# Die Beschleunigeranlage ELSA

### des Physikalischen Instituts

#### **Wolfgang Hillert**

Physikalisches Institut, Universität Bonn

Elektronen-Stretcher-Anlage



#### Inhalt:

- Einleitung
- Linearbeschleuniger
- Synchrotron
- Stretcher
- Polarisierte Elektronen



#### Alte Typen:

Van de Graaff (Tandem), Cockroft-Walton, ...



#### Beschleunigungsresonatoren:



Resonanz:

$$\frac{1}{R_l} = \frac{1}{n^2 \cdot R_0} + \frac{1}{R_s}$$

und:



Definition des Koppelfaktors  $\kappa$  durch:





#### Typischer "Einzeller" (DORIS):



 $D = 462 \text{ mm} \\ 1 = 276 \text{ mm} \\ \lambda_r = 0.6035 \text{ m} \\ f_r = 496.7 \text{ MHz}$ 

#### Daten:

$$Q = 38000$$
$$R_s = 3 M\Omega$$





 $\Delta E = 1 \text{ MeV/m}$   $\Rightarrow U_C = 300 \text{ kV}$  $\Rightarrow P_{RF} = \frac{U^2}{2R} = 15 \text{ kW}$ 

### Typischer "Mehrzeller" (PETRA):



```
I = 0,5 \text{ A}, E = 20 \text{ MeV}: P_{RF} = 2.10 \text{ MW} = 20 \text{ MW}
```

#### Gepulster Betrieb, f = 3 GHz!

#### Wanderwellenstruktur mit Irisblenden:



#### **Brillouin-Diagramm:**



#### LINAC I:



### LINAC II:



#### **Erzeugung der RF-Leistung mit Klystrons:**



#### Zugehöriges Netzgerät (Modulator):



#### **Typische Betriebsdaten:**

 $U_{Kl} \approx 250 \text{ kV}, \quad I_{Kl} \approx 200 \text{ A}, \quad \tau \approx 3 \text{ } \mu\text{s}$  $U_{PFN} \approx 30 \text{ kV}, \quad I_{PFN} \approx 1700 \text{ A}$ 

#### **HVPS LINAC II:**



#### **PFN LINAC II:**



#### "Prebunching":



#### **Dichtemodulation:**

![](_page_9_Figure_4.jpeg)

#### Das 2,5 GeV – Synchrotron:

![](_page_10_Picture_2.jpeg)

#### **Betriebsweise:**

![](_page_10_Figure_4.jpeg)

![](_page_11_Picture_0.jpeg)

Geometrische Fokussierung:

![](_page_11_Picture_2.jpeg)

Alternativ:

horizontale Ebene:

![](_page_11_Figure_5.jpeg)

vertikale Ebene:

![](_page_11_Picture_7.jpeg)

Anfangs: schwache Fokussierung, seit Ende 50-er:

#### **Starke Fokussierung:**

![](_page_11_Picture_10.jpeg)

18,5 t

3,4

7,65 m

#### **Polschuhform** ↔ **Fokussierungsstärke**:

![](_page_12_Picture_2.jpeg)

![](_page_12_Picture_3.jpeg)

#### Hillsche Differentialgleichung:

$$x''(s) + \left(\frac{1}{R^2(s)} - k(s)\right) \cdot x(s) = \frac{1}{R(s)} \frac{\Delta p}{p}$$
$$z''(s) + k(s) \cdot z(s) = 0$$

Lösung:

$$x(s) = \sqrt{\varepsilon} \cdot \sqrt{\beta(s)} \cdot \cos\left(\int_{0}^{s} \frac{d\,\tilde{s}}{\beta(\tilde{s})} + \varphi_{0}\right)$$

#### Longitudinale Fokussierung:

![](_page_13_Figure_2.jpeg)

Sollphase  $\varphi_s > \pi/2$ , Überspannungsfaktor q

#### → Phasenstabiler Bereich:

![](_page_13_Figure_5.jpeg)

Longitudinale Schwingung: Synchrotronschwingung!

#### Dämpfung der Teilchenschwingungen:

![](_page_14_Figure_2.jpeg)

**Combined Function**  $J_X = -1$ : horizontal entdämpft!

![](_page_15_Figure_1.jpeg)

#### "Separated Function" Beschleuniger:

![](_page_16_Picture_2.jpeg)

#### FODO-Struktur: Speicherung des Strahls möglich!

#### Betriebsmodi:

#### Stretcher-Modus

![](_page_16_Figure_6.jpeg)

#### Speicher-Modus

![](_page_16_Figure_8.jpeg)

#### **Booster-Modus**

![](_page_16_Figure_10.jpeg)

![](_page_16_Picture_11.jpeg)

3100 A @ 936 V = 2,9 MW

![](_page_17_Figure_1.jpeg)

**Optische Funktionen für eine Halbzelle:** 

![](_page_17_Figure_3.jpeg)

![](_page_18_Figure_1.jpeg)

**Emittanz des Strahls:** 

![](_page_18_Figure_3.jpeg)

#### **Strahl-Injektion:**

![](_page_19_Figure_2.jpeg)

#### Septum-Magnet:

![](_page_19_Figure_4.jpeg)

![](_page_19_Picture_5.jpeg)

#### Natürliche Emittanz:

![](_page_20_Figure_2.jpeg)

#### Verschiebung auf Dispersionsbahn:

![](_page_20_Figure_4.jpeg)

#### **Relative Energiebreite:**

$$\left(\frac{\sigma_E}{E_0}\right)^2 = C_q \cdot \gamma^2 \cdot \frac{\mathfrak{J}_3}{2\mathfrak{J}_2 + \mathfrak{J}_4} = \frac{C_q \cdot \gamma^2}{J_s} \cdot \frac{\mathfrak{J}_3}{\mathfrak{J}_2}$$

#### Natürliche Emittanz:

$$\varepsilon_x = C_q \cdot \gamma^2 \cdot \frac{\mathfrak{J}_5}{\mathfrak{J}_2 - \mathfrak{J}_4} = \frac{C_q \cdot \gamma^2}{J_x} \cdot \frac{\mathfrak{J}_5}{\mathfrak{J}_2}$$

#### Der Strahl vergisst seine Vorgeschichte!

#### Störungen der Gleichgewichtsbahn:

![](_page_21_Figure_2.jpeg)

#### **Messung und Korrektur:**

![](_page_21_Picture_4.jpeg)

![](_page_22_Figure_1.jpeg)

#### **Messung durch PU-Monitore:**

#### **Ergebnis:**

![](_page_22_Figure_4.jpeg)

#### Kalibrationsprinzip:

![](_page_23_Figure_2.jpeg)

#### **Bestimmung des BPM-Nullpunktes:**

![](_page_23_Figure_4.jpeg)

Störung der Fokussierung:

• Arbeitspunktverschiebung:

$$\Delta Q = \frac{1}{4\pi} \int \beta(s) \,\delta k(s) \,ds$$

• "Beta-Beating":

$$\Delta\beta(s) = \frac{\beta(s) \cdot \oint \delta k(s) \beta(s) \cos\left[2\left(\Delta\phi - \pi Q_0\right)\right] \cdot ds}{2\sin\left(2\pi Q_0\right)}$$

#### Anschauliche Darstellung im norm. Phasenraum:

![](_page_24_Figure_7.jpeg)

![](_page_24_Figure_8.jpeg)

#### **Optische Resonanzen:**

Art der Resonanz ,,integer resonance" Q = n,,half-integer resonance"

 $2 \cdot Q = n$ ,,third-integer resonance"

 $3 \cdot Q = n$ 

treibender Multipol

**Dipol-Fehler** 

Quadrupol-Fehler

**Sextupol-Fehler** 

#### Arbeitspunkt – Diagramm:

![](_page_25_Figure_10.jpeg)

#### Chromatizität:

$$\Delta Q_{x,z} = \xi_{x,z} \cdot \frac{\Delta p}{p_0}$$
  
$$\xi_{x,z} = -\frac{1}{4\pi} \int \left[ k_{x,z}(\tilde{s}) - m(\tilde{s}) D(\tilde{s}) \right] \cdot \beta_{x,z}(\tilde{s}) d\tilde{s}$$

#### Korrektur durch Sextupol-Magnete:

![](_page_26_Figure_4.jpeg)

#### **Resonanzextraktion:**

#### Anregung einer drittelzahligen Betatronresonanz:

![](_page_27_Picture_3.jpeg)

 $(x_i, x_i') \sim \frac{\Delta Q}{m}$ 

#### Aufspaltung des Phasenraums:

![](_page_27_Figure_6.jpeg)

![](_page_28_Figure_1.jpeg)

#### Räumliche Verteilung der VME-Rechner:

![](_page_29_Figure_2.jpeg)

#### Hauptmenü:

![](_page_29_Picture_4.jpeg)

#### Korrektur der Gleichgewichtsbahn:

| X-∺ orbit.phys                                           |                                                            |                                         |
|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
| FLOA Classed Orbit Konnektur                             |                                                            |                                         |
|                                                          | LSA - Closed Orbit Korr                                    |                                         |
| Orbit–Korrektur                                          | Orbit–Messung                                              | Berechnete Korrektur                    |
| Ebene: X Z >X&Z <                                        | X-Orbit -2_2 mm Z-Orbit -2_2 mm                            | X-Korrektoren Z-Korrektoren             |
| LSQ-Korrektur berechnen                                  |                                                            |                                         |
| MICADO-Korrektur berechnen                               | - AAAA A MAAAAAAAAAAAAAAAAAAAAAAAAAAAAA                    |                                         |
| LSQ-Korrektur mit gemessener Orbitmatrix                 |                                                            |                                         |
| MICADO mit gemessener Orbitmatrix                        | MAX: 0.431 mm MAX: 0.603 mm<br>RMS: 0.199 mm RMS: 0.189 mm | X-Orbit-Aenderung                       |
| Ream-Rump berechnen                                      | Y_Orbit_Spektrum 7_Orbit_Spektrum                          |                                         |
| Beam-Bump beredinien                                     |                                                            |                                         |
| Korrektur applizieren                                    |                                                            |                                         |
| Letzte Korrektur zuruecknehmen                           |                                                            |                                         |
| Dispersionsfit: 1.380469e+01 Hz Korr.                    |                                                            | X-Orbit erwartet                        |
|                                                          |                                                            |                                         |
| Eigenwert-Toleranz Matrixinversion: 10 <sup>-1.700</sup> | Korrektoren–Kontrolle                                      |                                         |
| Anzahl Korrektoren MICADO: 🖪 7 🕨                         | Status Korrektoren                                         |                                         |
| Orbitmatrix-File matrix_010213_1                         | Korrektor-Einstellungen speichern                          | MAX: 0.478 mm MAX: 0.583 mm             |
| Fuer Harmon: -> Orbit-Harmonische                        | Korrektor-Einstellungen laden & setzen                     | RMS: 0.173 mm RMS: 0.180 mm             |
|                                                          |                                                            | X-Spektrum erwartet Z-Spektrum erwartet |
| Fuer Bump:   -> Bump-Definition                          | Korrektor-File syli_2700_5.2_040119                        |                                         |
|                                                          | Korrektoren alle zuruecksetzen                             |                                         |
| Feedback-Modus                                           | Orbit Evenanta                                             |                                         |
| Algorithmus: Least Square                                | Korrektoren gesetzt                                        |                                         |
| LSQ MICADO                                               | Korrektoreinstellungen geladen                             |                                         |
| LSQ-GM MICADO-GM                                         | Korrektoren gesetzt<br>Korrektoreinstellungen geladen      | Monitore Korrektoren <u>Hilfe</u>       |
| Harmonische   Bump                                       | Korrektoren gesetzt                                        |                                         |
| ·                                                        |                                                            | - FL                                    |

#### Steuerung der ELSA-Hauptmagnete:

![](_page_31_Picture_2.jpeg)

![](_page_31_Picture_3.jpeg)

### Photoeffekt am GaAs

![](_page_32_Figure_1.jpeg)

## Überwindung der Austrittsarbeit

![](_page_33_Figure_1.jpeg)

### Quelle und Vakuumschleuse

![](_page_34_Figure_1.jpeg)

### Laser-Systeme

![](_page_35_Figure_1.jpeg)

### **Ti:Sa Pulslaser**

![](_page_36_Picture_1.jpeg)

Laserresonator

Pulsschneidesystem

### Transferkanal

![](_page_37_Figure_1.jpeg)

![](_page_38_Picture_0.jpeg)

## **Depolarisation**

**Spin-Arbeitspunkt:**  $Q_{Sp} = \gamma \cdot a$ 

![](_page_39_Figure_2.jpeg)

#### Spinpräzession unter Einfluss von Störfeldern:

![](_page_39_Figure_4.jpeg)

#### Klassifikation der Resonanzen:

- Imperfektionsresonanzen:  $Q_{Sp} = \gamma a = n \gamma a$
- Intrinsische Resonanzen:  $Q_{Sp} = n \cdot P \pm Q_z$  –

### **Polarisationstransport**

![](_page_40_Figure_1.jpeg)

### **Depolarisation im Synchrotron**

![](_page_41_Figure_1.jpeg)

### Kreuzen einer Resonanz

![](_page_42_Figure_1.jpeg)

### Resonanzstärken

![](_page_43_Figure_1.jpeg)

## Korrigierte Gleichgewichtsbahn und Reduzierung der Emittanzkopplung:

![](_page_43_Figure_3.jpeg)

### **Intrinsische Resonanzen**

#### Korrektur der intrinsischen Resonanzen:

![](_page_44_Figure_2.jpeg)

"Arbeitspunktspringen"

### Sprungquadrupole

![](_page_45_Figure_1.jpeg)

### Harmonischen-Korrektur

![](_page_46_Figure_1.jpeg)

#### Schleppfehler-Korrektur der Korrektoren:

![](_page_46_Figure_3.jpeg)

### Energiekalibration

#### 1.2 Simulation Messung 1 ŦŦ Ξ ŧ Ŧ 0.8 Ŧ 0.6 $P_{\rm f}/\,P_{\rm i}$ 0.4 Ŧ 0.2 0 Ŧ -0.2 -0.4 L 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 Energie / MeV

Kreuzung der Resonanz γa=4:

![](_page_47_Figure_3.jpeg)

![](_page_47_Figure_4.jpeg)

## **Compton-Polarimeter**

![](_page_48_Figure_1.jpeg)

Aktive Stabilisierung des Laserstrahls

Si-Streifendetektor mit 384 ausgelesenen Kanälen

### Messergebnisse

#### Intensitätsprofile Compton gestreuter Photonen:

![](_page_49_Figure_2.jpeg)

Selbstpolarisation in ELSA:

![](_page_49_Figure_4.jpeg)

### Lasersystem

#### Ar+-Laser und 1. Teil der Strahlführung:

![](_page_50_Picture_2.jpeg)

#### **Digital geregelte Spiegelstrecke:**

![](_page_50_Picture_4.jpeg)

### **Erreichte Polarisation in ELSA**

![](_page_51_Figure_1.jpeg)

### Aktivitäten

• Quelle polarisierter Elektronen: Vollständige Vakuumschleuse inkl. Kristallvorrat

#### • Stretcherring:

Neues Magnet-System zur CO-Korrektur Dynamische Messung und Optimierung des CO Messung der Arbeitspunkte auf der Energierampe

#### • Externer Strahl:

Zerstörungsfreie Diagnose mit RF-Monitoren

• **Beschleunigung polarisierte Elektronen:** Korrektur aller depol. Resonanzen bis 3,5 GeV

#### • Polarimetrie:

Aufbau eines verbesserten Si-Streifen-Detektors Optimierung des Compton-Polarimeters

#### • Neue Betriebsmodi:

Single-Bunch- Erzeugung und Akkumulation

#### • Energieerhöhung:

Optik und SC-Cavities für ELSA @ 5 GeV