Advanced Accelerator Physics

7. Effects of radiation

In this chapter consequences of synchrotron radiation on longitudinal und transverse
beam dynamics are investigated. The radius of the particle’s trajectory depends on its
energy. Therefor one expresses in the relation for the radiated power

e’cp* E*

P — —
672'80(m0 C2)4 R’

L

the radius R by the magnetic field and the energy of the particle

1_egp_ec, . E_é&dy
R p PE R? B
and obtains
4 .3 2
P — e cC ﬁ 'E2'82

From here on we will put g ~1 for simplification purposes.
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7.1. Damping of synchrotron oscillations

The equation of motion of the longitudinal oscillation is in linear approximation
A + 2a,-Ag + Qf -Ap =0,

what can also be written for the energy deviation as
AE + 2ag-AE + Q%-AE =0

because of AE ~ A¢ . The damping constant of the longitudinal oscillation is

L o L AW(E)
> 2T, dE

Calculating the radiated energy W per turn one has to consider that a particle with en-

ergy deviation moves on a dispersion orbit with the beam displacement

ap B AE

-~

ax=D-22 Z piE
Po E,

In a bending magnet, it covers a distance of
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ds” = (1+ A—) ds.
R

Hence, the following equation holds true for the radiated energy:

F ds” 1 A D AE
W = !;Pidt - gf)PLTS - Ecj}ﬂ(ﬂ%jds - CJSPL(HEE—]ds.

0

For the radiated power, it applies in linear approximation

P =PFR+ dPO AE + ﬂAB
dE dB
and with
AB = dB —AX=D- Ed—B
dx o dXx
as well as
° L, L1dB R
__ecdB B dx
E,. dx
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it yields for W again in linear approximation (in AE ):

W :1<j> P+ PBE 9% A _9% bk RAE |gs.
c RE, dE dB E,

Since d/dE = d/dAE and P, ~ E*-B? one obtains:

dW(EO)Zqu 2R, _2RkRD RD),
dE ¢y E E RE,

0 0

The energy W, is radiated along the design orbit:
1
—~pP,ds =W(E,) =W,,
—fRyds = W(E;) = W,

and thus it yields

aW(E,) _ 2W, , 1 gSPOD(—ZkR+£j-dS
dE E,  CE, R

Thus, we obtain for the damping constant:
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o oo L AW(E) _ 1 W,
2T, dE 27, E,

(2+D),

whereas the variable @ represents the additional optics contribution:

1
1<JSP0 D (—Zk R+Rj ds

D - 2 g[)POD(—ZkR+ljds ==
cW, R C

o ®

and with B, = const % we obtain for the optics expression

> ¢ D/R-(/R*~2k)ds
- $1/R?ds
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7.2. Damping of betatron oscillations

As the synchrotron radiation is emitted in course, the momentum of the particle is
decreased by emission of a photon. However, the post-acceleration in a cavity re-

stores only the longitudinal momentum:
7 A

wnv
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So, the small angle z° of the particle’s momentum is decreased with respect to the s

axis for the absolute value

P pL_api — 5pj_.
P Py Py

The dispersion must be taken into consideration for a detailed treatment. We will first

5] -

concentrate on the vertical plane where D = 0 and later derive its additional contribu-

tion in the horizontal plane.

7.2.1. Vertical plane

The vertical betatron oscillation of a single particle is described by:
z = \J& B(s) -cos(¢(s) +¢,)
7 = _ /% [sin(g(s) + ¢, ) + a(s) cos(¢(s) + ¢, )}

With the definition of the oscillation amplitude A = /& B(S)
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and the well-known relation for the emittance
g, =y1° +2a17 +p7?

we have

A’ = By1*+ 2017+ 5°77|.

After one turn, one yields with 5pl/5pH ~ Z aswellas c-op, = W,:

oz =0, o7 = —z’%.
EO
This results in an amplitude variation per turn of
2 2
SA? = 2A.-5A = P ss. aA, 57 = —(2aﬂzz'+2ﬂzz’2)%
0z 0z E,

Averaging over all possible oscillation phases, one yields

<zz'>rev = —%ag, <Z'2>rev = %5}/.

and inserting this into the relation for §A?
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<§A2>rev - (—azﬂg +ﬂ278)% = ﬂzg(_a_z_'_ 1+a2j%: ﬂg% =

0 g B )k E,
one gets a medium amplitude variation per turn of
(OA)e _ _1W,
A 2E,

Divided by the revolution time, one obtains the damping constant

Wo
EO

A2

7.2.2. Horizontal plane

In the following, we replace the coordinate z by x. Thus we obtain firstly the same

expression for «, as in the vertical plane. Because of the not vanishing dispersion the

dispersion orbit changes additionally during the emission of a photon of the energy
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o¢ and by this way, it creates a variation of the position 6x and of the angle 6x" of
the betatron oscillation:
OX = —O0X, = —Dﬁ, OX = -6x, = _D'ﬁ
E E

0 0
The additional variation AA of the oscillation amplitude A=./s5 can be calculated
out of (see above)

A’ = Byx*+ 2aBxX+B°X?
to
08

0

2A-AA = —{(Zﬂyx + 2aﬂx’)D+(2aﬂx+2,B2x')D'}

Since the emitted energy o¢ depends on the beam orbit, this effect has to be explicit-

ly considered. Hence, we again expand P, as a function of x and obtain in linear ap-

proximation
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2P, dB
P =P +—2—-x=PR-(1-2kRX).
% B, dx o )
The energy loss in a small track segment ds” is
de = —i-ds'
C

and with the geometric relation (see above)

ds” = (1+lj-ds
R

one yields
e = _&-(1— 2k R x +1j-58-
C R
thus giving
2 AAA = ﬁ(l _ 2kRj{(ﬁ7x2 + a,Bxx') D+ (oz,Bx2 + ﬁzxx') D'}
cE,\ R
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After averaging over the betatron phase, we get with (xx') = —%ae, <x2>rev =~ab
P (1 :
<AA2>reV = C_EOO(E —~ ZKRJ{((L:,BZ;/ —~ gazﬂ) D+ (gaﬂz — gaﬂz) D } .08
P, (1
=21 —-2kR D
CE, ( R jgﬂ

and after the integration over one turn it yields:

<AA>rev _ 1 ¢POD(£_2kRde = WO D.
A 2CE, R 2E,

Using this additional term, one gets the following damping constant of the betatron
oscillation:
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7.3. The Robinson theorem

For a plane accelerator we have obtained:

o =3 with 3 =240
2E,T,

=y with 3, -1-0
2E,T,

@, = b3 with 3, =1
2E,T,

From this results J; + J, = 3. Neglecting the constraint on plane accelerators, the

Important theorem evolved by K.W. Robinson still holds true quite generally:

Jy +J, +Jy =4

In the following, the consequences shall be investigated exemplary:
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7.3.1. Radiation damping at weak focusing

Introducing the field index

n=——— = n = k-R?

one yields for the @ -parameter

D
— 1_2n).d3 R=const.
95 5 a 1 D
D =-R = ——-P(1-2n)-—-ds.
ds 27R <ﬁ( ) R
RZ
Out of the definition equation of the dispersion function we obtain

D~ +(i2—kj- D = 1
R R
and by integration because of the periodic boundary condition g[)D”ds =0

gﬁ(iz—kj-D-ds )
R R
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Hence, it applies for an isomagnetic magnet structure with weak focusing
(ﬁ(l—n)%-ds = 27R.

Since the field index remains constant within the bending magnets, one yields

1-2n

D = .
1-n

Thus, we obatin for the damping constants of a weak focusing circular accelerator:

_.n 3—4n
1-n

‘JX

7.3.2. Radiation damping at combined function accelerators

Again for simplification purposes, we only consider the isomagnetic case, express the

@ - parameter in dependence of the field index
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D=1 (1—2n)-2-ds
27 R R

and use deduced above
gS(l—n)%-ds = 27R.

As the field index does not remain constant in the bending magnets at strong focusing
any longer, using the momentum compaction factor we get
CﬁD -ds

D=2 TR ___p %l
27R 27R

Since typically . <1, then @D ~ 2, and for the damping constants holds true:

Jy = -1 J, =1 Js = 4
= The horizontal betatron oscillation is dedamped!!!
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In a classical synchrotron (combined function) the beam remains stable because of
the short dwell time and the adiabatic damping. However suchlike accelerators are

not suited as storage rings!

7.3.3. Radiation damping at separated function accelerators
At accelerators with separated dipole and quadrupole magnets, k/R =0 holds true. It

applies for the @ - parameter again in isomagnetic approximation

D
(jSR-dS oL
27 R 27 R

Usually, . <1 is also in this case and therefore @ ~0. Thus one gets a “natural

damping distribution®

Jy =1 J, =1 Jg = 2
= Damping in all 3 oscillation planes
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Because of this advantage not only storage rings but also synchrotrons are built as

seperated function accelerators in the meantime:

]

]
124 oxlmm) 174 9x [mmil

ny E£:7,86eY By-10m 1 € : 9GeV Py :i0m
Jx=-095 frep= SOHz f,ep 212, S Hz

. > 0 >
1 2 3¢ 5 6 718 9 0ms L 8 12 16 20 2t 28 32 36 (Dpmg

Variation of horizontal beam size with time during the acceleration cycle in the DESY I
(left) and DESY II (right) synchrotrons [24]

At electron accelerators the damping distribution can be varied by shifting the beam

to a dispersion orbit. This can happen by variation of the radio frequency. Because of
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AL Af L AE

(04
L f E

a horizontal beam displacement arises at a frequency variation Af

D Af

D
a. f

The beam does not proceed on the magnetic axis of the quadrupoles anymore, so that
the quadrupole magnets operate as a superposition of a quadrupole and a dipole and

that k/R = 0. Thus the accelerator passes increasingly into a combined function ma-

chine. Hence the @ - parameter and the damping distribution vary.
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7.4. Enerqy distribution in longitudinal phase space

On the one hand the longitudinal energy oscillation is damped by the emission of
synchrotron light und the restoration of the longitudinal momentum, on the other
hand it is also excited by the stochastic process of the radiation of energy quanta. In
the following we examine the temporal variation of the medium quadratic energy:
Radiation:

Because of the damping the amplitude of the oscillation decays exponentially:

~ ~ A2 ~
AE(t) = AE(t,)-e =™ = ddAtE = — 20 - AE’

Excitation:
With the emission of a photon of the energy ¢ the mean quadratic amplitude of the

energy oscillation varies:

Module 66-252 44 W. Hillert



Advanced Accelerator Physics

Per time unit n(e)-de photons are emitted in the energy interval [g,g + dg]. Hence

the resulting medium amplitude variation per time unit is
d(AE?)

d{——714 = ¢g%.n(e)-d
. 1t g -n(e)-de

And after integration over all photon energies of the spectrum one yields

—d <dAfz> = ng-r'l(g)-dg =N -<82>

0

Excitation and damping of the longitudinal oscillations compensate each other in

equilibrium:

A~

N<52> — 204 <AE2> =0

Module 66-252 45 W. Hillert



Advanced Accelerator Physics

For the calculation of N (&”)= Igz f(g)de we revert to the results of chapter 6. With

the dwell time T in the bending magnets and

. 1 dP, 1 dlI 1 c dlI
nie) = —- = : :
e de¢ hgT da) hie 27R dow

and execution of the integration one gets

. 9[ Pt 55 y'
N (&? dx- K., (X) = ——=ha, P, ~ ~—.
/3 c 0
< > E[ g/;!‘a)c 4\/5 R3
For this reason, the mean quadratic amplitude of the energy oscillation is
1
AE? ——N o, P,.
< > 20 < > 48\/_053

The damping constant ¢ is linked with the energy radiation W, per turn, and with
W, =(PR,)-T, one yields

oW (RN (R)
> 2T,E, 2E, 2ym,c® °
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For this purpose, the radiated power must be averaged over one turn:
(R) 1

R R

The energy width of the beam adds up at sinusoidal energy oscillations to the half of

P =

the quadratic amplitude (c.° = <AI§2>/2), and after inserting the critical frequency

@, = 3c;/3/2 R and average determination one gets for the relative energy width:

o’ 55  hcy’ (URY)
E? 3243 Jymyc® (1/R?)

If all bending magnets are equal (i.e. same length and same bending radius), it yields

JET_ 55  hcy’ 1
E

" 3243 J,m,c2 R’

what can be expressed (for electrons) by
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2 2
(&) =C,- 4 with C,~3.84-10"m

approximately.

Thus the relative energy width grows linearly with increasing energy!

The order of magnitude is typically = 0.1 %.

Since energy width and bunch length are directly linked with each other (see chapter
5.3.2), one gets for the standard deviation (FWHM/2)

o = & 2rnkE, (O'Ej
> @,\heU,cosp, \ E

The resulting natural energy and intensity distributions are Gauss-shaped!
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7.5. Natural beam emittance

By the emission of synchrotron radiation, the transverse betatron oscillation is

damped but also excited simultaneously because

1. the photons are not emitted exactly into the course of the electrons, but in a

cone with the angle of aperture 2/y,

2. the dispersion orbit and therewith the betatron amplitude varies at emission in

dispersive sections.

The 1% effect can be neglected compared to the 2" one.

Ablenkmagnet
- nq%ne Photon

e 23 \"“\\; A p

Po-Ap

Teilchenbahn
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As a result of the variation of the particle’s energy the betatron amplitude increases.
The easiest way for its determination is the determination for one particle circling be-
fore the emission with design momentum on the design orbit. After the emission it is

resided on a dispersion orbit with

OX = ﬂ, oX = D'ﬂ.

Po Po

Dispersions-
bahn

A

Y
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The excitation results from the increase of the horizontal oscillation amplitude

SA? = y-6X% + 2a-5X5X + B-6X?

2

_[2p (7-D* + 2a-DD" + p-D?)
Po
5 2

= | 22| -916s)
Po

Since Ap/p, = AE/E, holds true for ultra-relativistic particles, one obtains analo-

gously to the determination of the longitudinal energy distribution with

&,=(A2) /2 and 6&2=é—22-5’-[(s) - <A&2>:%-$-7{(3)

55 ey’ _<%¢3'7[(3)>

_[{4F%) a, _
8X_<ff'g—x'ms) 2B Lme (1)
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If all bending magnets have the same bending radius R and the same length | the fol-

lowing equation applies approximately

. E’[GeV] |
g[m-rad] = 1,47-10 -W-}[H(s)-ds

Therefore, a small natural emittance requires small beta functions and small disper-
sions (design of the magnetic structure!)

The emittance can also be decreased by variation of the optics. By way of example
we examine here a FODO structure consisting of 16 dipoles (length 1.5 m) and 16

quadrupoles (length 0.4 m) with drift spaces (length 0.55 m) between the dipoles and

the quadrupoles (cf. Wille). Stable solutions exist for 0.4m™ < |k| < 1.6m™:
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100 : _ ‘ 20
| | | | 2
_ 15
T 10 A\ :
é | 10
7 1
W
& =
/ Sx

2 0
l k [Iﬂ '] 2 ] l ke [m'

Increasing k the values of g , D decrease and therefore the emittance, too.

But also the chromaticity increases (especially the vertical one).
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7.6. Synchrotron integrals

The relations deduced in the precedent paragraphs can also be expressed in a general

form by the so called synchrotron integrals J. :

~ D - ds - ds
%= s e .

- D1 1-2n)D

154 = CJSE(E_Zk)dS = (ﬁ%ds

Js = @%ds Js = Pk’ D*ds
Hence one obtains with
55 1
3243 mc

the following relations (where r, =1/(47, -mc?), the class. electron radius):
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Damping parameters:

J,=1--+% J, =1 J =244
152 ‘52
Damping times:
3T, 1 3T, 1 3T,
T = 3~ o~ T, = 3~ s = T o) p~
r87 ‘52 _‘54 re7/ ‘52 rej/ 2\52 +\54

Relative energy width:

O
E0

Natural emittance:
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7.7. Beam lifetime

Because of limitations due to the aperture or due to the overvoltage factor one ex-

pects a finite lifetime of a stored beam:

7.7.1. Limitation due to betatron oscillations

A Gauss-shaped intensity distribution in the transverse phase space results from radi-

ation processes. In the following we investigate only the horizontal phase space be-

ideal

cause &, — 0. The equilibrium emittance &, is the area in the phase space normal-
ized to 7 for 1o - deviations in the displacement o, =,/f ¢, and in the angle

Oy =V & -

g, = yX +2axx+Bx?|.

A particle is characterized by its phase space trajectory and thus by its individual

“emittance* €. The maximum feasible displacement is then
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Xmax2 = ﬁ'e
The distribution function in the horizontal phase space reads (c.f. Hinterberger):

XT[UX’I}‘( X raxx + px

, LIS

p(X,X) = ——-e = e x :
27, 27e,

X

which can be transformed with z-d € = dx-dx" into the following distribution func-

tion:

p(e)-de:i-e_rgx-de.
2¢

X

In the case of equilibrium, it applies for the particle flux
N (€, -6 e, +5€) = N (e, +6 e—>ey - €).
The latter can be calculated out of the oscillation damping:

ON .86

N(eo +6e—>eg, 0 €) = 5 ot
e -

So
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and with
TN ple) = e
oe :
as well as
be al. =2 2
—_— = —X< e X [
ot ot T,
one gets:
N=_tCSez.n=_Ln
TX SX T

If the horizontal phase space is limited by the aperture x__, it applies

max !

izﬂeo Xmax

e, Pes, o’

X

and we obtain for the lifetime-time constant:
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5/2 ?
Tzrx-e? with §:(ﬁJ :

Oy

For a typical damping time of a betatron oscillation of z, =10 ms one gets:

Xoax / O 5.0 5.5 6.0 6.5 7.0

lifetime 7 1.8 min 20.4 min 51h 98.3h 103 days

Herefrom follows the golden rule for high lifetimes:

Kmax 5 65,

O-)(

In practice, the available aperture has to be slightly larger in order to have some safe-

ty margins for beam steering and dispersion effects.
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7.7.2. Limitation due to energy oscillations

In the longitudinal phase space, a Gauss-shaped intensity distribution arises, too.

Here we examine the two parameters Ag und AE , whereas they are linked each oth-

er by (here g is the Lorentz factor!)

1

Ap =T % Ap & Lo O AE
B -Eq E,

(cf. chapter 5.3.).
In linear approximation it holds for the synchrotron oscillation in the case of equilib-
rium

Ap + Q2 Ap=0 = 1A¢2+£QZ-A¢2:const.
S 2 25

Expressing A@ by AE, an invariant oscillation amplitude (and thus also the longitu-

dinal emittance) may be defined:
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2 ! . 2
g = AE2+[—QS on AQ° =0’ = (—QS B -G{J
Qg - Wpe Q. - Wre

Here a particle can also be characterized by its phase space trajectory und thus its in-
dividual “emittance” <. Here the maximum feasible energy deviation adds simply
up to

AE, .’ = €.

For the distribution function we can write a duplex Gauss distribution

1 1 a5 =
p(A(O,AE) _ _ . _ e 20, .e 20E2
\/27za¢ \/272'(7E
: Qs -E, O¢ .
and with 7-d g, = -d(A@)-d(AE)=—£-d(Ap)-d(AE) we obtain:
a, - One o,
1
p(&s) = 50 € o
S
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Totally analogous to the transverse phase space one gets for the lifetime time con-

stant

£/2 2 2
T = T4 e? with é: = 6—52 = [_AEmax)
Es Og

In isomagnetic approximation one can express this with the handier parameter of the

overvoltage factor q as

‘= 3243 .ers'n%,JS;R.z{\/E—arccosl},

- 55zhc  ha, Y q

=F(a)

whereas F(q) is denoted as energy aperture function.

Since the energy loss per turn must be compensated by the acceleration, it is neces-

2 4

sary eU,sing, = ;—% and one obtains finally

&y
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/2 2 )
ror 8 with =32 7 pg)
557/37&,hC o, -h
~0.01

7.8. Diminution of the beam emittance

Small beam emittances are vitally important designing synchrotron light sources as

the users are interested in a high beam brilliance:

N, /(0,1%BW) |

B = >
droe, g, |

Planning a magnet structure one has to pay attention on a preferably small dispersion.
In the following, we will discuss suitable achromatic systems, mainly based on the
double bend achromat approach used for third-generation synchrotron radiation

sources
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7.8.1. Dispersion suppression

It makes sense (also for the installation of wigglers / undulators) to have a preferably

large number of dispersion-free sections, optimally behind every 2" dipole magnet:
3.0

D |m]

30

P [m]

25

Lh

L2
)

204

101

Q1 Q2 BD Q3 BD Q2 QI
W. Hillert
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The beta function should be preferably small (preferably high quadrupole gradients),
but not at the expense of the dispersion!

Because of symmetry reasons it is sufficient to examine only one bending magnet:
A

p

D

Ablenkmagnet
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We obtain of the horizontal transfer matrix with

cos% R-sin% R-(l—cos%)

D(s) . D,
D'(s) | = _Z.sin> cos> sin— | Dy
R R R R
1 1
0 0 1

and the initial conditions D, =0, D,’=0 the trend of D in a bending magnet:

2
D(s) = R- 1-cos~ | ~ S—, D(s) = sin~ ~ ~ |,
R 2R R R

Out of it one can only find out that the bending magnets should have a preferably
short length. Thus the influence of the beta function seems to be essential. Falling

back to the concept of the beta matrix we obtain with

B, =M-B,- "M
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and the approximation R-sins/R ~ s in the transfer matrix M of the rectangular

B) —a(s)) (1 s\( B -a)(1 0
[—a(s) 7(8)]_(0 J'(—ao yoj'[s 1]

the expansion of the Twiss parameters in the bending magnet:

magnets

a(s) = ay—7,8
B(s) = B, _2a03+7052
7(s) = 7
For the horizontal emittance the following equation held in isomagnetic approxima-

tion:

55
“ 73203 myc leﬂ(s) as):

and by inserting the " - function
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H (s) = r(s)-D*(s) + 2a(s)-D(s)D(s) + B(s)-D™(s)
= %.(%.34 _ao .53+ﬂ0 .32]
one gets with the angle of deflection & = I/R of a dipole magnet:

g =2 gl %
3243 m,c 20 4 3l

Thus the emittance only depends significantly on the initial values yet and becomes
minimum d¢, /0, =0, d¢&,/0 B, =0. This results:

3
= 2,/=-1 ~ 1,549
g, =mn < bo \/;
a, = /15 ~ 3,873

In practice one deviates marginally from these values, since the chromaticity would

trend to extremely high values in case of the optimum initial values «,, f,.
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7.8.2. Common lattice options

Achromat Symmetry Point———>» 4'\
___—Dispersion Function

-‘.le"____

1/2 Insertion Straight
-

1/2 Insertion Straight
<

Achromat Symmetry Point———>

Dispersion Function

s
A\

™

T
|
/

1/2 Insertion Straight]

1/2 Insertion Straight
/ -« >

|
|
|
|
|
|
|
|
|

\/

|
< > |
|

/ A\

3 f >
. . Achll'omat
<€——Insertion Symmetry Point

Achromat
<€—Insertion Symmetry Point |
|

-
-

DBA:
double-bend achromat

TBA:
triple-bend achromat
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In the following some examples of magnetic structures of synchrotron light sources

are presented:

30 A

B (m) -
20 -

Magnetstruktur der ,European Synchrotron Radiation Facility“ in Grenoble
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3 Generation Rings (Current and Future)

MAX-4  (2016) 3GeV
£,= 0.2-0.3 nm, ¢,= 8 pm, =500 mA

ALS (1993) 1.9GeV
SLS (2002) 2.4GeV £,= 6.3 (2.2) nm, £,=30 pm,
£,=3.9nm, £, =72 pm, =300 mA  1=500 mA

B _%
NSLS-II  (2013) 3GeV
e,= 0.6-1.1 nm, ¢,= 8 pm, [=500 mA

Diamond
(2007)

3.0 GeV
e,= 3.0 nm,
e,= 30 pm,
[=300(500)
mA

Soleil (2008) 2.75 GeV APS (1995) 7GeV

e,= 3.7/5.6 nm, Ey=3? pm, o = .
|=400(500) mA & 2.5/3 nm, g, 25 pm, 1=100 mA

Advanced Light Source . steier, FLS 2012, Uttimate Rings Comparison, 2012-03-06
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PETRA IIl @ DESY

e - y s T —

= S VY G

ex=1.0 nm, gy = 10 pm damping wigglers!
I =100 mA

PETRA Il (2009) 6 GeV : ‘%f‘ﬁi{
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7.8.3. Multi-bend achromat concept

The MBA concept is based on the idea to break the dipoles into shorter magnets sepa-

rated by focusing elements. Matching sections assure zero dispersion in the straights:

Dispersion Function

1/2 Insertion Straight A / 1/2 Insertion Straight

|
|
|
|
|
/N .f N/ ‘“‘*:“" | \“\5 ﬁ;"f \\ [4_’

>

Achmhw at

<«€—Insertion Symmetry Point
|

In order to safe space, the unit cells have defocusing bending dipoles!
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The first source of this kind, which came to operation last year is:

—— BetaX —— Beta¥ —— 10=DispX

Machine Functions, m
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An overview over existing storage ring light sources and planned upgrades gives the

following figure and table and figure:

Table 1. Summary of various present and next-generation storage ring light source designs, without

intrabeam scattering. M = ¢ C?/E? is given in units of pm km?/GeV?

Name Energy Structure C € M o Comments

GeV km pm %
ESRF 6 2-BAx32 0.845 4000 67 0.11  Inoperation
APS 7 2-BAx40 1.1 3100 84  0.096 In operation
PETRA III[9] 6 FODO/2-BA 23 1000 338 0.1 In operation
DIFL[7] 3 7-BAx12 0.4 500 3.6 0.08
NSLS-II|6] 3 2-BAx30 0.792 500 28  0.099 Eight wigglers
MAX IV[8] 3 7-BAx20 0.528 263 43 0.096 Four wigglers
USRLS[23] 7 4-BA x50 2.0 300 49 2 No nonlin. optim.
XPS7[24] 7 6-BA x40 1.1 78 2.1 0.176  Poor nonlin. dyn.
Tsumaki 2006[25] 6 10-BA%32 2.0 35 7.8 0.089  Accumulation possible
USR7|21] 7 10-BAx40 316 30 19  0.079 On-axis injection
PEP-X ultimate[29] 4.5 7-BAX48 22 24 12 0.13
IU ring[30] 5 10-BAx40 266 9.1 6.9 0.038
TUSR[31] 9 7-BAx180 621 29 8.6  0.096 ~Size of Tevatron
SPring-8 11[32] 6 6-BAx48 1.4 67 5.1 0.096 Replaces SPring-8

(from Borland, J. Phys. Conf. Ser. 2013)
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FOCUSED BEAMS
Five synchrotron facilities are developing special magnets so that they can become ultimate storage rings.
. _ : MAX IV
Clrcumierence Lund, Sweden
2 US$52 million
2015
APS (UPGRADE) ESRF (UPGRADE) SPRING-8 (UPGRADE)
Location: Argonne, lllinois Grenoble, France Harima, Japan
Cost: US$391 million US$413 million US$450 million
Completion: 2018 2019 2019
515 m (e3—SIRIUS
Campinas, Brazil
US$320 million
2016 p o~ @
AFS, Advanced Photon Source; ESRF, European Synchrotron Radiation Facility.
- \
Generally, the following challenges have to be addressed:

e small dynamic aperture — swap out concept p/ @ @

e intra-beam scattering

e lifetimes, instabilities, ... @\.@
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