Polarized Beams a powerful tool for particle physics

Electron Stretcher Accelerator

Physics Institute of Bonn University

- **Why?** \rightarrow Physics with polarized protons/deuterons and electrons
- **How?** \rightarrow a) Beam generation (sources of polarized protons and electrons)
 - \rightarrow b) Beam acceleration (crossing of depolarizing resonances)
 - \rightarrow c) Spin management, energy calibration
- **Coming?** \rightarrow Polarized antiparticles, new projects

Matter and Forces

Quarks and Nucleons

e.g. baryon spectroscopy

e.g. parton spin distribution function

Baryon - Spectroscopy

Linewidth from $\Delta E \cdot \Delta t \geq \hbar$

Double Polarization Experiments

 \rightarrow

a) Sources for polarized particles

Spin Filtering?

Charged particles (e⁻, p⁺): $\vec{F} = \frac{q}{m} \cdot (\vec{p} \times \vec{B})$ and $\Delta x \cdot \Delta p_x > \hbar$

Polarized Protons

Functional Prinziple:

dissociator

 LN_2 -cooled nozzle \rightarrow thermalized H atoms

6-pole fields & RF-transitions

act as "Stern-Gerlach"-polarizer pol-enhancement by RF-pumping

Penning ionizer

e-removal and acceleration

Polarization Scheme

slow (≈ 3 meV) atomic beams

© D. Eversheim, Uni Bonn

Polarized ⁻**H-Atoms**

CBS @ FZJ, © D. Eversheim

COSY CBS Source

High Intensities

Other types of sources in operation, e.g.:

• OPPIS (BNL) *Optically Pumped Polarized Ion Source* based on polarization transfer: $H^+ + Rb^{\uparrow} \rightarrow H^{\uparrow} + Rb^+$

Functional Principle:

Photoelectron emission from GaAs polarization transfer from laser photons to emitted electrons

Removal of the degeneracy:

- local distortions of the lattice (strain)
- multilayer structures (superlattice)

Be-InGaAs/AIGaAs Superlattice

Heat cleaning and activation in extreme UHV Lifetime 100 h $\leftrightarrow P(H_2O,CO_2) < 10^{-12}$ mbar

Photocathode Activation

In-situ deposition of cesium and oxygen in XHV:

Polarized e⁻-Sources Worldwide

- **CEBAF (Jefferson Lab, a)** $E = 100 \text{ keV}, P > 80\%, I = 200 \mu A \text{ (cw)}$
- **Bonn (ELSA, b)** $E = 48 \text{ keV}, P \approx 80\%, I = 100 \text{ mA} (1 \mu \text{s})$
- Mainz (MAMI, c) $E = 100 \text{ keV}, P > 80\%, I < 40 \mu A (cw)$
- **Darmstadt (S-DALINAC, d)** $E = 100 \text{ keV}, P = ??, I = 60 \mu A (cw)$

Challenge: long photocathode lifetime \leftrightarrow ultimate vacuum required

b) Acceleration of polarized particles

Facilities with Polarized Beams

Protons:

. . .

- **COSY** / Jülich (E < 2.4 GeV)
- **Saturne II** / Saclay (E < 3 GeV)
- **KEK PS** / Tsukuba (E < 7 GeV)
- **ZGS** / Argonne (E < 12 GeV)
- **AGS** / Brookhaven (E < 22 GeV)
- **RHIC** / Brookhaven (E < 250 GeV)

Electrons:

. . .

- **AMPS** / Nikhef (E < 0.9 GeV)
- **SHR** / MIT-Bates (E < 1 GeV)
- **MAMI** / Mainz (E < 1.6 GeV)
- **ELSA** / Bonn (E < 3.2 GeV)
- **SPEAR** / SLAC (E < 3.7 GeV)
- **DORIS** / DESY (E < 5 GeV)
- **CEBAF** / Jlab (E < 6 GeV)
- **PETRA** / DESY (E < 18 GeV)
- **HERA** / DESY (E = 27.5 GeV)
- **SLC** / SLAC (E < 46 GeV)

Polarization

• Spin ¹/₂: Electrons, Protons, ...

Vector Polarization

• Spin 1: Deuterons, ...

in addition: $P = 1 - \frac{3N_0}{N_{\uparrow} + N_0 + N_{\downarrow}}$

Tensor Polarization

Spin ↔ **Magnetic Moment**:

$$\vec{\mu} = g \frac{e}{2m} \cdot \vec{S}$$

Spins in Magnetic Fields:

$$\frac{d\vec{S}}{dt} = \vec{\mu} \times \vec{B}$$

Landé-Factor and Gyromagnetic Anomaly:

• Electrons:

- $a = \frac{1}{2} (g 2) = 1,15967 \cdot 10^{-3}$
- Protons: $a = \frac{1}{2} (g 2) = 1,792843$
- Deuterons:
- $a = \frac{1}{2}(g 2) = -0.142987$

Spin-Precession

LINACs and Recirculators

Spin-Precession in Circular Acc.

Spin-Precession in Circular Acc.

Imperfection Resonance: $\gamma \cdot a = n$, $n \in \mathbb{Z}$

Strong Focusing: Betatron Oscillations!

Resonances of 1st order

Resonance Crossing

Resonance Crossing

Froissart-Stora-Formula

Synchrotron Oscillations

Synchrotron Oscillations

Multiple crossing of depolarizing resonances due to energy oscillations

Oscillation frequency/tune:

- > electrons (ELSA): $\Omega \approx 80 \text{ kHz} \leftrightarrow Q_{s} \approx 0.04$
- > **protons** (COSY): $\Omega \approx 0.5 \text{ kHz} \leftrightarrow Q_{s} \approx 0.0006$

Crossing of (weaker) sidebands around imperfection resonance

(taken from habil. A. Lehrach)
Synchrotron Oscillations

Crossing of Synchrotron-Sidebands

"Modified" Froissart-Stora Formula:

$$\frac{P_f}{P_i} = \left(2 \cdot e^{-\frac{\pi|\boldsymbol{\varepsilon}_r|^2}{2\alpha}} - 1\right) \cdot \left(2 \cdot e^{-\frac{\pi|\boldsymbol{\varepsilon}_s|^2}{2\alpha}} - 1\right)^2$$

Full Spin-Flip no longer possible!

Experimental verification at ELSA:

Beam excitation will only cause partial spin flip → depolarization!
➢ Reduce resonance strength by proper centering in the quads

Compensate resonance driving horizontal magnetic fields

CO Correction on the Ramp

vertical beam position / mm in stretcher during ramp E(inj) = 1.200 GeV, E(extr) = 2.350 GeV

Harmonic Correction (Imperfection-Resonances)

Intrinsic Resonances

Countermeasures:

- high superperiodicity P (lattice, machine optics)
- reduce vertical beam size (cooling, skew quads, optics)
- increase crossing speed (tune jumping)

Intrinsic Resonances

Countermeasures:

- high superperiodicity P (lattice, machine optics)
- reduce vertical beam size (cooling, skew quads, optics)
- increase crossing speed (tune jumping)

Tune Jumping:

Tune Jump Quadrupoles

Tune-Jump Quadrupole

- Copper coil air core
- Length 0.6 m
- Max. current ± 3100 A
- Max gradient 0.45 T/m
- Rise time 10 µs,
- Fall time 10 to 40 ms

Panofsky type quadrupole with ferrite yoke

vakuum chamber: resistance: inductance: max. pulse current: max. field gradient:	$\begin{array}{l} \text{AL}_2\text{O}_3 \text{ ceramics} \\ \text{with 10 } \mu\text{m titanium coating} \\ (4,298 \pm 0.001) \ \text{m}\Omega \ \ (\text{DC}) \\ (9,0 \pm 0,1) \ \mu\text{H} \ \ (\text{DC}) \\ 500 \ \text{A} \\ (1,1241 \pm 0,005) \ \text{T/m} \end{array}$
rising edge:	4 - 14 μs
falling edge:	4 - 20 ms

Polarization during Acceleration

© A. Lehrach / FZJ

Polarisation @ 2350MeV, 12.11.2009, 10:54 - 18.12.2009, 8:49

Univ. Bonn

Polarization at "highest" energies

Why not having a polarized beam in:

Energy spread of the beam > 10^{-4} (\leftrightarrow >100MeV typ for machines above!)

- ➢ large number of resonances, no longer isolated from each other
- strong synchrotron sidebands

Siberian Snakes

Siberian Snakes

Partial Snake:

- Increase of the Resonance Strength by $|\varepsilon_{\chi}| = \chi/2\pi$
- Adiabatic Crossing of Imperfection Resonances if $\chi \gg 2\pi |\varepsilon_r| + \sqrt{8\pi\alpha}$

Full Snake:

- Invariant Spin Axis lies in the Accelerator Plane
- Snake Resonances: $k + \frac{1}{2} = Q_{sp} = \pm l \cdot Q_x \pm m \cdot Q_z$

© A. Lehrach / FZJ

Relativistic Heavy-Ion Collider RHIC

RHIC beam energy:

Spin resonances:

Siberian Snakes

AGS snake magnets:

twist helical dipoles 3 T superconducting (left), 1.5 T room temperature (right)

RHIC snake magnet: 4 superconducting 4 T helical dipoles, 2.4 m long with 360° twist

© A. Lehrach / FZJ

Synchrotron Radiation

Emission of *γ***-Quants:**

- **Perturbation of the Orbit** (recoil, dispersion)
- Slightly tilted **invariant spin axis**
- → **Spin Diffusion!**

Simple model:

© J. Buon, CAS 95-06

Polarization Lifetime

Synchrotron Radiation

Transition Rates :

- ➢ no spin flip: $w_{\uparrow\uparrow}$, $w_{\downarrow\downarrow}$
- ▶ with spin flip: $w_{\uparrow\downarrow}$, $w_{\downarrow\uparrow}$

Probability of a spin-flip transition:

$$\frac{w_{\uparrow\downarrow} + w_{\downarrow\uparrow}}{\left(w_{\uparrow\uparrow} + w_{\downarrow\downarrow}\right) + \left(w_{\uparrow\downarrow} + w_{\downarrow\uparrow}\right)} = \frac{1}{3} \cdot \left(\frac{\hbar\omega_c}{E}\right)^2 < 10^{-10} \qquad = \text{very small, but:}$$

The beam will get polarized in a while due to $w_{\uparrow\downarrow} > w_{\downarrow\uparrow}$!

Sokolov-Ternov-Effect:
$$P(t) = P_{ST} \left(1 - e^{-t/\tau_P} \right)$$
 with $P_{ST} = \frac{w_{\uparrow\downarrow} - w_{\downarrow\uparrow}}{w_{\uparrow\downarrow} + w_{\downarrow\uparrow}} = \frac{8}{5\sqrt{3}} = 92.4\%$

Rise time:
$$\tau_P = \left(\frac{8}{5\sqrt{3}}\frac{c\lambda_c r_e}{2\pi}\right)$$

Depolarizing effects: $P_{\infty} = P_{ST} \frac{\tau_{depol}}{\tau_{P} + \tau_{depol}}$ and $\frac{1}{\tau} = \frac{1}{\tau_{P}} + \frac{1}{\tau_{depol}}$

Polarization Rise Times

Some Accelerator Facilities:

- **BESSY I** / Berlin (0.8 GeV) $\tau = 150 \text{ min}, P > 75\%$
- $\blacktriangleright SPEAR / SLAC (3.7 GeV)$
 - $\tau = 15 \text{ min}, P > 70\%$
- $\succ CESR / Cornell (4.7 GeV)$ $<math>\tau = 300 \min, P > 75\%$
- **DORIS** / DESY (5.0 GeV) $\tau = 4 \min, P = 80\%$
- > **PETRA** / DESY (16.5 GeV) $\tau = 18 \min, P > 80\%$
- > **HERA** / DESY (27.5 GeV) $\tau = 35 \text{ min}, P = 70\%$
- > **LEP** / CERN (46.5 GeV) $\tau = 300 \text{ min}, P = 57\%$

Useful for energy calibration...

Polarization comes "for free", but that may take some time ...

HERA with long. polarization

HERA MiniRotators

11 11

c) Spin management, energy calibration

Spin Flip with RF Fields

Spin oscillation frequency: $\omega_{sp} = \omega_{rev} \cdot \gamma \cdot a$ Resonance condition: $\omega_{-} = \omega_{rev} \cdot (k + \gamma \cdot a)$ $\omega_{+} = \omega_{rev} \cdot (k + 1 - \gamma \cdot a)$

Generation of rotating B-field by linear oscillating horizontal B-field (superposition!)

Causes depolarizing resonance:

longitudinal: $\mathcal{E}_{B_{\parallel}dl} = \frac{e}{p} \cdot \frac{1+a}{2\sqrt{2\pi}} \cdot \int B_{\parallel}^{rms} dl$

transverse: $\mathcal{E}_{B_{\perp}dl} = \frac{e}{p} \cdot \frac{1 + \gamma a}{2\sqrt{2\pi}} \cdot \int B_{\perp}^{rms} dl$

Slow resonance crossing by slowly varying the oscillation frequency of the spin-flipper

Spin Flip with RF Fields

Results from COSY / FZJ

 $\int B_{rms} dl = 0.69 \text{ T mm}$ No influence on CO, but only useful at low Lorentz- γ

RF Dipole

 $\int B_{rms} dl = 0.54 \text{ T mm}$ Enhancement by Lorentz- γ , causes CO distortions

© SPIN@COSY Collaboration

Results from COSY / FZJ

© A. Lehrach / FZJ

Beam energy from flipper oscillation frequency:

measured
$$\omega_{\rm sf} = \omega_{\rm rev} \cdot$$

	110900
	known
$(\pm \gamma)a)$	
\sim	

Nominal beam momentum	3150.5 [MeV/c]
Revolution frequency	1403832 ± 6 [Hz]
Spin-resonance frequency	1011810 ± 15 [Hz]
Orbit length	183.4341 ± 0.0002 [m]
Relativistic γ factor	1.9530 ± 0.0001
Reconstructed beam momentum	$3146.41 \pm 0.17 \; [\text{MeV}/c]$

$$\Delta p < 10^{-4}$$

© A. Lehrach / FZJ

Polarized anti-particles, new projects

New Projects

<u>e⁺/e⁻ - Collider:</u>

- ➢ International Linear Collider (500 GeV)
- CERN Compact Linear Collider (3 TeV)
- \rightarrow polarized positrons

p/p-Collider:

-> polarized antiprotons @ HESR/GSI Polarized Antiproton Experiments

Electron-Ion-Collider:

- ELIC @ CEBAF / Jefferson Lab
- ➢ eRHIC @ RHIC / BNL
- > ENC @HESR / GSI

International Linear Collider: ILC The Next Generation?

Generation of Polarized Positrons

Idea: Circularly polarized $\gamma \rightarrow$ longitudinally polarized e^- and e^+

Methods to produce circularly polarized photons:

Demonstration Experiments

E166 @ SLAC: 46.6 GeV e- beam longitudinal polarization (%) 05 09 08 00 Target PC_{u} PC₁ Undulator Toro PRt HSB₁ Hcor 80 γ Diag. BPM BPM₂ OTR HSB₂ 60 Diag. Helical undulator: e expected e⁺ polarization (1m long, λ =2.25mm, K \approx 0.17, aperture expected e polarization 0.9mm) 5 E_{e[±]} (MeV) KEK-ATF: 1.28 GeV e⁻ from ATF with maximum energy of 56 MeV 2nd harmonic of TAG laser Compton scattering Pair creation e⁻ beam Polarized e 1.28GeV Polarized γ -ray Polarized e⁺ Tungsten $E_{max} = 56 \text{ MeV}$ e⁻ beam **Circularly Polarized** Laser Light Spin $\lambda = 532$ nm

ILC Positron Source Layout

ilc

CLIC e+ Injector with Compton Ring

Spin rotation and helicity reversal @ 5GeV

K. Moffeit et al., SLAC-TN-05-045 \rightarrow fast reversal before DR (5 GeV)

<u>"Compton source":</u> fast helicity reversal for e+ by reversing polarization of laser

Future HESR Upgrade Options

A. Lehrach, Polarized Beams at Jülich

Polarized Antiprotons

$$\sigma_{tot} = \sigma_0 + \sigma_{\perp} \cdot \vec{P} \cdot \vec{Q} + \sigma_{\parallel} \cdot (\vec{P} \cdot \vec{k}) (\vec{Q} \cdot \vec{k})$$

P beam polarization Q target polarization k || beam direction

For initially equally populated spin states: \uparrow (m=+ $\frac{1}{2}$) and \downarrow (m=- $\frac{1}{2}$) transverse case: longitudinal case:

$$\boldsymbol{\sigma}_{tot\pm} = \boldsymbol{\sigma}_0 \pm \boldsymbol{\sigma}_\perp \cdot \boldsymbol{Q}$$

$$\sigma_{\text{tot}\pm} = \sigma_0 \pm (\sigma_{\perp} + \sigma_{\parallel}) \cdot Q$$

Unpolarized antiproton beam

Polarization of a Stored Beam by Spin-Filtering

Experiment with COSY / schematic

COSY Cycle

- Stacking injection at 45 MeV
- Electron cooling on
- Acceleration to 49.3 MeV
- Start of spin-filter cycle at PAX: 16 000 s
- PAX ABS off
- ANKE cluster target on
- Polarization measurement (2 500 s) at ANKE
- Spin flips with RF Solenoid
- New cycle

with different direction of target polarization

PAX Collaboration

COSY Cycle / schematic

Results

A. Lehrach, Polarized Beams at Jülich

Conclusions:

what should be remembered?

(Spin dynamics is complicated ?! ^(C))

Generation of polarized beams:

- Sources for polarized protons/deuterons and electrons
- Self polarization of electrons in storage rings

Acceleration of polarized beams:

- ➢ Depolarizing resonances ↔ compensation measures
- \succ Spin management \rightarrow precise energy calibration

There are new projects on the horizon ...

Thank you for your attention!