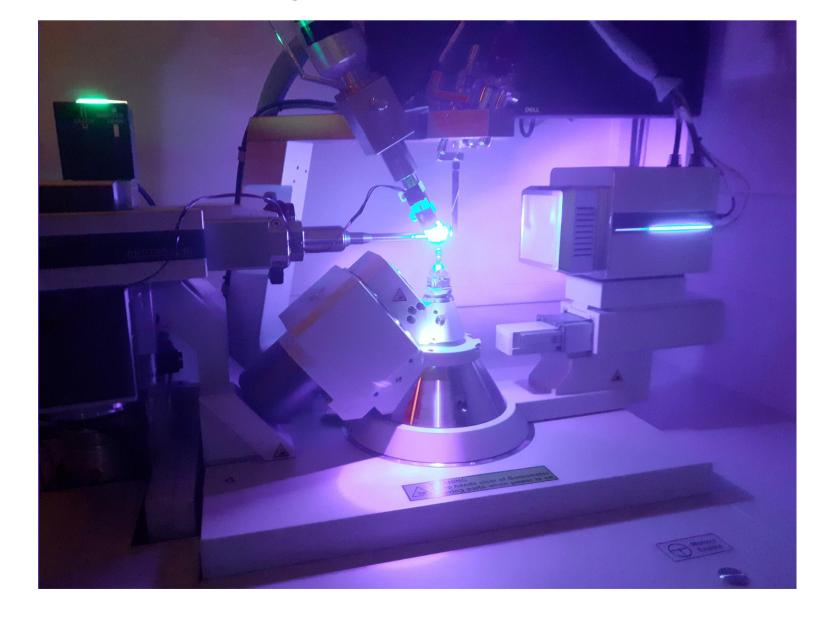
## NANOSCIENCE COLLOQUIUM

## Dynamic X-ray diffraction for the design of functional photoswitches


Dr. Lauren Hatcher

Royal Society University Research Fellow, Cardiff University, School of Chemistry

ABSTRACT: Switchable crystalline materials are of great and continuing interest for a wide range of smart technologies, with applications including ultrafast electronics, data storage, sensors, molecular machines, solid-state cooling, and energy harvesting.1-5 In-situ crystallographic studies are a crucial tool for understanding the key structure-property relationships that govern switching in these systems and there are now a wide range of in-situ methods developed for use both in the home X-ray lab and at synchrotron and X-ray Free Electron Laser (XFEL) facilities. Our group is particularly interested in studying photoswitchable crystals, and are designing a range of new photocrystallographic equipment for different in-situ experiment scenarios. These include time-resolved single-crystal X-ray diffraction studies, including stroboscopic pump-probe measurements using synchrotron radiation<sub>6</sub> and a bespoke instrument for time-resolved diffraction measurements in the home X-ray lab.

This presentation will discuss the breadth of our development work, illustrating with example studies of switchable crystals capable of high levels of single-crystal-to-single-crystal conversion. These include photoactive and electricallyswitchable solid-state materials for pyroelectric applications.<sup>7, 8</sup> The talk will also introduce our work with in-situ X-ray diffraction methodologies, in collaboration with Diamond Light Source, using light and electric field cell equipment on Beamline 119.9 We will also explore our recent success in developing new multi-crystal serial crystallography measurements for the study of small molecular crystal systems, 10 methods that are transferrable to other state-of-the-art ultrabright synchrotron and XFEL facilities around the globe.

- Sato, Nat. Chem. 8, 644-656 (2016).
  Comotti et al., JACS 136, 618-621 (2014).
  Sato, Proc. Jpn. Acad. B 88, 213-225 (2012).
  Halcrow, Chem. Soc. Rev. 40, 4119-4142 (2011).
  Goulkov, Schaniel & Woike, Opt. Soc. Am. B 27, 927-932 (2010).
  Hatcher et al., Comms Chem. 5, 102 (2022).
  Coulson & Hatcher CrystEngComm 24, 3701-3714 (2022).
  Hatcher, Skelton, Warren & Raithby, Acc. Chem. Res. 52, 1079-1088 (2019).
  Morris, Hatcher et al., Angew. Chem. Int. Ed. 63(20), e202401552 (2024).
  Lewis, Hatcher et al., Commun. Chem., 7(1), 264 (2024).





