

Project D.2 / 2004 - 2016

04-08 Acceleration of polarized electrons in a medium sized stretcher ring up to 5 GeV
08-12 Acceleration of high currents in a fast ramping stretcher ring
12-16 Beam and spin dynamics in a fast ramping stretcher ring

Wolfgang Hillert

CRC 16 Symposium 07.06.2016

Experimenters Wish List

Registration » Startseite

Impressum | Internal | Deutsch | Englisch

Photoproduction Experiments:

- quasi continuous γ beam (10⁷ γ /sec, GeV)
- high and stable linear and circular polarization
- \rightarrow quasi continuous electron beam (1-10 nA, GeV)
- \rightarrow high polarization, beam pointing & reliability

Electron Stretcher Accelerator (ELSA)

Source of Polarized Electrons

Specific features:

- inverted HV geometry
- adjustable perveance
- full load lock system
- H-cleaning
- P > 80% @ E = 48 keV
- $I = 200 \text{ mA} @ \tau = 1 \mu \text{s}$
- QE-lifetime > 1000 h

Acceleration of polarized electrons TOF walls drift chambers **BGO-OD** tracking detectors BGO calorimeter tagger le (horizontal) le (vertical) \rightarrow Spin-Tune: $Q = \gamma a$ hadron drupole beam dump magnet physics v Quadrupole polarized upole arget experiments bined-Function Magnet noid **Crystal Barrel** tagger Møller o Frequency Mini-TAPS polarimeter magn. moment: B detector $\vec{\mu} = g \frac{e}{2m} \cdot \vec{S}$ Compton polarimeter (for internal beam) Flugzeitwände booster synchrotron irradiation 0.5 - 1.6 GeV area Π $\vec{\Omega}^* = -\frac{e}{m} \left(1 + \frac{a}{4}\right) \cdot \vec{B}$ ± >+H $\leq 10 \text{mA}$ **DESY** cavity $\frac{g-2}{2} \approx 10^{-3}$ \mathcal{M}_0 EKS LINAC 1 ron light (20 MeV) Lab frame: factor γ ! tic area Mott polarimeter electron < 200gun pol. e etector tests electron source gun construction) (50 keV) LINAC 2 (26 MeV) extraction septa

0 m

5 m

10 m

15 m

Depolarizing Resonances

Acc. of Polarized Electrons

Integer Resonances: $\gamma a = n$

- precise CO correction ($z_{\rm rms} < 80 \mu m$)
- harmonic correction:

Intr. Resonances: $\gamma a = nP \pm Q_z$

- small vertical beam size
- tune jumping with pulsed quads

Depolarizing Resonances Situation at ELSA:

Imperfection Resonance: $\gamma \cdot a = n$, $n \in Z$ Intrinsic Resonance: $\gamma \cdot a = n \cdot P \pm Q_z$, $n \in Z$

32 New Pick-Up BPMs

- BPMs at the Quadrupoles
- BPMs fixed to the Quadrupoles
- Smooth Geometry \rightarrow low Impedances
- Clearing Electrodes close to the Quadrupoles
- Water Cooling

Fast Correction System

Programmable 4-Quadrant PS:

- $-I_{\text{desired}} I_{\text{measured}}$
 - 20 kHz pulsed H-bridge
 - ► PI-controller
 - current precision pprox 1 %
 - CAN-Bus module
 - stored current ramps
 - external trigger
 - in total 54 power supplies distributed in 14 cabinets along the ELSA tunnel

Correction Coils:

	new
voltage	200 V
max. current	8.0 A
inductance	260 mH
max. field	40 mT
weight	30 kg
field integral	9.8 mT m

$\mathbf{I} = 400 \text{ A/sec} \leftrightarrow \mathbf{B} = 2 \text{ Tesla/sec}$

Harmonic Correction

(simple approach)

Spin-Orbit Response Technique

Spin-Orbit Response Technique

5 10 15 20 straight segment

Resonance Crossing

Beam excitation will only cause partial spin flip \rightarrow depolarization!

- Reduce resonance strength by proper centering in the quads
- Compensate resonance driving horizontal magnetic fields

Harmcor (sine) of $\gamma a = 3$

Polarization at CBELSA/TAPS

Coherent Bremsstrahlung

Beam energy: 3.2 GeV

Slow Beam Extraction

Air Core Quadrupole Magnets (Extraction):

Shift of the horizontal betatron tune close to a third integer value, "current feedback-loop"

Intensity & Position Stabilisation

Photon Camera

×ELSA -- Photon-Kamera

Datei Kamera Fenster Bildverarbeitung Bildeigenschaften Bearbeite AOIs Info

_ 🗆 X

Position Measurement in the pA-Regime

$\Delta x < 50 \mu m @ I = 100 pA, dx = 1mm$

Parameter	Value
Mode	TM ₁₁₀
Inner diameter	242 mm
Inner length	52 mm
Opening diameter	34 mm
Resonant frequency ν_0	1.499010 GHz
Shunt impedance $R_s/\Delta x^2$ (CST)	411 Ω/mm^2
Unloaded quality factor Q_0	11090
Coupling factor κ	0.89

-25

High Intensities

Beam-Pipe Discontinuities:

Generation of wake-fields

 \rightarrow excitation of beam instabilities

Countermeasures:

- Suppression of acc. cavities' HOM
- Reduction of coupling impedance
- Active damping of instabilities

Impedance Reduction

BPM

Ion Clearing

Bridging of Ceramic Brakes

HOM Suppression Acc. Cavities

0

.5

Bunch-by-Bunch Feedback

System Layout:

Broad-Band Kickers

(developed and constructed in-house)

Longitudinal: Kicker Cavity

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 Frequenz / MHz

200

Feedback Performance

Allows stable operation of ELSA with currents up to 200mA!

RF Control & Stabilization

Feedback Performance

List of Research Efforts

$(P \rightarrow 80\%, I \rightarrow 200$ mA, reliable operation)

- Source of polarized electrons with full load-lock
- Precise and fast BPM system: $\Delta_{x,z} \approx \mu m$, 1kHz
- Fast bipolar steerer system: $\dot{B} = 2$ T/sec, $B \cdot l \approx 0.01$ T·m
- Harmcorr based on spin-orbit response technique
- Low-impedance vacuum chambers
- Effective ion clearing (35 clearing electrodes)
- HOM suppression in accelerating cavities
- 3D bunch-by-bunch feedback system ($\Delta f = 250$ MHz)
- FPGA-based LLRF control: $\Delta A/A < 3.10^{-4}$, $\Delta \phi < 0.04^{\circ}$
- 3D ps-diagnosis based on a streak camera system
- Cavity-based BPM for low intensities: $\Delta_{x,z} \approx 0.1$ mm, 100 pA
- Mott, Møller and Compton polarimetry
- Beam loss monitoring system
- Optimization of tune settings and slow extraction
- Numerical simulation of spin dynamics

Bye, bye, SFB/TR 16!

