,  mi, mz) and the density of Bosonic states pph(4) 
are independent of q, ml and m2. 

Furthermore, we assume that the coherence of the eigenstates of H is destroyed 
on the time scale of the phase coherence time rp, which is much larger than the 
semiclassical time an electron needs to travel from one barrier to the other'. Thus, 
the motion of the electrons inside the dot is assumed to be sufficiently coherent such 
that Fabry-Perot-like interferences - leading to quasi-discrete levels - exist. 

4 

- 

I It is well known that strong dissipation can suppress tunneling [48]. This choice for the phase 
breaking rate 7;' guarantees that the ~enOrmdiZatiOn of the tunneling rates through the baniers is 
negligible. 
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2.1.3 Tunneling between the leads and the electron island 

The barriers are represented by the tunneling Hamiltonians 

where Tk’ are the transmission probability amplitudes. Since we want to investigate 
the effects that originate in the electronic properties of the island, we assume the trans- 
mission probability amplitudes in (8) to be independent of k,  m and spin. Independence 
of k,  or, equivalently, of the energy, can safely be assumed since the variations of the 
differential conductance can be expected on the energy scale of the quasi-discrete exci- 
tation energies of the island which is much smaller than the Fermi energy. At most, a 
dependence on energy could lead to slow variations in the heights of the conductance 
peaks. Similarly, it is reasonable to assume independence of m and CJ for a tunnel bar- 
rier without any internal structure, and no spin scatterers. When attempting quantitative 
comparisons with experiment, these effects cannot be completely neglected. This is, 
however, beyond the scope of the present work. 

By taking only tunneling processes in the lowest order into account, we obtain the 
tunneling rates to be given by Fermi’s golden rule, 

If they are small compared to the phase breaking rate T;’, or when the temperature leads 
to a sufficient smearing of the initial states in the leads, the phase correlations between 
subsequent tunneling processes need not to be taken into account. In this limit of se- 
quential tunneling, the non-diagonal elements of the reduced density matrix of the 
dot decay fast on the timescale of the tunneling events. The time evolution of the occu- 
pation probabilities of the n-electron states in the dot can then be calculated by using a 
rate equation taking into account only the effective transition rates between their diag- 
onal elements P instead of the full von Neumann equation *. Our aim is here to deal with 
the sequential tunneling which yields the dominant effects observed in the Present trans- 
port experiments on quantum dots. Our method is very well suited for this but does not 
allow to take into account resonant tunneling, for instance. 

3 The method 

we will explain the electronic transport properties of an electron island by consider- 
ing the transitions between the n-electron eigenstates of the isolated system that COT- 
respond to different electron numbers. These transitions are induced by the coupling 
to leads, such that electrons can tunnel between the latter and the island. Since the 
coupling is assumed to be very weak, the transport properties are mainly governed 
by the properties of the isolated island. 

’ The necessity to treat the phase coherent version of the von Neumann equation was mentioned be- 
fore [49], but was carried out only for special cases. 
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Our strategy consists of several steps. First, we determine the spectrum of the iso- 
lated dot. Then, we calculate the transition rates between the eigenstates of the iso- 
lated dot H D  in lowest order in the tunneling terms HTL’R and in the coupling to the 
Bosonic heat bath Hep. With these rates, a master equation yields the stationary occu- 
pation probabilities of the n-electron eigenstates. Finally, we determine the current by 
determining the rate of tunnel events through one of the barriers out of the island 
and subtracting the processes into the island through the same barrier. 

Selfenergy contributions due to the coupling to the leads appear in higher orders 
of the tunneling term [50]. They are not taken into account. They lead to a finite 
width of the conductance peaks at zero temperature [51]. At temperatures larger than 
t L / R  the lineshape of the peaks is essentially given by the Fermi-Dirac distribution. 
In experiment, it is possible to tune the barriers such that the intrinsic linewidth due 
to the finite tunneling rate is negligible as compared to the broadening due to finite 
temperature [3, 291. 

This is similar to an earlier approach [52] where linear transport properties and 
small deviations from equilibrium were addressed without considering spin effects. In 
contrast to [53, 541, where the occupation probabilities of one-electron levels were 
considered, we consider here the populations P, of the n-electron Fock states I 9’:) 
of H D .  This enables us to overcome the phenomenological charging model for the 
electron-electron interaction, and especially to include spin selection rules and general 
transition matrix element effects. 

3.1 Energy spectrum 

Starting from the isolated island, we determine first the n-electron Fock states I YF) 
of H D .  Each of them I Yp) is associated with a certain electron number n,, with an 
energy eigenvalue Ei, total spin Si, and magnetic quantum number Mi. We will con- 
sider different models in the following sections together with the corresponding trans- 
port properties. 

In order to demonstrate the approach we will discuss in Section 4 a simple two- 
level Anderson model. The Hubbard-like interaction term is only non-zero when both 
of the energy levels are occupied. In Section 5 we consider the charging model. Here, 
the electron-electron interaction is reduced to an electron number-dependent additive 
energy contribution towards the total energy. In order to include quantum effects, we 
use in Section 6 a Hamiltonian which describes electrons confined in a quasi-one di- 
mensional dot including Coulomb interaction and spin. We diagonalize the Hamilto- 
nian numerically for up to four electrons [55-571, and calculate the wave functions 
[%I. For small electron density (large mean distance of the electrons), the low energy 
excitations of the island can be obtained analytically using the ‘pocket state’ approxi- 
mation [59]. With the latter, results were obtained for up to six electrons. The 
approach can also be applied to interacting electrons that are confined in a square 
[591. The corresponding transport properties are described in Section 8. 

3.2 Transitions between n-electron states and transport 

The transitions that contribute to the current at T = 0 must fulfill the following con- 
ditions. 
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1. 

2. 

3. 

4. 

Energy has to be conserved (see Appendix A). An electron which tunnels into 
the dot has to provide the energy difference E = Ej - Ei between the final and 
initial states with n, and ni electrons, respectively (nj = ni + 1). These transitions 
can only occur if the chemical potential in the respective lead is larger than E. 
Similarly, electrons which leave the dot need empty states in a lead. This requires 
a chemical potential below E. 
In order to generate a net current, transitions with increasing electron number 
must be induced by entering from one side, and those with decreasing number of 
electrons by leaving to the other. At T = 0, this yields for the chemical poten- 
tials the condition max(pL, p ~ )  > E > min(pL, p ~ ) .  
The energy difference between the ground states of successive electron numbers 
must be within the energy window max(pL, p ~ )  > E > min(pL, p ~ ) .  Otherwise, 
the system will remain trapped in one of the ground states. 
The excited states involved in the transport must be reachable by allowed transitions 
starting from one of the ground states of the corresponding electron numbers. Other- 
wise, they are ‘disconnected’ and cannot contribute to the current since none of 
them can ever be occupied. 

These rules provide a qualitative understanding of the transport properties of the elec- 
tronic island. It is nevertheless necessary to perform a quantitative calculation in or- 
der to determine all of the properties of the current-voltage characteristics. 

3.3 Transition rates 

Due to the smallness of H T ,  simultaneous transitions of two or more electrons [60, 
611, which are processes of higher order in H T ,  are strongly suppressed. We neglect 
them, consistent with the above described approximations involved in the tunneling 
Hamiltonian which are only reasonable for almost impenetrable barriers 1451. 

In lowest order in the tunneling Hamiltonian HT, only one-electron processes oc- 
cur. Further ‘selection rules’ will be specified below. The transition rates between 
states I Yp) and I Yy) with nJ = ni + 1 are denoted by l$lR’- and rs.i/R’+, depend- 
ing on whether an electron is leaving or entering the dot through the leitlright banier, 
respectively. Fermi’s golden rule or standard time-dependent perturbation theory (see 
Appendix A) yields 

As mentioned above, the electron has to provide the energy difference E = EJ - Ei. 
The Clebsch-Gordan coefficients (.. .)cG arise from the spin part of the states. 

Only at very high voltages outside the SET regime, when transitions to states with more distant 
electron numbers are possible, also excited states can be continuously occupied without significant 
population of the corresponding ground state. 
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They introduce spin selection rules for transitions. The factor 1/2 accounts for the 
reduced density of states for a given spin direction in the leads. In particular, transi- 
tion rates between states whose difference in total spin or in the magnetic quantum 
number is not f 1 /2 vanish because the corresponding Clebsch-Gordan coefficients 
are zero. The numerical values of the squares of the Clebsch-Gordan coefficients are 
listed in Table 2. 

The spatial part of the matrix elements associated with the transitions has been as- 
sumed to be constant in (10). Only the important and very general spin part is taken 
into account. It has crucial consequences when considering correlated electrons, as 
we will see below. 

The bosonic heat bath weakly coupled to the electrons causes (inelastic) transitions 
between 1°F) and I "7) without changing the electron number, the total spin and 
the magnetic quantum number. For small Hep the rate is given by (Appendix A) 

, 

We assume for simplicity that the product r = gp,,, is constant. This is the lowest or- 
der, quadratic in the electron-heat bath coupling strenqth Jg. The quantity ppp is the 
boson density of states, and na(E)  = (exp(PE) - 1)- is the Bose-Einstein distribu- 

3.4 Occupation probabilities and the current 

Given the transition rates, the master equation for the time evolution of the occupa- 
tion probabilities Pi of the many-electron states is 

d 
-Pi '= c ( r i jP j  - r,,;P;) with P; = 1 . 
dt J b#i) i 

One obtains the stationary non-equilibrium populations Pi by solving the system of 
linear equations for the occupation probabilities which result from assuming 

Our method allows to determine the stationary non-equilibrium populations of all the 
states for arbitrary bias voltage. Deviations from the equilibrium distribution linear in 
the applied voltage were mentioned previously [52].  In addition, the exact many-elec- 
tron states including their spins can be taken into account. The calculation is not 
restricted to the conventional charging model. A similar method was applied in the 
FQHE regime but without taking into account the spin [42]. 

dPildt = 0 . 

The dc-current can be calculated by considering one of the barriers separately, 

The first term in (13) contains the processes in which an electron leaves the island 
through the lefthight barrier, while the second term subtracts the electrons that enter 
the island. 
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4 Anderson impurity 

As a first application we consider the transport of spinless electrons through an 
Anderson impurity [62]. It consists of two one-electron states and a Hubbard-like in- 
teraction term that provides a ‘charging energy’ U when both of the levels are occu- 
pied. The populations and the current can be determined analytically. The result is a 
generalization of a previous investigation [50] which was dealing with the linear 
transport through an Anderson impurity using a Landauer-type conductance formula. 
The Hamiltonian H D  is given by 

H,A’ = (el - em)cTc, + (ez - em)c2fc2 + UCTC, c lc2  . (14) 

Here, cT12 and c!/* create and destroy spinless electrons in the states 1 and 2 of the 
impurity, respectively. The eigenstates and the corresponding energies can easily be 
determined (Table 1). 

4. I The transition rates 

The rates for the electron tunneling and the electron-phonon scattering are deter- 
mined in the Appendix A. The spin can be omitted here. The matrices rLfRi+ have 
nonzero elements only when a single electron enters the dot. The possible transitions 
are 1 Yp) -+I Y?), I Yp) -+I Yy), I Y,”) +I Y,”) and I Yy) --+I Y,”) (the labeling 
of the states is introduced in Table I ) .  For the corresponding rates one finds 

(15) L/R,+ - 
‘,,i - tL/RfL/R(E)dn,,n,+l 1 

Matrices rL/R,- describe processes where an electron escapes through one of the bar- 
riers. Here, only the inverse transitions between 1 Yy) to I Yy) can occur and the 
electron which leaves the island has to find an empty state in the lead. Therefore, 
these matrices must contain Pauli blocking factors, 

(16) L/R,- - 
rij - ~ L / R I ~  -fL/R(E)]an,,n,-I . 

There are only two one-electron states, 1 Y,”) and I Yp), between which inelastic re- 
laxation processes are possible. The respective rates are r!$ = rnB(E) and 

difference is E = E3 - E2(> 0). 
r i n  2,3 = r [ne (E)  + I ]  for phonon absorption and emission, respectively. The energy 

Table 1 Electron numbers n,, eigenenergies El and the eigenstates 1 yp) of the four states for the 
Anderson model (14). The ‘vacuum state’ 10) denotes the empty dot. 
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4.2 Stationary occupation probabilities and current 

With these we construct the full matrix of transition rates by summing the contribu- 
tions of all of the possible processes, 

Here. we have defined 

By inserting (17) into the master equation (12), we obtain a system of four linear 
equations which can be solved analytically. 

The stationary populations P, are 

PI = ( X i y  + Q)/Z,  P2 = y / C ,  P 3  = 1/Z, P 4  = ( ~ 4 y  + x ~ ) / E ,  (19) 

where the abbreviations 

r2p2 + r2,4X3 + r 2 , 3  
z = x l y + x 2 + y + l  + x 4 y + x 3 ,  y =  

r 3 , I X l  + r 3 , 4 x 4  -k r 3 , 2  

were introduced. 

ities are given by the equilibrium (Gibbs) distribution 
Independent of the inelastic relaxation rate r,  the stationary occupation probabil- 

in the limit of zero voltage, p. = p~ = p ~ .  The inverse temperature a is equal to the 
one in the leads, and 2 is the grand canonical partition function. In general, how- 
ever, P, can be drastically different from F. 

The current is obtained by inserting (19) into (1 3), 

4.3 Conducrance peaks 

Consistent with recent results [501 for the linear transport properties of the present 
model, we find conductance peaks for p~ = p~ = p. = E I  - e@ and p = 
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€2 + U - e 0 .  They are thermally broadened by the finite width of the derivative of 
the Fermi functions which enter the transition rates. 

In reference [50], the current was calculated using a Landauer formula which in- 
volves the density of states of the quantum dot. The latter was determined from the 
imaginary part of the Green's function which was calculated by solving an equation 
of motion including the coupling to the leads. As a consequence, the peaks in the 
density of states were broadened due to a self-energy contribution tit = h t L  + f i t R .  
Here, we consider the regime h f L ,  hfR << k g  T,  where the broadening due to the finite 
coupling to the leads is negligible. In this regime, we can determine the current for 
arbitrary voltages. 

For finite transport-voltage, V = ( p ~  - p R ) / e ,  the peaks in the differential conduc- 
tance as a function of the gate-voltage VG (which directly enters the electrostatic poten- 
tial 0 (4)) show additional structure. 

In the linear regime, current can flow as long as the energy E for a ground-state-to- 
ground-state transition between adjacent electron numbers ( E  = E2 - El or 
E = E4 - E2) coincides with the chemical potentials in the leads. If this is not the case, 
the system remains in a ground state. The transport is completely blocked (Coulomb 
blockade). 

At finite transport voltage, the condition 

P L  2 E 2 PR (24) 

is fulfilled for a non-vanishing interval of gate-voltage. If the voltage is sufficiently 
large, such that in addition to the ground-state-to-ground-state transition also transi- 
tions between excited states with different electron numbers can fulfill (24), addi- 
tional structure appears in the current-voltage characteristic. The current changes 
when the number of available transitions is changed. 

This is shown in Fig. 4, where the current is plotted for different voltages. Since 
there are only two states with the same electron numbers n2 = n3 = I ,  the additional 
step at eV 2 E E2 is related to the transition involving the only excited state of 
the system, 1 Y b- ). The first peak corresponds to the transitions between 1 Yf) with 
n, = 0 and 1 Y2 d ), 1 Yp) with n2 = n3 = 1 electron. The ground-state-to-ground-state 
transition is shifted to the chemical potentials and contributes to the current. 

The second step arises when the gate voltage is further increased and the transition 
to the excited state enters the interval (24). As soon as the transition between the 
ground states is energetically lower than the lower one of the chemical potentials, the 
system is blocked in the one-electron ground state 1 \Y,"), though the transition 
involving the excited state still fulfills (24). There is no possibility to empty the state 
1 Y y )  until the gate-voltage is increased to a value for which the transition to the 
two electron state I Y,") becomes possible. Since the ground-state-to-ground-state 
transition between 1 Yy) and I Y,") is energetically higher than the transition involv- 
ing the excited state 1 yIp)t- [ Y,"), both of them come into play simultaneously, 
and the current jumps directly to its maximum value. On the other side of the peak, 
however, the current decreases in two steps because the transition which involves the 
excited state exits the range (24) before the ground-state-to-ground-state transition 
can leave. For the models with more than two single electron levels the conductance 
peaks will show more structure due to more possibilities for transitions. 
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Fig. 4 Conductance peaks in the transport 
through an Anderson impurity as a function 
of the gate-voltage. The energies of the sin- 
gle-electron levels are E I  = U and 
~2 = 1.1 U and the transmittivities of the 
barriers have been chosen symmetric as 
r = t L  = I R .  The temperature ~ B T  = 0.01 U 
is chosen considerably smaller than the lev- 
el spacing. The right chemical potential is 
fixed at p~ = 0 and the bias voltage is 
eV = 0.02U and eV = 0.2U for the solid 
and the dashed line, respectively. The cur- 
rent is given in units of the total transmis- 
sion rate t= f L f R / ( f L  + f R ) .  The results are 
shown for r = 0. 

Fig. 5 Current-voltage characteristic for 
the transport through an Anderson impurity. 
The parameters are chosen as in Fig. 4. The 
chemical potential in the right lead and the 
electrostatical potential are always fixed at 
JLR = @ = 0 while the left chemical poten- 
tial is varied. Temperatures are 
keT = 0.005 U and kBT = 0.05 U for the 
solid and the dashed line, respectively. 
While the latter curves show the situation 
for r = 0, the dotted line represents 
ksT = 0.005U and r = 50t. 

4.4 Current-voltage characteristic 

TRANSPORT-VOLTIiGE u 

Figure 5 shows the current-voltage characteristic obtained for the Anderson impurity. 
At sufficiently low temperature the two one-electron levels can be resolved. We ob- 
serve finestructure in addition to the usual Coulomb steps which occur when the 
states with the next higher electron number become accessible. 

The first step in the current occurs when the lower of the states with nj = 1 can 
be occupied. The transition I Yy)- I Y,”) is responsible for the increase of the cur- 
rent. The transition energy E2 - El lies now between the chemical potentials in the 
leads. If the voltage is increased, the transition I YY)+ I Yp) enters the region giv- 
en by (24) too, and contributes to the current. There are now two possibilities to fill 
the empty dot. The rate for adding an electron from the lead in which the chemical 
potential is higher is enhanced and a second step appears in the current as a function 
of the voltage. 

The second Coulomb step occurs when the transitions between the states with one 
and two electrons become accessible. First, the transition I Yy)- I Y,”) involving 
the excited state is ‘switched on’ and contributes to the current. As discussed above, 
the corresponding energy difference is smaller than for the ground-state-to-ground- 
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state transition. The additional higher step at eV x 2.1 U indicates the occupation of 
the ground state with n = 2. 

4.5 Influence of the inelastic processes 

It is tempting to define a voltage-dependent effective inverse temperature of the elec- 
tron island by assuming that for the stationary occupation probabilities a Gibbs distri- 
bution holds with an effective chemical potential pe@, 

However, this does generally not lead to a unique temperature [46] 
Peff = plz = p 2 3  = &. It is only for zero voltage, pee = p~ = p ~ ,  that the island is 
in thermal equilibrium with the leads, Pefi = p. The different effective temperatures 
usually increase with the transport voltage. Exceptions from this were only found for 
some arrangements of the chemical potentials relative to the one-particle energy levels. 

Only for the effective temperature p23,  which is defined via the two one-electron 
states, the equilibrium temperature can be re-established even at high voltage. This 
happens, when the inelastic relaxation rate Y between the two states becomes much 
larger than the tunneling rates through the barriers. Then, fast equilibration induced 
by the coupling to the bosonic heat bath leads to an equilibrium ratio of the popula- 
tions. For ( r / t )  -, 00, the pZ3 converges towards the temperature of the bath. 

The only signature of the inelastic relaxation appears in the region of the second 
Coulomb step in the current-voltage characteristic. As discussed above, the first of 
the two steps is due to the transition I Yp)- I '€7,"). After the second, the transition 
I Yy)- I Y,") contributes to the current. It is now possible to doubly occupy the 
dot by starting from two different initial states. 

Now, if the relaxation rate is very large as compared to the tunneling rate through 
the barrier connecting the dot and the lead with the lower chemical potential, the sys- 
tem relaxes to the lower one-electron state I Y,") after the first electron has entered. 
This process is very fast on the timescale of the tunneling out of the dot. Therefore, 
the excited state I Yp) is on the average almost never occupied for bath temperatures 
small compared with E3 - E2. As a consequence, state I Y,"). which can only be 
reached by transitions starting from I YIP) in the range E4 - E3 < max(pL,pR) 
< E4 - E2 cannot be occupied neither. Thus, the contribution of the transition 
I Y I P ) -  I Y,") which is responsible for the first of the two steps at about 
eV M 2.05U is suppressed due to inelastic relaxation processes in the electron island 
(Fig. 5) .  

5 The charging model 

As a second example we discuss the spinless charging model [37] which was also 
used before [52-541. It is defined by assuming the interaction matrix elements 
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The electron-electron interaction is taken into account via an energy which depends 
solely on the number of electrons in the island. Only in the metallic limit, when the 
electron density is very high, and the charge distribution is structureless, this can be 
justified by mean field arguments. Indeed, the behavior of metallic samples can be 
perfectly described using the charging model with a continuum of single-electron lev- 
els. Also, some of the characteristic properties of even only a few electrons in semi- 
conducting quantum dots can be understood by using this model. The Hamiltonian is 

The transport properties were investigated using rate equations for the occupation of 
the one-electron levels. It was assumed in the first work [53] that the relative occupa- 
tion probabilities of the one-electron levels equal the equilibrium value for states 
with the same electron number. In a subsequent paper [54] the populations were cal- 
culated correctly. Our present approach is equivalent to the one in the latter work. It 
has been used before for the same problem [52],  and also in the FQHE regime [42]. 
It was pointed out that the populations of the many-electron states can deviate from 
equilibrium at finite transport voltage V .  Deviations linear in V were also mentioned 
in [52]. We calculate the populations numerically at arbitrary voltage and show a 
variety of results for the current-voltage characteristic and the splitting of the conduc- 
tance peaks. 

Since the Hamiltonian contains only occupation number operators and the interac- 
tion term commutes with the kinetic energy, the n-electron states are single Slater de- 
terminants of one-electron states. A state I Yy) is characterized by a vector of the 
one-electron level occupations p m ( i )  (rn = 1,2, ..., N )  which are either one or zero. 
There are 2N different states. The corresponding eigenenergies are 

N 

Ej = C P m ( i ) ( E m  - em) + nj(n, - 1)U/2, 
m= 1 

with the electron numbers are nj = ‘& pm( i ) .  

5. I The transition rates 

The transition rates are calculated as in the case of the Anderson impurity (15, 16). 
As a ‘selection rule’, we have that transitions occur only between states that differ in 
the occupation pm of only one one-electron level. This is due to the fact that only in 
this case transition matrix elements IC,,,(Y: I c: 1 Y.)! between n-electron states 
are non-zero that correspond to adjacent electron number (see Appendix A). We ob- 
tain 
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where, as before, the energy E = EJ - Ei is the difference between the eigenstates of 
the isolated dot (27). 

5.2 The stationary occupation probabilities 

The stationary (but non-equilibrium) solution of (12) was obtained for N = 6 by 
solving numerically the 2N linear equations [37]. 

At zero bias voltage, the stationary state is the equilibrium. The occupation prob- 
abilities are given by a Gibbs distribution (22) with the chemical potential p = pL = 
p ~ .  It can be shown that y solves the rate equation (12) for an arbitrary inelastic re- 
laxation rate r. 

For temperatures smaller and voltages larger than the level spacings, the stationary 
populations P i  deviate from their equilibrium values F. For r >> t L / R ,  when the 
dot-states decay very fast as compared to the tunneling, the ratios P i / P j  can be sufi- 
ciently well approximated by the Gibbs distribution y/q for fixed electron num- 
bers ni = n,. This can be seen in Fig. 6 where the data points for In pi versus Ei for 
a given ni lie on straight lines with slope -p. This confirms the earlier assumption of 
a Gibbs distribution for states with a given electron number in [52, 531 in this param- 
eter regime. 

For different electron numbers ni # nj, Pi/P, can be far from equilibrium. It is im- 
possible to scale all of the points onto one common curve by defining an effective 
chemical potential for the island. The linear correction to the Gibbs distribution cal- 
culated in [52] vanishes for the exact results for arbitrary transport voltages shown in 
Fig. 6. 

5.3 The current-voltage characteristic 

For temperatures lower than the level spacing, the current-voltage characteristic (Fig. 
7) shows finestructure in the Coulomb staircase which is consistent with recent ex- 
periments [23, 3 I ]  and earlier theoretical predictions using a slightly different 
approach [53, 541. In order to avoid artifacts arising from the finite number of one- 
electron levels we do not plot the contribution of the states with n > 3.  

p;) O 

-10 

-20 
1 -1 0 

Fig. 6 Stationary occupation probabilities pi for a dot containing N = 6 one-electron levels. Elec- 
tron numbers are n, = 1 (a), n, = 2 (A), n, = 3 (0) and n, = 4 (0). We used t L  = IR, @ = 0, 
I L L  = 1.5U, pR = -0.3u and c~ = (pL +pR)/2. Energies of the one-electron levels are € 1  = O.lu, 
€2 = 0 . 2 U ,  €3 = 0 .3U,  E~ = &4u, E~ = Q.5U and c4 = 0.6U. Inverse temperature is p = 25/u 
and the relaxation rate r = 1OOT. This figure is taken from (371. 
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Fig. 7 Current-voltage characteristic of 
a dot represented by N = 6 one-electron 
levels. Model parameters are as in Fig. 6. 
Inverse temperature is p = 100/ U and 
p R  = 0, 0 = 0 was chosen. Dashed lines: 
results for r = 0 and equal barriers, 
dotted and solid lines: t ~ / t ~  = 0.5 and 2, 
respectively. Shaded regions: suppressions 

eV/U of steps induced by relaxation r / 7 =  I00 1 a 
at t~ = t ~ .  The figure is taken from [37]. TRANSPORT-VOLTAGE 

Intra-dot relaxation (- r )  suppresses the lowest of the finestructure steps because 
the electron that contributes to the current at the n-th Coulomb step has to enter the 
n-th or a higher one-electron level when all of the lower states become occupied via 
strong relaxation. For r >> ~ L / R  the n - I other electrons occupy with high probabil- 
ity all of the lower one-electron levels. 

Asymmetric coupling to the leads changes the height of the steps in the I -V curve. 
This can be explained for the nth Coulomb step as follows. If t L  > t R  ( p ~  > p ~ )  the 
stationary occupation probabilities favor the n-electron levels, while for t~ < t~ the 
(n  - 1)-electron states are preferred. Since there are more n-electron levels than 
( n  - 1)-electron levels, the probability for an electron to escape is reduced in the for- 
mer case as compared to the probability for an electron to enter in the latter case. 
These processes limit the current. They lead to a reduction and an enhancement of 
the current for t~ > tR  and t~ < t ~ .  respectively. 

The occurrence of regions of negative differential conductance in the experiments 
[23, 311, however, cannot be explained within the charging model. 

5.4 The conductance peaks 

For fixed V ,  the conductance shows peaks when VG, and thus the electrostatic poten- 
tial @, is varied. The linear response limit simply reproduces the periodic conduc- 
tance peaks in agreement with [50]. For finite bias voltage, eV = p~ - p ~ ,  larger 
than the level spacing, transitions involving excited states can occur. The number of 
levels that contribute to the current varies when VG is changed. This leads to the 
splitting of the conductance peaks observed experimentally, and explained qualita- 
tively in [3 1, 32, 35, 361. The experimental data [35, 361 can be explained within the 
'orthodox theory' and the charging model [53, 541. 

In the specific example shown in Fig. 8 correponds to 0 - 6 - 4 - 12 - 4 - 6 - 0 
allowed transitions (with increasing VG, Section 3.2). By taking into account the sta- 
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Fig. 8 Current versus VG for 
p~ = 0.26U and p~ = 0 through a 
dot represented by N = 6 one-electron 
levels. Model parameters are as in Fig. 
6. Inverse temperature is j? = lOO/U. 
V = 0.26U/e is between the double 
and the triple of the bare level spacing 
such that the conductance peaks are 
modulated as explained in the text. 
Dashed lines: results for r = 0 and 

2 . 0  2 . 2  I equal barriers, dotted and solid lines: 
f R / f L  = 0.5 and 2, respectively. The 
figure is taken from [37]. 

GATE-VOLTAGE 
e @ / U  

tionary Pj’s the sequence of current values becomes 0 - 3/2 - 4/3 - 2 - 4/3- 
3/2 - 0 [46]. If the difference &(n) - Eo(n - 1) between the energies of the n-elec- 
tron ground states lies outside the interval [ p ~ , p ~ ]  the transport via other energeti- 
cally allowed transitions is Coulombically blocked. While the relaxation rates have 
almost no influence on the conductance, asymmetric coupling to the leads changes 
the shape of the peaks considerably. 

We propose to explain the slight asymmetry observed experimentally [31, 321 by 
the asymmetry of the barriers and we predict that the asymmetry in the finestructure 
of the observed conductance peaks will be reversed if the sign of the bias voltage is 
changed. This has indeed been observed in experiments [32]. Such asymmetric con- 
ductance properties can in principle be used to construct a mesoscopic rectifier. Simi- 
lar effects were inferred earlier from the high frequency properties of mesoscopic 
systems containing asymmetric disorder [63]. 

6 Correlated electrons in quasi-one dimension 

In systems with reduced dimensionality, and at low electron density, the charging 
model is a severe simplification for describing interacting electrons. In order to over- 
come its restrictions, we will consider now the the Coulomb interaction microscopi- 
cally and include spin. 

6.1 The energy spectrum of the electron island 

We use a quasi-one dimensional (1D) square well of the length L as a model for the 
quantum dot. ‘Exact’ numerical results for up to four electrons are available [55-571. 
In the limit of low density, an analytical solution exists [59] which describes the low- 
est excitation energies. With comparably small numerical effort much larger electron 
numbers can be treated by using this approach. The Hamiltonian is given by Eq. (3) 
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The interaction potential is 

67 1 

2 -112 
V ( X , X ' )  o( ((x - x')2 + A ) 

It is Coulomb-like for large electron distances, and cut off at small distances 
1 x - x' I< 1 in order to avoid divergencies in the matrix elements. The cutoff param- 
eter 1 (<< L) corresponds to a lateral spread of the electronic wave functions. 

Since the interaction between the electrons is spin independent, the total spin S of 
the electrons, and its z-component, M ,  the total magnetic quantum number, are con- 
served during electron-electron scattering. They are good quantum numbers for the 
classification of the states. This is realistic with respect to experiments if spin-orbit 
scattering and other effects which are able to change the spin, are slow on the time- 
scale of the inverse tunneling rates. In the experiments [23, 311, the order of magni- 
tude of the current through the dot is 1 nA. This means that about 10'O electrons pass 
the dot per second. Thus, the lifetime of the spin must be larger than loops in order 
to allow for using a spin conserving model. There is no evidence for shorter spin re- 
laxation times in semiconductor quantum dots. Only in the presence of inhomoge- 
neous magnetic fields induced by magnetic impurities, the spin might not be 
conserved. Only in these cases some of the striking results presented below might be 
severely affected. 

The properties of the correlated states and the energy spectrum are discussed in de- 
tail in the references [55-571. For not too large densities, when the mean separation 
of two electrons becomes larger than the Bohr radius UB, L / ( n  - 1) > UB, the charge 
density exhibits n distinct peaks. This indicates a tendency towards Wigner crystalli- 
zation [55, 581. 

For very dilute electrons, L/ (n  - 1) >> UB, the ground state is well described by a 
model of almost equidistant classical point charges within an interval of the length L 
[55] .  The few correlated electrons form a 'Wigner molecule' in the island (Fig. 9, 
taken from [58]) .  For somewhat increases density, the excitation spectrum (Fig. 10) 
consists of well separated multiplets, each containing 2" partially degenerate states. 

The energetic differences between adjacent multiplets decrease algebraically with 
electron density. They correspond to vibrational excitations of the Wigner molecule. 
The considerably smaller intra-multiplet energy differences decrease exponentially. 
They are due to tunneling between different configurations Of the n electrons in the 
well. The wave functions of individual levels within a given multiplet differ in sym- 
metry and S.  

5 

4 
Fig. 9 The charge density p ( x )  in a 

state of n = 3 electrons in the dot. The cor- 
responding system lengths L are indicated 
in units of the Bohr radius U B .  Clearly, for 

are strong deviations from the purely ki- 

lead to distinct peaks with regions of zero 

quasi-one dimensional dot for the ground 

t 3  
- 2  
u x a 

1 

0 

larger systems (+ lower densities), there 

netic behavior and the interaction effects 

tharge density in between. This figure is 
:aken from [58] .  -1.0 -0.5 0.0 0.5 1.0 
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3 
Ei - Eo 

E H  

Fig. 10 The excitation spectrum of a 
quasi-one dimensional dot for up to four 
electrons in a dot of length L = 9.45 U B .  

For n 2 2 the low lying eigenvalues 
form multiplets containing a total num- 
ber of states being equal to the dimen- 
sion of the spin Hilbert space 2". The 
lowest multiplets are magnified in order 
to resolve the individual states which 
are labeled according to their total spin. 
The figure is taken from [55] .  

For low density, the excitation energies in the lowest multiplet can be calculated [59] 
using a pocket state basis that takes into account the peaked structure of the wave func- 
tions. The excitation energies depend only on one tunneling integral t, (Table 3), 
namely the one between adjacent configurations of the n electrons in configuration 
space. This tunneling integral can in principle be estimated, for instance by using the 
WKB approximation. It depends strongly on the cutoff parameter A [59]. We have cho- 
sen reasonable values leading to excitation energies that are relevant for experiments. 

Table 2 The squares of the vector coupling Clebsch-Gordan coefficients (Si, Mi, i , k 4 I S,, MJ)CG 
for the combination of the total spin S, and magnetic quantum number M ,  of the dot state, with the 
spin 112 of an electron needed to form a final dot state with spin S, and magnetic quantum number 
M,.  For S, - S, # k l / 2  or M, - M ,  # f1 /2 ,  the Clebsch-Gordan coefficients vanish. 

s, = s, + 112 

(SJ  + M ,  + 1)/(2S, + 1) 
(S - M ,  + 1)/(2S, + 1) 

s, = s, - 112 

(S ,  - M , ) / ( 2 S f  + 1) 
(SI + MJ)/(2SJ + 1) 

M, = M ,  + 112 
MJ = M ,  - 112 

Table 3 Spin and energies of low lying excitations of the correlated electron model at sufficiently 
large mean electron distances rs = L/(n - I )  >> OB. The tunneling integrals tn decrease exponen- 
tially with rs.  

2 
2 
3 
3 
3 
4 
4 
4 
4 
4 
4 

0 
1 
1 I2  
I / 2  
3f2 
0 
1 
1 
0 
I 
2 

0 
212 
0 
213 
3 1 2  
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Table 4 The values used in the actual calculations. 

a n,, S,, EJEH 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 

0 
I 
2 
2 
3 
3 
3 
4 
4 
4 
4 
4 
4 

0 
1 12 
0 
1 
1 12 
112 
312 
0 
1 
1 
0 
1 
2 

0 
0.0225 
0.2972 
0.3512 
0.9654 
1.1054 
1.1754 
2.1480 
2.2666 
2.3939 
2.4598 
2.5212 
2.5739 

For the numerical calculations of the current we estimated the tunneling integrals to 
be t2  = 0.03EH, t3 = 0 .07E~  and t4  = 0 . 0 9 E ~  (EH e2/aB is the Hartree energy). 
The ground state energies were determined for L = 15 U B  and n E { 1,2,3,4} (Table 
4). 

In summary, two different energy scales characterize the n-electron excitations. We 
will demonstrate that they can in principle be detected by nonlinear transport mea- 
surements. 

6.2 The transition rates 

In this section we discuss the expressions for the transition rates (10). 
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electron state with an n + 1-electron state [a], ("7 I c ; , ~  I Yy) (nj = ni + 1). They 
enter the transition rates (see Appendix A) weighted with the tunneling matrix ele- 
ments. They depend strongly on the details of the microscopic realization of the 
quantum dot such as impurities and the geometrical form. The spin effects yield very 
general selection rules. In first approximation, we use solely the selection rules in- 
duced by the spin part and ignore the influence of the spatial part of the wave func- 
tions. We discuss the latter in Section 6.7. 

In any case, the correlations play an important role for the transport properties. 
The order of the levels with different spins on the energy axis is strongly influenced 
by the electron-electron interaction. Together with the spin selection rules it influ- 
ences qualitatively the transport properties. In addition to the Coulomb blockade, 
further blocking effects occur, as will be discussed in the following. 

6.3 The efective master equation 

At zero magnetic field the states with different magnetic quantum numbers Mi are 
degenerate. Their stationary populations do not depend on Mi but only on S.  We de- 
fine the total occupation probability 

where the index a contains all of the quantum numbers necessary for characterizing 
the state, except M .  Then, the master equation (12) becomes 

where the total transition rates 

are averages over the rates between the individual levels. Since the states with differ- 
ent M are degenerate, the only M-dependence is contained in the Clebsch-Gordan 
coefficients such that the total transition rates are 

with the spin dependent prefactors 
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By evaluating the sums using the values from Table 2 one finds 

which was used in reference [24]. These spin dependent prefactors favor an increase 
of the total spin of the electrons in the quantum dot. 

Transitions due to electron phonon scattering events conserve both, total spin and 
magnetic quantum number as well as the number of electrons in the island. There- 
fore, there are not many transitions available for this kind of processes and the influ- 
ence of inelastic processes is even weaker than in the charging model. In all of the 
calculations, we shall use r = f = (tL + t ~ ) / 2 .  

6.4 The current-voltage characteristics 

The stationary occupation probabilities are obtained similarly as for the charging 
model. They are modified by spin effects. 

The current-voltage characteristic calculated by using the excitation energies of Ta- 
ble 4 is shown in Fig. l l .  First, we observe that the lengths of the steps in the Cou- 
lomb staircase, and accordingly the distances of the conductance peaks are no longer 
equal since the ground state energy is not proportional to n(n - 1) as in the charging 
model for small E ~ ’ s .  The deviation from the classical behavior is related to the ir;ho- 
mogeneity of the quantum mechanical charge distribution in the ground state [55, 57, 
581. Second, the heights of the finestructure steps appear to be more random as com- 

Fig. 11 Current-voltage Characteristic 
( p ~  = 0, @ = 0) of a dot described by 
the quasi-one dimensional correlated 
electron model with energy values 
from Table 4 for inverse temperature 
p = 2 0 0 / E ~  and r = t. Dashed, dotted 
and solid lines correspond to different 
ratios of coupling to the leads with 
f R / l L  = 1, 0.5 and 2, respectively. 

I 

0 . 5  1 1.5 
TRANSPORT-VOLTAGE eV/& 
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pared to those in Fig. 7 due to the non-regular sequence of total spins (cf. Table 3), 
and the spin dependent prefactors in the transition rates. Certain finestructure steps in 
the I -  V characteristic may even be completely suppressed. 

6.5 The spin blockade type I 

Strikingly, regions of negative differential conductance occur in Fig. 11. They are in- 
duced by the reduced probability for the states of maximal spin S = n/2 to decay 
into states of lower electron number via transitions 

n ;  S - n -  1;  S ‘ .  (39)  

If S = n/2 ,  S’ = S - 1/2 is the only possible final spin at the lower electron num- 
ber n - 1. This ‘spin blockade’ effect will now be explained in some detail. A sec- 
ond kind of spin blockade is due to states with high (not necessarily maximum) total 
spin being the ground state or energetically close to it. This occurs for higher dimen- 
sions and will be discussed in Section 8. 

For the quasi-1D model, the states with maximum spin occur only once in each 
multiplet for given electron number. Therefore, only one finestructure step with nega- 
tive differential conductance - the current decreases with increasing voltage - can 
occur within each Coulomb step. 

The drop in the I-V curve becomes less pronounced if t~ < t R  ( p ~  > p ~ ) .  Then, 
the dot is mostly empty and the (n  - I )  + n transitions determine the current. On 
the other hand, if tL > tR, the spin selection rule reduces the probability for some of 
the n -+ (n  - I )  transitions, the negative differential conductance becomes more pro- 
nounced (Fig. 11). 

To illustrate this, we concentrate on the region of negative differential conductance 
in the third conductance peak around the voltage eV/EH x 0.8. This is high enough 
to allow for all of the transitions between the states with lower electron numbers 
0 5 n 5 2. The steps in the current when the voltage is increased (Fig. 11) occur 
when additional transitions between two states with n = 2 and n = 3 become energe- 
tically allowed. Figure 12 shows that each step in the current is accompanied by a 
change in the stationary occupation probabilities of the corresponding states. 

In order to understand the features in more detail, we show the energy levels for 
n = 2 and n = 3 together with the corresponding spin-allowed transitions in Fig. 13. 
The chemical potential in the right lead is fixed at p~ = 0 such that at T = 0 elec- 
trons can leave the dot to the right side with any positive energy. This means that all 
of the decays to lower electron numbers are possible by tunneling through the right 
barrier. The chemical potential in the left lead is now increased, thus making elec- 
trons available at energies up to p ~ .  A transition between an n-electron state with en- 
ergy E, and an n + I-electron state with energy ED > E, can contribute to the 
current when V = pL/e = (ED - E,) /e .  

For smaller p ~ ,  only the states with n 5 2 can be occupied. As soon as the voltage 
is sufficiently high (eY/EH x 0.6) to allow for the n = 2 -, 3 transition that needs 
the lowest amount of energy, p~ = E, - Eb, the lowest state with n = 3 (c) acquires 
a finite population. This happens at the expense of the highest state for n = 2 (b) 
which is depopulated by this process. At the same time, the 2-electron ground state 
(a) slightly gains occupation because the ground state with n = 3 (c) can decay into 
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Fig. 12 The most prominent feature in 
Fig. 11 for fL > 1~ is enlarged. The cur- 
rent in units of e? (dotted) and the popula- 
tions of the most relevant dot states a: 
n = 2, S = 0, b: n = 2, S = I ,  c: n = 3, 
S = 1 /2 (ground state), d: n = 3, S = 1 /2 
(first excited state), e: n = 3, S = 3/2 ver- 
sus bias voltage are shown. The popula- 
tions shown here do not sum up to unity 
because of the occupation of other states. 

CURRENT -. -. . . . - -. . 

....___.._. 

. . . . . - . . POPULATIONS . 3. 

_._._._..... __..... I/ 
0 . 5  l--L-;; ............... 

G V / A  TRANSPORT-VOLTAGE 

E 
Fig. 13 
states are indicated in brackets next to the lines representing the 
level. Transitions being allowed by the selection rules are sketched. 
In linear transport, only the ground state to ground state transition 
(solid line) contributes to the conductance. At finite transport vol- 
tage, additional transitions between excited states contribute. Since 
the transition to the highest state (dotted-dashed) is a ‘dead end’, 

Dot states for n = 2 and n = 3. The total spins S of the - e (3/2) 

the current is reduced when the voltage is raised to a value that al- 
lows the system to enter state e. > 3 11 

this state of lower electron number. At the next step, the ground-state-to-ground-state 
transition becomes accessible in both directions. Then, at the step near 
e V / &  x 0.75, the transition from state b to d comes into play, accompanied by 
further decreasing the population of the excited 2-electron state b, and populating the 
first excited 3-electron state (d). All of these are accompanied by an increase of the 
current. 

For voltages slightly higher than e V / E H  = 0.8, the transition to the energetically 
highest state with n = 3 (e) becomes available. This state attracts considerable sta- 
tionary occupation probability at the expense of all the other populations. It can only 
decay into a 2-electron state with S = 1, in contrast to the other 3-electron states (d, 
e). They can decay at least into two different 2-electron states. Thus, due to the ‘spin 
selection rule’, the electron has a reduced probability to leave the spin-polarized state 
e. The lifetime of this state is exceptionally large which leads to a high population. 
The current decreases because the total number of transitions per unit of time is de- 
creased (by at least a factor of two in this case). 

For asymmetric barriers, when the tunneling rate through the right barrier, t R ,  is 
lower than r ~ ,  transitions accompanied by decreasing electron number are relatively 
slow. The transition into the ‘dead end’ e becomes almost a ‘one way road’ and the 
‘spin blockade’ is drastically enhanced (Fig. 1 I ) .  If, on the other hand, processes with 
decreasing electron number are fast, t R  > t ~ ,  the state (e) loses its trap-like character. 
The spin blockade is suppressed. 

Negative differential conductances can be observed in the experimental data [23, 
311 but certainly need further, much more elaborate investigations. They can in prin- 
ciple be used to construct a mesoscopic oscillator. The experimental observation of 
the influence of asymmetric coupling to the leads [321 is consistent with our above 
results. 
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Fig. 14 The splitting of the fourth con- 
ductance peak at ,UL = 0.3EH and 
p~ = 0 of a dot described by the corre- 
lated electron model (parameters as in 
Fig. 11). Dashed, dotted and solid lines 
correspond to l ~ / t ~  = 1 ,  0.5 and 2, re- 
spectively. 

The splitting of the conductance peaks (Fig. 14) shows similar features as for the 
charging model. However, the periodicity and regularity of the peaks is lost due to 
the more irregular sequence of total spins anthe changes in the transition rates. We 
expect that for higher electron numbers, say n w 20, the more regular shape should 
be re-established. The dependence on the asymmetry of the barriers discussed in Sec- 
tion 4.3, however, remains the same. 

6.6 Transport spectroscopy 

The spectra of arrays of quantum dots were investigated by using infrared absorption 
spectroscopy [17-191. This probes only the center of mass motion which, according 
to Kohn's theorem [21], decouples completely from the other degrees of freedom in 
parabolically confining potentials. It is very difficult to observe correlation effects by 
using this technique. 

On the other hand, nonlinear transport experiments are a powerful tool to investi- 
gate the energy spectra of interacting electrons in quantum dots. The non-linear cur- 
rent reflects the transitions between all of the states of the dot. The influence of the 
electron-electron correlations on the spectra is crucial for the results. In principle, the 
addition spectrum can be deduced from the experimental data [23, 291. It is therefore 
possible to study systematically interacting few-electron systems by this method since 
not only center of mass excitations are important. 

To gain more insight on the structure of the conductance peaks, we plot the differen- 
tial conductance aZ/aV as a function of the transport voltage V and the gate voltage 
VG. Such a representation of data [23] together with the investigation of the influence 
of a magnetic field provides reliable information about the spectral properties. 

6.6.1 Expected peaks 

A transition I YF) -1 YF) with different electron number n, = ni + 1 can contribute to 
the current if their energetic distance E = EJ - Ei satisfies min(pL,p~)  
< E < m a x b ~ ,  PR). At T = 0, the current can change only at the lines p~ = E or 
PR = E in the V-  VG plane. For p~ = 0 and eV = PL - p~ = -pR they are given by 
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e e 
- ( C G V G + C R V ) = E O  and - ( C G V G - ( C L + C G ) V ) = E ~ .  (40) 
CE CX 

Here, EO is the energy difference at Q, = 0 and Cz = CL + CR + CG the tota1 capa- 
citance. The slopes of the lines depend only on the properties of the circuit (the ra- 
tios of the capacitances) while the separations reflect the excitation energies of the 
dot, and CG. For simplicity, we assume CL = CR = Cc. 

6.6.2 Differential conductance 

The overall behavior of the differential conductance as a function of the gate- and the 
transport-voltage, VG and V ,  is shown in Fig. 15 in a greyscale representation. Along 
the axis V = 0 the linear conductance peaks [26] can be observed at distances given by 
the Coulomb blockade energy. Lines that intersect at the positions of the peaks of the 
linear conductance correspond to ground-state-to-ground-state transitions. The regions 
of the Coulomb blockade are the grey, diamond shaped areas enclosed by these lines. 
The lines parallel to the edges of the Coulomb blockade areas reflect the spectrum of 
the quantum dot [29, 38, 401. Qualitatively similar features have been observed experi- 
mentally [23, 291. In Fig. 15 the energy spectrum given in Table 4 was used. 

When either VG or V are varied, the dot states that are involved in the transport 
change. At T = 0, this leads to steps in the current. Finite transport voltage V broad- 
ens the corresponding conductance peaks. The resulting finestructure is characteristic 
for the spectrum of the electron island. It is in general asymmetric [31, 35, 361. 

The asymmetry is reversed when reversing the voltage [37] if the barriers are not 
equally transparent, in agreement with experimental findings [32]. Bright regions that 
correspond to negative differential conductances occur preferably when the lower 
chemical potential is attached to the less transmitting barrier and the transitions of 
the type (39) limit the current. This is shown in Fig. 16, consistent with experimen- 
tally observed asymmetries [23, 29, 311. 

B =k 

Fig. 15 
VG and transport-voltage V in units of EH/e 

For symmetrical coupling to the leads. The 
zero value inside the diamond-shaped Cou- 
lomb blockade regions corresponds to grey. 
Dark and bright parts indicate positive and 
negative differential conductances, respec- 
tively. 

Differential conductance versus gate- 

4 . 5  

1 
-1 0 1 
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Fig. 16 Differential conductance versus gate-voltage Vc  and transport-voltage V in units of E H / c .  
The zero value inside the diamond shaped Coulomb blockade regions corresponds to grey. Dark 
and bright parts indicate positive and negative differential conductances, respectively. The couplings 
between the dot and the leads have been assumed to be f L  = f R / 2  (left) and 1~ = 2 f R  (right). Thus, 
the transitions through the lefvright barrier limit the current and bright regions occur mainly when 
the less transmitting barrier is attached to the lower of the chemical potentials. 

6.7 The influence of the spatial part of the transition matrix elements 

As shown above, the spin part of the transition matrix elements leads to non-trivial 
effects. It can be expected, that also the spatial part of the wave functions influences 
the current-voltage characteristic. For interacting electrons in a quasi- 1 D island, the 
exact transition matrix elements between the states corresponding to different electron 
numbers (10) were numerically calculated [HI. When one assumes that Tk,/ = T in 

2 
the tunneling Hamiltonian, the quantity to be calculated is c,,b(YF 1 
(see Appendix A). These matrix elements contain also the spin selection rules. 

Figure 17 shows that the spatial part of the transition matrix elements reduces 
some of the features in the results by additionally suppressing some of the lines. 

1 Yy)l I 

4 . 5  
8 
d 
d 
? 
Y 

3 

1 
-1 0 1 -1 0 1 

TRANSPORT-VOLTAQE TRMIBPORT-VOLTAQE 

Fig. 17 Differential conductance through a quasi-one dimensional quantum dot is calculated taking 
into account the exact transition matrix elements between the many-electron dot states and plotted 
as a function of the gate- and the transport-voltage in units of EH/e (left). For comparison, the re- 
sult using only the spin Hilbert space part in determining the transition rates is shown (right). Only 
transitions between states with 2, 3, and 4 electrons in the dot have been taken into account. 
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However, the qualitative aspects remain unchanged. In particular, the spin-induced 
negative differential conductances are not removed. 

The spatial properties depend sensitively on the specific realization of the sample. 
In our example, there are strong fluctuations in the values of the matrix elements for 
different transitions. This results in the suppression of some transitions between n- 
electron states in addition to the spin induced features but also the occurrence. On 
the other hand, some lines are enhanced [64] due to the changed distribution of pop- 
ulations. Similar effects have been proposed for an isotropic island [65] in order to 
explain the comparatively low number of transitions seen in experiment [23]. 

At present, the importance of the spatial part of the transition matrix elements is 
not quantitatively understood [64]. Such an investigation would require a more realis- 
tic model. We find that the main features discussed above are not affected. 

7 Magnetic field effects 

Investigating the influence of a magnetic field can provide more information about 
the electronic states. In particular, the Zeeman effect lifts the degeneracy between 
states with different magnetic quantum numbers. The predictions of the spin blockade 
theory can be compared with experiment in more detail. 

In the experiments of reference [43] the field was applied parallel to the 2D elec- 
tron gas, along the direction of the current. This influences only weakly the spatial 
part of the electron wave functions as long as the magnetic length remains large as 
compared to the thickness of the electron layer. 

The Zeeman splitting of the energy levels is the main effect observed in the trans- 
port spectra [23, 29, 431. Two slopes characterize the dependence of the excitation 
energies on the magnetic field [23, 431. A sufficiently strong magnetic field causes a 
change of the spins of the ground states. This may occur either in the n or in the 
n - 1 electron ground state. The result is an oscillatory dependence of the positions 
of the peaks in the linear conductance on the magnetic field, as reported previously 
[34]. In latter experiment, a gate tip was used in order to define the electron island. 
Although its geometry has not been completely clarified, the experimental results 
suggest that the Zeeman splitting is the main effect of the magnetic field, at least for 
low field strengths. 

The Zeeman energy is given by 

It has to be added to the Hamiltonian (3). Here, g is the Land6 factor, p~ the Bohr 
ma neton, B the magnetic field, and Mi the magnetic quantum number of the state 

differ only in M ,  and are degenerate in the absence of a magnetic field. The depen- 
dence of the energies of the 2- and 3-electron states on the magnetic field is shown 
schematically in Fig. 18. 

Outside the quantum dot, the magnetic field changes only slightly the density of 
states at the Fermi energy for the different spin directions. The Fermi energy itself 
which is pinned by the externally applied voltages is not modified. In the experimen- 

I 'Pi B ). The Beman term leads to a splitting of the energy levels of the states which 
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Fig. 18 The energy dependence of dot states 
for n, = 2 (0) and n, = 3 (A) on the magnetic 
field (schematically). The Zeeman splitting 
leads to level crossings and therewith changes 

B the ground state. 

tally relevant region, EF >> gpBB, the effect of the magnetic field on the densities of 
states can be neglected. 

7.1 Linear transport 

Only the ground states determine the linear transport at zero temperature. The depen- 
dence of the ground-state-to-ground-state transition energy on the magnetic field is 
clearly reflected in the numerical results of Fig. 19 where the differential conduc- 
tance as a function of the gate-voltage and the magnetic field at zero bias-voltage is 
shown. 

The results show clearly the oscillatory behavior of the peak position as a function 
of the magnetic field as observed experimentally [34]. At high magnetic fields, the 
spin polarized states become the ground states for all electron numbers, leading to a 
decreasing energy difference with increasing magnetic field. 

Since in the 1D model the ground state spin at B = 0 is zero or 1/2 depending on 
the parity of the electron number, the energy difference between ground states de- 
creases with increasing B at low field strengths if the lower electron number is even. 

n 
- 0 . 5  ., A. 0 + 0 . 5  

ZEEMAN ENERGY 

Fig. 19 
voltage as a function of the Zeeman energy g p ~ B  
and the gate-voltage in units of En and EHle, re- 
spectively. 

Differential conductance at zero bias 
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Fig. 20 Differential Conductance at bias voltage 
V = 0.1 EH as a function of the Zeeman energy 
and the gate-voltage in units of EH and &/e,  re- - 0 . 5  0 +0.5  

- 0 . 5  ,, 

spectiveiy. Z E E "  ENERGY 

If, on the other hand, the lower of the two electron numbers is odd, the energy differ- 
ence increases and the corresponding conductance peak moves to higher gate-voltage. 
This parity effect is shown in Fig. 19. 

7.2 Finite voltage 

Results for finite voltages, involving also excited states, are shown in Fig. 20. The 
differential conductance as a function of the gate- and the transport-voltage shows 
how the energies E, - Ei of the transitions between (excited) states I YD) and I "7) 
with different electron numbers n, = ni + 1 change with the magnetic field. 

In our model, the signs of the shifts of the lines with nonzero differential conduc- 
tance on the axis of the gate voltage are directly related to the signs of 

Since the magnetic field changes the energies of the eigenstates of the island the 
weights of some of the transitions are changed correspondingly. Most spectacular ef- 
fects of this kind are observed for transitions which are pushed into the Coulomb block- 
ade regions by the magnetic field. They become completely suppressed (Fig. 20). 

Furthermore, the spin blockade is suppressed by a magnetic field. The condition is 
that the Zeeman energy exceeds the level spacing. This is consistent with recent ex- 
periments [29], where, due to the two-dimensionality of the dot, the states with high- 
est spin are not simultaneously also the energetically highest at zero magnetic field, 
and the negative differential conductances appear quite close to the linear regime 
[23]. Then, the Zeeman splitting needed to suppress the negative differential conduc- 
tance is lower (see below). 

AM Mj - Mi = f 1 / 2 .  

8 Two-dimensional square dots 

In this section, we present results for a 2D quantum dot. As a model we use a square 
shaped, hard wall confinement potential. In the low density regime the low energy 
excitation spectrum was calculated for Coulombically interacting electrons with spin 
[59]. In the following, the results for up to five electrons are used. The low energy 
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excitation spectrum is qualitatively different from the ID case. States with high spin 
can occur at low energies. The ground state is not necessarily a state with minimum 
spin. This leads to other types of spin blockade effects. 

8.1 Spin blockade type I1 

The ‘spin blockade type I’ is related to the occupation of states with maximum spin 
S = n/2 and appears at voltages of the order of their excitation energies. These 
states occur both in ID [55-571 and in 2D [59] quantum dots. 

The ‘spin blockade type 11’ is related to states with high (not necessarily maxi- 
mum) spin being the ground state or energetically close to the ground state [38]. It 
can occur even in linear transport if the total spins of ground states that correspond 
to successive electron numbers differ by more than 1/2, 

(n, ground state, S) - (n - 1 , ground state, S’) ( S  - S’l > 1/2. (42) 

Then, the electron island is blocked in the n- or the n - I-electron ground state and 
the corresponding peak in the linear conductance vanishes at zero temperature. 

Figure 21 shows the grey scale plot of the differential conductance. One prominent 
feature is the missing of the linear conductance peak corresponding to the transition 
between 4 and 5 electrons, since the spins of the ground states are S = 0 (n = 4) 
and S = 3/2 (n = 5). Either finite transport voltages or finite temperatures can re-es- 
tablish the conductance via transport through excited states with spins S = 1 (n = 4) 
and S = 1/2 (n = 5). The voltage- or temperature-induced recovery of the conduc- 
tance is shown in Fig. 22. Such a feature was indeed observed experimentally [34]. 
Since the Lieb and Mattis theorem [68] guarantees that in ID the spins of the ground 
states are always 0 or 1/2, the ‘spin blockade type 11’ (42) is specific for 2D quan- 
tum dots. In a ‘slim’ dot no linear conductance peak should be missing. 

In addition, states with high spins, but not necessarily completely spin-polarized, 
which are energetically close to the ground state, can cause blocking phenomena at 
T = 0. This is demonstrated for the transition between n = 3 and n = 4 in Fig. 23a. 
In contrast to the spin blockade of the first kind, (42) can lead to negative differential 

5 

I u 
5 

0 . 5  

Fig. 21 Differential conductance versus gate- 
voltage VG and transport-voltage V in units of 
EH/e. The spectrum for a 2D square dot is used. 
The transition between the ground states for 
n = 4 and n = 5 is forbidden by the spin selec- 

cross on the Vc-axis are missing. 
-1 0 1 tion rules and the corresponding lines that should 

TRANSPORT-VOLTAGE 
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Fig. 22 Current versus gate voltage for a square quantum dot. In a) the transport voltage is in- 
creased. According to the thickness of the lines, it takes the vahes Y = 0.04,0.06,0.1,0.2E~/e. In 
b) the temperature is increased. Thin to thick lines correspond to BE" = 100,80,60,40,20. The 
missing peak in linear conductance corresponding to oscillations between n = 4 and n = 5 electrons 
is recovered. The peak corresponding to the transition between n = 3 and n = 4 electrons behaves 
unnormally because the ground-state-to-ground-state coupling is very weak and the increased tem- 
perature/voltage allows to involve excited levels. 

-0 .7 0 0 . 7  -0 .7  0 0 . 7  

Fig. 23 Left: region around the transition between n = 3 and n = 4, magnified and with the energy of 
the S = 312 state being degenerate with the n = 3 S = 112 ground state. At low but finite transport 
voltage the S = 312 ground state becomes populated. Transitions to the n = 4 ground state are spin 
forbidden. Negative differential conductances appear. Right: same region but now showing the popula- 
tion of the n = 3, S = 3/2 state (b in Fig. 24 in dark. If the transport voltages are sufficient to occupy 
the S = 312 state it is easily populated but depopulation is difficult. 

conductances even close to the peak in the linear conductance. The reason is that the 
n = 3-state with S = 3/2 is almost degenerate with the S = 1/2-ground state. 

The most important energy levels are shown schematically in Fig. 24. Within the 
Coulomb blockade region all transition rates that increase the electron number are ex- 
ponentially small. At V = 0 the system is in thermal equilibrium and the 3-electron 
ground state is populated. Already a slightly increased voltage changes the ratio be- 
tween certain rates by ord& of magnitude, favoring the occupation of the S = 3/2 
state b (cf. Fig. 23b). This is due to a delicate interplay between multiple transitions 
that connect eventually the lowest n = 3 states via at least three intermediate states. 
There is a competition between processes like a-+d-+c+ e - + b  and the process b+ 
e-a. Direct transitions from the S = 3/2 state to the n = 4 ground state are spin for- 
bidden. This causes the pronounced negative differential conductance at low volt- 
ages. 
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Fig. 24 Some dot states for n = 3 and n = 4. The total spins S of the states are indicated in brackets 
next to the lines that represent the level. The lines mpresent transitions that are allowed by the selection 
rules. Note that the transition between one of the three electron ground states (h) to the four electron 
ground state d is forbidden. The unusual behavior in the vicinity of the corresponding linear conduc- 
tance peek is due to these five levels. It is necessary to include them all to find the main features of Fig. 
23. Whether or not one includes further states in the calculations does not change the result qualita- 
tively. 

Mg. 25 Left: region around the transition between n = 3 and n = 4, magnified and with the energy of 
the S = 3/2 state b being slightly increased so that the degeneracy of the n = 3 ground states is lifted. 
At low but finite transport voltage the ground-state-to-ground-state transition is blocked because state b 
attracts almost all of the stationary occupation probability. Thus, negative differential conductances 
appear. Right: same region but now showing the population of the n = 3, S = 3/2 state @) in dark. 
If the transport voltages are sufficient to occupy the S = 3/2 state it is easily populated but depopulae 
tion is difftcult. 

In order to simulate a rectangular dot, we enhance slightly the energy of the lowest 
(n = 3; S = 3/Z)-state. Figure 25 shows (a) the differential conductance and (b) the 
stationary occupation probability of this state. 

Now, the region of negative differential conductance is shifted in Y by the excita- 
tion energy of the (S = 3/2)-s&% b. When the (n = 3; S = 3/2)-state starts to con- 
tribute, it attracts a large portion of the population at the expense of the (n = 3; 
S = l/2)-ground state a. This suppresses the ground-state-to-ground-state transition. 
Only at even higher voltages the (S = 3/2)-state can again be depopulated and the 
line corresponding to transport involving the ground states is recovered. Striking fea- 
tures like this can be found in the greyscale representations of the experimental re- 
sults [23, 291. 
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9 Summary and conclusions 

We have investigated nonlinear transport through a small electron island, which is 
weakly coupled to reservoirs, taking into account Coulomb interaction between the 
electrons in the island, spin, magnetic field and non-equilibrium effects. The studies 
have been carried out in the parameter regime where charging and geometrical quan- 
tization effects coexist. 

For different model Hamiltonians occupation probabilities, current-voltage charac- 
teristics and conductances versus gate-voltage at finite bias voltage were calculated 
using a rate equation. 

Coupling to Boson modes leads to thermally induced intra-dot relaxation processes 
and to a suppression of the n lowest finestructure steps in the n-th Coulomb step of 
the I-V curve. Thsi was investigated in some detail for the charging model. The intra- 
dot relaxation provides thermal equilibrium only among the states with a given electron 
number. We demonstrated explicitly that the stationary non-equilibrium populations 
cannot be described by a Gibbs distribution. Consistent with previous investigations 
we find additional steps in the Coulomb staircase corresponding to transitions involving 
excited levels when the temperature is lower and the transport voltage higher than the 
excitation energies. We find pronounced asymmetries in the conductance peaks versus 
gate-voltage for asymmetric barriers, consistent with experimental findings. 

By taking into account the quantum mechanical properties of the Coulombically 
interacting electrons including their spins, we demonstrated that spin selection rules 
can strongly influence the transport properties. This is important for semiconducting 
quantum dots with few electrons where electron correlations are expected to be impor- 
tant. The excitations of the n-electron system cannot be described by the occupation of 
single electron states, and the spins of all electrons are influenced when electron 
numbers are changed. The corresponding selection rules for transitions between states 
of different spin are very general and not restricted to our model. Spin conservation 
leads to a spin blockade effect and explains in a natural way various experimentally ob- 
served features which qualitatively cannot be explained by the charging model where 
excitations are treated as single particle excitations. 

We proposed two qualitatively different types of spin blockades. They influence 
the heights of the linear conductance peaks and lead to negative nonlinear differential 
conductances. While the ‘spin blockade of the first kind’ is connected with spin- 
polarized states, the ‘spin blockade of the second kind’ is more general. It leads to 
qualitative changes even in linear transport, and is particularly important for 2D 
quantum dots. 

The effects of an in-plane magnetic field were discussed. They explain recent ex- 
periments [23, 29, 34, 431. The positions of the conductance peaks on the gate-volt- 
age axis change with magnetic field. In quasi-1D quantum dots the sign of the shift 
at low field strength depends on the parity of the electron number. Level crossings 
lead to peak positions oscillating with magnetic field. The spin blockade phenomena 
disappear at sufficiently high magnetic fields when the spin polarized states become 
ground states. 

All of the theoretically investigated features described above are consistent with re- 
cent experimental findings [23, 30-361. In particular, the spin blockade effect is very 
likely to be the mechanism which causes negative differential conductances. Further 
experiments, in particular using ‘slim quantum dots’, are however necessary in order 
to clarify the quantitative aspects. 
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In experiments where the total spin of the electrons is not stable over times inter- 
vals long compared to the time between successive electron passages, the spin block- 
ade is expected to disappear. By introducing an inhomogeneous magnetic field in the 
dot region (e.g. using type I1 superconductors on top of the structure or doping the 
sample with magnetic impurities) might also be a method to confirm unambiguously 
the importance of the spin blockade mechanism for quantum dot transport. Such ex- 
periments can in principle be carried out [69]. 

A Transition rates between the many-electron eigenstates of the isolated system 

In this appendix, we show in detail how the transition rates (10) between the many- 
electron Fock-states of the correlated electrons in the dot are calculated using stan- 
dard time-dependent perturbation theory in lowest order in the tunneling terms. The 
same method can be applied to determine the rates for the Anderson impurity (15, 
16) and the charging model (29). 

A. 1 Time-dependent perturbation theory 

If one can split up the Hamiltonian of the full system into two parts, H = HO + Hp, 
where the stationary Schrodinger-equation of the time-independent first term HO 

(0) can be solved exactly, yielding the eigenstates I ‘Pi ) and the corresponding eigenen- 
ergies Ejo’, standard time-dependent perturbation theory gives the transition rates be- 
tween eigenstates of Ho. In lowest order, one finds the transition rate 

with the matrix element 

A.2 ESfective transition rates between the many-electron dot states 

Now, we specify the model to calculate the transition rates. We integrate over the 
lead states to find effective transition rates for the transitions between the eigenstates 
of the dot Hamiltonian. 

First we have to remember that the state-vector used in the previous paragraph de- 
scribes the whole system. In the unperturbed problem given by HO = HD + HL+ 
H R  + Hph, the dot, the leads and the heat bath are completely decoupled and the 
Schrodinger-equation can be separated. Then, the total state-vector 
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is given by a product of the state-vector of the dot I Yz)  and the ones describing the 
lefdright lead I Y&!R) and the phonons I ‘4’;). The energies satisfying 

are additive yielding 

The small tunneling terms and the weak electron-phonon interaction in the Hamilto- 
nian (8) are considered as the perturbation Hp = H; + H;f + Hep allowing for 
transitions between the eigenstates of the isolated dot and the reservoirs. Since they 
lead to different transitions changing the state of different leads, we can treat the tun- 
neling to and from the different leads and transitions involving no electron tunneling 
but phononic excitations separately. The tunneling terms can be written as a sum of 
two parts H l f R  = H& + H:$ where the first, 

describes tunneling of electrons out of the dot and the second part 

~ corresponds to electrons entering the dot. These parts contain a sum over all the one- 
I electron states in the leads and in the quantum dot. 

The electron-phonon interaction terms can be written as a sum of two terms 
I H~~ = HG + H& with 

where the first one describes the absorption of a phonon and the second part corre- 
sponds to the emission of a phonon. For simplicity, we assume the prefactor to be in- 
dependent of all the parameters g(q ,  mi, %) = g .  

A.2.1 Transitions with a reduction of the electron number in the dot 

First, we treat the case of a transition in which an electron tunnels from the dot to 
the lefvright lead. These transitions occur due to the first part of the tunneling Hamil- 
tonian (49), which we insert in the expression for the transition matrix elements (45) 
and using (46), one gets the matrix elements 
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where 

are the terms which are connected to the different Hilbert spaces involved. The spin 
summation in (52) runs over the values r7 = f 1 / 2  of the magnetic quantum number 
of the tunneling electron. Since the total spin and its z-component are conserved, 
k f d ,  - h f d ,  = f1 /2  and r7 = -5 := M d I  - M d , ,  and (52 )  can be simplified, 

To obtain the effective rates for transitions between the dot states 

we sum over all the final states of the leads which are assumed to be coupled to re- 
servoirs and the phonons. Matrix elements of the initial states of the leads and the 
phonons are evaluated assuming thermal equilibrium denoted by ( a  *) th ( / l , r , ,Q , ) .  Using 
(44) and (54) with (53), one gets 

Since the set of orthonormal eigenfunctions I ‘$/IR) of the lead Hamiltonian H L I R  is 
complete, the sums over the final states of the leads give identity matrices and the 
two last factors in (. . .) yield unity reflecting the fact that neither the rightileft lead 
nor the phonons are affected by the process at all. Using the equilibrium expression 

for the occupation number operator, where the Fermi-Dirac distribution function 
J L p ( E )  = (exp[P(E - /dL/R)] + I)-’ contains the temperature and the chemical poten- 
tial of the reservoir, and using (48), which yields 
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in the argument of the Delta-function in (56) selects the value k = kE for the wave- 
vector in the leftfright lead. We finally find 

with the energy of the tunneling electron E = E r ’  - E;?’ and the density of states 
in the leftfright lead PL/R: A factor of 1/2 arises because of the reduced density of 
states for a given electronic spin. 

A.2.2 Transitions with an increase of the electron number in the dot 

Now, we deal with an electron that tunnels from the lefuright lead into the dot. Such 
transitions are due to the presence of the tunneling term (50). The calculation of the 
rates is analogous to the case of an electron tunneling out of the dot. Inserting (50) 
in (45) using (46), one gets the matrix elements for the increase of the electron num- 
ber in the dot 

with 

Again, we proceed by calculating the effective rates for transitions between the states 
of the dot and using now 

one finds the result 

I A.2.3 Approximations ~ 

1 

, 
For the sake of simplicity, we neglect the dependence of the tunneling matrix ele- 
ments on the electronic states and put 

and introduce the abbreviations 
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neglecting the dependence of the density of states on the energy. 

the simple form 
Thus, the effective transition rates between the eigenstates of the isolated dot take 

Further, we extract the spin part of the state-vector describing the quantum dot, 
which is of very general nature and yields rich structure. From the consideration of 
the spin Hilbert space we find the squares of the vector coupling Clebsch-Gordan 
coefficients j ( ~ d , ,  Md,, i , f 4 I Sdf , M d f  )CG 1 for the combination of the initial spin 
(&, , Md,) with the spin of the tunneling electron (1/2, &1/2) to the spin of the final 
state (Sd , ,  Mdf)  (for the values, see Table 2). To determine the exact matrix elements 
D+l-,  one has to go back to a microscopic model of the dot to calculate the orbital 
part of the many-electron wave-functions of the dot states, which will depend 
strongly on the details of the model. In principle, this can be done [58, 641, but in a 
first approach, we neglect this influence and approximate the dot matrix elements by 

2 

A.2.4 Transitions between dot states with the same electron number 

The electron-phonon coupling leads to transitions between the dot states which do 
not change the electron number in the dot. Nevertheless, the state of the correlated 
electrons can be affected by the emission or absorption of a phonon. 

We start with electron absorption processes. Inserting H&, (51) in (45) using (46), 
one gets the matrix elements for this process 

with 

The thermal average over the initial states of the phononic heat bath yields 

due to the bosonic nature of the phonons and one finds the result 
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(71) 
2x l-2; = Fg I D:id, l 2  PL/R(E)nB(E) ’ 

Inserting H& (51) in (45) using (46), one gets the matrix elements for the phonon 
emission process 

Now using 

one finds the result 

where the energy difference due to the phonon emission E = -ha4 is now negative. 
The rates (71) and (74) can be cast into one expression 

We neglect the dependence of the rate on the particular shape of the dot wavefunc- 
tions and the phononic density of states. For simplicity we set r = (2x/fi)gPph and 
I D 1 2 =  1. 

The general case of the results (59), (63) and (75) is known in the literature as 
Fermi’s Golden rule. 
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