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This is a very brief write-up of my lecture notes. It does NOT substitute reading a text book. 

The basic principle of an FEL is energy exchange between an relativistic electron beam and an electromagnetic field inside an

undulator (see section on undulators and undulator radiation). In contrast to the "spontaneous undulator radiation" produced

by the electrons moving in the static magnetic undulator field, the FEL process requires an external, time dependent, EM field

forcing the electrons either to lose or gain energy. Since the energy lost by the electrons goes into a coherent enhancement of

the driving EM field, this process can be understood as induced emission of photons. The alternative process, the electrons gain

energy from the EM field, is a typical absorption process. In both cases, the field energy goes to or comes from the longitudinal

kinetic  energy  of  the  relativistic  electrons,  the  coupling  between  field  and  electrons  is  mediated  by  the  periodic  undulator

motion of the electrons. 

In  the  following we will  look at  the  energy  exchange process  in  a  rather  "classical"  view (neglecting  the  quantized absorption

and emission). The energy lost or gained by the electrons is described by their motion in the "ponderomotive potential" of the

EM  field.  The  energy  gained  or  lost  by  the  EM  field  is  described  by  Maxwell's  equations,  treating  the  electron  beam  as  time

dependent current density. We will show that both energies are of course balanced.   

Ponderomotive Phase and Resonance Condition

Key issue of the FEL process is energy exchange between the electrons and the radiation field inside the undulator. This energy

exchange comes "on top" of the omnipresent generation of "spontaneous" undulator radiation. 

The energy exchange between the purely transverse radiation field Ex and the electrons is due to the transverse velocity compo-

nent vx of the electrons in the undulator magnetic field. The energy exchange rate is given by

dW

dt
= -e vx Ex(t) = -e

K c

γ Cos(ku z) E0 Cos(k z - ω t + ϕ0) (1.1)

with k the wave number of the radiation field and ku the wave number of the undulator. 

The product of cosines in eq(1) can be expanded to 

dW

dt
= -e

K c

2 γ E0(Cos[(k + ku) z - ω t + ϕ0] + Cos[(k - ku) z - ω t + ϕ0]) ≡ -e
K c

2 γ E0(Cos[ψ] + Cos[χ]) (1.2)

While  the  second  Cos  is  always  rapidly  oscillating  for  positive  k,  the  first  Cos  can  be  made  constant  (by  proper  choice  of  k)

leading to a continuous unidirectional energy exchange. 

The phase ψ is normally called "ponderomotive phase", we define it as 

ψ = (k + ku) z - ω t + ϕ0 (1.3)

The electrons move along the undulator with an average longitudinal velocity vz = βc, so the condition for constant ψ reads

ⅆψ
ⅆ t

= (k + ku) β c - ω = (k + ku) β c - k c ⩵ 0 (1.4)

This defines the "resonant k" of the light wave to be 

kres = ku

β
1 - β

≈ ku

1

1 - β (1.5)



The  sinusoidal  motion  in  the  (planar)  undulator  field  results  in  an  average  longitudinal  velocity  (see  notes  on  undulator

radiation)

β = 1 -
1

2 γ2
1 + K 2 2 (1.6)

and  the  resonant  wavelength,  leading  to  a  constant  ponderomotive  phase  according  to  (5),  is  identical  to  the  wavelength  of

spontaneous undulator radiation in forward direction: 

λres =
λu

2 γ2
1 + K 2 2 (1.7)

In  both  cases,  spontaneous  radiation  and  FEL  energy  exchange,  this  is  caused  by  the  requirement  that  the  electrons  "slip"

against the EM field by exactly one wavelength per undulator period.  

If eq. (4) is fulfilled, that is ψ=const, the energy exchange oscillates rapidly according to Cos[χ] around Cos[ψ] as shown in Fig. 1.

For ψ = -π /2, the average energy exchange is zero, for -π < ψ < -π/2 is positive (the electrons gain energy from the field) while for

-π/2 < ψ < 0 it is negative, the electrons lose energy to the field. 
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Fig. 1 : Energy exchange between electrons and EM field as function of the rapidly oscillating phase χ for three different ponderomotive phases. 

You sometimes read, "the ponderomotive phase describes the longitudinal position of the electron with respect to the phase of

the  EM  wave".  This  is  of  course  incorrect,  it  would  mean  that  the  electrons  move  with  c.  A  constant  ponderomotive  phase

means,  that  the  longitudinal  position  with  respect  to  the  wave  is  periodic  with  the  periodlength  λu,  that  is  the  electrons  slip

backward exactly by one λlight  per undulator period. During this slippage, their phase and thus the energy exchanges oscillates

as shown in figure 1. 

For the following it is more convenient to shift the ponderomotive phase by π/2 and define θ = ψ + π/2 such that for θ = 0 there is

no average energy exchange between electrons and EM field. 

Since the electron bunches are very long compared to the EM wavelength, all phases are uniformly populated initially. Along the

bunch  there  will  be  a  periodic  sequence  of  areas  where  the  electrons  (on  average)  gain  energy  and  lose  energy.  On  grand

average, there is no net energy transfer between bunch and field. But the bunch will develop a periodic energy modulation while

moving  along  the  undulator.  Since  the  resonance  condition  for  θ = const.  (eq.  (5))  depends  on  γ,  that  is  on  the  energy  of  the

electrons, this energy modulation causes a non-uniform phase shift 
ⅆθ
ⅆt

 along the bunch. The resulting non-uniform population

in θ, that is a density modulation along z, finally leads to a net energy transfer between electron bunch and EM field. Quantita-

tively this will be studied in the next section.

Before we continue,  a  small  refinement should be mentioned:  Due to the sinusoidal  motion of  the electrons in the undulator

magnetic  field  there  is  on  top  of  the  average  velocity  β c   a  longitudinal  oscillation  with  twice  the  period  ku .  Taking  this  into

account requires some elaborated mathematics (see text books), for the fundamental resonance it leads to a modification of the

K  parameter by a factor often called "[JJ]", we have to replace 

K → K [JJ] = KJJ = K J0

K 2

4 + 2 K 2
- J1

K 2

4 + 2 K 2
(1.8)

with J0 and J1 being Bessel functions.   
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To get a feeling about the strength of the modification as function of K , here a plot: 
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Fig. 2 : Influence of the longitudinal oscillation on the effective K-parameter 

For typical K ≈ 1values used in an FEL the correction is small. 

1-D FEL equations for constant EM field

In  the  following,  we  assume  that  the  EM  field  in  the  undulator  does  not  change  noticeably  during  the  passage  of  one  single

electron bunch.  This  restriction basically  limits  the  length of  the  undulator.  The length scale  of  this  limitation will  be  derived

later.  The results  obtained in this  section apply  to a  typical  "FEL oscillator=FELO",  where a  short  undulator  is  placed inside a

resonator cavity for the EM field. The field in the resonator changes little from the passage of one electron bunch but piles up to

very high levels after the passage of many bunches. After we got the theoretical model done, we will have a more detailed look

into the behavior of such a FELO.

Pendulum Equation and Phase Space

As indicated above, the interaction of the electrons with the EM field induces coupled phase and energy modulations. 

So we introduce the relative energy deviation from the "resonant energy" 

η =
γ - γr

γr

(1.9)

Together with the ponderomotive phase θ,  that is the longitudinal position with respect to the phase of the resonant EM field,

this pair defines the "longitudinal FEL phase space".  The phase space motion with z (the coordinate along the undulator axis)

as independent variable is given by the two coupled pendulum equations

ⅆη
ⅆ z

= - ϵ Sin(θ)
ⅆθ
ⅆ z

= 2 ku η
(1.10)

with ku the undulator wave number and ϵ 

ϵ = e E0 KJJ

2 m c2 γr
2

(1.11)

with E0 the (assumed constant) EM-field strength and K  the undulator parameter. 

(The  name  "pendulum  equations"  comes  from  the  fact  that  these  are  the  equations  of  motion  for  a  rigid  pendulum

(Schiffschaukel)). 
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getting the pendulum equations

Phase equation : 

We start from eq.(4) switching from ψ → θ : 

ⅆθ
ⅆ t

= (k + ku) β c - k c (1.12)

As a short term abbreviation we use 

X =
1

2
1 + K 2 2 (1.13)

and can write from eq (6)

β = 1 - X γ2 (1.14)

and from eq. (7)

k = ku γr
2 X (1.15)

Inserting (14)  in (12) we get 

ⅆθ
ⅆ t

= c ku -
(k + ku) X

γ2
≈ c ku -

k X

γ2
= c ku 1 -

γr

γ
2

(1.16)

where we have made use of ku << k . 

According to (9) we have γ = (η + 1) γr  or 

γr

γ
2

= (η + 1)-2 ≈ 1 - 2 η for η << 1 (1.17)

Which results in 

ⅆθ
ⅆ t

= 2 c ku η (1.18)

or with dz = c dt   finally 

ⅆθ
ⅆ z

= 2 ku η (1.19)

Energy equation : 

ⅆη
ⅆ t

=
1

γr

ⅆγ
ⅆ t

=
1

γr

ⅆ W

ⅆ t

1

m c2
(1.20)

The energy exchange rate we get from (2), replace θ = ψ + π /2 and neglect the rapidly oscillating term 

dW

dt
= -e

K c

2 γr

E0 Sin[θ] (1.21)

and have immediately 

ⅆη
ⅆ t

= -c
e K E0

2 γr
2 mc2

Sin[θ] (1.22)

or 

ⅆη
ⅆ z

= - ϵ Sin[θ] (1.23)

with ϵ from (11) and the refinement for longitudinal oscillations (8).

For later use we write the pendulum equations in Mathematica notation :
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eqη = D[η[z], z] ⩵ - ϵ Sin[θ[z]]
η′[z] ⩵ -ϵ Sin[θ[z]]

eqθ = D[θ[z], z] ⩵ 2 ku η[z]
θ′[z] ⩵ 2 ku η[z]

phase space trajectories

The phase space trajectories are determined by a constant Hamiltonian which is given by 

H = ku
2 η2 - ϵ Cos(θ) (1.24)

Check yourself that the Hamilton equations (or "kanonische Gleichungen") lead to the pendulum equations above. 

Typical trajectories are shown in Fig. (3) : 
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Fig. 3 : Contours of constant H for particle motion in the FEL phase space. The contours describe possible trajectories of the electrons. 

The  trajectory  going  through  θ  =  ±π  defines  the  "separatrix"  between  trapped  and  untrapped  motion.  The  maximum  H  for

trapped motion is therefore from {θ=π,η=0} 

Hmax = ϵ (1.25)

the maximum η allowed for a trapped motion is than

ηmax =
2 ϵ
ku

(1.26)

The curve of the separatrix is given by 

ηsep = ± ϵ (1 + Cos[θ]) /ku
(1.27)

Note: the separation between bound and unbound (untrapped) motion is determined by ϵ,  that is for fixed beam and magnet

parameters by the strength of the EM field E0. 
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Perturbation approximation

If  ϵ  is  "sufficiently  small",  the  electrons  move  basically  unbound,  way  out  of  the  separatrix,   with  little  change  of  η  before  the

bunch leaves the undulator. In this case, it makes sense to expand η and θ as power series of ϵ. 

Since ϵ  is not a dimensionless number (it has the dimension of an inverse length), this is a somewhat fishy approach since we

have to define the scale defining "small". This will be done but we postpone it for a moment. 

So we write up to second order : 

θ[z] → θ0[z] + ϵ θ1[z] + ϵ2 θ2[z]

η[z] → η0[z] + ϵ η1[z] + ϵ2 η2[z]
(1.28)

and similarly for the derivatives.. 

The equation for η  then reads : 

η0
′[z] + ϵ η1

′[z] + ϵ2 η2
′[z] ⩵ -ϵ Sinθ0[z] + ϵ θ1[z] + ϵ2 θ2[z] (1.29)

and for the phase θ : 

θ0
′[z] + ϵ θ1

′[z] + ϵ2 θ2
′[z] ⩵ 2 ku η0[z] + ϵ η1[z] + ϵ2 η2[z] (1.30)

Since ϵ is assumed to be "small", we expand the Sin in the η  equation up to second order : 

η0
′[z] + ϵ η1

′[z] + ϵ2 η2
′[z] ⩵ -ϵ Sin[θ0[z]] - ϵ2 Cos[θ0[z]] θ1[z] (1.31)

Since both equations have to hold for all z, they have to hold for the powers of ϵ individually. So we solve them with increasing

order. 

 Zero order expansion

This is quite simple and could be seen directly, but we do it formally as for the higher orders.  

η0
′[z] = 0 (1.32)

gives immediately

η0[z] = η0 (1.33)

In zero order, the energy deviation is constant, the initial energy deviation η0.  

θ0
′[z] ⩵ 2 ku η0[z] = 2 ku η0 (1.34)

leads to 

θ0[z] = 2 ku z η0 + θ0 (1.35)

The phase increases linearly with z, the "phase velocity (difference to c)" is proportional to the initial energy deviation from the

resonance energy. Only particles with the resonant γr  have a constant ponderomotive phase, that is the correct slippage of one

λlight per undulator period. 

These "zero order terms" describe the behavior without interaction with the EM field (ϵ=0). 

 First order expansion

Same procedure, we use the result of the zero order :  

η1
′[z] ⩵ - Sin[2 ku z η0 + θ0] (1.36)

what can be integrated to 

η1[z] → -
Sin[ku z η0] Sin[ku z η0 + θ0]

ku η0

(1.37)

Now we define a new variable, scaling the energy deviation with the normalized (to λu) length of the undulator Lu

ξ0 = η0 ku zmax = ku η0 Lu (1.38)

and have
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η1[Lu] = -
Lu Sin[ξo] Sin[ξo + θ0]

ξo

(1.39)

For ξ0 = 0, that is an on-resonance beam, we have η1[Lu] = -Lu Sin[θ0].  In first order, the bunch develops an sinusoidal energy

modulation in θ0. 

But, important, on average there is no net energy loss or gain in first order, since all initial phases θ0 are equally populated,   

〈η1〉θ0
=

1

2 π 
-π
π η1[z] ⅆθ0 = 0 (1.40)

Any "gain" (that is net energy exchange with the field), has to be at least second order in ϵ.

The phase development is not so descriptive but we need it for the next step: 

θ1[Lu] = -
1

2 ξ0
2

ku Lu
2 (Sin[θ0] - Sin[θ0 + 2 ξ0] + 2 Cos[θ0] ξ0) (1.41)

and

θ1
′[z] = -

2 ku Lu Sin[ξ0] Sin[θ0 + ξ0]

ξ0

= 2 ku η1[z] (1.42)

 Second order expansion

Same procedure, we use the result of the zero and first order and get :  

η2
′[z] ⩵ 1

2 ku η0
2

Cos[2 ku z η0 + θ0] (Sin[θ0] - Sin[2 ku z η0 + θ0] + 2 ku z Cos[θ0] η0) (1.43)

This is not so obvious to integrate, finally Mathematica pays off... 

η2[z] =
1

16 ku
2 η0

3
(-4 + 4 Cos[2 ku z η0] - Cos[2 θ0] + Cos[2 (2 ku z η0 + θ0)] + 8 ku z Cos[θ0] Sin[2 ku z η0 + θ0] η0) (1.44)

what we can rewrite for z = Lu using the ξo parameter as 

η2[Lu] =
1

16 ξ0
3

ku Lu
3 (-4 - Cos[2 θ0] + 4 Cos[2 ξ0] + Cos[2 (θ0 + 2 ξ0)] + 8 Cos[θ0] Sin[θ0 + 2 ξ0] ξ0) (1.45)

  The average energy exchange does not vanish  if ξo ≠ 0... 

〈η2〉θ0
=

1

2 π 
-π
π η2[z] ⅆθ0 =

ku Lu
3 ϵ2 (ξo Cos[ξo] - Sin[ξo]) Sin[ξo]

2 ξo
3

(1.46)

Thus, FEL - energy exchange is a second order effect with respect to the strength of the external EM field, it scales with ϵ2.  

Since the energy density  of  the initial  EM field is  ~  E0
2  and thus to ϵ2 ,  the energy exchange is  proportional  to  the present  EM

energy density and it makes sense to talk about "FEL Gain". Furthermore, since E0
2 is proportional to the photon density in the

field,  the understanding as  induced emission makes sense:  the number of  produced photons is  proportional  to the number of

already existing photons. 

Notice that for ξ0 = 0, there is no net energy exchange in this model, FEL gain needs a finite energy offset from resonance. We

will later, in a more refined model, learn that this is an approximation which has to be revised in the case of an long-undulator

aka high-gain FEL. 

The ξo dependence of eq. (46) can be written in a more elegant form as the derivative of a Sinc function :

∂ξo

Sin[ξo]

ξo

2

=
2 (ξo Cos[ξo] - Sin[ξo]) Sin[ξo]

ξo
3

(1.47)

so we have finally the net energy exchange (the "gain curve") in the short undulator as function of the initial energy deviation ξ0

〈η〉θ0
= -

ku

4
ϵ2 Lu

3 ∂ξo

Sin[ξo]

ξo

2

(1.48)
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In fact this result is to some extend inconsistent with the initial assumption of the model, namely that the electric field does not

change during the passage of one bunch. Now we see that the bunch has an net energy change and this inevitably leads as well

to a change of the field. We will see later how this inconsistency vanishes if E  is allowed to vary and that the energy is actually

balanced. 

 Madey theorem, the Small Signal Gain (SSG) curve

In  an  undulator,  the  frequency  of  the  radiation  is  ~1γ2,  therefore  the  relative  energy  deviation  η0  is  related  to  the  relative

frequency deviation (small numbers) by 

Δω /ωr = - 2 Δγ /γr = - 2 η0 (1.49)

thus 

Δω /ωr = ξo / (π Nu) (1.50)

From the lecture on undulator radiation, we learned that the spectral line shape of undulator radiation given by a Sinc2 function

in ξo 

I [ω] ~
Sin (ξo)

ξo

2

(1.51)

So  we  see  the  Madey  theorem:   the  shape  of  the  gain  curve  of  the  low  gain  FEL  is  the  derivative  of  the  spectral  shape  of  the

spontaneous undulator radiation. 

How  does  this  gain  depend  on  the  initial  energy  deviation,  now  measured  by  ξ0  ?   As  mentioned  above,   there  is  no energy

exchange for ξ = 0. Furthermore the gain curve is anti-symmetric in ξ and looks like shown in Fig. 4.
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-0.4

-0.2

0.2

0.4

0.6

dSinc

Fig. 4 : The universal shape of the Madey gain curve describing the energy exchange in a short undulator (low gain) FEL.  

Notice  that  this  function  is  universal  in  ξ,   the  relative  energy  deviation  η0  times  2π  the  number  of  undulator  periods.  The

maximum gain is  achieved at  about  ξ  ~  1.3,  corresponding to a  relative energy deviation of  η0  ≈ 1

5 Nu
.  The sign of  the curve is

such  that  positive  values  indicate  energy  transferred  to  the  field,  that  is  "positive  gain".  To  achieve  this,  the  energy  of  the

incoming beam has to be slightly above  resonance energy. The reason for that will become obvious when we discuss the phase

space  motion  of  the  electrons  in  more  detail.  But  first  we  write  down  the  total  energy  transferred  from  the  beam,  that  is  the

power gain of the FEL amplifier.

Total energy loss or gain

To get the net change of beam energy we have to remember that η is the relative energy change for one electron. To get the total

change of the energy density we have to multiply 〈Δη〉 with the beam energy γr m c2 and the electron number density ne  using

the definition of ϵ  from above :

ΔWbeam =
e2 ku Lu

3 E0
2 KJJ

2 ne

16 m c2 γr
3

∂ξ
Sin[ξ]

ξ
2

(1.52)

 Now we normalize to the energy density of the EM field WEM =
1

2
ϵ0 Eo

2and define the "gain" as ratio of both
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G =
ΔWbeam

WEM

=
e2 Lu

3 π KJJ
2 ne

4 m c2 γr
3 ϵ0 λu

∂ξ
Sin[ξ]

ξ
2

(1.53)

Another way of  expressing the result  is  to express the electron density ne  by the total  beam current Ιb.  The electron density is

related to the total beam current Ιb and the cross section area of the beam Ab = 2 π σb
2  by ne = Ib / (e c Ab), so we have

G =
e Lu

3 KJJ
2 Ιb

8 c3 m γr
3 ϵ0 λu σb

2
∂ξ

Sin[ξ]
ξ

2

(1.54)

This  formula  shows  the  importance  of  a  high  beam  current  and  small  transverse  cross  section  of  the  beam.  (Footnote:  the

relation of σb and Ab is made such that for the Gaussian beam of σx = σy = σb the integrated charge is peak value times Ab).

Another abbreviation which is used quite often is the Alfvén current  ΙA = 4 π ϵ0 m c3 e ≈ 17 kA , so we rewrite 

G =
Lu

3 π KJJ
2 Ιb

2 γr
3 ΙA λu σb

2
∂ξ

Sin[ξ]
ξ

2

(1.55)

or as product of dimensionless numbers, replacing the undulator length Lu → Nu λu:  

G =
π
2

KJJ
2 Nu

3

γr
3

Ib

IA

λu

σb

2

∂ξ
Sin[ξ]

ξ
2

(1.56)

Remark: this gain definition assumes a perfect lateral overlap of the EM field and the electron beam. Any "mismatch" results in a

gain degradation. To achieve this perfect overlap, the beam profile (defined by the β-functions and the emittance of the beam)

and the radiation profile (defined by the Rayleigh length of the field in the resonator) have to be matched properly. 

Please notice that the "Alfvén current" does not play the rôle of a "current limit" or otherwise defining a "scale" in FEL physics.

It  is  a  useful  short  form for  a  combination of  natural  constants,  not  more.  (The Alfvén current  plays  an important  role  in  low

energy plasma physics where it defines the scale of an instability for electron currents in a neutral background plasma. Under

these  conditions,  the  repulsive  electric  force  of  the  electrons  is  perfectly  balanced  by  the  ion  background.  The  remaining

magnetic force, due to the current, leads to an instability for currents above IA. For a relativistic electron beam in vacuum (as we

have in the FEL), the electric and magnetic forces are perfectly balanced up to a level of 
1

γ2  and such an effect does not exist). 

 Limits of the "small signal gain" (SSG) curve

This "Madey" gain curve, or SSG curve, has been derived using a power series expansion in ϵ, it is valid only as long as the EM

field is sufficiently "small". 

Now finally we have to define what small means. To get rid of the dimensional quantity ϵ,   we normalize z  to the length of the

undulator Lu, setting z

= z /Lu. The first pendulum equation now reads

ⅆθ
ⅆ z

 = Lu

ⅆθ
ⅆ z

= 2 ku Lu η = 2 ξ (1.57)

The equation for ξ gets 

ⅆξ
ⅆ z

 = ku Lu

ⅆ z

ⅆ z


ⅆη
ⅆ z

 = ku Lu
2

ⅆη
ⅆ z

 = - ku Lu
2 ϵ  Sin(θ) ≡ -ϵ Sin(θ) (1.58)

The  "expansion  parameter"  is  now  ϵ = ku Lu
2 ϵ,   a  dimensionless  number.  Thus,  for  the  Madey  curve  to  be  applicable,  we

request that ϵ < 1 or

ϵ <
1

ku Lu
2
=

λu

2 π Lu
2

(1.59)

holds. 

If we put this to the equation of the separatrix given in eq. (26) we have 

ηsep <<
2

ku Lu

(1.60)

while the optimum gain is achieved for η0 ≈ 1.3 / (ku Lu). 
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We see that the Madey curve assumes for the initial  energy offset  η0  typical  values well  above the separatrix limit,  that is  elec-

trons which are not trapped to the FEL bucket. 

Modelling the "low gain FEL" 

The typical application for a "low gain" oscillator FEL is in the near and far IR regime (say "few" to a "few hundred" microme-

ter).  The  advantages  (compared  to  other  laser  techniques)  are  the  wide  and  continuously  tunable  wavelength  and  the  high

average power achievable. Some examples compared to other light sources are compiled in figure 5. 

Figure  5: Overview on radiation sources in the IR and THz regime (from http://epaper.kek.jp/f06/TALKS/TUCAU03_TALK.PDF). 

FELIX is an FEL facility in the Netherlands, novoFEL at Novosibirsk (Russia), JLAB at Jefferson Lab (USA). A large installation in Germany is the ELBE facility at HZDR, 

Dresden-Rossendorf. 

A  typical  FELO  set-up  is  shown  in  Figure  6:  a  linear  accelerator  generates  a  high  current  electron  beam  which  drives  the  FEL

process in an undulator placed inside the optical  cavity.  The spent beam is either dumped or (at  high average power applica-

tions) re-circulated through the RF resonators.  The re-circulated phase is adjusted such that the beam is de-celerated and the

beam power "recycled" into the RF resonators. Such "energy recovery linacs" are able to produce average electron beam powers

of several hundred kilowatts. 

Figure 6 : Schematic set-up of an resonator FEL (from http://www.stfc.ac.uk/astec/17452.aspx). 

The start-up of the FEL process is typically from "noise", that is from the initial spontaneous undulator radiation produced by

the  first  bunches  entering  the  undulator.  This  field  is  amplified  by  the  subsequent  bunches,  the  field-increase  per  bunch  is

proportional  to  the already present  field.  This  process  continues until  the energy transferred from the electrons just  compen-

sates  the  resonator  losses,  that  is  mainly  the  out-coupled  user  beam.  In  this  state,  the  FEL  oscillator  can  run  in  a  continuous

mode.  The time structure of the EM radiation is that of the electron beam, the length of the "wave packets" is determined by the

length of the electron bunches and the repetition rate by their distance. To optimize the overlap between the bunches and the
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field, the Rayleigh length of the optical resonator is matched to the transverse size of the electron beam which is determined by

the emittance of the beam and the β-function of the beam optics. 

The fundamental assumption made in the description so far is that the field inside the resonator does not change substantially

during one passage of a bunch both in amplitude and phase. Under these assumptions, we can model the FEL process in an 1-

D semi analytical model based on the pendulum equations (10) as follows: 

◼ we start with a decent number of electrons entering the undulator with fixed energy offset η0 and equally distributed phases 

◼ For these initial conditions, the pendulum equations are solved numerically and evaluated at the desired length of the 
undulator

◼ By averaging the resulting energy offsets 〈ηi〉 and subtracting η0we get the energy loss or gain of the electron beam which we 
claim to be transferred to the EM field

(In  fact  this  approach  is  a  bit  fishy  since  on  the  other  hand  we  claim  the  electric  field  not  to  change.  The  key  word  is

"substantially", the change has to be small enough. The model is "1-D" since we do not consider the transverse structure of the

beam and the field. It is semi-analytical since it is based on numerical solving the differential equations). 

For the following examples, we use the parameters of the IR- FEL "FELIX", summarized in the following table : 

λL λu K Nu σx,y σz Lu KJJ γr ηopt Eb Ib Qb

20 µm 65 mm 0.5 38 2 mm 0.9 mm 2.47 m 0.4857 42.76 5.4 × 10-3 22 MeV 57.3 A 172 pC

Table 1: Some typical parameters of the infrared oscillator FELIX at Radboud University Nijmegen. The wavelength of 20 µm is an example, the FEL can operate between 3 

µm and about 130 µm. 

Modelling  the  FEL gain  as  described above leads  to  the  "gain  curves"  shown in  figure  (8)  as  dots  and compared to  the  "SSG"

curve of the Madey formula. For low enough initial field (here 1 MV/m), the SSG curve is a very good approximation while for

higher initial fields, deviations become clearly visible. The optimum ξ=1.3 for low fields corresponds to a relative energy devia-

tion η0 of about 0.54 % in this case (equation 38). 
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-0.2

0.0
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G
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E0=1 MV/m

E0=20 MV/m

Fig. 8: FEL gain from a 1-D simulation using the pendulum equations for two different initial field strengths. The solid line represents the Madey formula. 

To understand why there is no "gain" for η0 = 0 (on-resonance beam) we look a bit more in the evolution of energy and density

modulations, figure (9). We see the energy modulation increasing linearly with the undulator length and a density modulation

growing quadratically. The zero crossing of the EM field is at θ=0, that is the red and blue marked segments indicate electrons

either loosing (blue) or gaining (red) energy. Notice that the density modulation and the energy modulation are phase shifted by

π/2. Since the electrons are exactly on resonance, their ponderomotive phase is constant and the number of loosing and gaining

electrons is always balanced. There is no net energy transfer. 
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Figure  9: Energy and density distribution for a bunch with resonant energy after 19 and 38 undulator periods and an initial field of 1 MV/m. The red and blue areas mark 

electrons gaining or loosing energy from (to) the field. The number Rθ  is the ratio of both.  Rθ = 1 indicates perfect balance. 

In  Figure  (10),  the  initial  energy  offset  is  at  the  optimum  ξ=1.3  according  to  the  Madey  curve.  Since  the  electrons  are  off-

resonance,  their  ponderomotive  phase  evolves  linearly  with  time.  The  density  modulation  gets  phase  shifted  such  that  the

electrons loosing energy outbalance the electrons gaining energy. There is a net energy transfer from the beam to the EM field. 
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Figure  10: Energy and density distribution for a bunch with optimum initial η  after 19 and 38 undulator periods and an initial field of 1 MV/m. The red and blue areas mark 

electrons gaining or loosing energy from (to) the field. The number Rθ  is the ratio of both. Due to the off-resonance condition, the phase is not constant but shifts such that the 

electrons loosing energy (blue) overbalance the gaining ones (red).  

From what we see in Figure (10), it is clear that there is an optimal undulator length for this process. If the phase shift increases

further (as it does), the density distribution first gets balanced again (when a phase shift of π  is reached) and finally "inverted".

The net energy now goes from the beam to the electrons, the gain drops again. (Figure (11)). In this specific case (parameters),

the gain would rise up to about 65 undulator periods before it starts degrading again. 

0 10 20 30 40 50 60 70

0.0

0.5

1.0

1.5

Nu

G

ξ=ξopt EEM=1 MV/m

Figure  11: Gain as function of depth in the undulator for an initial field of 1 MV/m. The gain (the total amplification of the energy EM energy density) reaches a maximum after 

about 65 undulator periods in this case. For longer undulators, the linear phase shift due to the initial energy deviation "out-phases" the density modulation, the beam re-gains 

the energy from the field.   

(Please notice the FEL people use a bit peculiar defintion of "gain". It is defined as G = 
Pout-Pin

Pin
).

Up to here, we looked at just one bunch passing the undulator. In a FEL oscillator, many subsequent bunches enter the undula-

tor and see the EM field produced by their predecessors. Since the energy transfer is proportional to the existing field, the field

in the resonator will initially grow exponentially with the number of bunches having passed the undulator. The resonator has a

well defined loss factor, normally dominated by the fraction Fu  out-coupled to the "user beam". Thus the field intensity inside
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the resonator reaches its saturation level when the gain just balances the losses, that is G = Fu. For our example, we use an out-

coupling fraction of Fu = 0.1 (see figure 12).
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Figure  12: Electric field strength in the resonator as function of the number of bunches passed. The out-coupled power fraction was set to 10%, the undulator has 38 

undulator periods. After about 70 bunches, the saturation level of 53 MV/m is reached, gain and out-coupling are balanced. 

Figure 12 shows the "field build up" in the resonator as function of the number of bunches passed. After about 70 bunches, the

saturation level of 53 MV/m is reached and gain and out-coupling are balanced. 
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Figure  13: Electric field strength in the resonator as function of the number of bunches passed. The out-coupled power fraction was set to 10%, the undulator has 38 

undulator periods. After about 70 bunches, the saturation level of 53 MV/m is reached, gain and out-coupling are balanced (red line). 

In Figure 13 we look at  the gain (relative increase of  EM power) and the energy loss from the beam as function of  the electric

field  inside  the  resonator.  The  gain  drops  from  its  initial  value  of  0.5  (defined  by  the  undulator  and  beam  parameters)  with

increasing field, at 53 MV/m the out-couple balance of 0.1 is reached. Looking at the relative energy transfer 〈Δη〉,  we see that

the undulator length is chosen such that the maximum energy transfer is reached close to this saturation field. This maximum

energy loss of the beam is of the order 0.8 %. We will learn later that this is a typical number for both, "low gain" and "high gain"

FELs.  

Notice  that  these  plots  are  based  on  a  model  using  the  pendulum  equations  and  ignoring  the  evolution  of  the  electric  field

during the passage of one bunch. If this is validate and how to overcome these limitations will be discussed in the next section. 

To complete the discussion we look again at the "phase space evolution" of the bunches in our FEL oscillator. In Figure (10) we

already  saw  the  energy  and  density  modulation  for  one  of  the  "first"  bunches,  that  is  for  a  low  initial  field  of  1  MV/m.  For

bunches at stable saturation level (the is the operation point of the FELO), the interaction between beam and field is much more

pronounced  (see  Figure  (14)).   After  about  half  the  undulator  depth  (Nu = 19),  the  bunch  has  developed  an  extremely  pro-

nounced  density  modulation  where  a  large  fraction  of  the  electrons  is  concentrated  in  narrow  "slices"  at  phases  where  they

transfer energy to the EM field. These "slices" are called "micro-bunches". The beam is structured now in a way that the number

of electrons doing "induced emission" is substantially larger than those doing "absorption". Please notice that the same slices at

the wrong phase (shifted by π) would produce the opposite effect: a strong dis-balance in favor of "absorption", the beam would

gain energy from the field.
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At the end of the undulator (Nu = 38),  the electrons have "over-rotated", that is moved backward in phase. The "micro-bunch-

ing" has been destroyed and the phase distribution is almost balanced again. 
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Figure 14: Electric field strength in the resonator as function of the number of bunches passed. The out-coupled power fraction was set to 10%, the undulator has 38 

undulator periods. After about 70 bunches, the saturation level of 53 MV/m is reached, gain and out-coupling are balanced (red line). 
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Figure 15: Phase space trajectories of the electrons in our model FELO. 

Figure (15) finally shows the phase space trajectories of the electrons for a low initial field and at saturation (operation) level of

the FEL, in both cases starting from the optimal η0 according to the Madey curve and equally distributed along the ponderomo-

tive phase θ. At low initial fields, the electrons are well outside the separatrix and basically move freely. In fact the Madey curve

is  an  approximation  for  Ef = 0.  At  the  saturation  field,  the  electrons  are  almost  completely  trapped  inside  the  separatrix.  The

total  energy  loss  is  much  higher  than  at  low  fields,  but  the  "gain"  (the  relativ  energy  loss  compared  to  the  exisiting  field)  is

substantially reduced. 
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Notice  for  later:  the  "gain"  obviously  depends  both,  the  energy  loss  of  the  electrons  and  present  energy  in  the  EM  wave.  The

"high gain FEL", discussed below, has about the same total energy loss of the electrons but the initial EM field energy (when the

bunches enter the undulator) is very small. 

1-D FEL equations including field change

The  following  way  to  the  "coupled  equations"  of  a  1-D  FEL  theory  follows  exactly  the  lecture  notes  by  Kwang-Je  Kim  (ANL),

Zhirong Huang (SLAC) and Ryan Lindberg (ANL). 

Up to now, the interaction between the field and the electrons has been reduced to the electron energy changing, as described

in equation (2), while the electrons pass the undulator. This is insufficient for long undulators, here we have to consider that the

field  is  influenced  by  the  interaction  with  the  electrons  as  well.  Not  only  its  amplitude  increases,  also  its  phase  shifts  with

respect to the beam modulation. This phase slippage is an important asset to understand why and how a "long undulator FEL"

works and a sustained energy transfer from the beam can be achieved. 

As  above,  we  neglect  any  transverse  dependence  of  the  beam  and  field,  that  is  we  reduce  the  problem  to  1  dimension,  the

longitudinal coordinate z along the undulator. Beam and field are treated as infinite and uniform radially. The influence of 3-D

effects will be briefly mentioned at the end of the discussion, for more details you a referred to the well known blue text book. 

As  further  simplification,  we  restrict  the  EM  field  to  only  one  fixed  wavelength  (wave-number  k)  which  is  present  as  "initial

field"  when  the  bunch  enters  the  undulator.  The  interaction  of  the  field  with  the  electrons  is  described  by  Maxwell's  wave

equation: 

1

c2

∂2

∂ t2
-

∂2

∂z2
Ex(z, t) = -

1

ϵ0 c2

∂ jx(z, t)

∂ t
(1.61)

with jx(z, t)  the transverse  current density caused by the undulator motion of the electrons. We further assume the problem to

be (locally) periodic in the ponderomotive phase, that is with a period length of λ = 2π/k. 

The  (transverse)  electric  field  will  oscillate  rapidly  while  amplitude  and  phase  vary  "slowly"  due  to  the  interaction  with  the

electrons (index "s" means "slowly varying, SVA = slowly varying amplitude approximation). So we write : 

Ex (z, t) = Es (z, t) Cos[k z - ω t + ϕs (z, t)] (1.62)

We define a (SV) complex amplitude function 

E

(z, t) =

1

2
Es(z, t) ei ϕs(z,t) (1.63)

and rewrite 

Ex (z, t) = E

(z, t) ei(k z -ω t) + E

 *
(z, t) e-i(k z -ω t) (1.64)

Furthermore, we decompose the wave operator

1

c2

∂2

∂ t2
-

∂2

∂z2
= D+ D- with D± =

1

c

∂
∂ t

±
∂
∂z

(1.65)

"Slowly varying amplitude" means that it does not change substantially on the scale of one wavelength, that is 

D± E
  λ << Es (1.66)

or

D± E
  << Es k (1.67)

and so on.. 

We consider that 

D- e±i(k z -ω t) = ∓ 2 i k e±i(k z -ω t)
(1.68)

while

D+ e±i(k z -ω t) = 0 (1.69)

(The reason for the asymmetry is,   that we only consider a wave traveling in forward  +z  -  direction.  For the general  Ansatz,  a
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sum of two opposite waves, the wave operator would be symmetric. The backward wave can be neglected since it is not ampli-

fied). 

Now we get 

D- Ex(z, t) = -2 i k E

+ D- E

  ei(k z -ω t) + 2 i k E
 *

+ D- E
 * e-i(k z -ω t) (1.70)

Since we assume that E


 is slowly varying, we use this to disregard the derivatives getting

D- Ex(z, t) = -2 i k E


ei(k z -ω t) + 2 i k E
 *

e-i(k z -ω t) (1.71)

Now we apply the D+ operator and make use of (69) to get for the wave equation

-2 i k D+ E
  ei(k z -ω t) + 2 i k D+ E

 * e-i(k z -ω t) = -
1

ϵ0 c2

∂ jx

∂ t
(1.72)

We multiply both sides by e-i(k z -ω t) 

-2 i k D+ E
  + 2 i k D+ E

 * e-2 i(k z -ω t) = -
1

ϵ0 c2

∂ jx

∂ t
e-i(k z -ω t)

(1.73)

Now  we  again  consider  that  the  amplitudes  are  slowly  varying,  that  is  we  average  on  both  sides  over  a  (sufficiently  small)

number of the rapidly oscillating periods, that is we average over Δt =2nπ/ω.  By this, the E
 *

 term on the left hand side vanishes,

the first term is constant and we have 

-2 i k D+ E
  = -

1

ϵ0 c2

1

Δt

-Δt/2

+Δt/2 ∂ jx

∂ t
e-i(k z -ω t') ⅆ t ' (1.74)

Next trick : we integrate by parts and make use of the fact that jx is assumed to be periodic in λ and get

2 i k D+ E
  = i ω

ϵ0 c2

1

Δt

-Δt/2

+Δt/2
jx e-i(k z -ω t') ⅆ t ' (1.75)

What about the current density jx  ?  The current is made from individual electrons at locations zj(t) having a transverse velocity

from the undulator motion. If we take -e 2 π σx
2 as charge per unit area for one electron, we have 

jx = -
e

2 π σx
2

c K

γr

Cos[ku z] 
j

δ[z - zj[t]] (1.76)

the sum counting over all contributing electrons. (We neglect that the electrons might have different γ). Using this, the integral

over the δ-functions picks out all electrons in our ±Δt/2 slice of the bunch 

2 i k D+ E
  = -

i ω
ϵ0 c2

e c K

2 π σx
2

1

γr

1

c Δt

j=1

NΔ
Cos[ku z] e-i(k z -ω tj) (1.77)

We replace now the sum by the average of all electrons in the slice NΔand use the volume number density of the electrons ne  to

express NΔ = ne 2 π σx
2(Δt c) and have 

2 i k D+ E
  = -(i k)

e K ne

ϵ0 γr

Cos[ku z] e-i(k z -ω tj) (1.78)

or 

D+ E
  = -

e K ne

2 ϵ0 γr

Cos[ku z] e-i(k z -ω tj) (1.79)

Now we want to express the term to average by the slowly varying phase θj of the electrons 

θj(z) = (k + ku) z - ω tj(z) (1.80)

The average time of the electrons in the slice we get by subtracting off the longitudinal motion of the electrons (see chapter on

undulator radiation)
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tj(z) = tj(z) +
K 2

ω 4 + 2 K 2 Sin[2 ku z] (1.81)

and get for the function to be averaged

Cos[ku z] e-i(k z -ω tj) = e-i θj ei ku z e
i i K2

4+2 K2  Sin[2 ku z]
Cos[ku z] (1.82)

Very clever people know that this can be expressed as an infinite "Fourier-Bessel" series as 

= e-i θj 
n

Jn K 2

4 + 2 K 2 
1

2
e2 i(n+1) ku z + e2 i n ku z  (1.83)

There are only two contributions to the sum which are not oscillating rapidly, n = 0 and n= -1 which we keep and have 

= e-i θj

1

2
J0 K 2

4 + 2 K 2  - J1 K 2

4 + 2 K 2  =
1

2
e-i θj [JJ] (1.84)

(Note : so we finally see where and how the K-modification factor [JJ] of equation (8) comes up). 

Finally have

D+ E
  = -κ2 ne  e-i θj  (1.85)

with

κ2 =
e K [JJ]

4 ϵ0 γr

(1.86)

We rewrite the operator D+ in the coordinates z and θ 

D+ =
1

c

∂
∂ t z

+
∂
∂z t

=
∂
∂z θ

+ ku

∂
∂θ z

(1.87)

and get

 ∂
∂z

+ku

∂
∂θ  E


= -κ2 ne  e-i θj  (1.88)

The derivative of E


 with θ  is  negligible as long as only the fundamental  mode is  considered so we have at the very end for the

derivative of the complex, slowly varying field amplitude: 

ⅆ E


ⅆ z
= -κ2 ne  e-i θj  (1.89)

Together with the pendulum equations, this forms the coupled equations for the 1-dim FEL model: 

ⅆθj

ⅆ z
= 2 ku ηj (1.90)

ⅆηj

ⅆ z
= κ1 2 ReE ei θj = κ1E ei θj + E

 *
e-i θj (1.91)

with

κ1 =
e K [JJ]

2 γr
2 m c2

(1.92)

Notice that this are as many equations as we have electrons in the slice which are coupled by the averaging in the field develop-

ment. 
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The phase average b = e- i θj  is called bunching factor, it actually measures the Fourier component of the density modulation

with the wavelength of the resonant EM field. Notice that b is a complex number. If the θj  are uniformly distributed, the bunch-

ing factor  is  zero.  (Note:  this  would be true if  the electrons are arranged on a regular  grid which they are of  course not.  If  the

electrons  are  distributed  randomly,  the  bunching  factor  will  have  a  finite  (random)  value.  This  is  important  for  the  so  called

"SASE"  process  to  be  discussed  later).  If  all  electrons  have  the  same  phase  θf ,  that  is  the  bunch  consists  of  periodic  sheets  of

electrons separated by one wavelength λr, the bunching factor would be bf = e- i θf   and have modulus b = 1. 

Another point of attention : according to the definition in eq. (63), we have  

E (z, t) = 1

2
Es(z, t) (1.93)

Thus for the energy density of the field we have 

Ufield =
1

2
ϵ0 Es(z, t) 2 = 2 ϵ0 E (z, t) 2

. (1.94)

The "fix field pendulum equations model", which we used in the low-gain case, is intrinsically not energy conserving since the

electrons lose energy but the field does not change. So it is interesting to check if this has been cured with inclusion of the field

variation. 

According to equation (94), the change of field energy with z is 

ⅆ Ufield

ⅆ z
= 2 ϵ0

ⅆ
ⅆ z

E (z, t) 2
= 2 ϵ0

ⅆ
ⅆ z

1

2
E 2

+ E
 *2 = 2 ϵ0 E

 ∂E


∂z
+ E

 * ∂E
 *

∂z
= -2 ϵ0 κ2 neE  e-i θj  + E

 *  ei θj  (1.95)

Since the field amplitude is slowly varying, we can treat it as being constant over the slice to be averaged, that is we average the

energy change of the electrons to 

ⅆ 〈ηj〉
ⅆ z

= κ1E ei θj + E
 * e-i θj (1.96)

Inserting this into eq. (95) and using (92) and (86) yields 

ⅆ Ufield

ⅆ z
= -2 ϵ0

κ2

κ1

ne

ⅆ 〈ηj〉
ⅆ z

= -γ m c2 ne

ⅆ 〈ηj〉
ⅆ z

= -
ⅆ Ubeam

ⅆ z
(1.97)

The coupled equations are indeed intrinsically energy conserving.  

1-D modelling by solving the coupled equations

After a lot of mathematical gymnastics, we are now ready to see how the FEL description changed by including the back-action

of the electrons on the field. For direct comparison we use the same parameters as above. To follow conventions, we now use

the modified definition of "gain". While above we named the energy exchange normalized to the initial field energy as gain (that

is Gold =
ΔU

U0
), we now use the "power amplification factor" Gnew =

Uout

U0
= Gold + 1.  

As  another  step,  we now measure the depth in the undulator  in  units  of  the gain length Lg,  definition and reasons becoming

obvious in the next section. The 38 periods of the short undulator from above correspond to 2.1 gain lengths.

Again we start from an unmodulated beam, that is electrons equally distributed in θ, and an initial field Ex(0).  As a first test, we

re-calculate the gain in the short undulator starting with a low initial field of our previous example, comparing the energy loss of

the electrons and the increase in field energy, (figure 16 top). As expected, they are perfectly balanced. 
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Figure 16: Top plot : Comparison of electron energy loss (blue dots) and field energy gain using the coupled equations. Bottom plot : The gain in the FELO undulator at 

saturated field strength. The model using a constant electric field (black dots) slightly underestimates the gain as compared to the coupled 1-D equations taking the field 

change into account (red line). The dashed vertical line indicates the length of the undulator used at FELIX (38 periods).

Figure  (16  bottom)  shows  a  comparison  at  FELO  saturation  field  of  the  approximation  with  constant  field  with  the  refined

"coupled equation" model, taking the field change during the passage of the bunch into account. The constant field approxima-

tion is not perfect but also not too bad in this case. 

This changes dramatically if we make the undulator longer and start from a very low field as shown in figure (17). 
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Figure 17: Gain evolution starting from small initial field (0.1 MV/m) as function of depth in the undulator. a) : Initial mean energy deviation at "Madey optimum" η0 = ηLG 

comparing the "constant E model" (black line) and the "SVA model" (blue line). b) : Initial energy deviation η0= 0 in the "SVA model" or "1D high gain model".  Here the 

"constant E" model predicts zero gain for all z. The short blue line is the gain evolution with η0 = ηLG as shown in a). The dashed vertical line indicates the length of the 

undulator used at the FELIX FELO (38 periods). Note: this is a log scale now !

The  refined  model  including  the  field  evolution  along  the  undulator  ("SVA  model")  shows  that  using  a  long  undulator,  really

large amplifications of small initial fields can be achieved, if the initial energy deviation η0  is "at resonance", η0 = 0, a condition

where the "constant E model" predicts zero gains. 

This finding is the basis for the operation of a "high gain FEL", that is for producing a high output power starting from very low

initial power in a single pass through the undulator. It allows to build mirror free FEL operating down to wavelengths in the sub-

nm regime.   

Before we try to understand the physics behind this, we go one step further and normalize our parameters to find the universal

scaling laws. 

Normalized parameters

Making  the   coupled  differential  equations  dimensionless  greatly  simplifies  the  understanding  of  some  universal  scaling

parameters and scaling rules.  The goal  is  to find the proper "scaling parameter" to end up with dimensionless equations with

unity coefficients. 

First we introduce a scaled, normalized longitudinal coordinate as 
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z

= 2 ku ρ z (1.98)

The parameter "ρ" is kept free to later fulfill the second requirement of unity coefficients. Next we introduce a re-scaled energy

deviation by 

η = η /ρ (1.99)

Finally we introduce for the EM field a dimensionless complex field amplitude 

a =
κ1

2 ku ρ2
E


(1.100)

The coupled equations are now dimensionless and read 

ⅆθj

ⅆ z
 = ηj (1.101)

ⅆηj

ⅆ z
 = a ei θj + a* e-i θj (1.102)

ⅆ a

ⅆ z
 = -

κ1 κ2 ne

4 ku
2 ρ3

e-i θj ≡ -e-i θj (1.103)

To make  the last equation (as the two others) of unity coefficient, we choose the free parameter ρ  to be 

ρ =
κ1 κ2 ne

4 ku
2

1/3

=
1

8 π
Ib

Ia

K [JJ]

1 +
K 2

2

2 γ λ2

2 π σx
2

1/3

With  this  dimensionless  parameter,  called either  "ρ-parameter"  or  "Pierce  parameter",  the  "gain  evolution"  in  the  high gain

FEL  regime  is  reduced  to  a  universal,  scaled  behavior  as  we  will  see  in  the  next  section.   The  order  of  magnitude  of  ρ  can  be

easily estimated from the "dimensionless fractions" notation shown above. If we assume an X-ray FEL (λ = 10-9 m, γ = 104) and

a beam diameter of σx= 10-4m, the last bracket would be about 10-7 . The beam current is typically 0.3 Ia (Ia the Alfvén current),

K  of order unity so that ρ ≃ 10-91/3 ≃ 10-3.  

The "Cubic equation"

On resonance :  η0 = 0

The coupled equations derived in the previous section can be solved using numerical techniques on a sufficiently large ensem-

ble  of  electrons.  They  are  the  basic  equations  of  a  1-D  FEL  model  for  a  transversely  uniform,  periodically  modulated  infinite

electron bunch. 

While  the  numerical  solution  gives  insight  to  the  particle  dynamics  including  saturation  effects  by  "trapping",  very  general

scaling  rules  can  be  obtained  from  looking  at  ensemble  averages.  Two  such  ensemble  averages  have  already  been  used:  the

bunching  factor  b = e-iθj  and  the  normalized  complex  field  amplitude  a(z

).  Now  we  also  average  the  normalized  η  over  the

ensemble of electrons in the slice and define the "collective energy modulation" as

P(z

) = ηj e-i θj

P(z

) describes the averaged complex amplitude of the Fourier component of the energy modulation with periodicity one, that is,

according to the definition of the phase θ,  at the resonance wavelength. Similarly, the bunching factor b  measures the strength

of the density modulation at this fundamental wavelength. Notice that the average energy deviation is set to be zero, the beam is

"on resonance", η0 = 0.  

The equation for the field amplitude is as before :

ⅆ a

ⅆ z
 = -e-i θj = -b

The equation for the bunching factor reads 

FEL_Skript.nb  23



ⅆ b

ⅆ z
 =

ⅆ
ⅆ z

 e-i θj = -i  ⅆ θj

ⅆ z
 e-i θj = -i  ηj e-i θj = -i P(z


)

For P(z

) finally we find 

ⅆ P

ⅆ z
 =  ⅆηj

ⅆ z
 e-i θj - i ηj

ⅆθj

ⅆ z
 e-i θj =  ⅆηj

ⅆ z
 e-i θj - i ηj

2 e-i θj
using the DG for η ( ) we get 

ⅆ P

ⅆ z
 = a + a* e-2 i θj - i ηj

2 e-i θj
The  second  term  implies  the  "second  order  bunching  factor",  that  is  bunching  at  twice  the  fundamental  frequency,  the  third

term  is  of  higher  order  in  the  small  number  η,  both  terms  will  be  neglected  here.  This  "linearization"  assumes  that  both  the

bunching factor b as well  as the amplitude of the relative energy modulation are << 1.  Doing so, the following formulas,  espe-

cially the "third order equation", is more restricted than the coupled equations ( 101). 

With this restriction, we have finally a quite simple system of three linear equations 

ⅆ a

ⅆ z
 = -b (1.104)

ⅆ b

ⅆ z
 = -i P (1.105)

ⅆ P

ⅆ z
 = a (1.106)

These three equations reflect the "feedback system" driving the FEL amplification: 

◼ the bunching drives the field evolution (amplitude and phase)

◼ the energy modulation drives the bunching

◼ the complex field amplitude drives the energy modulation

The three equations can be simply reduced to one cubic differential equation for the complex field amplitude a: 

ⅆ3 a

ⅆ z
3

= i a (1.107)

If we make the Ansatz a(z

) ~ e-i μ z


 we find for μ the algebraic equation 

μ3 = 1 (1.108)

This equation has three roots (we now use a bit of Mathematica coding) 

μ1 = 1 (1.109)

μ2 = -(-1)1/3 = -
1

2
1 + i 3  (1.110)

μ3 = (-1)2/3 = -
1

2
1 - i 3  (1.111)

The general solution is a linear combination of all three solutions with coefficients Cl: 

a(z

) = 

l=1

3

Cl e-i μl z

= C1 e-i z 


+ C2 ⅇ 1

2
-i+ 3  z


+ C3 ⅇ 1

2
-i- 3  z


(1.112)

All three terms have an oscillating component, the second term has an exponentially decaying part while the third term offers a

exponential growing contribution. For sufficiently large z

, this term will dominate and lead to an exponential growth of the field
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amplitude.  

The yet unknown coefficients Cl are derived from the initial conditions, that is from a(0), b(0) and P(0) . The conditions are 

a(0) = 
l=1

3

Cl (1.113)

b(0) = -
ⅆ a

ⅆ z


0

= i μl

l=1

3

Cl (1.114)

P(0) = i
ⅆ b

ⅆ z


0

= i μl
2

l=1

3

Cl (1.115)

These equations can be written in matrix form 

a0

b0

P0

= Mμ
C1

C2

C3

=

1 1 1

i μ1 i μ2 i μ3

i μ1
2 i μ2

2 i μ3
2

C1

C2

C3

=

1 1 1

ⅈ 1

2
-ⅈ + 3  1

2
-ⅈ - 3 

ⅈ 1

2
-ⅈ - 3  1

2
-ⅈ + 3 

C1

C2

C3

(1.116)

The unknown coefficients Cl are then given by inverting the matrix Mμ, that is 

C1

C2

C3

= Mμ-1

a0

b0

P0

=

1

3
-

ⅈ
3

-
ⅈ
3

1

3

1

6
ⅈ + 3  1

3
(-1)5/6

1

3

1

6
ⅈ - 3  1

3
(-1)1/6

a0

b0

P0

(1.117)

We  look  now  at  the  case  that  the  beam  is  initially  unmodulated  in  density  and  energy,  that  is  b(0) = 0 and P(0) = 0  and  we

amplify an initial field amplitude a0. 

In this case, all coefficients Cl identical, Cl = 1 /3 a0, and we can write the field amplitude as 

a(z

) =

1

3
a0 ⅇ-ⅈ z


+ ⅇ- 1

2
-ⅈ+ 3  z


+ ⅇ 1

2
ⅈ+ 3  z


(1.118)

The "gain" (defined as "power gain") is then G =  a

a0
2

 : 

gain =

Simplify1  a02 againzd * againzd /. Complex[0, -1] → Complex[0, 1], Complex[

0, 1] → Complex[0, -1] // ComplexExpand // Expand

1

3
+
1

9
ⅇ- 3 zd +

ⅇ 3 zd

9
+
2

9
ⅇ-

3 zd

2 Cos
3 zd

2
 +

2

9
ⅇ

3 zd

2 Cos
3 zd

2


G =
1

9
3 + ⅇ- 3 z


+ ⅇ 3 z


+ 2 Cos 3 z


2

 ⅇ- 3

2
z

+ ⅇ 3

2
z


(1.119)

This is a universal curve in the normalized coordinate z


 .  For large z

, the gain increases as  G~  

1

9
e 3 z


=

1

9
e
2 3 ku ρ z

 and we

define the 1D power gain length as 

LG =
1

2 3 ku ρ
=

λu

4 π 3 ρ (1.120)

The universal gain curve as function of z /LG looks as shown in the following plot. 
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While  for  z /LG  >>  4,  the  exponential  increase  is  dominating,  for  z /LG  <  3  the  gain  is  basically  constant  at  unity  level,  that  is

negligible  amplification  of  the  incoming  wave.  This  regime  is  called  "lethargy  regime".  The  physics  behind  it  will  be  become

more clear in a moment. 

If we do a series expansion for small z /Lg we find that the gain for short distances is given by 

Gleth = 1 +
1

1080
(z /LG)

6 = 1 + (z / (3.2 LG))
6 (1.121)

verifying that the length of the lethargy regime is about 3 gain lengths. 

Saturation

In the exponential regime, the normalized field amplitude a  and the bunching factor b  are identical 

a 2 = b 2 =
1

9
a0

2 ez/Lg (1.122)

In the simplified "collective  model",  both would increase without  limits.  On the other  hand,  the bunching factor  b = e-i θj
cannot  exceed  1,  thus  the  same  holds  for  the  normalized  field  amplitude  a.  This  effect  of  "saturation"  is  intrinsically  not

included in the cubic equation since it is derived under the assuption that |b| << 1. From the maximum allowed bunching factor

one can immediately derive the maximum power level at saturation: 

From

a = κ1

2 ku ρ2
E  ≤ 1 (1.123)

we get 

E sat ≃ 2 ku ρ2

κ1

(1.124)

or for the radiation energy density (see (94))

Usat = 2 ϵ0 E sat2 = 2 ϵ0 ρ 2 ku

κ1

2

ρ3 = 2 ϵ0 ρ ne

κ2

κ1

= ρ ne γr m c2 = ρ Ubeam (1.125)

The total radiation power P is given by energy density times beam area times c : 

P = U c Ab = 2 π σb
2 c U (1.126)
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The saturation power of the FEL is 

Psat = ρ Ubeam = ρ Ib Eb (1.127)

This  is  a  noteworthy  result:  the  maximum  achievable  radiation  power  density  at  saturation  is  the  total  beam  power  density

times the ρ - parameter. Notice that this holds as well for a "high gain", single pass FEL as for the "low gain", oscillator FEL.  

The saturation power is independent of the initial power density U0. Since the gain length as well does not depend on U0, the

undulator length to reach saturation and the maximum gain depend on U0.

The  Pierce  (or  rho)-parameter  is  the  only  (!),   dimensionless  number  describing  the  properties  of  an  individual  FEL  in  the

universal 1-D model we presented here. 

The gain length ist given by

LG =
λu

4 π 3 ρ
≈ λu

22 ρ (1.128)

and the saturation power is ρ times the beam power. For a typical ρ of 10-3 (nm regime) , we would have LG ≈ 50 λu. That is you

need about 150 undulator periods to overcome the lethargy regime and about 500 periods reach saturation. The energy transfer

from the e-beam to the EM field is about 0.1%. 

Studies for a typical FEL 

The following parameters roughly reflect typical operational parameters of FLASH, the machine who pioneered the "nm-FEL"

regime. 

λL λu K σx,y σz KJJ γr Eb Ib ne

10 nm 27.3 mm 0.6 0.2 mm 0.9 mm 0.576 1269 648 MeV 2 kA 1.6 * 1020 m-3

From these machine parameters, we get in our 1-D model the follwing FEL parameters : 

ρ Lg Psat

8.25 * 10-4 1.52 m 1 GW

First  we compare the result  from a numerical  simulation using the coupled equations with the universal  gain curve,  eq.  (119)

resulting from the cubic quation (figure 18). 
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Figure 18 : Comparison of the universal gain curve resulting from the cubic equation to the numerical solution of the 1-D coupled equations. The regime where both curves 

are in good agreement is called the "linear regime" of the FEL. 

Notice  that  the  universal  curve  (red)  does  not  depend  on  any  of  the  FEL  parameters  if  the  distance  is  normalized  to  the  gain

length. The universal curve agrees extremly well with the numerical solution except for the effect of saturation. 
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If we plot instead of the gain the real FEL power for two initial field amplitudes (figure 19), we see that what we found above: the

slope  of  the  exponential  rise,  that  is  the  gain  length,  and  the  saturation  level  do  not  depend  on  E0.  The  saturation  power  is

roughly what we expect, for these parameters about 1 GW (see table above), independent of the initial field.   
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Figure 19 : Power output of the FEL for two different initial field strengths. 

If  the  beam  current  would  be  1  kA  instead  of  2  kA,  the  ρ-parameter  drops  to  6.55*10-4,  the  gain  length  increases  to  1.94  m.

Figure  (20)  compares  the two cases,  the  distance now not  normalized to  the  gain length.  The lower  beam current  results  in  a

larger gain length and reduced saturation level. 

1 kA 2 kA

0 10 20 30 40

1

100

104

106

108

z [m]

F
E

L
p
o
w

e
r
[W

]

Figure 20 : Power output of the FEL for two different peak currents and otherwise identical conditions.  

The magic phase

For the short undulator case,  we learned that there is no net energy transfer between the beam the EM field since the density

modulation and the field are phase shifted by π/2. There are as many electrons transferring energy to the field (induced emis-
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sion) as getting energy from the field (absorption). In conventional laser physics this corresponds to the case where there is no

difference in population between the upper and lower state. 

The  fundamental  process  which  initiates  a  net  energy  transfer  even  in  case  of  η0=0  is  the  fact  the  EM  field  has  to  propagate

inside the electron beam and exchanges energy with the beam in a periodically modulated pattern. This results in a very slight

reduction of the phase velocity of the field, it falls back against the modulated beam resulting in a small net energy transfer to

the field. This "coupling" causes also the beam modulation phase to slip back, the process stabilizes itself and field and density

modulation propagate "phase locked", such that optimal energy transfer to the field is maintained. This self-sustaining process

is  a  typical  "collective instability"  which,  at  other  places in accelerator  physics,  would be highly undiserable.  Here,  it  destroys

the beam but produces a lot of EM power, even if the efficiency is of the order ρ, that is about 1 per mille. 

What I described here can be seen looking at the phases of the beam modulation and the EM-field as shown in figure (21). 
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Figure 21: Power output of the FEL for two different peak currents and otherwise identical conditions.  

In the lethargy regime, the phase of the beam is more or less constant at -π/2, the phase of the EM field increases. From

about  4  Lg,  the  phase  difference  between  modulation  and  field  stays  constant  close  to  -
3

4
π  up  to  the  saturation  regime.  This

"phase locking" between beam phase and field phase is the key effect which allows to transfer energy efficiently from the beam

to the field over a long distance. The dashed line in fig. (21) shows the phase slippage due to the mean energy loss of the elec-

trons. At about 20 Lg, the electrons have lost that much energy that this "detuning phase" becomes dominant, the phase locking

between field and beam breaks and the energy transfer comes to an end (saturation). 

With energy offsetη0

In  the  previous  section  we  discussed  the  gain  evolution  for  a  beam  entering  the  undulator  "on  resonance",  the  initial  scaled

energy deviation was η0= 0. The case with η0 ≠ 0 is only slightly more complicated. In this case, the "collective energy deviation"

has to be described as 

P(z

) = η0 + ηj e-i θj (1.129)

While two equations stay unchanged 

ⅆ a

ⅆ z
 = -b (1.130)
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ⅆηj

ⅆ z
 = a ei θj + a* e-i θj (1.131)

the phase development now includes the linear phase increase due to the initial "de-tuning" of the beam energy

ⅆθj

ⅆ z
 = ηj + η0 (1.132)

(We already discussed the linear phase increase in the context of the low gain FEL. Using not-normalized coordinates, we had

θ '[z] = 2 ku η0 + higher orders). 

As we did above, we calculate the derivative of P and get 

ⅆ P

ⅆ z
 =

 ⅆηj

ⅆ z
 e-i θj - i ηj

ⅆθj

ⅆ z
 e-i θj =  ⅆηj

ⅆ z
 e-i θj - i ηj

2 e-i θj - i η0 ηj e-i θj ≃  ⅆηj

ⅆ z
 e-i θj - i η0 P + i η0

2 ≃ a - i η0 P + i η0
2

(1.133)

Again we neglected the ηj
2 term and used eq. (102) neglecting the e-2 i θj  component. 

For the derivative of the bunching factor we get 

ⅆ b

ⅆ z
 =

ⅆ
ⅆ z

 e-i θj = -i  ⅆ θj

ⅆ z
 e-i θj = -i  ηj e-i θj - i η0  e-i θj = -i P(z


) + i η0 - i η0 b = (1.134)

= -i P(z

) + i η0 + i η0 a ' = -a '' (1.135)

For immediate use we compile from that

2 i η0 a '' = -2 η0 P + 2 η0
2 + 2 η0

2 a ' (1.136)

For the second derivative we get 

ⅆ2 b

ⅆ z
2

= - i
ⅆ P

ⅆ z
 - i η0

ⅆ b

ⅆ z
 = -i a - i -i η0 P + i η0

2 - η0 P(z

) + η0

2 + η0
2 a ' =

-i a - η0 P + η0
2 + η0

2 - η0 P + η0
2 a ' = -i a - 2 η0 P + 2 η0

2 + η0
2 a ' =

(1.137)

= -i a + 2 i η0 a '' - η0
2 a ' ≡ -a ''' (1.138)

If  we  now  use  what  we  compiled  in  (136),  we  finally  have  the  differential  equation  for  the  normalized  field  amplitude  for  the

case of non vanishing initial energy deviation η0: 

i a + η0
2 a ' - 2 i η0 a '' ⩵ a ''' (1.139)

Making, as above, the Ansatz a[z

] = a0 e-i μ z


 we get for μ the algebraic equation

μ3 - 2 η0 μ2 + η0
2 μ - 1 = 0 (1.140)

The three general solutions of this equation can be found using Mathematica without problem but they are a bit bulky : 

μ1 → 1

3
2 η0 +

21/3 η0
2

-2 η0
3 + 3 9 + 81 - 12 η0

3 1/3
+

-2 η0
3 + 3 9 + 81 - 12 η0

3 1/3

21/3
,

μ2 → 1

6
4 η0 -

2 (-2)1/3 η0
2

-2 η0
3 + 3 9 + 81 - 12 η0

3 1/3
+ (-2)2/3 -2 η0

3 + 3 9 + 81 - 12 η0
3

1/3

,

μ3 → -
1

3
-

1

2

1/3

-2 η0
3 + 3 9 + 81 - 12 η0

3

1/3

+

(1.141)
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1

3
η0 2 + Root-2 + #13 &, 3 η0 -2 η0

3 + 3 9 + 81 - 12 η0
3

1/3



Just from "inspection" of the terms, it seems to be important if 

(η0)
3 <

81

12
(1.142)

is fulfilled or not. 

Again, the general solution will be the sum of the three fundamental solutions with coefficients Cn  defined by the initial condi-

tions. 

As we made the Ansatz, an exponentially growing term needs a positive imaginary part of μ, so we check that graphically. 

-5 -4 -3 -2 -1 0 1 2

-0.5

0.0

0.5

η=η/ρ

Im
[μ] μ1

μ2

μ3

Figure 22: Imaginary part of the three general solutions eq. (141) as function of the initial energy deviation η0.  Only μ2 has a positive imaginary part and leads to exponential 

power growth. The vertical line indicates η /ρ = 81

12
3 . 

Notice that again this is a general solution in η=η/ρ, the Pierce parameter is the ruling constant of the FEL process. 

We see that only μ2 has a positive imaginary part and that there is a hard "cut off" at  ηmax =  81

12
3 ρ ≈  1.88 ρ. For larger energy

deviations, no exponentially growing term exists, the solution is purely oscillating. 

To find the coefficients of the general solution we write it again as matrix equation

a0

b0

P0

= Mμ
C1

C2

C3

=

1 1 1

i μ1 i μ2 i μ3

i μ1
2 i μ2

2 i μ3
2

C1

C2

C3

(1.143)

In the following, we study the two cases of amplification of an initial field and amplification of the initial density modulation. 

Initial field amplification

We start from an initial field a0, no initial bunching and get for the three coefficients 

C1 → a0 μ2 μ3

(μ1 - μ2) (μ1 - μ3)
, C2 → a0 μ1 μ3

(μ1 - μ2) (μ3 - μ2)
, C3 → a0 μ1 μ2

(μ1 - μ3) (μ2 - μ3)
 (1.144)

Using the μn found in eq. (141) gives rather bulky expressions which are not useful to took at in full detail. But we can now plot

the gain evolution for various initial energy offsets as it is done in Figure (23). 
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Figure 23: Gain curves for different initial energy deviations η0 normalized to the Pierce parameter. 

The  η0 = 0  curve  is  of  course  identical  to  the  "universal  gain  curve"  derived  earlier.  We  see  that  for  the  positive  initial  energy

deviation,  the  lethargy  regime  is  shorter,  actually  this  is  pointing  in  the  direction  of  the  "short  undulator  FEL"  or  "low  gain

operation".  For negative η0,  the initial  gain is  always negative,  the electrons suck energy from the field before the exponential

growth takes over. For η0 above the magic threshold ηmax, no exponential regime exists. 

For sufficiently large η0,  the positive exponential will  dominate and we can define a "modified power gain length"  in normal-

ized coordinates z

 according to 

L


g =
1

2 Im(μ2)
(1.145)

or in real coordinates z = z

/ (2 ku ρ) as 

Lg(η0) =
1

4 ku ρ Im (μ2)
(1.146)

(The factor of 2 comes from the definition as "power gain" length and the power scaling with a 2). 

It is common practice to define a "power growth rate function" as ratio of the modified gain length to the gain length at η0 = 0:

fgr(η0) =
Lg(η0)

Lg(0)
(1.147)

For η0 < ηmax we can write this function in closed form as

fgr(η0) =
Lg(η0)

Lg(0)
=

-2 × 21/3 η0
2 + 2 α - 4 η0

32/3

6 α - 2 η0
31/3

with α = 3 9 + 81 - 12 η0
3  (1.148)

and it looks as shown in figure (24).  
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Figure 24: Gain curves for different initial energy deviations η0 normalized to the Pierce parameter. 

The fastes growth rate is always achieved for η0 /ρ =

0 but this does not mean that for a given undulator length η0 /ρ = 0 produces the largest gain.

 Depending on η0 /ρ  is as well the

undulator length needed to reach the exponential gain regime. 

The following figure (25) summarizes the "gain curves" at various undulator depths: 
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Figure 25: Gain as function of initial energy deviation η0 at different undulator depth. 

While for a short undulator we see the typical "low gain FEL curve", for longer undulators much higher gains are achieved in a

narrow regime around η0 /ρ = 0. 

For  a  sufficiently  long  undulator,  the  gain  is  dominated  by Im(μ2)  and  the  relevant  regime  of  η0  is  small  (notice:  while  η0  is

always a small number, η0 = η0 /ρ  can be of order unity or larger.  So we now restrict us to the narrow regime of high gains for

z /Lg >> 1). In this case, we expand μ2 around η0=0 to second order:  

μ2 ≈ -
1

2
+

2 η0

3
-

η0
2

18
+ ⅈ 3

2
-

η0
2

6 3
(1.149)

The power gain rises as
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~ e2 Im(μ2) z

= ⅇz

  3 -
η0

2

3 3

= ⅇz


3 ⅇ - z

 η0
2

3 3
 (1.150)

or rewritten in non-normalized coordinates :

G(η0, z) ~ e
z

Lg e
- z

9 Lg
 η0

ρ 2 (1.151)

For a fixed z = Lu, the gain-curve approaches a Gaussian in η0 = η0 /ρ with width ση = 3

2 χ  or  ση = 
3 ρ

2

Lg

z
. Notice again : this

is valid for z >> Lg, typically z ≈ 10 Lg.  

Instead of de-tuning the electron beam energy, we can as well de-tune the resonance frequency ωr, that is the frequency of the

initial EM field. Since ω ~ 1γ2,  we have 

η =
γ - γr

γr

=
1

2

ωr - ω
ωr

(1.152)

and thus

σω
ωr

= 2 ση = 3 2 ρ Lg

z
(1.153)

The relative gain bandwidth of the FEL decreases with increasing undulator depth and is, what would you expect, scaling with

the ρ-parameter :-). For saturation we need about 10 gain length, that is the bandwidth will be about 
σωωr

 ≈1.3 ρ. 

Start from initial density modulation 

The  FEL  process  can  start  not  only  from  an  initial  field  but  as  well  from  an  initial  modulation  of  the  electron  beam.  As  we

discuss  in  the  following section,  the  intrinsic  "noise"  of  the  beam current  resulting  from the  stochastic  nature  of  the  electron

distribution is sufficient to start-up the "SASE" process. 

a0 = 0 (1.154)

b0 = e-i θj
0 (1.155)

Since we have no initial EM field, the definition of the ponderomotive phase is not longer obvious. For the moment we assume

that the beam has well  defined initial  density modulation with wavelength λm.  This wavelength defines the length scale of the

ponderomotive phase, that is the length of the interval ±π along the bunch. The corresponding ωm =
2 π c

λm
. 

The beam energy together with the undulator parameters define the "resonant λr" of the beam according to eq. (7). If λr 00
08

 and

λm are not identical, this can be translated into an effective relative beam energy deviation η0

η0(ωm) =
γm - γr

γr

=
1

2

ωm - ωr

ωr

(1.156)

To illustrate the role of b0  as "level of modulation", two examples : if the beam has a harmonic density modulation with wave-

length λm  and amplitude am  < 1, the bunching strength b0 would be 
am

2
  if the phases are determined from the positions of the

electrons according to 

θj =
zj

λm

2 π + θ0 (1.157)

For any other wavelength λ, b0 averages to zero over many periods. 

If all electrons are squeezed into very thin slices with distance λm (extreme micro-bunching), b0 approaches one. 

Back to the road : the normalized parameter is defined as before 

η = η /ρ (1.158)

We  assume  no  "genuine"  energy  modulation,  that  is  all  ηj = 0.  But  with  finite  η0,  there  is  a  "collective"  energy  modulation

resulting from the finite density modulation:  
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ⅆθ
ⅆ z


0

= η0 (1.159)

ⅆ b

ⅆ z


0

= -i  ⅆ θ
ⅆ z

 e-i θj
0

= -i η0 b0 (1.160)

P0 = i
ⅆ b

ⅆ z


0

= η0 b0 (1.161)

So we have to start with 

a0

b0

P0

=

0

b0

η0 b0

(1.162)

The coefficients Cl are then 

C1 → ⅈ b0

(μ2 + μ3 - η0)

(μ1 - μ2) (μ1 - μ3)
, C2 → -ⅈ b0

(μ1 + μ3 - η0)

(μ1 - μ2) (μ2 - μ3)
, C3 → -ⅈ b0

(μ1 + μ2 - η0)

(μ1 - μ3) (-μ2 + μ3)
(1.163)

on resonance, η0 = 0 

Putting in the general μn results in bulky expression, for η0 = 0 (beam energy and modulation in resonance) it comes out handy : 

C1 → -ⅈ b0

3
, C2 → (-1)5/6

b0

3
, C2 → (-1)1/6

b0

3
(1.164)

In this case, the scaled radiation power increases as (with χ = z /Lg)

a 2 =
2

9
b0

2 G[χ] (1.165)

with 

G[χ] = Cosh[χ] + 3 Sin 3 χ
2

 Sinh χ
2

 - Cos 3 χ
2

 Cosh χ
2

 = (1.166)

G[χ] = 1

2
(ⅇ-χ + ⅇχ) - Cos 3 χ

2
 Cosh χ

2
 + 3 Sin 3 χ

2
 Sinh χ

2
 (1.167)

For large χ the scaled energy density goes as 

a 2 ≈ 1

9
b0

2 ⅇχ =
1

9
b0

2 ⅇz/LG (1.168)

Notice that the power scales with the initial bunching factor squared.  The power increase from an initial bunching is shown in

figure (26). 
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Figure 26: Gain as function of initial energy deviation η0 at different undulator depth. 

Since a  is  restricted to a < 1,  a  modulation amplitude of  say  10% (b0 = 0.1 /2)  would lead to  saturation after  about  8  gain

length. With b0 = 10-4, about 20 gain length are needed to reach saturation.

off resonance, η0 ≠ 0 

As we did in the case of field amplification we can now study the influence of an energy deviation, that is a mismatch of beam

energy and wavelength of the initial modulation. The procedure is the same as we did in the previous section: insert the general

solutions for  μ1-3  (Eq.  141) into the expressions for  C1-3 (Eq.  163) and sum up the three contributions according to  (Eq.  112).

The power evolution is now a function of both, χ = z /LG and the (scaled) energy deviation η0

= η0 /ρ. 

a 2 =
2

9
b0

2 G[χ, η0] (1.169)

The general expressions are lengthy, but for sufficiently large χ (in the exponential regime) it can be approximated by 

a 2 ≈ 1

9
b0

2 eχ e
-

η0
2

9 χ (1.170)

0 5 10 15 20

1

1000

106

z/Lg

(a
/b

0
)2

η0/ρ
-2

-1

0

1

1.5

2.

Figure 27: Gain as function of initial energy deviation η0 at different undulator depth. 

As expected the "on-resonance" modulation has the fastest growth. As discussed above,  for (η0)
3 >

81

12
 no exponential regimes

exists, μ2 has no positive imaginary part, the growth rate function is zero. 

If we plot the "normalized power" for fixed undulator depth χ, we get the  curves shown in figure (28): 

36   FEL_Skript.nb



-10 -5 0 5 10
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

η0

(|
a
|/
b

0
)2

z/Lg= 1.

-10 -5 0 5 10

0

5

10

15

η0

(|
a
|/
b

0
)2

z/Lg= 5.

-10 -5 0 5 10

0

500

1000

1500

2000

2500

η0

(|
a
|/
b

0
)2

z/Lg= 10.

-10 -5 0 5 10

0

1×107
2×107
3×107
4×107
5×107

η0
(|

a
|/
b

0
)2

z/Lg= 20

Figure 28: Gain as function of initial energy deviation η0 at different undulator depth. 

Comparing with the gain curves for an initial EM field we observe a striking difference: independent of the undulator depth, the

highest power is always resulting from an "on resonance" modulation, that is η0 = 0. There is no "Madey like" bipolar curve as

for the amplification of an initial EM field. 

The reason for that is easy to understand. If  the beam has an initial density modulation, this modulation generates an electric

field with a phase with respect to the  modulation such that energy is transferred from the beam to the field. This field has the

correct phase for amplification, the average phase difference between field and density modulation is zero. 

In  the  case  of  an  initial  EM  field,  this  field  first  generates  an  energy  modulation  (in  phase)  leading  to  a  density  modulation

shifted by π /2 in phase. This density modulation is even with respect to the zero crossing of the field (θ=0), energy loss and gain

are  balanced.  In  the  case  of  η0 = 0,  the  phases  are  to  first  order  stable  and  there  is  no  net  energy  transfer  between  beam  and

field. A finite η0  is needed to make the beam phase "run" with respect to the field. The modulation is shifted with increasing z,

becomes unbalanced with respect to θ=0 resulting in a net energy transfer.  

As given in Eq. (170), for large z /LG, the "power curve" is in very good approximation given by a Gaussian of width  ση = 3

2 χ  or

ση= 
3 ρ

2

LG

z
, identical to what we found for the gain curve from an initial field. 

Starting  from  an  initial  density  modulation  is  important  to  understand  the  physics  of  the  "SASE"  process,  "Self-Amplified

Spontaneous Emission", and a variety of modern seeding schemes. Both will be discussed in the next sections. 

Energy spread and phase space distributions

In  a  real  accelerator,  the  electrons  have  a  certain  energy  distribution.  Especially  after  compressing  the  bunches  to  high  peak

currents  and  a  variety  of  nasty  collective  effects  (like  space  charge  and  coherent  synchrotron  radiation  in  the  compressor

dipols),  the  phase-space  distribution  of  the  bunch  normally  looks  quite  complex.  Such  "real  condition"  cannot  be  easily

simulated in our simple 1-D harmonic model. 

Nevertheless, the influence of a finite energy distribution can be estimated using the coupled equations and appropriate initial

conditions. Another complication arises from the fact the we cannot simulate the real number of electrons in the slices we look

at,  the number of  macroparticles  we are using typically  is  much less.  If  we would distribute the initial  η  of  the macroparticles

randomly,  this  introduces  a  very  strong  "seeding  component"  in  the  initial  distribution  which  completely  dominates  the

simulation leading to irregular and very high gain. So we have to further simplify the model by using a regular energy distribu-

tion, as we did for the phases before. 
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As  usual,  we  normalize  the  width  of  the  flat-top  energy  distribution  to  ρ,  our  "one  an  only"  parameter.   The  resulting  gain

evolutions are shown in figure (29). 
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Figure 29: Gain evolution with initial (flat-top) energy spread δη . 

To  keep  the  gain  length  close  to  the  optimal  value,  the  initial  energy  spread  has  to  be  less  than  ρ.  This  is  a  rather  stringent

requirement especially for FEL in the nanometer and sub-nanometer regime where ρ typically is a small number below 10-3. 

In our simple 1-D model, the bunches are uniform in z, the longitudinal coordinate. In reality, the bunches are not only of finite

length but as well  are non-uniform. For the FEL process,  the decisive length is  the "cooperation length",  the scale over which

electrons  act  coherently  in  producing  the  EM  wave.  This  coherence  length  is  related  to  the  spectral  bandwith  by  the  time-

bandwidth product, that is τc *σω ≈ 1. From eq.(153) we learned that for a long undulator σω ≃ ρ  ω, that is c τc ≃ λ / (2 π ρ). For

typical ρ, the coherence length is a few hundred wavelengths, that is for a nm-FEL in the µm regime while the total bunch length

is typically some 100 µm.  In consequence, it is not the overall energy spread influencing the gain evolution but the local or slice

energy spread. 

While  an  as  small  as  possible  (slice)  energy  spread  is  advantageous  for  keeping  Lg  short,  it  has  the  unwanted  side  effect  of

creating longitudinal instabilities during the acceleration and bunch compression process. (Notice : the FEL process is exactely

such  an  instability).  To  avoid  these  detremental  effects,  the  slice  energy  spread  can  be  artifically  be  worsened  such  that  the

optimal balance, leading to the shortes Lg, is found. This is done by a "laser heater", a device in which energy from an external

laser is transferred to the electron beam. 
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Figure 30: Phase space distribution of at different depths in the undulator. The initial energy spread is ση = 0.1 ρ. 

A typical  phase space evolution is shown in figure (30).  Up to 15 Lg,  the energy modulation looks pretty harmonic,  the overall

energy loss  is  barely  visible.   At  18 Lg  and deeper,  the phase space distribution is  dominated by the "trapping" inside the FEL

buckets. Notice that the buckets are not at fixed positions along θ but move due to the phase shift of the EM field (figure 21). 
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Figure 31: Density modulation in various depths of the undulator. The red line indicates a zero crossing of the EM field.

The phase space plots are not really well suited to see the densitiy modulation and especially how it phases with the EM field. In

Fig. (31) finally we look at the densitiy modulation at different depth in undulator. The vertical red line indicates a zero crossing

of  the  EM  field,  the  blue  and  red  colours  of  the  density  points  indicate  parts  of  the  bunch  loosing  energy  (blue)  and  gaining

energie (red) from the field. At 10 Lg,  the density modulation is a few percent effect. The phases have shifted such that slightly

more  electrons  lose  energy  ("stimulated  emission")  than  gain  energy  ("absorption")  from  the  field.  At  15  Lg,  we  see  a  rather

perfect harmonic density modulation of about 20% peak-peak. At 18 Lg,  the modulation becomes unharmonic and at 22 Lgthe

electrons  are  bunched in  slices.  The "unphysical"  sharp edges  result  from the "unphysical"  flat-top energy  distribution at  the

beginning. 
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SASE

"Self amplified spontaneous emission" (SASE) was proposed in the 1980th as a method to produce high power FEL radiation for

short  wavelengths  where  no  powerful  initial  "seed  field"  exists.  The  basic  idea  is  to  use  the  stochastic  nature  of  the  charge

density distribution in the electron beam to seed the FEL process. This can be considered in two ways: 

a) the electron beam generates spontaneous undulator radiation in the beginning of the undulator, this spontaneous radiation

is picked up by the FEL process and amplified. 

b)  the random longitudinal  distribution of  electrons in  the beam leads to  a  non-vanishing bunching factor  b0  at  the resonant

frequency of the (beam - undulator) system which starts the FEL process as described in the previous section.  

Wise men have proven that both pictures are fully equivalent.  

A  comprehensive  discussion  of  the  SASE  process  is  beyond  the  scope  of  this  lecture,  but  some  basic  understanding  can  be

gained from what we discussed so far. 

If  we follow the line b) of how the process starts,  we have (according to the previous section) the find out the initial bunching

amplitude b0  of a statistically distributed beam. First of all  we have to consider that the distribution of the electrons, that is

the θj,  is purely random. For different "samples" of N  beam electrons, b0   will not have a unique value but follow a statistical

distribution  with  mean  value  (b0)avg.  So  we  have  carefully  to  distinguish  the  two  types  of  averages  we  are  taking  about  :  the

"ensemble average" denoted by 〈 〉 and the average over many ensembles denoted ( )avg. 

Since SASE starts from a random distribution, each power evolution will look different and lead to a different radiation power at

the  end  of  the  undulator.  This  is  a  fundamental  difference  to  the  "field  amplification"  and  "start  a  from  well  defined  initial

modulation" which we discussed so far. 

Initial bunching : mean value and fluctuations

The bunching factor is defined as the ensemble average 

b0 = ei θj
0
=

1

N

j=1

N

ei θj (1.171)

with N, the number of contributing electrons, to be defined in a minute. Since the power resulting from the initial modulation is

proportional to b02, the average SASE power should be proportional to 

b02avg
=

1

N2

j=1

N

ei θj

2

avg

(1.172)

 If we consider ei θj   as a unit vector in the complex plane with arbitrary angle, we ask : what is the length squared of the sum of N

such unit vectors of random orientation ? Without lengthy mathematics we look at an analogy : a person does N successive steps

starting from the origin,  each step has  unit  length but  goes  into random orientation.  (This  is  the classical  random walk  prob-

lem). The mean value of his position after Nsteps is still the origin, since no direction is preferred, but the mean distance of his

position to the origin increases with N . For large N, the "distance distribution " is a Gaussian with variance σd
2 = N.  

Thus we conclude (or "guess"), that the averaged sum in Eq. (172 ) is N and the average bunching factor is  

b02avg
=

1

N
(1.173)

This result is not so surprising :  the more electrons contribute to the ensemble average, the "smoother" the resulting distribu-

tion is and thus the less the average bunching factor resulting from the stochastic nature. 

To verify this ideas and to get hand on the distribution of b02  we do a bit of "experimental mathematics", using Mathematica.

For  a  fixed  number  of  ensemble  particles  N,  we  create  random  phase  angles  and  determine  the  ensemble  average  b0  and  its

modulus squared. This we repeat many times and ask for the resulting mean value of the modulus squared : 

ensembleavg[n_Integer] := AbsMeanExp-I RandomReal[{-π, π}, n]2

manysammplesnpart_Integer, nchecks_Integer := Tableavgbun[npart], nchecks
So we check for various N between 100 and 106 with 1000 samples each : 
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setlist = 100, 1000, 10 000, 100 000, 106
fulltab = Tablemanysammples[npart, 1000], npart, setlist;

Here is the result : 

TableFormTranspose1  Mean /@ fulltab, setlist - 1  Mean /@ fulltab  setlist,
TableHeadings → ToString /@ setlist, "exp.", "rel.dev."

exp. rel.dev.

100 99.0125 0.00987471

1000 928.407 0.0715928

10000 9760.24 0.0239763

100000 99 773.2 0.00226833

1000000 979 430. 0.0205697

Our considerations seem to be OK, Eq. (173 ) is correct. 

Since we have the data at hand, we can as well look at the distribution of the ensemble averages. 

Figure  (32  )   shows  the  "experimental"  probability  distribution  for  the  two  extreme  cases,  N = 100  and  N = 106.  In  both  cases

find an exponential distribution, the solid lines are the PDF 

pb02 = N e-b02 N (1.174)
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Figure 32: Probability distribution of the bunching factors for 100 and 106 electrons in the sample.  

the blue lines the average 1 /N. 

Before  saturation,  the  FEL  process  is  a  "linear  amplifier"  and  these  initial  fluctuations  will  be  translated  into  proportional

fluctuations of the output power. More about this in the next section. 

Back to  the average b02  which we found out  to  be 1 /N.  How many electrons are  contributing to  the SASE start-up ?  The full

bunch ? One FEL bucket ? 

The correct  answer  to  this  question is  tricky,  so  handle  it  with a  simplified but  useful  consideration based on the well  known

relation between frequency bandwidth Δω and duration Δτ of an EM wave packet. 

The EM radiation field has, as we learned, a finite frequency bandwidth and the Fourier transform tells us, that this is coupled

with a finite duration of the pulse which is defined by the "time-bandwidth product". So we have for the coherence time of the

radiadion field 

τc = π σω ≈ π  (ρ ω) =
λ

2 π ρ c
(1.175)

where we used from equ. (153)  that for a long undulator the bandwidth is about σω ≈ ρ ω . 

The number of electrons starting up the SASE process is then simply the number of electrons within one coherence length (c τc)

= 
λ

2 π ρ . 
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So we conclude: for a typical ρ= 10-3, the coherence length is about 300 wavelengths or for a nanometer  FEL below 1 µm and

thus much shorter than the typical bunch lengths (10 - 100 µm). 

If we have ne the electron density in the bunch and σx its lateral width, the number of "cooperating electrons" becomes 

Nc = ne2 π σx
2 (c τc) =

π ne λ σx
2

ρ (1.176)

Thus we have for the average bunching factor squared: 

b0
2 = 1

Nc

=
ρ

π ne λ σx
2
=

2 c e π ρ
Ib λ 

(1.177)

where we replaced the electron density by the (local !) beam current Ib = ne 2 π σx
2 c. 

Typical numbers for eg. FLASH : Ib = 3 kA, λ  = 4 nm , ρ  = 5. 10-4 results in b0
2  ≈  10-8  ! From the considerations in the section

"starting from initial modulation" we know that this means that about 20 gain lengths are needed to reach |a| ~ 1, that is satura-

tion. 

wavelength and  time structure fluctutions

Another importat conseqence of the fact that the "cooperation length" being considerably shorter than the total bunch length is

the  fact,  that  within  one  bunch,  several  "areas"  can  start  a  SASE  process  individually.  These  independent  regimes  are  called

"modes". For each mode, the frequency with the largest bunching factor will grow most rapidly and thus dominate, as long as

the  frequency  is  within  the  gain  bandwidth.  This  results  in  a  rather  complex  time  and  frequency  pattern  of  the  radiation

produced by a SASE-FEL. Neither the time profile nor the frequency spectrum are "smooth", they both consist of a number (the

number of surviving "modes") of spikes. 

Figure 33: Single shot SASE spectra measured at FLASH at two different wavelength (from the blue book). 

Figure (33) shows two examples of single shot spectra measured at FLASH. Since the modes fluctuate on a statistical basis, the

wavelength spectrum fluctuates accordingly from shot to shot. 

intensity fluctuations

  As we have analyzed above (eq. 174), a fixed number of cooperating electrons leads to a certain average b0
2, but the probabil-

ity  distribution  of  b0
2  is  very  wide  with  an  exponential  distribution  function.  The  most  probable  b0

2  is  zero,  that  is  nothing

happens,  no  FEL  process  is  started,  the  fluctuations  width  σb2  is  100%.   From  eq.  (168)  we  see  that  for  a  given  depth  in  the

undulator z in the exponential regime, the resulting FEL power (people call it "SASE power") is directly proportional to b0
2 and

fluctuates as well from shot to shot with an exponential distribution. A highly unstable lightsource, indeed. 

If only one "mode" contributes, the relative power distribution is exponential: 

p(u) du = e-u du (1.178)

u = Urad / 〈Urad〉. 

But as we learned, not only one "mode" but several  individual modes produce radiation from a single electron bunch and we

have to sum up their individual contributions. The resulting statistical distribution from summing M distributions with identical

exponential distribution is given by 
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p(u) du =
MM uM-1

Γ(M)
e-u du (1.179)

with Γ the Gamma function and thus p(u) called a "Gamma distribution". 

This can also be veryfied experimentally, figure (34) shows measured intensity distributions for two different average number of

modes compared to the expected Gamma distributions (eq. 179): 

Figure 34: Experimental power distributions for two different numbers of contributing modes M. To vary M, the effective bunch length was changed. 

The different M were realized by using two different overall bunch lengths. To measure the pure exponential M=1 distribution is

possible  as  well,  even  without  compressing  the  bunch  to  (unrealistic)  short  lengths,  by  selecting  a  very  narrow  frequency  by

using a monochromator. The result is shown in figure (35). 

Figure 35: Experimental power distribution for a single FEL mode. The mode was selected by using a narrow band spectral filter for the FEL radiation (monochromator). 

As mentioned above,  the  intensity  fluctuations  as  described here  are  valid  in  the  exponential  regime of  the  gain curve.  If  it  is

possible to drive the power up to the level where it levels off even for the modes with the smalles bunching factor, the intensity

fluctuations  are  supressed  since  the  saturation  level  is  independent  of  the  initial  bunching  factor.  In  practise,  the  fluctuation

level in saturation is typically of the order 20%, compared to the 100% in the M=1 case. 

Seeding

To  overcome  the  problems  of  the  "SASE"  process,  a  variety  of  "seeding  schemes"  have  been  proposed  and  used  since  quite

some time. 

If a radiation source of sufficientyl large power exists, seeding with an initial EM field is the most direct way. The problem is, that

the intensity of this seeding field has to be large enough to overcome the start-up from the unavoidable SASE process. For short

wavelengths, this quite demanding, in the sub-nm regime no such sources exist. 

Nevertheless, a variety of tricky methods have been found to to seeding in the nm regime and even for wavelengths as short as

0.1 nm. 

Unfortunately, I don't have the time now to describe them here even shortly, I have to refer to the many publications and few

textbooks about the subject. 
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