The Bonn Electron Stretcher Accelerator

... and the BGO-OD electron beamline

Wolfgang Hillert

Physics Institute of Bonn University

Electron Stretcher Accelerator (ELSA)

Duty Cycle

Macroscopic duty cycle:
$$DC_{mac} = \frac{\Delta T (\text{external beam})}{\Delta T (\text{complete cycle})}$$

Microscopic Duty Cycle

Beam Characteristics:

Typical values for E = 3.2 **GeV**:

Beam Emittance:

 $\mathcal{E}_{x} = 768 \text{ nm} \cdot \text{rad}$

useful: $4\pi\varepsilon = \lambda \leftrightarrow \lambda \approx 10 \mu m$

Beam Divergence:

Focus to
$$\sigma_x = 1 \text{ mm} \rightarrow \sigma_{x'} = 77 \,\mu \text{rad} \approx 8/\gamma$$

Bunch length:

$$2\sigma_s \approx 5.76 \,\mathrm{cm}, \ 2\sigma_t \geq 190 \,\mathrm{ps}$$

Energy spread:

 $\sigma_E / E \approx 0.08\%, \quad \sigma_E \approx 2.6 \text{ MeV}$

Slow Beam Extraction

Beam Characteristics:

External Beam:

Beam Parameters:

- horz.: affected by extraction, have to be measured
- vert., long.: about the same as the internal values

Long-Term Stability (experience from CB):

- beam pointing stability $\leq 20 \ \mu rad \leftrightarrow$
- beam position stability $\leq 0.2 \text{ mm} \leftrightarrow$

photon-camera

RF-cavity

Careful alignment of experimental components (collimators!!) required!

Things still need to be done:

- Power Supply Tagging Magnet:
 - Installation of passive filter (in progress, nearly completed)
 - Balancing of current regulator (not before Oct)
- Spectrometer Magnet:
 - Connection to PS on ramp (serves M5/CB-beamline)
 - Balancing of current regulator (not before Oct)
- Tagging Target:
 - Installation of the target vessel, closing of beam-pipe
 - Later: Installation and commissioning of TM_{110} -cavities

Time Schedule

• September: Maintenance

- test of 10kV safety switches
- installation of power supplies for ext. dipoles
- cabling of tagger / spectrometer magnet
- acc: feedback, correctors, cooling, LINAC I, loadlock, ...

• October: Re-Commissioning of ELSA

- balancing regulators power supplies ext. dipoles
- test of all subsystems, accelerator switch-on
- conditioning of PETRA resonators
- internal beam tests, commissioning of 3D-feedback-system
- set up of standard operation
- November / December: operation for CB / BGO-OD

Operation at Higher Currents

Generation of wake-fields, beam neutralization

- excitation of coherent oscillations
- ➤ damping due to SR-emission
 - ➢ 1/e damping times:
 Injection (1.2 GeV): $\tau_x = 100 \text{ ms}$ / $\tau_s = 35 \text{ ms}$ Extraction (3.2 GeV): $\tau_x = 5.2 \text{ ms}$ / $\tau_s = 2 \text{ ms}$
- ➢ first instabilities observed for *I* > 20 mA
- > stronger damping required!

 \rightarrow aiming for $\tau \approx 1$ ms!

Bunch by Bunch Feedback

$\Delta t = 2 \text{ ns}, \text{BW} = 250 \text{ MHz}$

Actual Status & Outlook

BGO-OD – beamline "operational" with unpolarized beam:

Tagged photon operation only (incl. lin. polarization)

➢ Energy range: 1.0 GeV < *E* < 3.5 GeV
 ➢ Current range: 10 pA < *I* < 1 nA

electrons

Intensity stabilization using RF cavity or tagger-or

Up to 10 nA envisaged with active bunch by bunch feedback!

Linearly polarized photons avail. from coh. bremsstrahlung

Circularly polarized photons require Møller-polarimeter!