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8. Phase-space cooling 

Liouville’s theorem states that “the particle density in 6-dimensional phase-space of 
non-interacting particles is constant in the presence of conservative forces”. A 
change of the phase-space distribution can only be caused by dissipative forces, as 
there are: 

• residual gas scattering 
• beam-beam and beam-target interaction 
• intra-beam scattering 
• synchrotron radiation 
• phase-space cooling 

So far, we have treated the influence of synchrotron radiation on electrons, leading to 
an equilibrium distribution in phase-space (natural emittances and energy spread). 
Due to the γ 4-scaling, its effect on protons and ions is completely negligible! Here, 
we will concentrate on cooling methods for protons/ions based on dissipative forces: 

• electron cooling 
• stochastic cooling 
• ionization cooling 
• laser cooling 
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8.1. Beam emittance and temperature 

The particle distributions in the transverse and longitudinal phase-spaces is 

 
The beam quality can be characterized by the are in phase-space or by the tempera-

ture of a particle beam which depends on the particle’s average speed v* in the cen-

tre-of-mass frame of the particle beam moving with the average speed rcβ : 

( )*2 * 2 *2 *23 1 1v v v v
2 2 2B x z sk T m m= = + +  
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After applying the Lorentz transformations, we get approximately 
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8.2. Electron cooling 

Invented by Gersh Budker in 1966, first published in Sov. Atomic Energy 22, 1967: 
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8.2.1. Typical set-up of an electron cooler 
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8.2.2. Cooling force 

The force experienced by an ion when passing 

a single electron is 
2 2 2

3 3 3
0 0 0

v
4 4 4

F F
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dt x x xπε πε πε
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= = − = − −
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The longitudinal momentum change can be neglected for small angle scattering (inte-

gral of an odd function), whereas the transverse momentum change is given by 

( )

2 2

3
2 20 04 2 vv
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∫  

The energy loss of the ion which is that gained by the electron is then 
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Now we will regard multiple collisions with all 

possible impact parameters b. The number of 

electrons in the volume 2b dsπ  will be 2
eb n dsπ  

and 2 edn bn ds dbπ=  is the number of electrons 

between b and b+db in ds.  The energy loss per 

unit length can then be obtained by integrating over all possible impact parameters: 
max

min
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mi

2 4
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e e
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where 2 2
min ve ib Ze m=  can be determined from the maximum possible momentum 

transfer to the electron (=2 ve im , head-on collision) and max min( , )e Db r λ= . In general, 

the electrons are not mono-energetic and we have to weight over the electron distri-

bution function ( )
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and obtain for T T⊥

  the friction or cooling force 

22
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where ,T ⊥  is the electron transverse and longitudinal temperature, respectively. 

8.2.4. Characteristics of the cooling force 
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Assuming an exponential decrease of the ion velocity we get for the cooling time 
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8.2.5. Magnetized cooling 

 

Conclusions: 

• ecool rate is linearly dependent on electron density and cooler length 
• ecool rate is more effective for highly charged heavy ions (A/Z2) 
• ecool rate is independent of ion beam intensity 
• ecool is most effective to cool the core of the beam 
• ecool for high energy ions is challenging, because: 

- size of momentum spread of the ion beam is rather limited 
- electron beam energy needs to be significantly high ( e iγ γ= ) 
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8.2.6. Examples 
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Cooling at the GSI 
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Cooling at COSY / FZJ 
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COSY 2 MeV Cooler 
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8.2.7. Future Options 
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8.3. Stochastic cooling 

Simon van der Meer at CERN invented the technique in the late 1970’s. The required 
technology was developed there, and applied to the CERN proton-antiproton collider. 

 
A feedback loop uses an electrical signal from a pick-up that an ensemble of particles 
generates to reduce the tendency of individual particles to move away from the other 
particles of the beam. 
It is important to mention here that the phase advance between pick-up and 
kicker should be an odd multiple of π/2, so that a maximum transverse offset at the 
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pick-up can be counteracted by a transverse kick in the kicker reducing only the 
transverse momentum of a particle. 

8.3.1. Schottky noise 

Measurement of the charge center of an ensemble of particles: 

1 1

1 1 cos
S SN N

i i i
i iS S

x x A
N N

φ
= =

= =∑ ∑  

 
Beam position for a beam with 10 (green), 100 (blue) and 10.000 (red) particles 
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Due to the finite sampling time interval TS, we will always record mean positions of 

sub-samples of particles: 

 
 

Due to the relatively small number of particles in our sub-sample we have important 

changes in the statistics! Given a beam of N particles, we get for the expectation val-

ues [ ]...E  of a random sub-sample of NS particles (note the remarkable difference in 

the last term!): 
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beam with N (→ ∞) particles 
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8.3.2. Betatron cooling 

Let’s assume when a particle passes through a Stochastic cooling system, i.e. pick-up 

and kicker, the position at the pickup at ( )1 thk +  orbital revolution 

, 1 , ,i k i k i kx x g x+ = − ⋅  
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where ,i kx  is the particle’s position at the pick-up in the previous turn k, and ,i kg x⋅  is 

the equivalent change of position due to the deflection of the kicker, g is called the 

gain of the system. 

Now, let’s look at the case of Ns particles passing the pick-up within the same sam-

pling period Ts, as illustrated by the right figure. In general, Ts is way shorter than the 

revolution period of a particle. In this case, the effective deflection of the kicker after 

one orbital revolution is g x⋅  , where 
1

1 SN

i
iS

x x
N =

= ∑  

is the mean position of this sample of the beam. In this case, the ith particle position is 

, 1 ,i k i kx x g x+ = − ⋅  

and the variance of its amplitude is 
2 2 2 2
, 1 ,2i k i i kx x gx x g x+ = − +  

and the change of the variance of the sample is 
2 2 2 2 2

, 1 , ,2i i k i k i kx x x gx x g x+∆ = − = − +  



Advanced Accelerator Physics 
 

Module 66-252                                                                                                                      W. Hillert 98 

Averaging over one sample, one gets 
2

2 2 2 2

1 1 1
2 2

S S SN N N

i i
i i is s s

g g gx x x x x x g x
N N N= = =

∆ = − ⋅ + = − ⋅ +∑ ∑ ∑  

Stochastic cooling is a slow process, which requires many turns. Since we are only 

interested in the long-term behaviour, we regard the average over many turns. Doing 

so, we replace the sample averages by their expectation values for random samples 

and obtain the “expected cooling rate / change per turn”: 
2

2 2 2

1 1 1

1 1 12
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x i i i
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∑ ∑ ∑E E E  

and using the above findings for uncorrelated particles 

( ) ( )
2 2

2 2 22 2rms x
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S S

xg g g g
N N
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8.3.3. Cooling rate and bandwidth 

The number NS of particles in the ensemble is determined by the sampling time ∆t of 

the pick-up electronics. It is connected to the frequency bandwidth W by 

1
2

W
t

=
∆

 

If the ring is filled with N particles revolving in the revolution time T0, we have 

0 0 02
S

S
N t t NN N
N T T WT

∆ ∆
= ⇒ = =  

So, the cooling rate of the beam emittance, i.e. 22 2
,0

x
t

x x e τσ σ −
= ⋅  , is 

( )
2

2
2

0

1 2 2 2
Sx

g g W g g
N T Nτ

−
= = −  

We conclude the following points: 

 the maximum cooling is when g = 1, i.e. 
2 ,max

1 2

x

W
Nτ

=   
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 to keep the same cooling rate, higher bandwidths are required for more parti-

cles. Hence, high frequency signal processing and large bandwidth are pre-

ferred. Common values are 2-8 GHz. 

8.3.4. Electronic noise 

Appears as additional, uncorrelated contribution to <x> such that <x> → <x>+xn.  

Therewith we have to modify the correction to: 

( ) ( )22 2 2
, 1 , 1 2i k i n i k i i n nx x gx gx x x gx x x g x x+ += − − → = − + + +  

2 2 2 22 2 2n n nx g xx g xx g x xx x∆ = + + + +   

Using 0nxx =  , 0nxx =  and defining 2 2
nU x x=  we obtain straightfor-

ward 

( ){ }
2

21 2 2 1
x

W g g U
Nτ

= − +  
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8.3.5. Mixing 

Mixing is caused by the different speeds of the individual particles. It is absolutely 

essential! Without mixing and assuming “complete” correction, we would get almost 

no Schottky signal after one turn! The cooling would stop more or less immediately! 

This does not happen due to mixing: In a coasting beam with finite momentum 

spread, the difference in revolution period is 

T p
T p

η∆ ∆
= −  

Defining the mixing factor STM
T

=
∆

, we get using 

1 1 1 1 1
2 2

Sp T T M
p T M T M WT WT p p

η
η

∆ ∆
− = = = → =

⋅ ∆
 

An individual particle remains M turns with its noise neighbors! Therefore, the “in-

coherent” effect is enhanced by M, leading (assuming g << 1!) to 
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( ){ }
2

21 2 2
x

W g g M U
Nτ

= − +  

Mixing has as well an impact on the “coherent” effect, as it occurs as well between 

pick-up and kicker. Defining L as the distance between pick-up and kicker and C as 

the circumference of the ring, we can define an “unwanted” mixing factor M  by 

1

C

T L CM M
T CM M L
∆

= = ⇒ =


 

And using a parabola model, the coherent effect decreases according to 

2
12 2 1g g

M
 → − 
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We then get finally for the cooling rates 
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8.3.6. A more thorough treatment of mixing 

We will try a more comprehensive treatment, assuming that the cooling feedback acts 

on an unchanged ensemble for M turns, which, after M turns, is replaced by a (statis-

tically) new one. We then obtain for the mean displacement after the last turn 

, 1 , , ( 1) {1 } ( )i k i k i kx x g x x k g x k+ = − ⋅ → + = − ⋅  

 and the mean quadratic displacement 
2 2 2 2 2 2 2 2
, 1 ,2 ( 1) ( ) {2 } ( )i k i i kx x gx x g x x k x k g g x k+ = − + → + = − − ⋅  

But this can be related to the correction which has happened one turn before, using 

( )22 2( ) 1 ( 1)x k g x k= − ⋅ −  

2 2 2 2( ) ( 1) {2 } ( 1)x k x k g g x k= − − − ⋅ −  

thus giving 

( )22 2 2 2( 1) ( 1) 1 1 {2 } ( 1)x k x k g g g x k + = − − + − − ⋅ −   

The generalisation to M turns is straightforward, giving 
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( )2 22 2 2 2

1
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=

= − − ⋅ − ⋅∑  

Again, we rewrite this as the overall change in the quadratic displacement, which 

now has happened over M turns (which approximately equals M identical changes 
2x∆  per turn) 
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and get, after building the expectation values 
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Straightforward we derive for the cooling rate (without signal noise and unwanted 

mixing) 

( )
2

2 2 2

1

1 2 1 1 {2 }
M

j

jx

W g g g
N Mτ

−

=

= − ⋅ −∑  



Advanced Accelerator Physics 
 

Module 66-252                                                                                                                      W. Hillert 105 

In case of weak amplification 1g  , we can express the sum as follows: 

 
( ) { } { } ( ) { }
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Thus giving approximately 

( ){ }
2

21 2 2 1 2 1
x

W g g M
Nτ

≈ − + −    

Now, we have overestimated the effect, assuming that the ensemble will remain un-

changed for M turns, which leads to an additional “incoherent” contribution (g2 term) 

of ( )2 1M − . In fact, after M/2 turns already half of the ensemble has been replaced. 

A more realistic approach would therefore assume about half of this additional con-

tribution and – there we are: 

{ }
2

21 2 2
x

W g g M
Nτ

≈ −   
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8.3.7. Longitudinal stochastic cooling 

Palmer cooling (Robert Palmer): Correlation between position and momentum → 

pick-up at position with large dispersion function Difference signal of the pick-up is 

used. Longitudinal kicker at position with zero dispersion kicks the whole momentum 

distribution → acceleration/deceleration kick. 

Filter cooling: Correlation between circulation frequency and particle momentum is 

used. The sum signal is attenuated by a notch filter which creates harmonics of nomi-

nal revolution frequency 
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Particles with correct energy are not affected due to gain suppression by the notch 

filter → particles are forced to circulate at the nominal frequency: 
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8.3.8. Examples 

Stochastic cooling at COSY / FZJ: 
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