Automatisierte Justierung der Spiegelfacetten der H·E·S·S· Cherenkov–Teleskope

René Cornils

für die H·E·S·S·–Kollaboration

II. Institut für Experimentalphysik Universität Hamburg

DPG Frühjahrstagung, Bonn 2001

- 1. Aufbau der $H \cdot E \cdot S \cdot S \cdot$ Cherenkov–Teleskope
- 2. Spiegelfacettenmechanik und Justierverfahren
- 3. Hardware zur Steuerung der Aktuatormotoren
 - (a) Aufbau
 - (b) Merkmale
 - (c) Tests
- 4. Test der Aktuatoren
- 5. Zusammenfassung

bmb+**f** - Förderschwerpunkt

Astro-Teilchenphysik

Großgeräte der physikalischen Grundlagenforschung

Aufbau der $H \cdot E \cdot S \cdot S \cdot$ Teleskope

Gamma–Astronomie im 100 GeV Bereich

- 🖌 15 m Fokallänge
- \checkmark 13 m Spiegeldurchmesser / 108 m² Fläche
 - 380 Spiegelfacetten / 60 cm Durchmesser
- \checkmark 960 Pixel á 0,16 $^{\circ}$ / 5 $^{\circ}$ Gesichtsfeld

Motorisch justierbare Spiegelfacetten und Justierverfahren

Schematische Darstellung des Justierverfahrens

Punkförmige Abbildung eines Sterns (m < 3)

Aufbau der Steuerungshardware

32 Spiegelfacetten / 64 Motoren pro Branchkabel

- Steuerkabel mit 18 Leitungen:
 2 × 8 zur Motoradressierung,
 2 für die Hallsensorsignale
- Betriebskabel mit 2 Leitungen zur Spannungsversorgung
- 12 Branchkabel pro Teleskop für bis zu
 384 Spiegelfacetten / 768 Motoren

Merkmale der Steuerung

- Positionszähler: zwei um 90° versetzte Hallsensoren auf der Motorwelle (keine Schrittmotoren), spezieller Decoderbaustein
- acht Motorgeschwindigkeiten: gepulste Gleichspannung mit variablem Puls–Pause–Verhältnis
- Motorabschaltung: bei ausbleibenden Hallsignalen (keine Endschalter)
- Motorpositionierung: Motorabschaltung bei Erreichen der Zielposition

Zustandsdiagramm der Hallsignale zur Generierung der Bewegungs- und Richtungsinformation

СНА	СНВ	STATE
1	0	1
1	1	2
0	1	3
0	0	4

Test der Steuerung

- Positionszähler: Test, ob Störsignale zu Falschzählungen führen
 - keine Abweichung zwischen Zählerwert und Motorposition nach fast 25 Millionen Zählerimpulsen

Motorpositionierung: Messung der nötigen Iterationen zur Erreichung des Zielpunktes

- durchschnittlich zwei Iterationen
- maximal drei Iterationen

Zahl der nötigen Anfahrten

Testergebnis: Genauigkeit Motorpositionierung < 0,0016 $^{\circ}$

Test der Aktuatoren

Testergebnis: relative Ungenauigkeit von 0,41%

Zusammenfassung

Fast 400 Spiegelfacetten pro H·E·S·S· Cherenkov–Teleskop

- Manuelle Justierung aufgrund des enormen Aufwands unpraktikabel
- Motorisch justierbare Spiegelfacetten
- Günstige Gleichstrommotoren zur Kostenreduktion
- Spezielle Hardware zur Ansteuerung sämtlicher Aktuatormotoren
 - Test der Elektronik und der Positionierung
 - Test des Zusammenwirkens mit Aktuatormechanik
 - ⇒ Gesamtsystem erfüllt die Erwartungen

