R&D at the **Electron-Stretcher Accelerator**

"Clients":

Status 03/2011

Funding:

- Thermionic gun uptime of 100% (no vacuum bursts)
- Stabilized tunes on the fast energy ramp
- Online meas. of beam position @ tagging target
- LINAC I available for irradiation purpose
- Beam loss monitor system commissioned
- Improved CO vertical correction in ELSA
- Bunch by bunch feedback operational

- Thermionic gun uptime of 100% (no vacuum bursts)
- Stabilized tunes on the fast energy ramp
- Online meas. of beam position @ tagging target
- LINAC I available for irradiation purpose
- Beam loss monitor system commissioned
- Improved CO vertical correction in ELSA
- Bunch by bunch feedback operational

LINAC I:

Commissioned in 12/2010

Dedicated beam time in 2011 for:

- irradiation of target material (COMPASS)
- irradiation of detector electronics (ATLAS) Operation parallel to CB/ELSA run!

Regular COMPASS irradiation finished, now preparing 1-2 extra samples

- Thermionic gun uptime of 100% (no vacuum bursts)
- Stabilized tunes on the fast energy ramp
- Online meas. of beam position @ tagging target
- LINAC I available for irradiation purpose
- Beam loss monitor system commissioned
- Improved CO vertical correction in ELSA
- Bunch by bunch feedback operational

Beam-Loss-Monitor System

Dipl. Dennis Proft

First measurements

Dipl. Dennis Proft

- Thermionic gun uptime of 100% (no vacuum bursts)
- Stabilized tunes on the fast energy ramp
- Online meas. of beam position @ tagging target
- LINAC I available for irradiation purpose
- Beam loss monitor system commissioned
- Improved CO vertical correction in ELSA
- Bunch by bunch feedback operational

Correction Menu for pol. e⁻:

Imperfection Resonances

- Magnet alignment
- Correction of field errors
- Closed orbit correction:

• Harmonic correction:

Intrinsic Resonances

- Small coupling
- Tune jumping:

Improved Correction

Harmonic distribution of combined B-fields in straights:

Calculation of corrector currents from matrix inversion

$$\vec{b}_{\text{harm}} = \mathbf{M} \cdot (\mathbf{I} + \mathbf{g} \cdot \mathbf{R}) \cdot \vec{b}_{\text{corr}}$$

by using the SVD technique.

Diss. Oliver Boldt

Harmonic Correction

December 2009:	<u>March 2011:</u>
$\cos 3 = 0.000$	$\cos 3 = 0.015$
sin3 = 0.024	sin3 = 0.017
$\cos 4 = -0.006$	$\cos 4 = -0.006$
sin4 = 0.001	sin4 = 0.005
$\cos 5 = -0.002$	$\cos 5 = 0.009$
sin5 = 0.007	$\sin 5 = -0.004$

Slightly different due to readjustments and add. correctors

CB/ELSA-Run with pol. d:

- Thermionic gun uptime of 100% (no vacuum bursts)
- Stabilized tunes on the fast energy ramp
- Online meas. of beam position @ tagging target
- LINAC I available for irradiation purpose
- Beam loss monitor system commissioned
- Improved CO vertical correction in ELSA
- Bunch by bunch feedback operational

Bunch by Bunch Feedback

$\Delta t = 2 \text{ ns}, BW = 250 \text{ MHz}$

Bunch by Bunch Feedback (FB)

installation of prototype longitudinal kicker cavity

Ma.Sc. Nikolas Heurich

frontend electronics, 3 digital signal processors, amplifiers

Booster mode: 17 mA at 2.35 GeV

- longitudinal FB loop closed: better injection efficiency at 1.2 GeV
- at 10 mA coherent longitudinal beam instabilities
- synchrotron oscillation (85 kHz) of bunches damped successfully
- rf ramp: stabilization of longitudinal tune & low beam loss with FB

Feedback: off

Feedback: on

Storage ring mode: up to 100 mA at 2.35 GeV

- if longitudinal FB is active, beam also becomes transverse instable !
- horizontal FB loop closed: betatron oscillations of bunches at 732 kHz damped successfully
- horizontal drive-damp investigations at 50 mA: FB shows good damping performance
- but: beam also starts to oscillate vertical (at 756 kHz) !

Second wide-band amplifier ordered, 3D-feedback will be available in summer

Next Steps / Outlook

- use better injection efficiency with longit. FB to store higher currents (20-25 mA) for booster mode (at same injection time)
- for higher currents transverse feedback loop must be also closed: new transverse stripline kicker (larger BW) & amplifier for vertical FB

- tranverse bunch cleaning: single bunch in ELSA possible !?
- studies of instabilities modes: analyse drive-damp transitions

New Load-Lock: coming 2011

ELSA is operational for experiments using:

- lin. polarized photons $E_e < 3.3 \text{ GeV}$
- circ. polarized photons $E_e < 2.4 \text{ GeV}, P_e = 60 65\%$

offering stabilized:

- beam intensity (feedback on tag-or)
- beam polarization $(\Delta P < 5\%)$
- beam position and pointing $(\Delta x, z < 0.5 \text{mm})$

xternal beam current is limited to *I* < 0.5nA

ELSA cannot be operated reliably at *T* >> 30°C !!

Staged Approach:

- comm. and online control of 64 new PS in the acc. tunnel
- hor. CO correction using suppl. dipole correction windings
- using existing correctors for vert. correction (# $18 \rightarrow 30!$)
- install. of a vertical correction system in the synchrotron (before second half of polarized d run)
- replacement of existing by new vertical corrector magnets

Extended shutdown period of ELSA is needed for the installation of the load-lock system pol. source!

histo.php (PNG-Grafik, 1246x787 Pixel)

http://www.cb.uni-bonn.de/onlinemonitor/histo.php?name=Moeller/S_Polarisation&width=1...

10.03.2011 16:36