Hadron Physics Summer School 2014 Schloss Rauischholzhausen, September 1 - 5, 2014

Accelerators for Hadronists

A short and individual overview over basic principles and types of machines

Wolfgang Hillert

Electron Stretcher Accelerator

universitätbo

Hadron Physics Summer School 2014 Schloss Rauischholzhausen, September 1 - 5, 2014

Accelerators for Hadronists

Outline:

- Introduction:
- Circ. Accelerators:
- Beam Dynamics:
- Beam Quality:
 - Limitations:

Acceleration: why and how Magnets, magnets, magnets, ... Wanted and unwanted ... Damping and phase space cooling Space charge, beam-beam, SR, ...

Why Accelerators?

Better understanding of:

strong QCD, structure of hadrons, spin structure, mass of the nucleon, ...

need for GeV-beams for probing the nucleon:

Accelerators

Hadronists wish list comprises the following:

- > GeV beams of all kind of particles (γ , e, μ , π , p, i, ...)
- > premium beam quality and performance
- ultimate intensity while having stable beam delivery all the time
- polarized particles of all kinds (preferably antiparticles like e^+ and \overline{p})

Acceleration

Charged particles are influenced by the Lorentz force: $\vec{F} = e \cdot \vec{E} + e \cdot (\vec{v} \times \vec{B})$

Energy gain:
$$\Delta W_{kin} = \int \vec{F} \cdot d\vec{s} = e \cdot \int E_{\parallel} \cdot ds = e \cdot U$$

\rightarrow We need a longitudinal electrical field E_{\parallel} !

Beam Acceleration

Linear Accelerators

Electrons:

Possible Set-Ups:

a) cw-LINAC of km length:

nc-copper structure in cw-operation: ~ 1MeV/m @ 15kW/m

b) recirc. e-LINAC:

c) circular accelerator 100MeV - ~GeV

Circular Accelerators:

Beam Deflection

Lorentz force:
$$\vec{F} = e \cdot \left(\vec{E} + \underbrace{\vec{v}} \times \vec{B}\right) \longrightarrow \text{magnetic fields}$$

circ. orbit \leftrightarrow homogeneous magnetic field

$$\frac{mv^2}{R} = e \cdot v \cdot B_z \qquad \Rightarrow \qquad \frac{1}{R} = \frac{e}{p} \cdot B_z$$

Important quantities:

- dipole strength: $\kappa = 1/R$, $[\kappa] = m^{-1}$ (curvature)
- beam energy:

magnetic rigidity: $BR = p/e \approx E/c$ (ultra relativistic!)

$$p = \frac{e}{2\pi} \cdot \oint B_z \cdot dl$$

Beam Focusing

Deflection increases linearly with distance from the optical axis!

$$\vec{F} = e \cdot \vec{v} \times \vec{B} \implies B_z = g \cdot x, \quad B_x = g \cdot z, \quad g = \frac{\partial B_z}{\partial x}$$

Important Quantities:

- quadrupole strength: $\mathbf{k} = \mathbf{e}/\mathbf{p} \cdot \mathbf{g}$, $[k] = \mathrm{m}^{-2}$
- focal length: $1/f \approx k \cdot L$

Taylor expansion of the magnetic fields:

Definition of a scalar magnetic potential:

$$\vec{\nabla} \times \vec{B} = \mu_0 \cdot \vec{j} = 0 \qquad \Longrightarrow \quad \vec{B} = \vec{\nabla} \Phi$$

- Dipole: $-\frac{e}{p} \cdot \Phi_1 = \kappa_z x \kappa_x z$
- Quadrupole: $-\frac{e}{p} \cdot \Phi_2 = -\frac{1}{2} \frac{k}{k} (x^2 z^2) + k x z$
- Sextupole: $-\frac{e}{p} \cdot \Phi_3 = -\frac{1}{6} \frac{m(x^3 3xz^2) + \frac{1}{6} m(3x^2z z^3)}{1}$ • ...

Beam Focusing

Chromatic Correction

Correction of focal length:

Iron Dominated Magnets

Deflection Dipoles **Focussing** Quadrupoles Chromaticity

Sextupoles

Properties defined by pole profiles! Maximum achievable fields: *B* < 2.5 Tesla

Example: particle bunch in a PETRA 7-cell resonator:

z=0) [pb] (peak)
0, 1
617e-13
387e-07
9
9

Particle Paths

moving reference frame, fixed to reference particle

Betatron Oscillations

TWISS and Emittance

TWISS and Emittance

Solving Hills DGL

Field Errors

Optical Resonances

Electron Stretcher Accelerator (ELSA)

Improving Beam Quality

Luminosity:

$$\dot{N} = \boldsymbol{\sigma} \cdot \boldsymbol{\mathfrak{L}}$$

<u>e⁺-e⁻, p-p Collider:</u>

high beam current
small beam size

Bunch Collisions:

Luminosity

 $1ab^{-1}/Jahr \leftrightarrow \mathcal{L} = 3 \cdot 10^{35} \frac{1}{cm^2 s}$

Adiabatic Damping

Proton Beams: negligible influence of synchrotron radiation!

"A proton machine remembers everything done to the beam like an elephant!"

What remains is:

Electron Cooling

Heat exchanger with cooled electrons via Coulomb interaction

Important:
$$\mathbf{v}_{e} = \mathbf{v}_{i}$$

Electron Cooling

$$\vec{F}(\vec{v}_i) = -\frac{4\pi n_e e^4 Z^2}{m_e} L_C \int \frac{\vec{v}_i - \vec{v}_e}{\left|\vec{v}_i - \vec{v}_e\right|^3} f(v_e) \cdot d^3 v_e$$

Electron Cooling

Stochastic Cooling

• take care of mixing *M* (which is essential): $\rightarrow \Delta(PU-K)$: small, $\Delta(K-PU)$: large

Stochastic Cooling @ COSY

- Transverse and longitudinal
- Frequency range:
- 1-3 GHz 2 bands

RF power:

- 500 W
- per plane

Phase-Space Cooling at FAIR

HESR Layout:

Electrons / Positrons

Radiative Cooling

Synchrotron Radiation

but:

Equilibrium Emittance

Heating in dispersive sections:

Low Emittance Lattice

Ideas:

- use short dipole magnets
- suppress dispersion in straights

Simplest lattice: DBA (e.g. Chasman-Green)

More sophisticated lattices + damping wigglers used in SR-sources

Energy-scaling of emittance: $\varepsilon \sim E^2$

Direct Space Charge

Coulomb Repulsion caused by Neighbors:

$$\oint_{\partial V} \vec{E} \cdot d\vec{A} = \frac{1}{\varepsilon_0} \iint_{V} \rho \cdot d^3 r$$

$$\Rightarrow E_r(r) = \frac{\rho}{2\varepsilon_0} \cdot r$$

$$F^*(r) = \frac{e\rho}{2\varepsilon_0} \cdot r$$

Transformation to the Lab-Frame:

- Lorentz contraction \rightarrow Factor γ
- Dilution of space charge density \rightarrow Factor γ

$$\Delta Q_{x,z} = -\frac{e}{8\pi^2 \varepsilon_0 m_0 (\beta c)^3 \gamma^3} \left(\frac{I}{\varepsilon_{x,z}} L \right)$$

$$\gamma m_0 \ddot{x} = F_x = \frac{F_x^*}{\gamma^2}$$

Small Beam Sizes

Beam-Beam Interaction

Accelerators for Hadronists

Conclusions:

GeV ↔ acceleration in RF electric fields circular accelerators / recirculating LINACs (electrons only)

- Magnets:
- Beam Dynamics:
- Beam Quality:

dipoles: deflection / quadrupoles: focussing betatron oscillations, betatron tune field errors: optical resonances

- beam emittance = area in phase space / π
- adiabatic damping
- electron cooling
- stochastic cooling
- equilibrium emittance (electrons)

• Limitations:

direct space charge, beam-beam effects, ...

(protons, ions)