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Abstract. The 107 m2 reflector of each H.E.S.S. telescope consists of 380 mirror facets with 60 cm
diameter. Mirror facets are aligned by a fully automated system using stars imaged onto the lid of the
Cherenkov camera. The alignment procedure, implying the automatic analysis of CCD images and
control of the mirror actuators, has been proven to work reliably. On-axis, 80% of the reflected light
is contained in a circle of less than 1 mrad (0.057◦ or 1.5 cm in the focal plane) diameter, well below
specifications. The widening of the spot with increasing angle to the optical axis is in accordance
with the expected behaviour based on simulations, and variations of spot size with elevation are
uncritical. Deterioration of the point spread function over time is of no concern; recurrent monitoring
over years proved the width to be stable and thus the support structure to be very stiff.

INTRODUCTION

H.E.S.S. is a stereoscopic system of four large imaging atmospheric Cherenkov tele-
scopes in the Khomas Highland of Namibia [1]. Each telescope has a tessellated reflec-
tor of 107 m2 consisting of 380 round mirror facets with 60 cm diameter made of glass.
Given the large number of mirror facets a fully automated alignment system has been
developed, including motorized mirror supports, compact dedicated control electronics,
and various algorithms and software tools [2, 3, 4, 5, 6].

The basic technique to align the mirror facets is illustrated in Fig. 1. The telescope
is pointed towards an appropriate star whereupon all mirror facets generate individual
images of the alignment star in the focal plane (closed lid of the Cherenkov camera).
Actuator movements change the location of the corresponding image which is observed
by a CCD camera at the center of the dish. Individual mirror facets are adjusted such that
all star images are combined into a single spot at the center of the Cherenkov camera.

It is – to our knowledge – the first time that such a technique is used to align the
mirrors of Cherenkov telescopes. The major advantages of this approach are evident:
The alignment utilizes direct imaging in the focal plane using a natural point-like source
at infinite distance, and it can be performed at the optimum elevation angle so that
the effect of gravity-induced deformations of the support structure on the point spread
function is minimized.
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FIGURE 1. Left: The first two H.E.S.S. telescopes.Right:Mirror alignment technique.

POINT SPREAD FUNCTION

Fig. 2 (left) shows a CCD image of the image of a star on the camera lid after the align-
ment of all mirror facets in relation to the size of a PMT pixel (0.16◦ diameter). The
intensity distribution represents the on-axis point spread function for telescope eleva-
tions within the range used for the alignment (55◦–75◦). The distribution is symmetrical
without pronounced substructure and the width of the spot is well below the pixel size.

To parameterize the width of the intensity distributions, different quantities are used:
the rms widthσpro j of the projected (1-dimensional) distributions and the radiusr80%
of a circle around the center of gravity of the image, containing 80% of the total
intensity. Tab. 1 (top section) summarizes the on-axis widths of the point spread function
around 65◦ elevation (mean alignment angle) of all four reflectors after their initial
alignment. All values remain below the specification by a factor of more than two which
demonstrates the excellent average mirror quality and accuracy of the alignment process.
Remarkably,r80% for the whole reflector (containing spherical aberrations caused by
outer mirrors) is even below the requirement for single (on-axis) mirror facets, 0.5 mrad.

Variation of the point spread function across the field of view

Optical aberrations are significant in Cherenkov telescopes due to their single-mirror
design (lack of corrective elements) and their modestf /d ratios. At some distance from
the optical axis, the width of the point spread function is therefore expected to grow
linearly with the angleθ to the optical axis. For elevation angles around 65◦, where the
mirror facets were aligned, Fig. 2 (right) summarizes the spot parameters as a function
of the angleθ . Besidesr80%, the rms widths of the distributions projected on the radial
(σradial) and tangential (σtangential) directions are given. The measurements demonstrate
that the spot width primarily depends onθ ; no other systematic trend has been found.

To verify that the measured intensity distribution is quantitatively understood, Monte
Carlo simulations of the actual optical system were performed, including the exact
locations of all mirrors, the measured average spot size of the mirror facets, and the
simulated precision of the alignment algorithm. The results are included in Fig. 2
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FIGURE 2. Left: On-axis intensity distribution of a star image on the camera lid (CT04). The hexagonal
border indicates the size of a photomultiplier pixel, the boxes correspond to CCD image pixels.Right:Off-
axis behaviour of the point spread function.Right inset:Measured spot shape (left, CT04) in comparison
with a Monte Carlo generated image (right) at 2.3◦ off axis (image dimensions: 0.4◦×0.4◦).

(right) as solid lines. Apart from a small deviation (∼5% for r80%) near the optical axis
agreement is very good. This does not only include the width of the point spread function
but also sub-structural details (knots and ribs) in the tails of the intensity distributions as
demonstrated in Fig. 2 (right inset).

To describe the point spread function as a function of the angular distanceθ to the
optical axis around the mean alignment elevation of 65◦ the parameterization

r80%(θ) = (r2
θ +d2

θ θ
2)

1/2 (1)

is used.rθ represents the on-axis width of the point spread function anddθ the increase
of the width per degree angular distance to the optical axis. Fit parameters for the
measured and simulated light spots are listed in Tab. 1 (middle section).

Gravity-induced deformations of the telescope structure

Due to gravity-induced deformations of the support structure the spot is expected to
widen outside the range of elevations where mirror facets are aligned. It is, however,
hard to deduce what kind of deformations are responsible for the widening of the spot
from measurements of the point spread function alone. A special operation mode was
therefore implemented into the alignment system which allows for a detailed study of
the deformation of the support structure: Rather than combining all individual spots to a
uniform main spot, the spots can be arranged in arbitrary patterns.

Fig. 3 (left) shows the spots corresponding to individual mirror facets arranged in
the form of a square matrix; each element of the matrix is the image generated by one
mirror. By taking matrix images at different elevations, the deflection of mirror facets –
and therefore the deformation of the dish – can be inferred from the relative movement
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TABLE 1. Parameters of the point spread function.Top section:Measured on-axis
point spread function.Middle section:Fit parameters for the description of the point
spread function as a function of the angular distanceθ to the optical axis around 65◦

elevation.Bottom section:Fit parameters for the description of the on-axis point spread
function as a function of the telescope elevationΘ.

parameter CT01 CT02 CT03 CT04 simulations specifications

σpro j [mrad] 0.23 0.23 0.23 0.23 0.21 ≤0.50
r80%[mrad] 0.40 0.41 0.40 0.40 0.38 ≤0.90

rθ [mrad] 0.41 0.42 0.41 0.42 0.38
dθ [mrad deg−1] 0.73 0.70 0.75 0.73 0.72

rΘ [mrad] 0.41 0.42 0.41 0.41
dΘ [mrad] 1.11 0.98 0.97 1.12
Θc [deg] 60.7 62.5 66.5 64.6

of the corresponding spots. As an example, Fig. 3 (right) shows the deflection of the
mirror facets at 29◦ elevation with respect to 65◦. Deformations are particularly strong at
locations where the camera arms are attached and the dish is supported (shaded regions).

Variation of the point spread function with telescope pointing

Fig. 4 (left) illustrates how the spot widthsr80%, σazimuthal, andσaltitudinal change
with telescope elevationΘ. At fixed elevation, no significant dependence of the point
spread function on telescope azimuth was observed. For elevations most relevant for
observations, i.e. above 45◦, the spot sizer80% varies by less than 10%. At 30◦ it is
about 40% larger than the minimum size but still well below the size of the PMT pixels.
In addition, all reflectors behave almost identical.

The (on-axis) point spread function as a function of telescope elevationΘ can be to a
good approximation described by

r80%(Θ) = (r2
Θ +d2

Θ (sinΘ−sinΘc)2)
1/2 (2)

whererΘ is the minimum of the width andΘc its location in elevation;dΘ specifies the
increase of the width per 90◦ elevation. Values for all four reflectors are listed in Tab. 1
(bottom section).

Long-term stability of the point spread function

Measurements of the initial status of all reflectors were performed right after their
respective alignment and prior to the installation of the Cherenkov cameras. The increase
in spot size due to the installation of the cameras remained below 30% inr80% for all
telescopes, which is uncritical. This may be caused by differences in the weight of the
camera as compared to the dummy weight used during initial alignment and a small
offset between the position of the camera focal plane and of the alignment screen.
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FIGURE 3. Left: Spot matrix: Each star image corresponds to an individual mirror facet at a certain
location in the dish (facets of CT03).Right:Mirror deflections at 29◦ elevation with respect to 65◦ (CT03,
arrows scaled by the square root of the deflection).

A critical issue is the stability of the point spread function over time. The alignment
of the mirror facets of the first telescope (CT03) was completed in February 2002; no
realignment has been performed since then. However, recurrent measurements of the
on-axis point spread function with varying elevation have been carried out to monitor
the quality of the alignment. For every set of measurements a fit according to Eqn. 2 was
performed and the value ofr80%(65◦) then calculated. The evolution of this parameter
with time is shown in Fig. 4 (right). Only a small increase of 0.024 mrad or 6% per year
is observed indicating an outstanding long-term stability of the telescope structure. This
is in contrast to initial expectations which predicted realignments to be required at least
once per year. The time base for measurements of other telescopes is as yet too small to
draw a final conclusion, but recent results for the second telescope (CT02, Fig. 4 (right))
look very promising. It might indeed turn out that a realignment will not be necessary
for the whole lifetime of the facets. However, the complete procedure for reproducibly
resetting the point spread function to its optimum can be performed in a few hours.

CONCLUSION

The alignment of the four H.E.S.S. reflectors was a proof of concept and a test of all tech-
nologies involved: mechanics, electronics, software, algorithms, and the alignment tech-
nique itself. All components work as expected, and the resulting point spread function
significantly exceeds the requirements. The four reflectors behave very similar which
demonstrates the high accuracy of the support structure and the reproducibility of the
alignment process. This is complemented by an excellent long-term stability of the tele-
scope structures; only a small increase in spot size is observed over a period of more
than two years. To conclude: H.E.S.S. successfully pioneered star-based automated mir-
ror alignments in air-Cherenkov astronomy.
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FIGURE 4. Left: Effect of the elevation-dependent deformation on the point spread function.Right:
Evolution of the point spread function at 65◦ elevation for the first two H.E.S.S. telescopes.
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